
Towards a More Reliable Store-and-forward Protocol
for Mobile Text Messages

Daniel Brahneborg
Infoflex Connect AB
Stockholm, Sweden

daniel.brahneborg@infoflexconnect.se

Wasif Afzal
Mälardalen University
Västerås, Sweden
wasif.afzal@mdh.se

Adnan Čaušević
Mälardalen University
Västerås, Sweden

adnan.causevic@mdh.se

Mats Björkman
Mälardalen University
Västerås, Sweden

mats.bjorkman@mdh.se

ABSTRACT
Businesses often use mobile text messages (SMS) as a cost effective
and universal way of communicating concise information to their
customers. Today, these messages are usually sent via SMS bro-
kers, which forward them further to the next stakeholder, typically
the various mobile operators, and then the messages eventually
reach the intended recipients. Infoflex Connect AB delivers an SMS
gateway application to the brokers with the main responsibility of
reliable message delivery within set quality thresholds. However,
the protocols used for SMS communication are not designed for
reliability and thus messages may be lost.

In this position paper we deduce requirements for a new pro-
tocol for routing messages through the SMS gateway application
running at a set of broker nodes, in order to increase the reliability.
The requirements cover important topics for the required commu-
nication protocol such as event ordering, message handling and
system membership. The specification of such requirements sets
the foundation for the forthcoming design and implementation of
such a protocol and its evaluation.

CCS CONCEPTS
• Networks→ Network protocols; Network protocol design;
Network reliability; Mobile networks; • Computer systems
organization → Embedded software; Reliability;

KEYWORDS
store-and-forward; replication; SMS

ACM Reference Format:
Daniel Brahneborg, Wasif Afzal, Adnan Čaušević, and Mats Björkman.
2018. Towards a More Reliable Store-and-forward Protocol for Mobile Text
Messages. In ApPLIED’18: Advanced tools, programming languages, and PLat-
forms for Implementing and Evaluating algorithms for Distributed systems,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ApPLIED’18, July 27, 2018, Egham, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5775-3/18/07. . . $$15.00
https://doi.org/10.1145/3231104.3231108

July 27, 2018, Egham, United Kingdom. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3231104.3231108

1 INTRODUCTION
Today, mobile text messages (a.k.a. SMS) are often used in business-
to-consumer communication, e.g., two-factor authentication and
booking reminders. Text messages provide quick and cost effective
communication with world-wide coverage, making them a natural
choice in many situations. However, the concrete implementation
for processing these messages reveals a rather complex system.
There are many mobile network operators, even within the same
country, and each message must be sent to the correct operator
in order to reach the intended recipient. In the 1990s it was suf-
ficient to examine the first few digits in the destination number
to find the correct operator. That is no longer enough, as number
portability allows customers to keep their number while switching
operators. Additionally, the operators use a plethora of commu-
nication protocols (e.g. SMPP, UCP, CIMD2, HTTP), of different
versions (SMPP 3.4 allows bi-directional traffic while SMPP 3.3
does not) or with unique implementation issues and requirements
(primarily phone number formats and character encodings).

Businesses commonly send text messages via services provided
by SMS brokers instead of handling this complexity themselves.
These brokers charge a fee for providing a single protocol to their
clients (i.e. the businesses), and handle both technical and financial
communications with the operators. Our context is the software
used by these SMS brokers to forward the text messages from their
clients to different operators. We call this the SMS gateway appli-
cation. One such application is the Enterprise Messaging Gateway
(EMG) from Infoflex Connect AB.

SMS messaging is based on a store-and-forward architecture,
similarly to TCP/IP. Incoming messages are stored in a local queue,
and from that queue they are extracted and forwarded as soon as
possible. Figure 1 shows the data flow for a message sent from the
client to a node run by an SMS broker, and then forwarded to a
mobile operator. When the client receives the response at point D,
the SMS broker has assumed full responsibility for the message, so
the client will delete their copy of the message. A similar response
is sent at point G. When the recipient finally has received the
message from the operator, an acknowledgement is returned to
the sender, indicating whether the message needs to be resent. For

Regular Paper ApPLIED '18, July 27, 2018, Egham, United Kingdom

13

https://doi.org/10.1145/3231104.3231108
https://doi.org/10.1145/3231104.3231108

Client

Node

Operator

A B C D E F G H

Figure 1: Traffic between clients, nodes, and operators. Filled
arrows represent messages, and hollow arrows represent re-
sponses.

TCP/IP that acknowledgement is an ACK packet, and for SMS it
is a delivery report (usually shortened to “DLR”), albeit with an
important difference: the DLR is unreliable. The unreliability of the
delivery report is our main issue, as even though the sender can
use the response from the SMS broker or operator to know whether
the message was accepted, they can not use the DLR to know if the
message reached its final destination.

The critical section here is between points C and E in Figure 1,
when the message has been received and acknowledged, but not yet
forwarded. If the node were to crash in this interval, the message
would be lost. To mitigate this risk, the message must be replicated
to one or more additional nodes before the response is sent at C.
The connectivity to the operator may be (temporarily) broken or
too slow in relation to the rate of incoming traffic, resulting in
thousands of messages stored on a node, waiting to be forwarded.
Without replication, these messages could be lost.

At Infoflex Connect AB, we have experimented with storing
messages in SQL and NoSQL databases, but results were discour-
aging from a performance perspective. Typical throughput was at
most a few hundred messages per second, while we could achieve
ten times that when using an embedded database, and hundred
times that when storing the messages only in memory. There are
several reasons for this, apart from the additional I/O. For a sys-
tem with a single node, the message queues are kept in memory
in self-balancing sorted trees to keep the messages in order. For
persistence, messages are written and removed using their unique
identifier. In a system with multiple nodes, the ordering must be
handled by the database, which is not only costly in itself, but also
requires synchronization between the database nodes, which in
turn must be done for every message.

In this position paper we discuss the requirements for, and the
effects of, adding a replication protocol in this store-and-forward
context. We do this by first describing our system model (Section 2),
followed by the requirements to be met by the protocol in our con-
text (Section 3). Solution candidates are discussed in Section 4, while
Section 5 contains a more general review of related work. Section 6
summarizes the requirements and the considered approaches, and
concludes the paper.

2 SYSTEM MODEL
We assume the perspective of an SMS broker, using a system con-
sisting of a collection of nodes, some of which are geographically

Client 1

Client 2

Client x

Node 1

Node 2

Node y

Operator 1

Operator 2

Operator z

.

Figure 2: Clients, nodes, and operators.

distant. Each node has a unique and constant identifier, can connect
to all other nodes via Internet, and may join and leave the system at
any time. Furthermore, the nodes are crash-recovery, so they may
rejoin after crashing.

Each node runs a store-and-forward application in a configu-
ration as shown in Figure 2. Messages are sent by clients, stored
in local queues on one of the nodes managed by an SMS broker,
and then forwarded to one of the operators after which they are
removed from the queue.

Security issues such as authentication and encryption are han-
dled separately, and there are no byzantine failures [19] with nodes
sending arbitrarily erroneous data.

3 REQUIREMENTS
We group our requirements into the following categories: 1) or-
dering, 2) message handling, 3) system membership, 4) metadata
handling, 5) message ownership, and 6) third party effects. Each one
is described next. All requirements are considered critical except for
the moving of messages between nodes described in Section 3.5.2,
as this is just a performance optimization.

3.1 Ordering
The most important requirement in this context, as it has the most
far-reaching effects on the solution space, and to the best of our
knowledge is the most novel one, is an anti-requirement: the order
in which messages are forwarded does not matter. Considering the
uses of mobile text message, it is easy to see why. If, e.g., two users
request a new authentication code within a few seconds of each
other, the exact order of delivery of the codes to the users’ mobile
phones is not important. For the same reason, the global order of
messages received on different nodes, is not important either [24].
However, for the sake of fairness and to ensure liveness, messages
should be forwarded in approximately the same order as they were
received.

The most commonly used protocols for SMS communication, e.g.,
SMPP and UCP, support sliding windows with transaction numbers.
These numbers are unique values set by the sender and duplicated
in the responses, making the reception order of the responses irrele-
vant. Combined with the insignificance of the message ordering, the
protocol can decide to reorder events in different ways if necessary.

Regular Paper ApPLIED '18, July 27, 2018, Egham, United Kingdom

14

3.2 Message handling
Several of the requirements relate to replicating incoming messages
and forwarding the messages to an operator or another SMS broker.

3.2.1 Replicate incoming messages. The first step towards high
reliability is ensuring the incoming client messages are replicated
to the other nodes. The set of nodes required to confirm receiving
the messages before the response is sent constitute a quorum [11],
which for n nodes in a normal majority system needs a size of at
least ⌊n/2⌋ + 1. Other quorum systems [34] use other sizes. Thus,
we assume this quorum size to be configurable.

3.2.2 Forwardmessages. Eachmessage received by a node should,
ideally, be forwarded to an operator exactly once, regardless of the
number of nodes in the system and how many nodes the message
has been replicated to. However, this “exactly once” requirement
is not absolute, as it is sometimes violated by the usage of sliding
windows mentioned in Section 3.1. Sliding windows can lead to
duplicated messages if the connection breaks after the message has
been received by the operator but before the response comes back
to the node (i.e. the interval between points G and H in Figure 1).

In a typical configuration with a single node, the sender uses a
window size, denotedw , between 1 and 10. When using UCP,w is
limited to 99. With a window size ofw , they can sendw messages
before requiring a response, so the number of messages with an
unknown status in case of a broken connection is at mostw . The
maximum number of duplicated messages, per broken connection,
is thereforew . In a system with multiple nodes, the number of du-
plicated messages should still not exceedw . This would be possible
to verify by using a model checker, e.g. Spin1 or Uppaal2.

3.3 System membership
The set of nodes in the system should be able to both grow and
shrink dynamically.

3.3.1 Accept a new or returning node to the system. A node
should be able to join the system at any time, simply by connecting
to one of the existing nodes. As described in our system model
in Section 2, the nodes are crash-recovery, meaning that nodes
can reconnect to the rest of the system, in particular if they were
just temporarily unavailable due to a network partition. Even a
short-lived network partition may last longer than the lifetime of
the messages in the queues, so the difference between “new node”
and “returning node” is expected to be minuscule.

3.3.2 Remove a node from the system. We want the current set
of nodes in the system to be known to all nodes as soon as possible,
in order to know which nodes to replicate messages to. In case
the application must be manually stopped,3 the protocol should
propagate the information about a node’s impending death.

1http://spinroot.com
2http://www.uppaal.org
3There are many possible reasons for this, e.g., it should be replaced with a newer
version or its system configuration may have changed in a way that requires a full
restart.

3.4 Metadata handling
For financial reasons, we must keep track of all received and for-
warded messages. We do this by updating the client’s credit, and
keeping the current state of all messages in a global database.

3.4.1 Manage Credits. Before the client is allowed to send a
message, the client’s current credit value should be examined. A
possible overdraft of this credit is acceptable if it lowers the round-
trip time and increases the throughput, but this overdraft must
be limited and configurable. When the real cost of forwarding the
message is know, this credit value is updated.

3.4.2 Message State Database. For audit purposes, there must
exist a mechanism for retrieving the state of all received and for-
warded messages. This information does not have to be exact at
every point in time, as long as each message is only counted once.
Therefore, eventual consistency is sufficient.

3.5 Message Ownership
Each message can only have a single node as its owner, so when
the message is replicated to the other nodes it should be stored
there in a dormant state, preventing it from being forwarded by
those other nodes. This replication is only useful if there also exists
a mechanism for changing the owner, making it possible for the
replicated messages to be forwarded by another node than the one
which received them. Two of the situations where the protocol
requires this mechanism are described next.

3.5.1 Adopt messages from a presumed dead node. When an
eventually perfect failure detector reports a failed node, the other
nodes should quickly take ownership of any messages currently
in the queue of this node, so its messages can be forwarded. The
delivery requirement is still not “exactly once”, but the duplication
rate should not change significantly.

3.5.2 Move Messages Between Nodes If Required. For applica-
tions such as SMS voting, the message can be sent “upstream” from
an operator via one of our nodes, destined for one of the clients.
The arrows in Figure 2 just indicates who is connecting to who,
the actual network traffic is bidirectional. If the client is not con-
nected to all nodes, a mechanism is needed to automatically move
messages to one of the nodes where the client is connected.

Referring to Figure 3, consider the case when Operator z has a
message destined for Client 1. The operator does not know about
the connections on the left side, so it is sent to a randomly selected
node, which in this case could be Node y. It would have been better
to send it to Node 2, as it could then be sent directly to Client 1, but
we have no control over that. Client 1 is not connected to Node y,
so the message must be moved to Node 1 or Node 2 before it can be
forwarded to the client. In this scenario the message would need
to travel according to the dashed blue lines. While certainly useful,
we consider this requirement to be of low priority.

3.6 Third Party Effects
We must also consider the perspective of the clients, operators and
SMS brokers connected to our system.

3.6.1 Transparent to third party software. The communication
with both clients and operators follow well defined protocols (e.g.

Regular Paper ApPLIED '18, July 27, 2018, Egham, United Kingdom

15

Client 1 Node Operator 1

Operator 2Client 2

Client x

Node 2

Node y Operator z

.

Figure 3: Routing a message back to the client.

SMPP or HTTP), involving thousands of clients and hundreds of
operators. Any solution must therefore be completely transparent
to these third parties. However, we can assume clients can be given
the connection details to multiple nodes and that they can switch
freely between them, in particular if the selected node becomes un-
reachable. HTTP includes response codes to request such a switch,
but we can not depend on that being supported by the clients.

As more work needs to be performed per message in order to
perform the replication, and additional round-trips between the
nodes must be performed before the client can get their response
back, the round-trip time seen from the client’s perspective (Fig-
ure 1, the interval between points A and D) will increase with any
replication strategy.

3.6.2 High throughput. The usage of local queues gives mostly
independent nodes, which should allow the throughput to remain
high while still getting increased reliability from the replication.
Previous experiments using a shared database have failed to achieve
more than a few hundredmessages per second evenwithin the same
data center, while local queues reach several thousand. The interval
between 1000 and 10 000 operations per second is what is achieved
by WanKeeper [1] when it focuses on reading data, as it can take
advantage of local processing and data ownership. With equal parts
reading and writing in a configuration with geographically distant
servers [1], WanKeeper achieves 100 operations per second, while
the commonly used ZooKeeper achieves 10. Our requirement, based
on discussions with various SMS brokers, is 1000 or more operations
per second.

3.7 Limitations
A system fulfilling the described requirements would have some
limitations we need to be aware of.
System reliability & performance evaluation

To verify the reliability and performance of the solution,
extensive testing and verification is needed.

Network overhead
The replication will lead to increased network traffic, but
we can mitigate that in several ways. First, we can replicate
multiple messages in the same packet, using the network
bandwidth as effectively as possible. Second, we can replicate
the messages to just a subset of the nodes. Third, messages
that have been forwarded before being replicated to the most
distant nodes (with the longest round-trip time), does not
have to replicated there at all.

Increased complexity
The complexity of the system would increase, primarily
caused by the coordination between the nodes. This could to
be addressed by making the solution architecture as simple
as possible.

Protocol adoption
Despite being called a protocol, the requirements actually
concern an internal architecture. It is not intended for in-
teroperability between separate systems, rather between
different broker nodes within a single system.

4 SOLUTION SPACE
This section discusses various available solutions to address the
elicited requirements as well as their suitability in our context.

4.1 SQL and NoSQL database clusters
In a multi-node environment a clustered database might be consid-
ered for managing the credit values, as described in Section 3.4.1.

Section 3.2 described the low consistency requirements in this
domain, which is lower than what either ACID (Atomicity, Consis-
tency, Isolation, and Durability) [12] or BASE (Basically Available,
Soft state, Eventual consistency) [10] can offer. Similarly to how an
optimistic consistency model can lead to better performance [31],
this relaxed delivery guarantee should also enable a more effective
architecture.

4.2 Adoption tokens
Our initial idea for solving the changes of message ownership
described in Section 3.5 was to use an “adoption token”, and passing
it around between the nodes. Only the node currently in possession
of this token would be allowed to adopt any messages, so there
should never exist more than one. If a node dies or there is a network
partition, the system may end up with both 0, 1 or 2 such tokens.
A lost token is no problem, as that situation is no different from
when the system is initially started; simply run a leader election
algorithm such as Paxos [18] or Raft [26] to select a node that can
create the token. Multiple tokens on the other hand, could lead to
thousands of duplicated messages. This can happen if the adoption
token ends up in the minority group during a network partition.

Next, we kept the idea of an adoption token, but modified the
token passing to use quorum voting instead. To pass the token,
the node currently holding it would start an election among all
reachable nodes, suggesting the next node. When the new node
has seen enough votes, the token is recreated there.

However, this can also lead to considerable message duplications.
Consider the following sequence of events, in a system of 3 nodes:
A, B and C.

(1) Node A has the token, and starts an election for passing it
to B.

(2) Node B wins the election, and assumes ownership of the
token.

(3) The network splits, leaving B alone.
(4) Node B realizes it can not reach node A, and adopts all its

messages. At this point all current messages on node A are
duplicated. Node A is still in the majority group, so it keeps
processing its messages normally.

Regular Paper ApPLIED '18, July 27, 2018, Egham, United Kingdom

16

(5) Node C realizes it has not seen the adoption token in some
time, and starts an election to create one.

(6) Node C gets a vote from A, giving it a majority.
(7) Node C realizes it can not reach node B, and adopts all its

messages. Now all messages on node B are also duplicated.
Depending on the relative executions of the nodes, we may still

end up with two adoption tokens and thousands of duplicated
messages as an unacceptable consequence.

4.3 Replicated logs
In Section 3.2.2 we concluded that the messages have no lineariz-
ability requirement. The high independence between separate text
messages, combined with the throughput requirement, make so-
lutions that send all events via a single node to ensure all nodes
see the events in the same order both unnecessarily strict and un-
usable. For this reason, we are not able to use neither Raft [26],
Viewstamped Replication [20], nor ZooKeeper [14] for the external
network traffic.

The externally visible protocols can not be changed, as discussed
in Section 3.6.1. This prevents solutions such as Raft [26] and
Chubby [4].

5 RELATEDWORK
This section discusses the existing products and academic work
focused on data replication. In Section 5.1 we describe solutions
that are implemented, evaluated and in use, while in Section 5.2
we focus more on theoretical results. In short, we have not been
able to find a solution that can take advantage of our low ordering
requirements, thus reusing existing solutions would potentially
result in suboptimal performance in our context.

5.1 State of practice
In many applications, persisting data to survive application crashes
is done in a database. This can be either a classical SQL database
such as MySQL or Oracle, or a more modern NoSQL database such
as MongoDB or Cassandra.

For message queues, RabbitMQ and Apache Kafka are common
solutions. Kafka is a better choice if events need to be persisted to
disk and replayed any number of times by clients, while RabbitMQ
supports multiple protocols which is good for interoperability, and
a possibility to set the time to live (TTL) of messages [5]. However,
the disk usage by Kafka can be extensive, and RabbitMQ does not
scale well when the queue sizes increase. EMG needs both support
for message TTL and large queues.

5.1.1 MessageQueues. There are plenty of message queue prod-
ucts of varying complexity (e.g. RabbitMQ4, Qpid5, and IBM Web-
Sphere), implementing various well documented protocols (e.g.
Java JMS, AMQP (Advanced Message Queuing Protocol)6, and Ze-
roMQ [13]), so a program that only forwards messages is trivial.
However, systems using these solutions, such as SDQS [38], An-
des [35] and EQS [32], are all very strict regarding the ordering
of the messages. A common solution for synchronization between

4https://www.rabbitmq.com
5https://qpid.apache.org
6http://www.amqp.org

nodes to ensure this ordering is ZooKeeper [14], which works fine
for local clusters within a single data center, but in a geo-distributed
environment stays below 10 transactions per second [1].

Previously, the message queue system Apache Kafka7 [15] used
ZooKeeper [14] for coordination for each entry, making it unusable
in our context. In Kafka, enqueued messages can be delivered to
one of many nodes, which is exactly what we needed. Messages
can be separated into different topics, with ordering only being
guaranteed within each topic. This relaxed ordering is still too strict
for us.

Closely related to message queues are publish/subscribe systems.
Both message queues and publish/subscribe systems allow “space
decoupling”, i.e. the sender and the recipient need not be aware of
each other, “time decoupling”, i.e. the message is sent at one point
in time and delivered at another, and “synchronization decoupling”,
i.e. the sender does not have to wait until the message has been
delivered to the recipient [8]. This matches our requirements well.
The two main ways they differ from what is needed for EMG is
that they also assume a “one-to-many” delivery strategy, and that
filtering must be used to avoid sending all messages to all recipients.

5.1.2 Storage. An important difference between our message
queues and a generic storage system, is that we have no externally
initiated reads. Once a message has been received, only the system
itself needs to know where it is stored. There will be no requests
from other applications to fetch the message. Therefore, all effort
spent in handling such operations, are for our purposes wasted. As
an example, the “Saturn” system [3] is described as a way to “en-
force causal consistency when accessing replicated data”, where the
critical word here is “accessing”. Other systems such as ChainReac-
tion [2], Orbe [6], GentleRain [7], COPS [22] and SwiftCloud [37]
use different mechanisms to achieve this accessibility, e.g. vector
clocks [17], physical clocks, and caches. MeteorShower [21] ex-
plicitly addresses the delays caused by geographically separated
servers.

Rarely, if ever, is the lifetime of the stored objects addressed.
Typically, objects are created by one of the nodes, and occasion-
ally updated by the same or another node. Most of the operations
are then read accesses. For example, the system OCC [31] uses a
workload “with a 32:1 GET:PUT ratio”. For a message queue, the
situation is different. For such a system, there are not only no read
accesses at all, we also know that all objects will be removed after
usually just a few seconds. To the best of our knowledge, no existing
storage mechanism considers this factor as a way of minimizing
the amount of data needed for the replication.

5.2 State of the art
The most active areas of interest to us concern commutative func-
tions and leader election algorithms. Commutative functions ad-
dress the fact that strict ordering of events is unnecessary, and
leader election is the base concept when achieving consensus be-
tween multiple nodes.

5.2.1 Commutative Functions. Whether reality is ordered has
been discussed for some time, at least from 1993 by Queinnec and
Padiou [29] regarding flight plans. If this ordering can be ignored, it

7http://kafka.apache.org

Regular Paper ApPLIED '18, July 27, 2018, Egham, United Kingdom

17

is also possible to attain higher availability of data in an unreliable
network [9] and lower the number of network round-trips [27].
For example, using the CRDT “PN-counter” [30], it is possible to
implement updates and limit checks of user credits in a distributed
environment from Section 3.4.1, without any network round-trips.

Using commutative functions in order to get lower response
times has been known since 1988 [16] if not earlier. Shapiro et
al. [30] described data types based on these commutative func-
tions, calling them “Convergent or Commutative Replicated Data
Types (CRDTs)”. Zawirski then described some lower limits of the
amount of metadata needed for the replication of some of these data
types [36], both in terms of the number of nodes and the number
of updates.

5.2.2 Leader Election. There are several algorithms for reaching
consensus among a set of communicating nodes [33], each one
in multiple variants. The most commonly known one is probably
Paxos [18]. In recent years, Raft [26] is also used. Both of them,
as well as Viewstamped Replication [20, 25] and the lock service
Chubby [4], require support from the third party applications that
connect to the replicating system. This is in conflict with the re-
quirement in Section 3.6.1 of being transparent to those third parties.
For an internal protocol between EMG nodes only, any of these can
of course be used.

To avoid overloading a single nodewith a leadership role through
which all requests much pass, the mechanism used by Paxos, Raft
and others, some alternatives exist. Mencius [23] is derived from
Paxos, but lets the leader role rotate periodically. AllConcur [28]
goes further, being entirely leaderless. With AllConcur, each mes-
sage is forwarded several times between different pairs of nodes,
resulting in more network traffic than the leader-based methods.

6 SUMMARY
6.1 Approaches
Table 1 summarizes the requirements and approaches to be con-
sidered for fulfilling them. Essentially, databases are too strict on
ordering, and replicated logs are unsuitable in a geo-distributed
environment as they rely on all events being serialized by a single
node.

Requirement Approach Problems
System membership Per node8 None known
Message storage Database Strict ordering

Message queue Strict ordering
Message state Database Round-trip times

Replicated log Single node
Message ownership Replicated log Single node
Client credits PN-counter Possible overdrafts

Table 1: Considered approaches for each set of requirements,
and expected new problems.

8Information about new nodes are broadcast among all nodes, but each node maintains
its own list of active peers.

6.2 Conclusions
The communication protocols for mobile text messages are un-
reliable, as there is no dependable end-to-end acknowledgement
packet. There is, on the other hand, no strict ordering requirements
in this domain, allowing the use of more effective solutions than
off-the-shelf message queue products. We can not avoid the in-
evitable round-trip time between data centers, which may very
well be geographically distant, but by replicating messages from
multiple clients in the same update, the total system throughput
should be satisfactory. As contributions, this position paper sets
the requirements for a reliable communication protocol for SMS
in place, and reviews the state of the art as well as practice for
considered solutions. While partial solutions suitable in our con-
text are available, a complete solution satisfying the requirements
specified in this paper would require a new bespoke protocol that
can effectively take advantage of the possibility of event reordering
and short lifetime of the messages.

ACKNOWLEDGMENTS
This work was sponsored by The Knowledge Foundation industrial
PhD school ITS ESS-H, 20160139 (TestMine), 20130085 (TOCSYC)
and Infoflex Connect AB.

REFERENCES
[1] A. Ailijiang, A. Charapko, M. Demirbas, B. O. Turkkan, and T. Kosar. Efficient

distributed coordination at WAN-scale. In Proceedings of the IEEE International
Conference on Distributed Computing Systems (ICDCS), 2017.

[2] S. Almeida, J. Leitão, and L. Rodrigues. Chainreaction: a causal+ consistent
datastore based on chain replication. In Proceedings of The European Professional
Society on Computer Systems (EuroSys), pages 85–98. ACM, 2013.

[3] M. Bravo, L. Rodrigues, and P. Van Roy. Towards a Scalable, Distributed Metadata
Service for Causal Consistency under Partial Geo-replication. Proceedings of the
Doctoral Symposium of the International Middleware Conference (Middleware),
pages 1–4, 2015.

[4] M. Burrows. The chubby lock service for loosely-coupled distributed systems. In
Proceedings of the Symposium on Operating Systems Design and Implementation
(OSDI), pages 335–350. USENIX Association, 2006.

[5] P. Dobbelaere and K. S. Esmaili. Kafka versus RabbitMQ. In Proceedings of the
Distributed Event-Based Systems (DEBS), 2017.

[6] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scalable causal consistency
using dependency matrices and physical clocks. In Proceedings of the Symposium
on Cloud Computing (SOCC), page 11. ACM, 2013.

[7] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. GentleRain: Cheap and Scalable
Causal Consistency with Physical Clocks. Proc. of the ACM Symposium on Cloud
Computing (SOCC), pages 1–13, 2014.

[8] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of
publish/subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

[9] M. J. Fischer and A. Michael. Sacrificing serializability to attain high availability
of data in an unreliable network. In Proceedings of the ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems (PODS), 1982.

[10] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier. Cluster-based
scalable network services. ACM SIGOPS Operating Systems Review, 31(5), 1997.

[11] D. K. Gifford. Weighted voting for replicated data. In Proceedings of the 7th ACM
Symposium on Operating Systems Principles. ACM, 1979.

[12] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery.
ACM Computing Surveys, 15(4):287–317, 1983.

[13] P. Hintjens. ZeroMQ: messaging for many applications. O’Reilly Media, Inc., 2013.
[14] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free coordina-

tion for internet-scale systems. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC). USENIX Association, 2010.

[15] J. Kreps, N. Narkhede, and J. Rao. Kafka: a Distributed Messaging System for
Log Processing. In Proceedings of the SIGMOD Workshop on Networking Meets
Databases (NetDB), Athens, Greece, 2011.

[16] A. Kumar and M. Stonebraker. Semantics based transaction management tech-
niques for replicated data. Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD), pages 117–125, 1988.

[17] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

Regular Paper ApPLIED '18, July 27, 2018, Egham, United Kingdom

18

[18] L. Lamport. The part-time parliament. ACM Trans. on Computer Systems,
16(2):133–169, 1998.

[19] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM
Trans. on Programming Languages and Systems, 4(3):382–401, 1982.

[20] B. Liskov and J. Cowling. Viewstamped replication revisited. Technical Report
MIT-CSAIL-TR-2012-021, Massachusetts Institute of Technology, 2012.

[21] Y. Liu, X. Guan, V. Vlassov, and S. Haridi. MeteorShower: Minimizing Request
Latency for Majority Quorum-Based Data Consistency Algorithms in Multiple
Data Centers. Proceedings of the International Conference on Distributed Computing
Systems (ICDCS), pages 57–67, 2017.

[22] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t Settle
for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS.
Proceedings of the Symposium on Operating Systems Principles (SOPS), pages 1–16,
2011.

[23] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: Building Efficient Replicated
State Machines for WANs. In Proceedings of the Symposium on Operating System
Design and Implementation (OSDI), pages 369–384, 2008.

[24] C. S. Meiklejohn. A certain tendency of the database community. In Companion
to the International Conference on the Art, Science and Engineering of Programming.
ACM, 2017.

[25] B. M. Oki and B. H. Liskov. Viewstamped Replication: A New Primary Copy
Method to Support Highly-Available Distributed Systems. In Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC), volume 62, pages
8–17, 1988.

[26] D. Ongaro. Consensus: Bridging Theory And Practice. PhD thesis, Stanford
University, 2014.

[27] S. J. Park and J. Ousterhout. Exploiting commutativity for practical fast replication.
2017.

[28] M. Poke, T. Hoefler, and C. W. Glass. AllConcur: Leaderless Concurrent Atomic
Broadcast Marius. In Proceedings of the International Symposium on High-
Performance Parallel and Distributed Computing (HPDC), pages 205–218, 2017.

[29] P. Queinnec and G. Padiou. Flight plan management in a distributed air traffic
control system. Proceedings of the International Symposium on Autonomous
Decentralized Systems (ISAD), 1993.

[30] M. Shapiro, N. Pregui, C. Baquero, and M. Zawirski. A comprehensive study of
Convergent and Commutative Replicated Data Types. Technical Report RR-7506,
2011.

[31] K. Spirovska, D. Didona, and W. Zwaenepoel. Optimistic Causal Consistency for
Geo-Replicated Key-Value Stores. In Proceedings of the International Conference
on Distributed Computing Systems (ICDCS), pages 2626–2629, 2017.

[32] N. L. Tran, S. Skhiri, and E. Zimányi. EQS: An elastic and scalable message
queue for the cloud. In Proceedings of the IEEE International Conference on Cloud
Computing Technology and Science, (CloudCom), pages 391–398, 2011.

[33] J. Turek and D. Shasha. The many faces of consensus in distributed systems.
Computer, 25(6):8–17, 1992.

[34] M. Vukolić. Quorum Systems: With Applications to Storage and Consensus. Synthe-
sis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers,
2012.

[35] C. Wickramarachchi, S. Perera, S. Jayasinghe, and S. Weerawarana. Andes: A
highly scalable persistent messaging system. In Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS), pages 504–511, 2012.

[36] M. Zawirski. Dependable Eventual Consistency with Replicated Data Types. PhD
thesis, Université Pierre et Marie Curie - Paris, 2015.

[37] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas, and M. Shapiro.
Write Fast, Read in the Past: Casual Consistency for Client-side Applications.
Technical report, 2015.

[38] Z. Zhang, Y. Wang, H. Chen, M. Kim, J. M. Xu, and H. Lei. A cloud queuing
service with strong consistency and high availability. IBM Journal of Research
and Development, 55(6):10:1–10:12, 2011.

Regular Paper ApPLIED '18, July 27, 2018, Egham, United Kingdom

19

	Abstract
	1 Introduction
	2 System Model
	3 Requirements
	3.1 Ordering
	3.2 Message handling
	3.3 System membership
	3.4 Metadata handling
	3.5 Message Ownership
	3.6 Third Party Effects
	3.7 Limitations

	4 Solution Space
	4.1 SQL and NoSQL database clusters
	4.2 Adoption tokens
	4.3 Replicated logs

	5 Related Work
	5.1 State of practice
	5.2 State of the art

	6 Summary
	6.1 Approaches
	6.2 Conclusions

	References

