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Abstract—This paper presents a natural language processing
(NLP) based approach that, given software requirements spec-
ification, allows the functional dependency detection between
integration test cases. We analyze a set of internal signals to the
implemented modules for detecting dependencies between re-
quirements and thereby identifying dependencies between test
cases such that: module 2 depends on module 1 if an output
internal signal from module 1 enters as an input internal signal
to the module 2. Consequently, all requirements (and thereby
test cases) for module 2 are dependent on all the designed
requirements (and test cases) for module 1. The dependency
information between requirements (and thus corresponding
test cases) can be utilized for test case prioritization and
scheduling. We have implemented our approach as a tool and
the feasibility is evaluated through an industrial use case in the
railway domain at Bombardier Transportation (BT), Sweden.

Index Terms—Software Testing, Dependency, Software Re-
quirement, Internal Signals, NLP, Optimization

1. Introduction

One of the main goals of software testing is detecting as
many critical bugs in the system under test as possible, thus
improving software quality. Having an efficient testing pro-
cess may lead to an earlier fault detection [1] and thereby
achieving better quality of the software product earlier. The
concept of efficiency in a typical testing process can be
interpreted in different ways, where all steps of the software
testing life cycle (STLC) can be considered as candidates
for efficiency improvement [2], [3]. One particular research
direction that concerns test case selection, prioritization and
scheduling has been researched to a greater extent as a way
to improve testing efficiency. Previously, we formulated the
problem of test case scheduling and prioritization as a multi
criteria decision making problem [4], [5], [6]. We showed
that in our specific context of vehicular integration level
testing, multiple criteria affect test prioritization such as de-

pendencies between test cases (and requirements), test cases
execution time and requirement coverage. However, without
automatically or semi-automatically inferring such criteria,
the multi criteria decision making solution can be expensive
and labour-intensive. More so, new test cases might be gen-
erated continuously (e.g., as part of a continuous integration
environment), thus demanding the multi criteria decision
making solution to adapt quickly to support timely decision
making. One of the most influential criterion in our context
is the existing dependencies between test cases. Identifying
such dependencies requires a systematic approach that has
to consider artifacts ranging from system architecture to
testing data. In addition, a small change in the system under
test may lead to generation of new test cases and therefore
the dependency between test cases continuously changes.
Unfortunately, there does not exist many explicit ways to
capture such dependencies automatically as this problem
is shown to be challenging as well as time and resource
consuming [7]. However, identification of dependencies in
test cases, especially at an early stage, promises to improve
testing efficiency since dependent test cases are obvious
candidates to be scheduled in a way that effectively test
integration between implemented functions. In [8], we have
shown through simulation that identifying the dependencies
between test cases in the early stage of a testing process
can help save test execution cost. Given the importance
of identifying dependencies between test cases, this study
answers the following research goal:

How can the functional dependency between integration
test cases be detected at an early stage of the software
testing process?

In order to answer the above research goal, we introduce
a natural language processing (NLP) based approach that
detects functional dependencies between manual integration
test cases through software requirements specification. This
requires analyzing multiple related artifacts such as the
test specification, software requirement specification and
the relevant signal information between the functions under
test. The proposed approach is implemented as an aiding
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tool in Python. In order to show the feasibility of the pro-
posed approach, an industrial testing project in the railway
domain at Bombardier Transportation AB in Sweden is
selected as a case study.

2. Background and Related Work

Creating independent test cases is strongly recom-
mended for several purposes e.g. executing and rerunning
test cases individually in different order, faster debugging
and also easier extending and restructuring of test cases.
However, for testing the interfaces between modules, we
need to create a set of test cases which tests various parts
of the combined interfaces. In reality, those test cases are
functionally dependent on each other and has an effect
on each other’s execution. The concept of dependency is
important in a wide range of testing contexts and de-
pendency detection has become a research as well as in
industrial challenge today [9]. Moreover, several kinds of
dependencies between test cases have been identified by
researchers, at the different levels of a testing process:

• Functional dependency: represents the interactions
between the system functionality and their run se-
quences [10]. For instance, function F2 is allowed
to be executed if their required preconditions are
already enabled by function F1, thus the function
F2 is dependent on the function F1. Consequently,
all test cases which are designed to test F2 should
be executed any time after the assigned test cases
for testing F1.

• Temporal dependency: represents the execution
sequence between test cases. It occurs mostly in
the context of real time systems. If a test case
TC2 temporally depends on test case TC1 then TC2

should be tested exactly after TC1.
• Abstract dependency: occurs in the models which

have a hierarchical decomposition of the model ele-
ments [11]. Test cases are hierarchically dependent
on each other based on the decomposition structure
of the model.

• Causal dependency: can be assumed as another
kind of temporal dependency, where specific data
items need to be created by TC1 before TC2 is
executed.

For detecting the mentioned dependencies between test
cases, several methods have been proposed. An empir-
ical study conducted by Bell et al. [12] concerns de-
pendency between both manual and automated test cases
in practice. The study is performed on 5 software issue
tracking systems, though analyzing 96 real-world depen-
dent tests. Ryser and Glinz [11] proposed a graphing lan-
guage, SCENT, which can be used to document scenarios (a
sequence of user interactions with a system). By document-
ing the scenarios of a system with SCENT, it was shown
that the documentation has a consistent language and still
interpretative for humans. Bates and Horwitz [13] utilized
program dependence graphs (PDG) and adequacy criteria to
identify components of a modified program in regression
testing. The proposed approach reduces the overall time

required for creating new test files. Moreover, a similar
approach to [13] is proposed by Rothermel and Harrold [14]
where changed def.-use pairs are identified by slicing the
program dependence graphs. Caliebe et al. in [15] proposed
an algorithm for prioritizing and selecting test cases based
on the dependencies between components of an embedded
system. By analyzing the system structure and architecture,
a component dependency model is set up and a system
graph is constructed. Applying path searching methods
in the graph, test cases can be selected that are based
on the dependencies between components in the system.
The logical dependency between structured requirements
is exploited by Arlt et al. [7] to automatically detect the
redundant test cases. The main goal of their approach
is reducing test suites, based on the results of executed
test cases, in such way that a dependent test case will
be failed if a corresponding independent test case fails.
Acharya et al. [16] proposed a greedy approach for priori-
tizing test cases in component-based software development
environment. From an object interaction graph, which is
generated from the UML sequence diagrams for interde-
pendent components, the value of an objective function
is evaluated when selecting the test cases for execution.
Depending on the numbers of inter and intra component
object interactions, which are obtained from traversing the
graph, the value of the objective function is calculated.

3. Dependency Detection at Integration Test-
ing

In this section, we describe the details of our proposed
approach to detect dependencies between manual integra-
tion test cases. In this paper, we just focus on detecting
the functional dependency between test cases, where a
functionally dependent test case is not allowed for execution
until its independent counterpart test case be executed first.
Functional dependencies are common in vehicular integra-
tion testing when the interactions between modules need to
be tested [17]. Our proposed approach takes the software re-
quirement specifications (SRS) as an input and provides the
functional dependencies between test cases as the output.
In most companies, the interaction between requirements
can go undetected in the integration testing phase. The
reasons are many such as fragmented view of the system,
too much focus on testing individual requirements with-
out being aware of the possible interactions and partially
implemented functions where interactions cannot even be
tested. In some cases, even the requirements specifications
are a gray- box, meaning that interactions are not specified
completely, or it is not possible to keep track of interactions
without an automated tool support. In some companies,
the requirements are considered as a black-box, where the
testes do not receive any requirement specifications and
they get directly the module to test. However, in some
testing process, the requirements are designed based on
assumptions, where the project designers simply assume
some requirements in the design phase [18]. In this paper,
the black-box of requirements is opened and analyzed by
an NLP-based approach.
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Figure 1: The input-output signals to the TCMS platform

3.1. Basic concepts definitions

Before describing the approach in detail, the following
definitions set the foundations for understanding the prob-
lem.

Definition 1. A typical software module is a separated
(sometimes interchangeable) component of a software. The
program functions of a software are broken down into
several modules, which should fulfill the project require-
ments [19].

In a vehicular context, the inputs and outputs of a mod-
ule are usually given in the form of variety of signals. The
number of involved signals are different, driven mainly by
the functionality supported by the module. In our context,
the following signals are the most common signals for
testing the modules:

• MVB: stands for Multi-Function Vehicle Bus. Sig-
nals of MVB type are documented as an actual
signal code together with a short description. The
MVB signals are meant to connect different vehicles
and usually use for data transfer between a hardware
module and software module [20].

• Digital I/O: stands for Modular Digital Input-
Output unit. I/O is documented with the actual
signal codes as a communication protocol between
two information processing system or humans [21].

• Internal Signal (I/S): is an internal communication
protocol between two (usually software) modules.
The internal signals are documented in natural lan-
guage text. Assume module4 and module2 repre-
sent a software module in a brake and door sys-
tem respectively. If a set of conditions (which are
described in the corresponding requirement specifi-
cation) are satisfied in module2, an internal signal
will be send to module4.

Usually, MVB and Digital I/O signals interact with
hardware (from-to hardware) and just the internal signals

are transferred between the software modules. Thus, an-
alyzing the internal signals between modules can provide
clues about the dependency between modules and thereby
their corresponding requirements and test cases.

Definition 2. A software requirement specification (SRS)
describes a part of a function in a module. In other words,
a module is described fully by a set of SRSs.

Moreover, a test case tests a set or just one of the SRSs,
in order to verify compliance with a specific requirement.
To provide a clear overview of the relationships between the
modules, input-output signals, requirements and test cases,
the Train Control Management System (TCMS) platform
at Bombardier Transportation is chosen as an example
in this work. The TCMS is a modular train-borne dis-
tributed control system platform, which controls the flow
of information between the different sub-systems such as
doors, heating, braking and air supply [22]. TCMS includes
computer devices, software, human and machine interfaces,
digital and analogue input-output (I/O) and is also able to
integrate with third party devices. Figure 1 represents a
part of TCMS platform with several modules from different
sub-systems, where the various type of input-output signals
go to the modules. The figure also shows the relationships
between the requirements and test cases. The following sub
level functional groups (SLFGs) are selected to visually
describe the structure and relationships between the mod-
ules: door system, brake system and high voltage. By the
modules in Figure 1, we mean just the software modules
corresponding to the mentioned SLFGs. However, the HMI
(Human Machine Interaction) and MIO (Multiple Input
Output) represent two different hardware modules, which
are located inside the TCMS and the 3rd party device is also
a hardware module, located outside of TCMS. As illustrated
in Figure 1, the hardware modules (inside and outside of
the TCMS) are just sending the MVB and I/O signals (the
blue dashed arrows) to the software modules. The bold
black arrows represent the internal signals (I/S) between the
software modules. As we can see in Figure 1 the output in-
ternal signal (I/S) from Module1 is an input internal signal
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for Module4. This relationship represents the dependency
between modules, where Module4 depends on Module1 and
should be tested after Module1. In other words, if all defined
conditions in Module1 are true, the internal signal will be
generated as an output from Module1. Module4 receives
the released output signal from Module1 as an input signal.
Moreover, the requirements and test cases (shown as located
outside of the TCMS platform in Figure 1) are connected to
the modules. As shown in the Figure 1, several requirements
can describe a module and several test cases can describe
a requirement. Since Module4 depends on Module1, all
requirements meant for Module4 should be tested after the
assigned requirements for Module1. Thus, Req5 and Req7 in
Figure 1 are depending on Req1 and Req4. The number of
test cases required to test a requirement can change during
the testing process. Testers may create one test case for
testing two (or more) requirements or two (maybe more)
test cases can test just one requirement. Therefore, it may
happen that a large number of test cases can be created for
testing the software modules at integration testing. By using
the dependency information between the software modules
and the requirements, the dependency between test cases
can be detected. Considering the above example, test case
TC9, TC10 should be tested after test cases TC5, TC6, TC7.
Moreover, test case TC8 is a mutual test case, which tests
both Req4 and Req5 and hence Req4 depends on Req5,
then TC8 can be tested first. For detecting the dependencies
between test cases, we just consider the internal signals
between the software modules and no other signals. As is
obvious in the discussed example and also in Figure 1, our
approach for dependency detection is a bottom-up approach
such that the dependency between two software modules
leads to detection of dependent test cases. Capturing the in-
formation for creating Figure 1 requires analyzing different
resources. Partially, the signal information between modules
is described textually in the software requirement specifi-
cations or visually in the software architecture. However,
the signal information between modules can also be gained
based on expertise and experience of the test engineers. In
the early stage of a TCMS project, the core team analyz-
ing the functional vehicle design specifications writes an
SRS document. The SRSs are written by the requirement-
engineering team members as early as the needed input
is available to the project. The requirement adjustments
are performed continuously during the project life-cycle.
Each requirement from the SRS is assigned to an SLFG.
The requirement is then implemented as a part of one
module within the SLFG, or as a part of several modules
within the same SLFG. Moreover, the traceability between
the requirements and the test cases is generated for each
software release and is stored in the SRS documents. During
the project, some of the SRSs might be removed, merged
or new SRSs might be added to the project.

Table 1 represents a sample of a software requirement
specification (SRS) for three requirements illustrated in
Figure 1, where various signals (input-output) have been
described textually. We need to consider that the informa-
tion inserted in Table 1 are gathered from three different
SRSs documents files, merged as one table, in order to avoid
repetition. The different type of signals (MVB, I/O) are dis-

TABLE 1: Software requirement specification example -
BT

Nr. BTI/SFC Requirement Interface

1
Doors-Req1 (v.1) input: MVB SDr3EmRel

output: Internal Signal 44-A34.X11.4.DI3

2
Brake-Req5 (v.3) input: Internal Signal 44-A34.X11.4.DI3

output: Internal Signal 95-B27.X01.5.PI10

3
High voltage-Req7 (v.1) input: Internal Signal 95-B27.X01.5.PI10

output: I/O iDcuPd128

tinguished in the Interface column for each requirement. We
can see in Table 1, there is a shared internal signal between
requirements Req1, Req5, and also between requirements
Req5 and Req7. The internal signal 44-A34.X11.4.DI3
enters as an input signal to the requirement Req5 and exits
from the requirement Req1 as an output internal signal.
Moreover, the internal signal 95-B27.X01.5.PI10 exits
from Req5 and enters as an internal input signal to Req7.
The dependency between these three requirements can be
presented as: Req1→Req5→Req7 where Req1 can be
considered as an independent requirement in this case.
Hence, the requirement Req5 and Req7 should be tested
after requirement Req1, then all test cases which have
been created for requirement Req1, has a higher priority
for execution for those test cases which test requirement
Req5 and Req7. As Table 1 shows, in some industrial
cases such as ours (Bombardier Transportation), the signal
information is available in textual form, described in SRSs.
Therefore, in this work, we propose an NLP-based approach
for analyzing the requirements specifications, in order to
match the internal output signals with the same internal
input signals. The dependency detection process is rerun
if a new requirement is added or if some requirements
are merged into one requirement. In practice, as explained
before, the internal signals are communicated between the
modules and not between the requirements. The inserted
information in Table 1, represents how the modules cor-
responding to the mentioned requirements communicate
with each other. Moreover, in our case under study at
Bombardier Transportation, the traceability matrix for the
requirements and test cases is available. In other words, all
generated test cases are tagged to the requirements. This
information is stored in the test specification and can be
traced through performing the text analysis as part of NLP.

3.2. Implemented Method Details

In order to detect the functional dependency between
test cases automatically, we have implemented our approach
as an aiding tool in the early stage of a testing process. We
divide our approach into three main phases: 1- requirement
specification analysis 2- test specification analysis and 3-
dependency visualization. Since both manual test cases and
requirement specifications have a textual form, the natural
language processing techniques are utilized for extracting
the necessary signals information, which is then used for
the matching process to identify dependencies. To map
the requirements and test cases from the available docu-
mentation, an implementation in Python is done, having
three steps of test case extractor, requirement extractor and
finally, test case and requirement combiner. These three
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steps take care of the first two phases of our approach
consisting of requirement specification analysis and test
specification analysis, while the last phase is visualization.

1) Requirement extractor: This step extracts the
necessary information regarding the requirements
from the requirements specification documenta-
tion. The documentation is first exported to .xlsx
files from IBM Rational DOORS1 database and the
library package xlrd is used to parse the exported
files. The requirements specification documenta-
tion is written in a semi-natural language, thus a
specific algorithm was implemented to extract the
required information (Algorithm 1). The extracted
information is summarized as follow:

• Requirement name
• Version number
• Input signals
• Output signals

Algorithm 1 Requirements extraction

1: Set R to an empty list
2: for each each line in the documentation excel file do
3: Read requirement name and input and output
4: end for

2) Test case extractor: This step extracts the neces-
sary information from the test specification docu-
ment. The documentation is also exported as .xlsx
files from the DOORS database. In order to parse
the extracted test specifications, a library pack-
age called xlrd2 is used. The test specification is
also written in a semi-natural language format by
testers, therefore a specific algorithm need to be
implemented for tracking the relevant information.
The extracted information (see Algorithm 2) is
consisted of the following:

• Test case name
• Requirements tested by the test case

Algorithm 2 Test case extraction

1: Set T to an empty list
2: for each line in the documentation excel file do
3: Read test case name and requirements tested and append it to T
4: end for

3) Test case and requirement combiner: This step
consists of two Algorithms (Algorithm 3, Algo-
rithm 4), where result from the test case extrac-
tor and the requirement extractor are combined
by combiner for dependency detection. It is done
by first normalizing all signals to only alphanu-
meric lower-case characters (in order to eliminate
inconsistent use of spaces, commas and dots). Then
it creates a dependency graph with the require-
ments based on the signals (if output signal of
requirement Req1 is the same as the input signal

1. Dynamic Object Oriented Requirements Management System

2. https://pypi.python.org/pypi/xlrd

for requirement Req2, then Req2 is seen as depen-
dent on Req1, see Algorithm 3). This data is then
extracted in JSON format to a visualization web
page.

Algorithm 3 Dependency detection between requirements

1: Set of documentation (inputsignals, outputsignals) of require-
ments, R

2: for each r1 in R do
3: Set r1.dependencies to an empty list
4: for each r2 in R do
5: for each i in r1.input− signals do
6: if i in r2.output− signals and r1 not r2 then
7: Add r2 to r1.dependencies
8: end if
9: end for
10: end for
11: end for

Moreover, the combiner connects the test cases to their
corresponding requirements (see Algorithm 4). Also, a
dependency graph containing both requirements and test
cases will be provided. Afterward, the graph is pruned to
a new dependency by replacing each requirement with a
new set of edges between test cases. Assume requirement
Req1 is tested by test case TC1 and requirement Req2
(which is dependent on Req1) is tested by TC2, this will be
represented as an edge from TC1 to TC2 in the new graph.
The resulting graph is also exported in a JSON format to
a visualization web page.

Algorithm 4 Dependency detection between test cases

1: Set of documentation (inputsignals, outputsignals) of require-
ments, R

2: Set of documentation (requirementstested) of requirements, T
3: for each t in T do
4: for each r in t.requirements− tested do
5: Add t to r.tested− by
6: Assert r.tested− by is non empty for all r in R
7: end for
8: for each t in T do
9: Set t.dependencies to an empty list
10: for each r in t.requirements− tested do
11: for each r2 in r.dependencies do
12: for each t2 in r2.tested− by do
13: if t2 not in t.dependencies and t2 not t then
14: Add t2 to t.dependencies
15: end if
16: end for
17: end for
18: end for
19: end for
20: end for

• Visualization web page: each visualization web
page visualizes certain data (from JSON format) in
different network graphs using the package vis.js
which are presented later in this paper.

4. Empirical Evaluation

The feasibility of the proposed approach is analyzed
through studying an on-going testing project at Bombardier
Transportation (BT) in Sweden. The selected project is
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called BR4903 which in an underground subway train
project in Stockholm. The guidelines of Runeson and
Höst [23] for conducting and reporting the industrial case
study research in software engineering is used as an inspi-
ration for writing this section.

4.1. Unit of Analysis and Procedure

The unit of analysis in the study is the integration testing
activity performed at the sub-level function group level
at BT. Several steps are carried out to conduct this case
study. 1. A total number of 3938 requirements specifications
(SRSs) from 17 different sub-level function groups are
extracted from DOORS database at BT. 2. The imple-
mented method (as described in Section 3.2) is utilized
for analyzing the extracted SRSs. The dependency between
requirements are detected for 3201 SRSs while 737 SRSs
are detected as being independent (as the method did not
recognize any matching internal signals communicating
with them). 3. A total number of 1748 test specifications are
extracted from DOORS database. The matched test cases
to the corresponding dependent requirements are detected
through analyzing the test specifications. 4. The results of
dependency between test cases are presented to the BR490
project team members. 5. The testers’ and engineers’ opin-
ions about the detected dependencies between test cases are
collected and analyzed.

4.2. Case study report and results

Previously in Table 1, an example of the software
requirement specification was provided. A typical SRS at
BT consists of different pieces of information including
the signal information. In order to evaluate the feasibil-
ity of our proposed approach and to help testers at BT
visualize the dependencies between integration test cases,
all SLFGs have been analyzed. The number of required
SLFGs for testing a project depends on several factors
such as the project size and importance from the customer
perspective. A total of 17 SLFGs are assigned for testing
in the BR490 project including: air supply, automatic train
protection, auxiliary power supply, bogies, brake among
others. As mentioned before, the approach recognizes the
matched input-output signals for a total of 3201 require-
ments specifications for all SLFGs.

This fact indicates that there are no signal matches
(an output signal for a corresponding input signal) for
a total of 737 requirements in the BR490 project. This
information might be interpreted as being 737 indepen-
dent requirements existing in the analyzed project. In con-
sultation with the testers and engineers at BT, a set of
wrongly spelled meanings were found in the requirements
and test case specification documents. Thus, the data in
DOORS database sometimes contain ambiguity, uncertainty
and spelling issues. Algorithm 3 searches for exactly same
names for input− output signals for detecting dependen-
cies. In any case that, no output signal matches are found
for an internal input signal, the corresponding requirement

3. The S-Bahn Hamburg BR490 three-car electric multiple units in
production at Bombardier Hennigsdorf facility.

(a) Multiple dependency

(b) Simple dependency

Figure 2: The dependency between the requirement (blue
nodes) and the test cases (red nodes) in the BR490 project

is counted as an independent requirement. However, by
missing one letter in the name of a signal, no signal
matches will be found, even if the signal enters (or exits)
to several requirements. Moreover, the results of dependent
requirements are visualized, in order to help the testers at
BT for designing and creating better test cases from the
requirements in the future that take dependencies into ac-
count. By using the dependency information between the re-
quirements, an early prioritization of a number of decisions
become possible. For example, the dependency informa-
tion between requirements can help the test managers and
testers to determine which candidate requirements should
be included in a certain release [24]. For instance, it may
very well happen that the independent requirements can
be planned early for implementation. Moreover, following
the dependencies between requirement, testers may want to
focus on most dependent (and hence complex) requirements
for more rigorous testing. They can thus plan for releasing
such requirements first [25]. As stated before, in our context
the dependency between requirements provides insights into
the dependency between test cases, which is our ultimate
objective. For testing BR490 project, a total number of
1748 test cases are created until the writing of this study.
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Since the BR490 is an ongoing testing project, the testers
might create more test cases, remove (or merge) some of
the assigned test cases during the project. The relationships
and dependencies between the requirements and test cases
in BR490 project can be visualized in Figure 2, where blue
nodes represent the requirements and the red nodes are test
cases. The relationship and dependencies between require-
ments and test cases can either be categorized as simple
dependency or multiple dependency. Figure 2b represents
a simple dependency situation, when one test case (the
red nodes) is created for testing one unique requirement
(the blue nodes). This kind of dependency can be also
interpreted as one-to-one dependency. However, Figure 2a
shows the possible complicated nature of dependencies
between test cases, where more than one test case is meant
to test a requirement. The multiple dependency situation
between the requirements and test cases in Figure 2a can
be categorized as an instance of the shortest path problem,
which can be solved by the graph traversal and path-finding
algorithms. For instance, a single red or blue node (a test
case or a requirement) will be assumed as the source node
and the shortest paths from the source to all other nodes in
the Figure 2a provides a shortest path tree. This can help
answer different questions, for instance, minimal number of
test cases required to cover a certain set of requirements.
Further decisions can also be supported depending on the
intended goal, such as to follow a certain execution path
to satisfy one or more objectives. In addition to the visu-
alization, the dependency between test cases are presented
to testers at BT as a numeric value. Table 2 shows a part
of our result showing dependencies between test cases. In

TABLE 2: Independent and dependent test cases and the
number of requirements which are tested by each test case

Nr. Test case ID Requirement coverage Dependent on Output

1 IVVS_SBHH_ATP-IVV-51 38 0 0
2 IVVS_SBHH_Battery-IVV-96 24 0 0
3 IVVS_SBHH_Linevoltage-IVV-5 21 1 0
4 IVVS_SBHH_Drive-IVV-27 20 0 0
5 IVVS_SBHH_Trainradio-IVV-02 6 13 1
6 IVVS_SBHH_Linevoltage-IVV-3 4 12 0
7 IVVS_SBHH_Braketest-IVV-21 3 9 0
8 IVVS_SBHH_Speed-IVV-04 1 0 46
9 IVVS_SBHH_Speed-IVV-06 4 0 45
10 IVVS_SBHH_TC-IVV-07 2 0 36

Table 2 we can see how many test cases need to be executed
before testing another particular test case. The independent
test cases have the 0 value in the Dependent on column
in Table 2. Moreover, the number of test cases that can
be tested after each test case is inserted in the Output
column. The requirement coverage (the number of assigned
requirements to one test case) is calculated and stored in
the Requirement coverage column in Table 2. For instance,
the test case number 1 is an independent test case (the
dependency value is equal to 0), which does not require
execution of any other test cases before it. Furthermore,
the number of 38 requirements are assigned to this test
case. The testers can plan to prioritize execution of this
test case first given its requirements coverage (in certain
industrial contexts, the requirement coverage is assumed
as the most important criterion for test case selection and
prioritization [5]). The tester can also test this test case at

any time due to its independent nature. On the other hand,
test case number 5 is dependent on 13 other test cases with
the requirements coverage equal to 6 and just one test case
being dependent on it. Thus, test case number 5 is not a
good candidate for first cycle execution given its depen-
dency on 13 other test cases. However, after executing test
case number 8, a total of 46 test cases will be available for
execution and therefore this test case can be also considered
for early execution in the testing cycle. As we can see in
Table 2, test cases number 9, 10 are two independent test
cases, where a total of 45 and 36 test cases are dependent
on these two test cases respectively. The names of some
dependent test cases to the independent test case numbers
9 and 10 are shown in Table 3.

TABLE 3: A test schedule example

Test Schedule

Nr. Independent Test Cases Dependent Test Cases

IVVS_SBHH_Braketest-IVV-09
1 IVVS_SBHH_Speed-IVV-06 IVVS_SBHH_Battery-IVV-13

.

.

.
IVVS_SBHH_Linevoltage-IVV-19

IVVS_SBHH_Speed-IVV-05
2 IVVS_SBHH_TC-IVV-07 IVVS_SBHH_Air-IVV-04

.

.

.
IVVS_SBHH_ATP-IVV-12

Table 3 can be utilized as a test execution schedule,
where the testers can execute independent test cases first
and then dependent test cases can be ranked for execution
based on the extent of dependencies. Lastly, we need to
consider that the test cases in Table 2 can be prioritized and
ranked in different ways, depending on the test objectives
and the company’s test policies. Sometimes running most
test cases in a limited time period is required while in some
other cases, a high requirements coverage is more sought
after. Previously [26], we showed how the execution time
for manual test cases can be predicted in the early stage of
a testing process. The proposed approach in [26] performs
a regression analysis on the similar previously executed test
cases. Adding an estimation of the execution time for test
cases to Table 2, can help testers to prioritize the test cases
for execution in a more efficient way.

5. Discussion and Future Extensions

The main goal with our approach is to enable automatic
detection of functional dependency between test cases by
analyzing the dependency relationship of the requirements
they target. The dependency information can be used in
early stages of a testing process for test planning in order
to make efficient use of available testing resources. The
dependency information between the requirements that is
identified as part of our approach also has the potential to
be used for designing the product release plans. As soon
as all requirements are captured, the test managers can
modify the designed release plan for the final product. The
Algorithm 3 presented in subsection 3.2 can be utilized for
this purpose. Knowing the complexity of the requirements
based on the dependencies between them can provide an
estimation about the overall essential time which is needed
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for testing each requirement. Moreover, prioritizing the re-
quirements for implementation can lead to earlier release of
a software product and also an efficient usage of the testing
resources. The traceability graph illustrated in Figure 1 is
not available for all testing processes. At the testing level in
most companies, test cases are the only available informa-
tion and the dependencies should be detected by analyzing
just the structure of test cases. In the future, the provided
results in this paper can be used as the ground truth for
functional dependency detection between test cases. Any
other proposed approach for dependency detection such as
text analysis on the test specification need to be compared
with the illustrated dependency graph in Figure 2. Finally,
we designed and implemented a decision support system for
test scheduling, which captures the inserted information in
Table 2 and automatically ranks test cases for execution.

6. Summary and Conclusion

In this paper, we introduced an approach for detecting
the functional dependency between manual integration test
cases. The approach works by first analyzing the structure
of the software requirement specifications. Additionally, a
set of signals communicating between the software modules
are identified, where the internal signals’ inputs and outputs
represent the dependencies between modules and thereby
the requirements and test cases. Two software modules are
considered dependent on each other if and only if the inter-
nal output signal from one of them is required by another
one as an internal input signal. Based on the identified
dependency between requirements, the dependency between
the test cases are then determined. The proposed approach
is evaluated through applying it on an industrial use case
from Bombardier Transportation in Sweden, which shows
the feasibility of the approach.
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