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Abstract—Many modern embedded systems with GPUs are re-
quired to process huge amount of data that is sensed from
their environment. However, due to some inherent properties of
these systems such as limited energy, computation and storage
resources, it is important that the resources should be used
in an efficient way. For example, camera sensors of a robot
may provide low-resolution frames for positioning itself in an
open environment and high-resolution frames to analyze detected
objects. In this paper, we introduce a method that, when possible,
scavenges the unused resources (i.e., memory and number of
GPU computation threads) from the critical functionality and
distributes them to the non-critical functionality. As a result, the
overall system performance is improved without compromising
the critical functionality. The method uses a monitoring solution
that checks the utilization of the system resources and triggers
their distribution to the non-critical functionality whenever pos-
sible. As a proof of concept, we realize the proposed method in a
state-of-the-practice component model for embedded systems. As
an evaluation, we use an underwater robot case study to evaluate
the feasibility of the proposed solution.

Keywords–GPU; embedded system; component-based software
development; CBD; model-based development; MBD; resource
utilization; monitor.

I. INTRODUCTION

This paper substantially extends the authors’ previous
work [1]. Embedded systems are found in almost all contempo-
rary electronic products. Their applications range from simple
and small-sized products, e.g. a wireless controlled toy car or
an airplane to very complex and large-sized systems such as
premium cars and airplanes. Many modern embedded systems
are developed to process huge amount of data that is originated
from the interaction with their environments. For example, the
Google autonomous car processes around 750 MB of data per
second [2]. Massive computing power and parallel execution of
software is required to process such a large amount of data. The
traditional embedded systems are unable to handle these data-
intensive applications, mainly due to reduced computational
power and support for parallel execution of software.

Graphics Processing Units (GPUs) offer a promising solu-
tion to deal with this challenge. A GPU supports a parallel
execution model, which allows multiple data to be processed
in parallel. However, a GPU cannot be used in isolation, i.e.,
the GPU needs a Central Processing Unit (CPU) to activate

the activities (threads) that are intended to run in parallel
on it. Thanks to the recent advances in the semiconductor
and chip industry, there are several vendors that manufacture
heterogeneous computing platforms which contain a combina-
tion of CPUs, GPUs and other computation resources on the
same board. For example, vendors such as NVIDIA, AMD
and Samsung provide their own embedded heterogeneous
solutions on the same board such as NVIDIA Jetson TK1 [3],
AMD R-464L [4] and Samsung Exynos 8 [5] respectively.

The amount of data captured by an embedded system from
its environment can significantly impact the management of
its resources (e.g., memory and computation power), which
in turn can impact its performance. One way to optimize the
resource usage is to collect variable stream-size of data from
the sensors depending upon different situations. For example,
the ProcImage500-Eagle camera sensor [6] can be configured
to capture low- or high-resolution frames depending upon the
environment. For example, a robot fitted with such a camera
may use low-resolution data frames to examine its position in
an open environment. On the other hand, the robot may use
high-resolution frames to inspect the target objects in a detailed
manner. The high-resolution frames require larger memory
footprints and more computation power (and energy) to be
processed by the GPU. Whereas, the low-resolution frames
are delivered with faster frame rate, occupy less memory and
require lower computation power for GPU processing.

The system resources in many embedded systems are shared
between non-critical and critical functions. The non-critical
functions are not constrained by any resource requirements.
Hence, these functions are expected to provide the best-effort
service. Whereas, the critical functions are constrained by
resource requirements, often stringent, that must be met during
the execution of the system. Hence, it is ensured that all the
system resources that are required by the critical functions are
always available to them. For example, a vision system of a
robot represents a critical function. This system is designed
in such a way that it is always guaranteed enough resources
to process the high-resolution frames. Even when the cameras
provide low-resolution frames, the system still occupies the
same amount of resources as if it were processing the high-
resolution frames. As a consequence, the system resources
are wasted when they are not needed by the critical function.
We argue that the non-critical functions can benefit from the



resources of the critical functions during the intervals when
they are not used. For example, when the robot utilizes low-
resolution frames, a non-critical function such as a logger
system can benefit from the extra memory which is not being
used by the vision system.

This paper provides a method to automatically compute the
unused resources in the critical part of the system. The method
then distributes the computed resources to the non-critical parts
of the system. The proposed method is based on a run-time
monitoring engine that monitors the critical part of the system
to detect any changes in its resource requirements. If the engine
detects a reduction in the resource requirements of the critical
system, it triggers the proposed method to calculate the unused
memory based on the actual resource usage by the critical
part of the system. The information regarding the amount of
available memory is provided to non-critical part of the system,
which can benefit from the available extra resource.

The initial conference paper [1] presented a method to
improve the resource utilization in embedded systems based
on the system memory as the only run-time resource. The
submitted journal paper extends our method by considering
other run-time resources such as the GPU computation threads
together with the system memory to further boost the resource
utilization of embedded systems with GPUs.

The rest of the paper is organized as follows. Section II
describes the background context. Section III formulates the
problem and describes it with the help of a case study. The
overview of our solution is described in Section IV-A and its
realization is presented in Section IV-B. Section IV-C discusses
the implementation of the solution. The evaluation of our
method applied to the case study is discussed in Section V.
Finally, Section VI introduces the existing work related to our
approach, while Section VII concludes the paper.

II. BACKGROUND

The section provides background information on GPUs and
some software development strategies for embedded systems.

A. GPUs
GPUs were developed in 90s and were employed only in

graphic-based applications. With the passage of time GPUs
became more popular due to increase in their computation
power and ease of use. As a result, GPUs have been utilized
in different types of applications, even becoming the general-
purpose processing units referred to as GPGPUs [7]. For
example, cryptography applications [8] and Monte Carlo sim-
ulations [9] use GPU-based solutions. Equipped with a parallel
architecture, the GPU may employ thousands of computation
threads at a time through its multiple cores. Compared to the
traditional CPU, the GPU delivers an improved performance
with respect to processing multiple data in parallel. For ex-
ample, simulation of bio-molecular systems have achieved 20
times speed-up on GPU [10].

One of the GPU characteristics is that it cannot function
without the help of a CPU. The CPU is considered as the
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Figure 1. A CPU-GPU embedded platform.

brain of the system that triggers all the activities related to
GPU, such as the execution of functionality onto GPU. The
GPU often has its own private memory system, which requires
data to be copied from one memory system to the other in
order to be accessed by the corresponding processing unit.
Note that even if the CPU and GPU are integrated on the
same physical chip, the chip’s memory is divided in two
distinct memory spaces, one for each processing unit. Figure 1
presents an example of an embedded platform that has the
CPU and GPU integrated on the same chip. While the CPU
is equipped with two cores (i.e., two execution threads), the
GPU has several cores characterized by hundred of execution
threads. The physical memory is divided in two sections, each
processing unit accessing its private memory section. Due to
the reduced physical size, lower energy usage and costs, this
embedded solution is one of the commonly used solution in the
industry. These reasons motivate us to consider the platform
that has distinct memory spaces for CPU and GPU.

B. Model- and Component-based Software Development

The software complexity in embedded systems has signifi-
cantly increased in various domains, e.g., the automotive and
robotic domains. The software development techniques that are
based on the principles of model-based engineering (MBE) and
component-based software engineering (CBSE) have proven
efficient in dealing with the software complexity [11], [12].
CBSE is also successfully employed to develop robotic appli-
cations [13]. Using these paradigms, models are used through-
out the development process. These software models allow
the development of applications by connecting software units,
called software components. CBSE promotes the (re-)use of the
same component in different contexts. One benefit of adopting
CBSE is the development efficiency that is achieved through
reusable software components. A key concept of CBD is the



encapsulation, where all the information of a component is
encapsulated inside, hidden from anything outside. A way to
access the encapsulated information is through interfaces. In
this work, we focus on port-based interfaces, where the ports
are access points of software components. MBE and CBSE
have been successfully adopted by the industry through various
component models.

When a software component is developed, the specifications
of a component model are followed. For example, Component
Object Model (COM) specifies that all of the COM compo-
nents should be constructed with an IUnknown interface [14].
The component model also describes the way its components
interact and how they are combined in systems. There exists
many component models, some designed for particular do-
mains (e.g., automotive) and other built on specific techno-
logical platforms (e.g., Enterprise Java Beans [15]). Note that
component models follow various interaction styles that are
suitable for different types of applications [16]. We mention
the request-response and sender-receiver interaction styles that
are utilized in AUTOSAR [17] component model when devel-
oping automotive applications. Another style utilized by e.g.,
Rubus Component Model (RCM) [18] and IEC 61131 [19]
component models, is the pipe-and-filter interaction style. This
particular style is characteristic to streaming-of-event type of
applications and allows an easy mapping between the flow
of system actions and control specifications, characteristic to
real-time and safety-critical applications.

The existing component models that can be used to
build stream-of-event applications, e.g., RCM, AUTOSAR,
IEC 61131 and ProCom[20], face the challenge of dealing
with (streaming) data that can change its memory footprint
on-the-fly. For example, RCM defines that its components use
the same fixed memory footprint throughout the execution of
the application. In order to ensure the required resources to
the critical functionality, resources are assigned to each RCM
software component, with respect to its worst-case resource
demand for the entire system execution. Therefore, RCM and
similar component models (discussed above) do not support
any mechanism to release the resources when they are not
required (by the critical part of the system).

In this paper we consider RCM as a proof of concept for the
implementation of our solution. A Rubus software component,
also known as the software circuit, is the lowest-level hierarchi-
cal element. It is characterized by input ports and output ports.
A feature of RCM is that there is a clear separation between
the control flow and data flow. Therefore, a software circuit
has two types of ports, i.e., data and trigger ports. Figure 2
presents three connected Rubus components, each equipped
with one single (input and output) trigger port, and one or
several (input and output) data ports. The software circuit uses
the read-execute-write execution semantics. Initially in an idle
state, a component is activated through its input trigger port.
It starts by reading the data from its input data ports, then it
executes its functionality, followed by writing the results to
the output data ports. Finally, it transfers the control through
its output trigger port and re-enters the idle state.
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Figure 2. Three connected Rubus software components.

III. PROBLEM DESCRIPTION

The run-time resources and energy usage in an embedded
system can be reduced by decreasing the data produced by
sensors with respect to the changing conditions in its envi-
ronment. For example, a robot may require low-resolution
frames to process open-space environments but may utilize
high-resolution frames when analyzing close ups of detected
objects. Therefore, the robot cameras may be set to provide,
on-the-fly, frames with different resolutions based on, e.g.,
distance to the tracked objects. However, due to the rules
set by the existing component models for the construction of
software components, the size of a component’s input data
is fixed during the execution of the system. One way to
ensure the guaranteed execution of the system is to allocate
the system resources to software components, at the design
time, to deal with the maximum footprint of data produced
by sensors. For example, if a camera produces frames with
1280 x 1024 pixels, the software components that process the
camera feedback utilize memory corresponding to the camera’s
frames. Even when the camera produces lower quality frames
(e.g., 640 x 480 pixels) with a lower memory footprint, the
software components are set to utilize the memory footprint
characteristic to 1280 x 1024 pixel frames, resulting in under-
utilization of the system memory.

We use a case study as a running example to discuss
the problem in detail. The case study is centered around an
underwater robot that autonomously navigates under water,
fulfilling various missions (e.g., tracking red buoys) [21]. The
robot contains a CPU-GPU embedded board that is connected
to various sensors (e.g., cameras) and actuators (e.g., thrusters).
Sensors provide a continuous flow of environment data that
is processed by the GPU on-the-fly. A simplified component-
based software architecture of the robot’s vision system is
depicted in Figure 3. The software architecture, realized using
RCM, contains nine software components. The Camera1 and
Camera2 software components are connected to the physical
sensors and convert the received data into readable frames. The



Sensor
Camera1

Camera1

Sensor
Camera2

Camera2

Merge 
and

Enhance

Sync

Convert
Grayscale

Edge
Detection

Object
Detection

Vision
Manager

PortGrayPortRGB

Sync

Compress
RGB

Compress
Grayscale

Logger

PortGray

PortRGB

Figure 3. Component-based Rubus vision system of the underwater robot.

MergeAndEnhance software component reduces the noise and
merges the two frames using the GPU. The resulted frame
is converted into a gray-scale frame by ConvertGrayscale
software component (on the GPU), which is forwarded to
EdgeDetection software component that produces a black-and-
white frame with detected edges. The ObjectDetection soft-
ware component identifies the target object from the received
frame and forwards the result to the system manager that takes
appropriate actions, such as grabbing the detected objects.
Due to the specifications of the functionalities (i.e., processing
image), MergeAndEnhance, ConvertGrayscale, EdgeDetection
and ObjectDetection components use the GPU to execute their
behavior.

When the robot navigates underwater, the cameras are set to
produce 640 x 480 pixel frames to track points for positioning
itself. Due to the particularities of the water, sometime being
muddy or the underwater vision being influenced by the
weather conditions (e.g., cloudy, sunny), there is no need for
high-resolution frames as the visibility is reduced. Figure 3
presents 640 x 480 pixel frames that contain several objects.
While one of the missions is to track and touch buoys, the
robot navigates to the detected objects. When the robot is close
(e.g., one meter away) to the detected object, it requires high-
resolution frames to observe and refine the details needed for
the distinction between similar type of objects. In this case,
cameras produce 1280 x 960 pixel frames.

Following the specifications of RCM, each software com-
ponent is equipped with a constructor and a destructor. The

constructor is executed once before the system run. Whereas,
the destructor is executed when the system is properly switched
off or reset. The constructor has the role to allocate resources
needed by the software component, such as memory required
by the internal behavior and output data ports. As it is executed
only once, the constructor allocates a fixed memory size for the
duration of entire execution life of the software component. For
the presented vision system, the constructor of each software
component reserves memory to handle e.g., input data of
maximum size. In our running case system, the constructor of
Camera1 allocates memory space that holds 1280 x 960 pixel
frames. When sensors provide frames with lower resolution
and memory footprint, Camera1 has reserved the same amount
of memory (corresponding to 1280 x 960 pixel frames) from
which it uses only a part, resulting in under utilization of the
memory.

Besides the memory requirements, each component with
GPU capability need a particular GPU computation resource
(i.e., GPU thread) when processing images. For example, the
EdgeDetection requires a number of 1280*960 GPU threads
(i.e., a thread for each image pixel) to process the input image.
When the camera sensors switch from 1280 x 960 to 640 x 480
pixel frames, EdgeDetection has reserved the same number of
GPU threads corresponding to the high-resolution frame. This
leads to a waste of GPU computation resources.

Another part of the underwater robot is the logger sys-
tem that is composed of three software components, i.e.,
CompressGrayscale, CompressRGB and Logger. This part of



the software architecture has a non-critical functionality. The
CompressGrayscale and CompressRGB components have GPU
capability, that is, their image compression functionality is
executed on the GPU. The purpose of this non-critical part
is to compress and record various information of the robot
during the underwater journey. Due to the limited (CPU and
GPU) memories, the logger system is triggered by a clock
element to save the resulting frames, with a specific (low)
time frequency. These frames are copied from the RAM to a
flash memory by a specific service of the operating system.
If the system has more available memory then the logger
system is triggered with a faster time frequency. In this case,
there will be an improvement in various system activities e.g.,
checking the (correct) functionality of the vision system by
using a higher number of processed frames. Moreover, the
logger system can benefit from extra memory by delivering
other system information (e.g., energy usage and temperature)
that improves the debugging activity of the robot.

IV. PROPOSED SOLUTION AND PROOF-OF-CONCEPT
IMPLEMENTATION

A. Generic Solution
In order to improve the resource utilization of non-critical

parts of the embedded systems, we introduce an automatic
method that, during run-time, provides information on the
additional available resources that can be used by the non-
critical parts. The proposed method is presented in Figure 4,
which consists of four blocks: (i) Critical System, (ii) Non-
critical System, (iii) Monitor, and (iv) Evaluator. The Critical
System and Non-critical System blocks represent the critical
and non-critical functionalities in the system as discussed
in Section I. The Monitor block periodically checks (e.g.,
every triggering execution) the resources usage of only the
Critical System. Lastly, the Evaluator block, based on the
information received from the Monitor, evaluates the available
system resources and provides this information to the Non-
critical System. The interactions among the different blocks in
Figure 4 are identified by means of the arrows. Step (arrow)
1 from Figure 4 expresses the examination of the Critical
System by the Monitor. During step 2, the Monitor sends the
actual usage of the resources to the Evaluator. Based on the
the received information, the Evaluator has the following two
options:
• if the Critical system uses as much resources as its maxi-

mum (worst case) requirement, the Evaluator informs the
Non-critical system to use its default allocated resources
(step 3),

• if the Critical system uses less resources than its max-
imum requirement, the Evaluator computes the size of
the unused resources and distributes it to the Non-critical
system (step 4).

B. Realization
This subsection describes the realization details of our

method using the vision system case study. The first part of
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Figure 4. Overview design of the Evaluator method.

the section introduces groundwork details on the functionality
of the component model, while the second part presents the
overall realization of our method.

1) Component Model Functionality: Each component is
characterized by a constructor and a destructor. The constructor
is executed once, at the initialization of the system, and
allocates as much memory as the component requires. The
destructor, executed once when the system is properly switched
off or reset, has the purpose to deallocate the memory. Figure 5
focuses on two connected software components from the vision
system. In order to simplify the figure, we remove some of the
(triggering) connections of the components. Camera1 sends a
frame to MergeAndEnhance component. Initially, the construc-
tor of Camera1 allocates memory space (on CPU memory
space) to accommodate frames of maximum size (i.e., 1280
x 960 pixels). Similarly, the constructor of MergeAndEnhance
allocates on GPU memory address, memory space for high-
resolution frames (1280 x 960 pixels). Furthermore, each time
when the component is executed it uses the same number
of GPU threads (i.e., one thread per pixel) to process high-
resolution frames. When the robot changes its mode (e.g.,
to save its energy) and its physical cameras send lower size
frames (640 x 480 pixel frames), both Camera1 and Merge-
AndEnhance use only a part of the memory allocated to them
by their respective constructors. Moreover, MergeAndEnhance
uses more GPU threads to process 640 x 480 pixel frames than
it needs.

To send large data (i.e., larger than a scalar), components
need to use pointers, as follows. The output port of Camera1
is basically a struct that contains a pointer variable and two
scalars, characteristics to 2D images. The port may cover other
types of data, such as 3D images by including additional
information, such as a third scalar. The pointer indicates to
the memory address that it is at the beginning of the data
to be transferred, and the two scalars (i.e., height and width)
describe the size of the frame. In this way, Camera1 passes
the information (of the pointer and scalars) about the data to
be transferred to the MergeAndEnhance component.

Figure 5 presents, in the lower part, an abstract overview
of the hardware layer. In the CPU memory address section,
a memory space is allocated for Camera1 to hold 1280 x
960 pixel frames. This memory location is indicated by the
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pointer ptr. For frames of different resolution, ptr points to
the same location. The difference is that for high resolution
frames the size of the memory (i.e., max size) is different (i.e.,
higher) than the size of the memory location corresponding
to low-resolution frames (i.e., min size). Similarly, the differ-
ent sizes of memory allocation, in the GPU memory space
section, corresponding to the high- and low-resolution frames
in the case of MergeAndEnhance component are depicted in
Figure 5. Furthermore, the figure presents, in an abstract way,
the MergeAndEnhance requirements of GPU threads usage to
process the frames of different sizes.

2) Vision System Realization: The vision system is com-
posed of four parts and realized as follows.

a) The Critical System. The critical system contains the
functionality that has the highest priority in the system. In our
case, it produces and processes the frames, and takes decisions
based on the findings. There are seven software components
included in this part of the system as illustrated in Figure 6.

b) The Monitor. We realize the monitor as a service that
is regularly performed by the operating system. The service
checks the settings of the camera sensors and produces a value

that corresponds to the frame sizes produced by the cameras,
i.e., 1024 or 640.

c) The Evaluator. The evaluator is realized as a regular
software component that receives its input information from
the monitoring service. Because it decides the distribution
of the resource memory utilized by the critical system, the
priority of the Evaluator component is set to the highest level.
Based on the value received from the monitor, the Evaluator
component decides if the non-critical system can use more
resources and produces the data that reflects this decision.
For simplicity, the output result is a boolean variable; the
output value 1 means that the non-critical system may use
more resources than initially allocated, and 0 the opposite. The
Evaluator component (i.e., its constructor, behavior function
and destructor) is entirely automatically generated through our
solution (see Section IV-C for details).

d) The non-critical system. The part of the system that
handles the logging functionality represents the non-critical
system. It has a lower priority than the critical system (and
the Evaluator software component). It contains three soft-
ware components, i.e., CompressRGB, CompressGrayscale and
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Figure 6. Realization of the Evaluator method applied on the vision system.

Logger that communicate with the Evaluator through an
additional port. Based on the (boolean) input data received via
the additional port, the non-critical components are triggered
with a higher frequency rate, which leads to an improved
system logger, with more compressed frames describing the
underwater journey of the robot.

C. Implementation
The solution presented in this paper does not interfere with

the development and execution of the critical system which
is fully constructed by the developer. For the monitoring
solution, we use a service provided by the OS, which is
periodically executed in the background. Our solution realizes
the Evaluator as a regular Rubus software component, in an
automatic and transparent manner. The Evaluator component
is generated, using the existing Rubus framework, with all its
constituent parts, i.e., interface, constructor, behavior function
and destructor. The interface of the component is realized as
a header file, which is described in Figure 7. The interface
contains two input data ports (i.e., ID1 and ID2) and one output
data port (i.e., OD1). The ID1 port receives input data from the
monitoring service, and ID2 port receives the merged frame
provided by the MergeAndEngance component.

The behavior function of the Evaluator component decides,
based on the input data received from the monitoring service,
to send or not the merged frame to be compressed. Figure 8
illustrates the functionality of the Evaluator. The output port
is initialized with the image frame (line 2) received as input
data, when the robot is on the low resolution mode (line
1), i.e., the Critical System does not use its entire allocated

Evaluator

ID1

ID2 OD1

1 typedef struct {
2 unsigned_char *ptr;
3 int width;
4 int height;
5 }img_format;
6

7 /* input ports */
8 typedef struct {
9 int *ID1;

10 img_format *ID2;
11 }IP_SWC_iArgs;
12

13 /* output ports */
14 typedef struct {
15 img_format OD1;
16 }OP_SWC_iArgs;
17

18 /* the interface declaration */
19 typedef struct {
20 IP_SWC_iArgs IP;
21 OP_SWC_iArgs *OP;
22 }SWC_Evaluator_iArgs;

Figure 7. The interface of the Evaluator component

memory. Although the Evaluator functionality is simple and
can be easily merged to the non-critical system, we opt
for the separation-of-concerns principle, which is essential
in the model- and component-based software development.
Moreover, the evaluator functionality can be increased to adapt
to more complex systems.

The non-critical system is mostly constructed by the devel-
oper, where our approach introduces some elements that are



1 if( mode == Low_RESOLUTION)
2 IPA_OD1_Evaluator_ = {(void *)&

SWC_Evaluator_iArgs->IP.ID2->ptr,
SWC_Evaluator_iArgs->IP.ID2->width,
SWC_Evaluator_iArgs->IP.ID2->height};

3

4 else IPA_OD1_Evaluator = {NULL, 0, 0};

Figure 8. Generated part of the Evaluator behavior function.

automatically generated. Initially, the non-critical system uses
resources to process one frame (i.e., the grayscale frame); the
constructors of CompressGrayscale and Logger components
allocate memory for their functionality to compress and,
respectively, log, the grayscale frame. In order to enforce a
larger memory usage, the CompressRGB components needs to
specifically allocate memory to hold the result from processing
the merged frame. As the constructor is executed once at the
system initialization stage, we automatically allocate memory
inside the components’ behavior function.

1 if(SWC_CompressRGB_iArgs->IP.ID1->ptr != NULL){
2 cl_mem frame_out = clCreateBuffer(context,

CL_MEM_READ_WRITE,
3*(SWC_CompressRGB_iArgs->IP.ID1->width) *
(SWC_CompressRGB_iArgs->IP.ID1->height) *
sizeof(unsigned char), NULL, NULL);

3 }
4 else {
5 IPA_OD1_CompressRGB = { NULL, 0, 0 };
6 return 0;
7 }
8

9 /* initialize parameters */
10 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void

*)&SWC_CompressRGB_iArgs->IP.ID1->ptr);
11 clSetKernelArg(kernel, 1, sizeof(int), (void *)

&SWC_CompressRGB_iArgs->IP.ID1->width);
12 clSetKernelArg(kernel, 2, sizeof(int),(void *)&

SWC_CompressRGB_iArgs->IP.ID1->height);
13 clSetKernelArg(kernel, 4, sizeof(cl_mem), (void

*)&frame_out);
14

15 /* execute functionality on the input frame */
16 clEnqueueNDRangeKernel(command_queue, kernel,

2, NULL, global_size, local_size, 0, NULL,
NULL);

Figure 9. Part of the behavior function of CompressRGB component.

Figure 9 illustrates a section of the behavior function of
the CompressRGB component. For the component realization,
we introduce rules to generate the code from line 1 to 10.
The generated code checks the input frame sent from the
Evaluator (line 1). In the case that the frame exists (i.e.,
is not NULL), memory is specifically allocated to hold the
result from processing the input merged frame (line 2). In
the opposite case (i.e., the frame is NULL), the output data
port is initialized with an empty frame (line 5), and the
behavior function is exits (line 6). The rest of the function
is defined by the component developer and is specific to the

GPU functionality implemented using the OpenCL [22] syntax.
Parameters that correspond to the frame specifications are
set in lines 10-13, and the functionality of the component is
triggered to be executed on the GPU (in line 16).

V. EVALUATION

This section focuses on the evaluation of the overhead (the
effect of additional elements) incurred due to the proposed so-
lution. There are two parts that influence the overall overhead,
i.e., the memory footprint and the execution time.

The memory footprint refers to the generated Evaluator
component and the generated part of the behavior function
of CompressRGB component (see Figure 9). The Evaluator
component consists of a constructor, behavior function, and
a destructor. Moreover, it has specification of its interface
(i.e., ports) in a separate header file. The memory footprint
of all of its code takes approximately 14 KB. We need to
also add the memory size occupied by the generated parts of
the CompressRGB component, which result in a total of 15
KB. We consider that the memory footprint overhead resulted
from our approach is manageable for an embedded systems
with GPUs, compared to traditional (CPU-based) embedded
systems. The CPU-GPU embedded systems are characterized
by a reasonable high amount of memory (i.e., order of tens
of Megabyte) due to the computation power that requires high
memory specifications.

TABLE I. The memory requirement of the Critical System

Component Memory requirement (kB)
name Low-mode* High-mode**

Camera1 165 307
Camera2 165 307

MergeAndEnhance 298 536
ConvertGrayscale 197 356

EdgeDetection 86 154
ObjectDetection 25 45
VisionManager 14 26

Total 950 1731

Low-mode* - camera images have 640 * 480 pixels.
High-mode** - camera images have 1280 * 960 pixels.

Besides the memory footprint, the Critical System also has
a memory requirement regarding the data to be processed.
Table I presents the requirement of each component of the
Critical System, in the two modes of the robot. For exam-
ple, MergeAndEnhance component, during the low-resolution
mode (i.e., camera frames with 640 * 480 pixels), uses 298 kB
of memory, while during the high-resolution mode, uses 536
kB of memory. During the system initialization, the Critical
System is allocated, to process data, with an amount of 1731
kB of memory. When the robot switches to the low-resolution



mode, our method provides the unused 781 kB of memory of
the Critical System to the Non-critical System.

Regarding the execution time, the generated Evaluator
component may negatively affect the execution time of the
critical system. In this regard, we conducted an experiment
to compare the performance with and without our approach.
The system on which we executed the experiments contains
an embedded board AMD Accelerated Processing Unit with
a Kabini architecture (i.e., CPU-GPU SoC). We used two
input images, i.e., one with 640 ∗ 480 pixels and the other
with 1280 ∗ 960 pixels. For each set of images, we executed
two cases, one with and the other without our solution. Each
case was executed 1000 times and we calculated its average
execution time.
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Figure 10. Usage of the Evaluator method in the vision system execution.

The results of the experiments are shown in Figure 10. A
slight increase (1.3 to 1.6%) in the execution time can be
observed when our solution is applied. The results indicate
that the performance of the non-critical part of these systems
can be significantly improved with our method at the very
small execution time overhead.

Furthermore, both versions of the vision system produced
the same outputs (i.e., frames). Compared to the original
version, in the vision system version implemented using our
approach, besides the frames produced by the ObjectDetection
and CompressGrayscale components, the CompressRGB com-
ponent also produced frames. With more data to analyze, the
logger functionality of the system that is implemented using
our solution showed improvement over the original version.

Besides the memory aspect evaluated in this section, our
solution also deals with the GPU computation resources.
The released number of GPU threads used by the critical
system may be employed by the other part of the system

that may use GPU simultaneously with the critical system. As
the GPU allows, depending on its specifications1, concurrent
execution of several components, and by freeing an amount of
GPU threads, the overall system performance may be further
improved by distributing the available resources to other parts
of the system that have GPU requirement.

VI. RELATED WORK

There exist different methods to increase the memory utiliza-
tion, which are presented in various surveys [23]. We mention
a solution to reduce the actual allocated space for temporary
arrays by using a mapping of different array parts into the
same physical memory [24]. Another method proposes scratch
pad memories to reduce the power consumption and improve
performance [25]. These solutions are applicable at a very low
level of abstraction and are not suitable to be merged with our
approach, which is applicable at the implementation abstrac-
tion level where the software architecture of the application is
modeled.

Regarding monitors, many works utilize them for different
purposes, such as data-flow monitoring solutions to simulate
large CPU-GPU systems [26], and GPU monitors for balancing
the bandwidth usage [27]. An interesting work conducted by
Haban et al. [28] introduces software monitors to help schedul-
ing activities. The authors described the low overhead of the
monitoring solutions, which degrade the CPU performance
with less than 0.1%. In our work, we use the same type of
monitors analyzed by Haban (i.e., software monitors) that have
a low impact over the system performance.

In the context of developing and extending component
models for embedded systems, Campeanu et al. [29] [30]
introduce a solution to facilitate the component-based software
development of systems with GPUs. The solution is imple-
mented as an extension of the Rubus component model, and
introduces platform-agnostic components with GPU capability
and adapters. The platform-agnostic components are compo-
nents that can be re-utilized on various types of platforms
with GPUs, without any manual change. The adapter is a con-
cept that facilitates the communication between components
that are executed by different processing units. For example,
when a CPU-executed component communicates with a GPU-
executed platform-agnostic component, the adapter connects
the two components and transfers, in an automatic way, the
data between the CPU and GPU memory addresses. Although
these two concepts were not introduced in this work, in order to
mitigate the complexity of the solution, our introduced method
builds upon these concepts. For example, an adapter is the
artifact that transfers the data from Camera2 to MergeAn-
dEnhance, between the CPU and GPU memory spaces (see
Figure 5).

Model-driven development is another paradigm adopted in
the development of embedded systems. In this context, we
mention the work of Rodrigues et al. that facilitate modeling

1e.g., an NVIDIA GPU with the Pascal architecture and compute capability
6.1 can concurrently execute up to 32 activities



of embedded systems with GPUs [31]. Due to the fact that
the work has been developed in 2013, it is limited in covering
the recent platform advancements. In the same context, we
mention other works such as the MARTE-based framework
proposed by Gamatie et al. which automatically allows gener-
ation of code for heterogeneous platforms [32].

There exists on the market various models that facilitate
the development of applications with GPU capabilities. We
mention the CUDA model [33], that is developed by NVIDIA
vendor to specifically handle their own GPUs. CTM is another
model developed by AMD to address ATI AMD GPUs [34].
OpenCL [22] is a general framework that is supported by
different types of processing units (i.e., CPU, GPU, FPGA)
produced by various vendors (e.g., NVIDIA, AMD, Intel).
Although, in this work, we do not specifically address the
functionality of the components with GPU capability such as
MergeAndEnhance and CompressGrayscale, OpenCL frame-
work was used to develop the GPU functionalities of the
components used for the vision system used in the evaluation
part.

VII. CONCLUSION

Modern embedded systems deal with huge amount of data
that is originated from their interaction with the environ-
ment. GPUs have emerged as a feasible option, from the
performance perspective, for processing the huge data inputs.
However, with GPU-based solutions, the resource utilization
remains high, which is an important aspect when dealing
with resource-constrained embedded systems. In this paper, we
have presented a method that improves the resource utilization
for non-critical parts of CPU-GPU-based embedded systems.
Whenever the critical part of the system does not fully utilize
its resource requirements (i.e., memory and GPU threads) due
to various reasons, such as reducing energy consumption, the
presented method distributes the unused resources to the non-
critical parts of the system. With the availability of more
resources, the performance of the non-critical parts of the
system is improved without effecting the performance of the
critical parts. As a result, the performance of the overall
embedded system is improved.

As a proof of concept, we have realized the method in
a state-of-the-practice component model, namely the Rubus
Component Model. We have also demonstrated the usability of
the method using the underwater robot case study. The evalua-
tion results indicate that the proposed method can significantly
improve the performance of non-critical parts of CPU-GPU-
based embedded systems at the cost of very small execution
time overhead of approximately 1.5%.

An interesting future work is to extend the presented method
to support the heterogeneous system architectures that include
an FPGA, beside the GPU. In a system with multiple acceler-
ators, our introduced Evaluator should be extended to decide,
based on the available resources, on where the Non-critical
System should execute its functionality in order to improve the
overall system performance. Another future work is to model

the proposed solution as a self-adaptive system that is built
using the feedback control loops [35].
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