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Abstract—Process-based argumentations argue that a safety-
critical system has been developed in compliance with the
development process defined in the standards and provide the ev-
idence for certification of compliance. However, the process-based
argumentations cannot ensure that the evidences are sufficient to
support the claim. If the argumentations are insufficient (i.e., fal-
lacious) they may result in a loss of confidence on system’s safety.
It is thus crucial to prevent or detect fallacies in the process-based
argumentations. Currently, argumentations review process to
detect fallacies largely depends on the reviewers’ expertise, which
is a labour-intensive and error prone task. This paper presents
an approach that validates the process models (compliant with
Process Engineering Metamodel 2.0), and prevent the occurrence
of fallacy, specifically, omission of key evidence in process-
based argumentations. If fallacies are detected in the process
models, the approach develops the recommendations to resolve
them; afterwards the process and/or safety engineers modify the
process models based on the provided recommendations. Finally,
the approach generates the safety argumentations (compliant
with Structured Assurance Case Metamodel) from the modified
process models by using model-driven engineering principles that
are free from the fallacies. The applicability of the proposed
approach is illustrated in the context of ECSS-E-ST-40C (Space
engineering–Software) standard.

Index Terms—Process models; safety cases; process-based
argumentation; argumentation fallacies; model transformation

I. INTRODUCTION

De facto standards (see, for example, ECSS-E-ST-40C [1],
ISO 26262 [2], and EN 50128 [3]) provide the guidance, in
the form of processes to be followed during the development
of safety-critical systems. The compliance of processes is
a mandatory requirement for certification of safety-critical
systems. To this end, process-based argumentations show that
a safety-critical system has been developed in compliance with
the process (safety life-cycle) defined in the standards and jus-
tify the safety-related decisions. Process-based argumentations
(at planning phase) argue about different phases or activities
in process planning and provide the convincing evidence that
each phase/activity was planned. Once the plans are approved,
the real development consisting of the execution of the plans
can be started. For instance, DO-178C standard defines the
certification liaison process, where the first interaction between
the applicant and the certification body are expected to take
place at after the initial completion of the planning phase to
ensure plan’s approval [4].

It has been recognized that creating argumentations is a
very expensive, time consuming and error prone task; because
inappropriate, incomplete or inherently faulty reasoning about
the evidence introduces the defects in safety argumentations,
namely called fallacies. These fallacies could lead to overcon-
fidence in a system and tolerate certain faults, which in turn
contribute to safety-related failures of the system. This risk
also affects the process-based argumentation. For example,
a process-based argumentation, supported by the evidence
personnel competency (for performing the model checking
task), is weakened in detecting all faults. Because underlying
proof attributable to a lack of training in formal methods. The
undetected design faults during the development process might
lead to the failure of a safety system when it is deployed.
Therefore, it is necessary to prevent or detect fallacies in the
process-based argumentations.

This paper presents an approach that validates whether
the process models contain sufficient information, to prevent
the occurrence of fallacy (i.e., omission of key evidence)
in process-based argumentations. If flaws are detected, the
approach provides the process engineers comprehensive feed-
back regarding the deviations, and therefore, help them to
efficiently resolve the fallacies and correct the process models.
Afterwards, the approach generates the process-based safety
argumentations that are free from the omission of key evi-
dence fallacies. To do that Model-Driven Safety Certification
(MDSafeCer) method is used that supports the generation
of process-based argumentation by using model-driven engi-
neering principles [5], [6]. More specifically, via MDSafeCer,
process models compliant with Process Engineering Meta-
model (SPEM) 2.0 [7] are transformed into argumentation
models compliant with Structured Assurance Case Metamodel
(SACM) [8]. The generated process-based argumentations
provide valid justification that the evidence is sufficient to meet
the standard’s requirements, and therefore, facilitate greater
confidence of the safety of a system. The applicability of
the proposed approach is illustrated by detecting fallacies
and generating process-based argumentations for Attitude and
Orbit Control Subsystem (AOCS) development plan, which
follows the ECSS-E-ST-40C (Space engineering–Software)
standard [9].

The rest of this paper is organized as follows: Section
II presents essential background information. Section III de-



scribes the method for preventing fallacies in process-based
argumentations. Section IV illustrates the application of our
approach for ECSS-E-ST-40C standard. Section V presents
the related work. Finally, Section VI concludes the paper and
presents future research directions.

II. BACKGROUND

This section provides the background information on which
the presented work is based: in particular, Section II-A recalls
the necessary information from ECSS-E-ST-40C standard,
which provides guidance and direction of the software devel-
opment process. Section II-B presents the process modelling
language used in this paper, specifically syntax of SPEM
2.0. Section II-C provides essential information concerning
safety argument and their possible representation. Section II-D
presents the process-based argumentation within the context of
process compliance and MDSaferCer method. Finally, Section
II-E discusses fallacies in process-based argumentations.

A. ECSS-E-ST-40C

ECSS-E-ST-40C [1] standard is one of the series of Euro-
pean Cooperation for Space Standardization (ECSS) standards,
which focuses on space software engineering processes. In
this paper, we limit our attention to Section 5.5 (Software
Design and Implementation Engineering Process) of ECSS-E-
ST-40C standard, which consists of three phases (design of
software items, coding and testing, and integration); each of
which contains various activities (e.g., detailed design of each
software component, and development and documentation
of the software interfaces detailed design). Each activity in
turn consists of one or more tasks, each task is associated
with the expected output showing the evidences of safety
requirements. The standard also contains the normative tables
and guidelines for the work products in Annexes, for example,
Annex E (normative) Interface Control Document (ICD), An-
nex F (normative) Software Design Document (SDD), Annex
H (normative) Software User Manual (SUM) and Annex K
(normative) Software Unit/Integration Test Plan (SUITP).

B. Process Modelling

A process defines the structure that is imposed on the
development of a system. SPEM 2.0 [7] is the Object Man-
agement Group (OMG) standard that provides the necessary
concepts for modelling, documenting, and presenting systems
and software development processes. The conceptual frame-
work of SPEM 2.0 considers two views, the Method Content
and the Process Packages. Method Content offers support
for the definition of reusable process content, i.e., partially
ordered tasks, work products (such as artefacts, deliverables,
outcomes, etc.), roles (such as software architect/designer,
engineer, development team leader, etc.) and guidances.

Typically, a task is assigned to a specific role, who is
responsible for the execution of work and may generate the
work products as output. The guidance describes additional
information of work and is classified into various kinds such as
tool mentor, guideline and practice. A tool mentor describes

that how to use a specific tool to perform certain activities.
A guideline provides additional details on how to perform
a particular task or grouping of tasks. A practice defines
a proven way or strategy of doing work to accomplish a
goal. Furthermore, a qualification documents specific skill
or key competency that is used to model and represent the
qualifications provided by instances of a role who has the
responsibilities to perform relevant tasks correctly and effi-
ciently. In contrast, process package focuses on the develop-
ment processes, which are actually defined using elements that
point to elements of the method content package. In order to
define a process, tasks can be grouped to form an activity that
in turn can be grouped to form a phase. TaskUse, RoleUse and
WorkproductUse provide information about method elements
task, role or work product in the process, respectively.

SPEM 2.0 supports variability management in the Method
Content package, which allows elements to modify or reuse
elements in other content packages without directly modi-
fying the original content. SPEM 2.0 defines five types of
variability relationships: not assigned (na)—the default value,
contributes, replaces, extends, and extends and replaces. In the
scope of this paper, we consider Contributes variability, which
provides a way for elements to contribute their properties
into their base element without directly altering any of base
existing properties. Table I shows the basic structural elements
for defining the process in SPEM 2.0.

TABLE I
PROCESS MODELLING ELEMENTS IN SPEM 2.0

Process Phase Activity TaskUse RoleUse WorkProductUse Guideline ToolMentor Practice 

 

   

 

    

 

 

 

 

 

The EPF (Eclipse Process Framework) Composer1 has been
developed in order to support modelling of safety processes.
EPF Composer is an extensible process framework, based on
the Unified Method Architecture (UMA) metamodel, which
is an evolution of the OMG’s SPEM 1.1 [10]. UMA cov-
ers the SPEM 2.0 [7] concepts needed for our purposes.
Recently, EPF Composer was ported from Eclipse Galileo
3.5.2 to Eclipse Neon 4.6.3 in the context of the AMASS
project [11]. IBM Rational Method Composer (RMC)2 is the
commercial version of EPF Composer. In [12], IBM describes
the modelling of standard’s requirements with RMC. For this
reason, they recommended to create three separate plugins: (i)
Standard requirements plugin, which captures the standard’s
requirements, specifically, in user-defined type, (ii) Lifecycle
plugin, which describes the process life-cycle (i.e., content
elements and process), and (iii) Requirements mapping plugin,
which defines the mappings between standard requirement and
process elements. In order to define the mapping, standard
requirements are copied in this plugin. These copied require-

1See https://www.eclipse.org/epf/
2See https://www.ibm.com/support/knowledgecenter/SSBSK5_7.5.1/com.

ibm.rmc.help.doc/topics/a_product_overview.html



ments have a variability relationship Contributes with original
requirements. In addition, the links between requirements and
life-cycle elements have been established through references.

C. Safety Case Representation

The certification process in various domains provides the
justification that a system is safe for use in a specific en-
vironment under specific conditions. Accordingly, the justi-
fication can be provided through a contextualized structured
argument that links evidence to claims; it is known as a safety
case [13]. To document safety cases, several approaches exist
both graphical and textual [14]. SACM [8] is the OMG’s
standard that unify broadly used graphical notations for docu-
menting safety cases. Common Assurance and Certification
Metamodel (CACM), which includes SACM metamodel is
being implemented in the OpenCert3 within the AMASS plat-
form [15]. It might be noted that SACM [16] is evolving based
on the contributions achieved in research projects (including
AMASS [15]). OpenCert implements the assurance case editor
that includes argumentation model and diagram; they are based
on the main nodes of Goal Structuring Notation (GSN) [17].
However, internally it uses the SACM metamodel. Some of
the main elements of SACM and their semantics (equal to
CACM/OpenCert) are given in the following list:

• Claim states the safety requirement, plan or objective
that needs to be achieved or justified. The property of
the claim toBeSupported = “true” means that it requires
further development.

• ArgumentReasoning describes a method that is used to
connect one or more claims (premises) to another claim
(conclusion).

• InformationElementCitation describes the supporting ev-
idence, context, or additional description (rationale) for
the core reasoning of the recorded argument.

• AssertedContext relationship is used to declare contextual
relationships between contexts and claims or Argumen-
tReasoning elements.

• AssertedInference relationship is used to show the infer-
ential relationships between elements.

• AssertedEvidencee relationship is used to show the evi-
dential relationship between claim and evidence.

D. Process-based Argumentation and MDSafeCer

The process-based argumentation shows that the system has
been developed in compliance with the development life-cycle
(process planning) according to the normative space (e.g.,
standards and regulations). Process-based safety argumentation
consists of the claim that can argue about process activities
and the evidence(s) that provide justification of compliance.
Therefore, the process-based argumentation plays a central
role in justifying that the available evidence, in the form of
staff competencies, guidelines, work products (e.g., software
design document) and tool qualifications has achieved a set of
safety requirements, and in turn an acceptable level of safety

3See https://www.polarsys.org/proposals/opencert

has been achieved. Compliance with ECSS-E-ST-40C standard
(process planning) mandates the satisfaction of a specific set
of objectives or requirements (for planning phase) by the
generation of a concrete set of evidences.

MDSafeCer [5] is a method that enables the generation
of process-based argumentations from process model using
model-driven engineering methodology. By means of MDSafe-
Cer, process models compliant with SPEM 2.0 metamodel are
transformed into process-based argumentation models compli-
ant with the SACM 1.1 metamodel and are presented through
a concrete syntax, e.g. GSN [17]. Process elements such as
phases are mapped into the claims. These claims are decom-
posed by showing the process activities have been planned
(during planning phase) or executed (during the execution
phase) and in turn each activity is decomposed into tasks and
so on until an atomic work-unit is reached.

E. Argumentation Fallacies

An argumentation fallacy is a mistake or flaw in the
reasoning of an argument. In safety arguments, fallacies exist
in different forms. Greenwell et al. presented a taxonomy of
common fallacies in safety arguments and organized them
into three categories namely, relevance, acceptability and suf-
ficiency fallacies [18]. Relevance fallacies add no value to an
argument and provide irrelevant evidence. The existence of a
relevance fallacy in an argument cannot contribute to a failure;
rather, these fallacies might mislead/distract the developer or
reviewer into accepting an insufficient argument, which, in
turn, may contribute to a system failure. Acceptability fallacies
are those in which an argument provides the unacceptable,
contradict or inconsistent evidence to support the claims, for
example, an argument contains the evidence that is only the
restatement of the claim. Sufficiency fallacies are those in
which arguments can fail to provide sufficient evidence to
support the claims, either provide little or no evidence, biased
or weak evidence, or omit crucial types of evidence. In this
paper we limit our attention to sufficiency fallacies, more
specifically, omission of key evidence in which arguments fail
to provide key evidence that is crucial to support the claim. All
instances of omission of key evidence detection are considered
in which no or less evidences are provided to support the claim
(at least one of the evidence has been omitted) or no valid
reasons are given for its omission.

III. A METHOD FOR PREVENTING FALLACIES

This section describes the overall method for preventing
the omission of key evidence fallacies in the process-based
argumentations. Omission of key evidence fallacies within the
context of process argumentation are the flaws or defects in
which arguments can fail to provide sufficient evidence (e.g.,
staff competency) to support the process claim (e.g., claim
about designer who is responsible for the design task, which
deals with the production of design-related work products).
The proposed approach consists of three steps. Firstly, the
process engineers use EPF Composer to model the safety
processes (see Section III-A). Secondly, the process engineers



and/or safety engineers use our Validation plugin to detect
whether the process contains all the essential information
for supporting the key evidence(s) (see Section III-B). In
case of omission of crucial information, recommendations
are provided to aid process engineers or safety engineers in
resolving deviations. Based on the recommendation(s), engi-
neers are expected to modify the process model. Finally, the
modified process model is proceeded to generate the process-
based argumentation using implemented Generation plugin
(see Section III-C). The generated arguments are visualized
via the assurance editor in OpenCert. Detecting fallacies
and generating process-based argumentation are iterative and
incremental tasks, in particular, the development project can be
continuously re-planned based on found deviations. The over-
all workflow of our approach is shown in Figure 1, specifically
the solid lines show the extended step of MDSafeCer.
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Fig. 1. Overview of the proposed method

Fig. 2. Requirements modelling in EPF Composer

A. Modelling of Safety Processes
The first step involves modelling of a safety process in EPF

Composer according to the best practices as well as according

to the standard(s). There are two possible ways of modelling
requirements in EPF Composer. First, the requirements and
associate process life-cycle can be modelled by following the
IBM approach (see Section II-B). However, EPF Composer
does not support the definition of a user-defined type. There-
fore, the guidance type Practice has customized with an icon
and variability relationships, as shown in Figure 2. The associ-
ated process elements (e.g., tasks, work products and roles) are
modelled under the Method Content package and development
life-cycle under Processes in the process_lifecycle plugin (see
Figure 3).

Second, ECSS-E-ST-40C standard requirements can au-
tomatically be imported into the EPF Composer. For this,
ECSS Applicability Requirement Matrix (EARM)—ECSS
in MS Excel format (i.e., EARM_ECSS_exportDOORS-
v0.5Statistics.xlsx4) has been parsed and the set of require-
ments has been filtered. The instructions for converting excel
file to xml format compatible with EPF Composer has been
described in AMASS [19].

Fig. 3. Process fragment in EPF Composer

B. Detecting Fallacies in Process Models

In this subsection, we explain our algorithmic solution
for detecting fallacies, more specifically, omission of key
evidence fallacies, in process models. The approach validates
whether the safety process contains the sufficient information
corresponding to the key evidence for supporting the specific
requirement. Algorithm starts by searching the process model
(i.e., top-level element) and considers the (decomposed) linked
elements such as phases, activities, tasks and so on. In par-
ticular, it follows the Work Breakdown Structure, as shown

4See http://ecss.nl/standards/ecss-standards-on-line/active-standards/
ecss-applicability-requirement-matrix-earm/



in Algorithm 1. The function getTopLevelElements()
returns a set of top-level elements of the process. Given a
certain element e, its linked element le can be achieved by
using the function getLinkedElements(). Once the link
between the supporting elements has been established, the
premises/details related to evidences are parsed and stored
in an array. In a similar way, the requirements p and sub-
requirements sp modelled as practices are extracted from
requirements plugin, as shown in Algorithm 2.

Algorithm 1 Extracting elements from process models
1: procedure EXTRACT PROCESS ELEMENTS(Proc)
2: Q ← ∅ . Q is the queue of non-visited elements
3: V ← ∅ . V is the queue of visited elements
4: Q ← Q ∪ getTopLevelElements(Proc)
5: for all e ∈ Q do
6: V ← V ∪ {e}
7: Q ← Q \ {e}
8: EbreakdownElement ←
getLinkedElements(e)

9: for all le ∈ EbreakdownElement do
10: if (evidenceDeatail(le) 6= ∅) then
11: split the evidences and
12: add in array evi
13: end if
14: end for
15: end for
16: end procedure

Algorithm 3 illustrates the detecting fallacies procedure. In
this context, the requirements (briefDescription) related to a
specific element (e.g., role) are matched with the provided
information details (e.g., Skills or MainDescription). If the
evidence details are omitted or the rationale is not provided;
it means that process contains the omission of key evidence
fallacies. The approach provides validation results including
the list of elements containing sufficient and insufficient in-
formation (i.e., detected fallacies). In addition, the appropri-
ate recommendations to resolve the particular deviations are
presented. These results can be printed on the console, or
otherwise the validation reports are generated in the selected
folder. Process engineers and/or safety engineers then modified
the process by providing required evidences or rationale for
omitted information, the revised version will be validated
again. Therefore, it ensures that the final argumentation will
be generated from the process (which is specified in the next
step) is valid.

C. Generating Process-based Argumentation

In this subsection, we explain how we generate the process-
based argumentations from process models for arguing about
compliance with standards. For this, the mapping between
process elements (SPEM/UMA) and argumentation elements
(SACM) has been implemented. The mapping is focused on
the Work Breakdown Structure of processes in EPF Composer.

Algorithm 2 Extracting requirements from requirements plu-
gin

1: procedure EXTRACT REQUIREMENTS(Reqs)
2: R ← ∅ . R is the queue of non-visited elements
3: T ← ∅ . T is the queue of visited elements
4: R ← R ∪ getRequirementPractices(Reqs)
5: for all p ∈ R do
6: T ← T ∪ {p}
7: R ← R \ {p}
8: PsubRequirements ←
getSubRequirements(p)

9: for all sp ∈ PsubRequirements do
10: if (practiceAdditionalInfo(sp) 6= ∅) then
11: split the requirements and
12: add in array req
13: end if
14: end for
15: end for
16: end procedure

Algorithm 3 Detecting omission of key evidence fallacies
1: procedure DETECTING FALLACIES(Reqs, Proc)
2: getEvidenceDetails from process
3: (call Algorithm 1)
4: getAdditionalInfo from requirements
5: (call Algorithm 2)
6: for all le ← evi do
7: for all sp ← req do
8: match (sp.name, le.name) ∧ (req[j], evi[i])
9: if (sp.name = le.name) ∧ (req[j] = evi[i])

10: then returns true
11: else
12: returns false
13: generate omitted information
14: and provide recommendations
15: regarding evidences
16: end if
17: end for
18: end for
19: end procedure

In particular, the ProcessComponent that contains the infor-
mation of the process is mapped into a Case, whereas the
planning phases are constituted of the top-level claims stating
that the planned process is in compliance with the required
standard-level. As recalled in Section II-D, these claims can
be decomposed by showing that all the process activities have
been planned, in turn, for each activity all the tasks have
been planned and so on. The crucial process elements that
are associated to a task, namely a set of roles, a set of work
products, and a set of guidances are mapped into the sub-
claims. ArgumentReasoning is created in order to divide the
claim into sub-claims. The evidences related to these elements
are mapped into the InformationElementCitation property type



solution. The main mapping between these metamodels is
described in Table II.

TABLE II
MAPPINGS CONCEPTS

SPEM/UMA SACM Diagram

ProcessComponent Case

Process purpose (Standard)
InformationElementCit-
ation Property type =
“context”

Context

Phase, Activity, TaskUse /
TaskDescriptor Claim Goal

A set of RoleUse
/ RoleDescriptor,
WorkProductUse /
WorkProductDescriptor,
Guideline and ToolMentor

ArgumentReasoning Strategy

Requirements for compe-
tency of RoleUse Sub-Claim Sub-Goal

Evidences associated to
WorkProductUse, RoleUse,
Guideline and ToolMentor

InformationElementCit-
ation Property type
=“solution”

Solution

Relationship between a
competency of RoleUse
and certification

AssertedEvidencee SolvedBy

Relationship between a
TaskUse and a RoleUse...
(not related to evidence)

AssertedInference SolvedBy

Id, name and description Id, name and descrip-
tion

Id, name and
description

The mapping is achieved by using Epsilon Transforma-
tion Language (ETL)5. It is a hybrid, rule-based model-to-
model transformation language and provides the enhanced
flexibility to transform many input to many output models.
A plugin has been implemented in the AMASS platform6,
which automatically transforms the process model into safety
argument fragments (i.e., model and diagram) using ETL. The
generated argumentation model and diagram are visualized via
the assurance editor in OpenCert.

IV. AN ILLUSTRATIVE EXAMPLE

Description: In this section, Attitude and Orbit Control
Subsystem (AOCS), will be described to illustrate how our
approach works to detect omission of key evidence fallacy
and generates the process-based argumentation. It is used in a
number of different telecommunication satellite platforms [9].
The Attitude control manages the orientation of the satellite,
whereas, Orbit control regulates the positioning of the satellite
in orbit. This illustrative example is based on the AOCS-
related Software (SW) development process. Accordingly, it
follows a set of recommendations from the ECSS-E-ST-40C
standard. AOCS SW requires the high-level of assurance
activities and provisions of evidence.

As discussed in Section II-A, ECSS-E-ST-40C standard
explicitly describes the requirements and recommendations
related to planning process such as activities, tasks and ex-
pected outputs. However, requirements related to the staffing

5See https://www.eclipse.org/epsilon/doc/etl/
6See Training on the Prototype P1: WP6 Session https://www.amass-ecsel.

eu/content/training

plan (i.e., key competencies or skills required for specific
roles) are not provided. Key competencies required for an
architect/designer role are adapted from railway standard EN
50128 [3]. The key competencies for other roles, for example,
AOCS Assembly Integration and Test (AIT) engineer, AOCS
engineer, development team leader, and AOCS SW V&V
(Software Validation and Verification) Manager, who have
the responsibility for planing process are modelled according
to the industrial requirements for AOCS SW development.
Specifically, AOCS engineer shall have the following experi-
ence and competencies: university degree in engineering, sev-
eral years of experience in the design, analysis and simulation
of AOCS systems in different project phases, excellent hard-
ware knowledge (sensors, computer, actuators), experience
in AOCS AIT at subsystem and system level, and working
experience with Linux System, Matlab and Satsim.

Method Application: The requirements and process for
AOCS are modelled as plugins in EPF Composer by following
the guidelines mentioned in Section III-A. Then the detection
of omission of key evidence fallacy is performed on the
process models, as depicted in Section III-B. Figure 4 shows
the process model and the validation result including the list of
roles containing sufficient information (enclosed in green box),
omitted details of evidences and recommendations (enclosed
in red box). The results have been printed on the console, or
otherwise the fallacies reports would have been generated.

By looking at the result we find that skill certifications
(evidences) against AOCS AIT engineer, AOCS SW Archi-
tect and AOCS SW V&V Manager are sufficient. Key evi-
dences associated to AOCS Engineer, particularly, university
degree and working experience with Linux System, Matlab
and Satsim are omitted (i.e., less evidences are provided).
In addition, no evidence of skill concerning Development
Team Leader is provided and no valid reason (rationale) is
given for its omission. The recommendations for omitting
skill certifications are provided. In particular, first fallacy
(less evidence) can be resolved by adding the certifications
against over university degree, and working experience with
Linux System, Matlab and Satsim or by providing rationale
for omission. The second fallacy (omission of all evidences)
can be addressed by adding the following skill certifications:
management of Electra AOCS SW development team, working
experience with Matlab/Simulink, knowledge of design anal-
ysis and design test methodologies, and good analytical and
problem-solving skills. Based on the results engineers either
modified the process models or provide the rationale about
omitted information.

Once the fallacies are detected, fallacies are eliminated
by modifying the process models and rerunning the vali-
dation process yielded no further flaws. Then the process-
based argumentations are automatically generated from the
modified models (see Section III-C). Figure 5 shows generated
argumentation model and diagram, compliant to the SACM
metamodel that are visualized in assurance case editor in
OpenCert. Without the automatic validation of process models,
engineers would have to check arguments manually which



Fig. 4. Result after detecting omission of key evidence fallacies

requires huge effort and knowledge. The automatic detection
of fallacies and argumentations generation not only save time
and cost but also provide valid justification that the evidence
is sufficient to meet the standard’s requirements.

V. RELATED WORK

Over the past few years, creation and assessment of safety
arguments have been gained much research interest. However,
very few of these studies focus on the detection of fallacies in
the arguments. These studies mainly focus on the confidence
estimation and decision support for the acceptability of the
argument, or its improvement. To the best of our knowledge,
none of them considers the preventing omission of key evi-
dence fallacy in process-based argumentations. Our approach
validates whether the process models contain sufficient infor-
mation. In case of omitted evidences, the recommendations
are provided; afterwards, the process-based argumentations are
generated from modified process models.

Greenwell and Knight [20] propose an approach for analyz-
ing the digital system failures based on the concept of safety
cases. They have built a tool called Pandora, which extracts
evidences from a failure to discover fallacies in the safety
argument that might have contributed to the failure. Pandora
is a manual process and depends on the completeness of pre-

failure safety case. Yuan et al. [21] develop a dialogue based
model and DiaSAR tool to review safety arguments. This tool
allows the argument proposer to create, defend or revise the
argument, based on the reviews conducted by independent
reviewers. However, the quality of review arguments can not
be guaranteed because it largely depends on the reviewers’
expertise.

Cyra and Górski focus on the concept of belief and uncer-
tainties and their linking with a decision to accept or reject the
argument used in trust cases [22]. They propose a method Vi-
sual Assessment of Arguments based on the Dempster–Shafer
theory of evidence, implemented in a Trust Case Toolbox
for decision support. Similarly, Ayoub et al. [23] present an
approach to construct confidence arguments and identification
of weaknesses in the safety arguments. They structured the
collection of common concerns, called the common character-
istics map, which is used to identify sources of uncertainties
with recursive dependencies. In another study [24], the authors
extend prior work by only considering that for each argument
element it exists a level for sufficiency. Their approach pro-
vides a framework to lead the reviewer through the evaluation
process and to combine the reviewer estimates. However, these
approaches mainly considered expert opinion to evaluate the
argument, the final decision seem not be accurate enough.



Fig. 5. Generated argumentation model and diagram

As discussed by Mizrahi [25] that arguments from expert
opinion are weak arguments (i.e. fallacies) – the premises of
such arguments provide probable support rather than logically
conclusive support for their conclusions. The author provides
plenty of empirical evidence stating that expert opinions “are
only slightly more accurate than chance”.

Kokaly et al. [26] present the impact assessment algorithm,
GSN-IA that detects the impact type for each safety case
element and marks the element accordingly. The approach
presumes the existence of safety cases and assesses the impact
of system changes on them. Nair et al. [27] introduce an
approach to automatically construct confidence arguments for
the evidence cited in a primary safety argument and quantify
confidence using Evidential Reasoning (ER) algorithm. The
proposed approach is supported by a prototype tool Evidence
Confidence Assessor (EviCA). Luo et al. [28] propose a
safety case assessment process and develop a tool, called
AGSN (Assessable-GSN). The authors develop a graphical
safety case editor for assessing GSN-based safety case and
use the ER algorithm to assess the overall confidence in a
safety case. Yuan et al. propose the predicate-based repre-
sentation of safety arguments [29]. In particular, they build
an ontology containing a set of constant symbols, predicate
symbols and function symbols, which create the vocabulary
for the expressions of GSN nodes. To detect fallacy, these
symbols are checked against the database to verify whether

the argument is correct. The search function only works with
frequently used keywords that are stored in the database.
Moreover, they do not consider the omission of key evidence
fallacy. However, the above mentioned approaches presume
the existence of the safety cases or trust cases. Denney and
Pai [30] develop a toolset, called AdvoCATE for creating
and editing the argument fragments. Tool supports automated
creation of argument fragments by instantiating a pattern either
interactively, or by data extracting from the output tables
of hazard and safety requirements analysis tool, or a for-
mal verification tool. AdvoCATE also supports the argument
verification, in particular structural constraints (i.e., syntactic
checks) for some types of argument properties can be specified
in the editor. In contrast, our approach supports detection of
fallacy in process models and generation of process-based
safety arguments from these models.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a method to prevent omission
of key evidence fallacy in the process-based argumentations.
In this context, the validation is performed to detect whether
the safety process modelled in EFP Composer contains the
sufficient information corresponding to the key evidence for
supporting the specific requirement. In case of omitted crucial
evidence detail, the feedback is provided to the process and/or
safety engineers regarding detected fallacies and recommen-



dations to resolve them. The process model is modified based
on the provided recommendations. Once process model has
been modified, the process-based argumentations (model and
diagram) are automatically generated from process and are
visualized via the assurance editor in OpenCert. The generated
process-based argumentations are free from the fallacies and
provide valid justification that the evidences are sufficient
to meet the standard’s requirements. The application of the
proposed approach is illustrated for ECSS-E-ST-40C standard
used to engineer AOCS. Please note that our approach is not
dependent on the ECSS-E-ST-40C standard and is also valid
in the context of other standards.

Currently, we supported sufficiency fallacies, specifically,
omission of key evidence fallacy. As mentioned in the back-
ground, there are other argumentation fallacies that are cate-
gorized in [18] but not examined in this paper. Our research
agenda includes support for other sufficiency fallacies, for
example, ignoring the counter-evidence as well as to inves-
tigate relevance fallacies and acceptability fallacies. Another
direction for future work is to conduct more comprehensive
case studies.
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