

A Customized Processing-in-Memory Architecture

for Biological Sequence Alignment

Nasrin Akbari1, Mehdi Modarressi1.2, Masoud Daneshtalab3

1 Department of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
2 School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

3 Mälardalen University (MDH) and Royal Institute of Technology (KTH), Sweden

nasrin.akbari@ut.ac.ir, modarressi@ut.ac.ir, masoud.daneshtalab@mdh.se

Abstract—Sequence alignment is the most widely used

operation in bioinformatics. With the exponential growth of the

biological sequence databases, searching a database to find the

optimal alignment for a query sequence (that can be at the order

of hundreds of millions of characters long) would require

excessive processing power and memory bandwidth. Sequence

alignment algorithms can potentially benefit from the processing

power of massive parallel processors due their simple arithmetic

operations, coupled with the inherent fine-grained and coarse-

grained parallelism that they exhibit. However, the limited

memory bandwidth in conventional computing systems prevents

exploiting the maximum achievable speedup. In this paper, we

propose a processing-in-memory architecture as a viable solution

for the excessive memory bandwidth demand of bioinformatics

applications. The design is composed of a set of simple and light-

weight processing elements, customized to the sequence

alignment algorithm, integrated at the logic layer of an emerging

3D DRAM architecture. Experimental results show that the

proposed architecture results in up to 2.4x speedup and 41%

reduction in power consumption, compared to a processor-side

parallel implementation.

Keywords—Sequence Alignment, Accelerator, Processing-in-

memory.

I. INTRODUCTION

 Aligning two biological sequences in a pairwise manner
is the primary operation in many computational biology and
genomics problems. The sequences can be a chain of amino
acids that make a protein sequence or an ordered set of
nucleotides that form a DNA [1].

Among various solutions, dynamic programming-based
methods make a better compromise between accuracy and
speed, and thereby, has gained popularity [1][2][3]. Dynamic
programming-based implementations, as will be discussed
shortly, involve simple character comparison and low-
precision integer arithmetic operations. However, the entire
alignment procedure can be quite time-consuming, as it has
to handle extremely large datasets.

First, a biological sequence can be very long: the size of
protein sequences can be as large as tens of thousands of
amino acids (characters) and the sizes of DNA sequences can
range from a few to hundreds of millions of nucleotides
(characters) [4]. For example, the longest human sequence in
the related databases is about 249 million nucleotides long
[4]. Further, genomic databases against which a given
sequence should be aligned are growing at an exponential

rate and major widely-used public databases currently
contain up to 200 million sequences [5].

This huge amount of data makes the sequence alignment
a heavy and expensive task, in terms of the bandwidth and
processing power demand.

The simple logic and inherent parallelism of the sequence
alignment problem can be exploited to accelerate them on
massive parallel processors. The parallelism can be either
fine-grained (by parallelizing the alignment algorithm [4]) or
coarse-grained (by concurrent alignment of a given sequence
to multiple sequences of a database).

Prior work have explored the speedup of alignment
algorithms on various hardware platforms, including
application-specific architectures, graphical processing units
(GPUs), and high-performance clusters [1][6]. Particularly,
the inexpensive simple processing units of the problem
enable designers to integrate a large amount of processing
units into a customized accelerator chip to fully exploit the
potential coarse- and fine-grained parallelism of sequence
alignment algorithms.

However, the expected speedup can hardly be achieved
due to the limited insufficient memory bandwidth in
conventional processing architectures [7]. In particular, low
operational density (operations per byte) is the key reason for
the excessive memory bandwidth demand of bioinformatics
algorithms. Moreover, the lack of temporal locality makes
the cache less effective in reducing the bandwidth demand.

To tackle this bandwidth challenge, this paper presents a
novel processing-in-memory (PIM) architecture for the
sequence alignment problem. The architecture consists of a
set of processing units, customized for the sequence
alignment processing requirements, stacked on top of
multiple layers of DRAM in a 3D fashion.

PIM minimize data movement and access latency by
moving the computation closer to data. In addition to access
latency, PIM also increases memory bandwidth by stacking
the memory and logic layers on top of each other and
providing data through high bandwidth vertical links.

Taking advantage of abundant memory bandwidth, a
massive parallel accelerator at the logic layer of a 3D
memory chip can push the bandwidth wall to exploit much
higher potential parallelism of the alignment problem,
effectively yielding higher speedup.

Some major memory chip vendors already ship 3D-
memory chips with an integrated logic layer [8][9]. The logic
layer often implements memory controller and, in some
recent versions (such as HMC 2.0), can execute a set of
simple in-memory instructions [9].

The memory-side accelerator presented in this paper
consists of a set of processing elements and a programmable
address generator logic that is programmed by the host
processor to automatically direct data to the right memory-
side processing element. Experimental results show it can
considerably increase the performance and reduce the power
consumption.

The rest of the paper is organized as follows. Section 2
covers important background and related studies. Section 3
describes the proposed PIM-based design. Section 4 outlines
the implementation and evaluation methodology, followed
by experimental results in Section 5. Finally, Section 6
concludes the paper.

II. BACKGROUND

A. Pairwise sequence alignment

Biological sequences can be either a chain of nucleotides
that make DNA sequences or a chain of amino acids that
form protein sequences [4]. DNA sequences are composed of
four types of nucleotides, but protein sequences are
composed of 20 types of amino acids. We refer to amino
acids and nucleotides as characters, hereinafter.

Pairwise global sequence alignment is the most basic
operation in many bioinformatics applications that aims to
find the most similar sequence of a database to a given query
sequence [1][3][6][10]. It compares every pair of the
characters of the sequences and assigns a predefined score to
them, which are then summed up to get the alignment score
of the two sequences. Score for each pair of aligned
characters are got from a score matrix.

The strings can also be extended by so called gap (blank)
characters, which can be inserted at any position in the
strings to get a better alignment. The sequence alignment
problem then aims at finding the best alignment (with the
highest possible score) of two sequences of characters by
appropriately inserting the gap characters in either sequence.

The Needleman-Wunsch algorithm is the most well-
known solution for the pairwise sequence alignment problem
[3].

Using a dynamic programing approach, computing an
optimal alignment between two sequences A=(a1a2…am) of
length m, and B= (b1b2…bn) of length n involves computing
a (m+1)×(n+1) matrix, called dynamic programming (DP)
matrix, in two passes.

In the forward pass, the DP matrix it iteratively filled
from cell (0,0) to cell (m,n), with the value of each cell
DP(i,j) is computed based on the values at some neighboring
cells. Actually, DP(i,j) keeps the highest alignment score of
partial sequences a1a2…ai of A and b1b2…bj of B (see
Figure 1.a) [10].

In the DP matrix, as shown in Figure 1.b, the value of a
cell is computed based on its north, west, and northwest
neighbors as [10]:

Match = 1 Mismatch = -1 Gap = -1

D N E S

-4 -3 -2 -1 0

-4 -3 -2 -1 -1 A

-2 -1 -2 -2 -2 N

0 -2 -3 -3 -3 D

Sequences Best Alignment

--------------------- ------------------------------------

SEND SEND SEND

AND —AND A—ND

(a) (b)

Fig. 1. (a) Dynamic programming matrix for alignment of “SEND” and

“AND” sequences and (b) maximum score propagation flow

DP(i,j)=MAX

The flow depicted in Figure 1.b fills the DP cells row-by-
row until reaching to cell DP(m,n). To track the alignment
with the highest score, each cell keeps a backward pointer to
the cell from which the highest score is received. The
pointers are stored in another matrix, called direction matrix
(Dir). By traversing the pointers in backward direction from
Dir(m,n) to Dir(0,0), the best alignment is formed.

B. Processing in memory

Our proposed method is based on the Micron’s Hybrid
Memory Cube (HMC) architecture, which is a complete
example of a 3D stacked DRAM with an integrated logic
layer [9]. Thanks to the recent advances in semiconductor
fabrication, which allows integrating dies with different
technologies on top of each other in a 3D fashion, the logic
layer can benefit from the abundant memory bandwidth
provided by the high-speed TSVs that interconnect the
layers. HMC can have up to 8 DRAM layers for a total of
8GB capacity. Each DRAM layer is divided into 32
partitions and the vertically adjacent partitions (that form a
column of vertically stacked partitions) are called a vault.
Each vault has its own DRAM controller, or vault controller,
implemented on its logic die. Vaults act as independent
memory channels and can be accessed simultaneously.

HMC is connected to the host processor through up to
four 16-bit full-duplex serial links. The logic layer provides a
crossbar switch that connects the links to vault controllers.
The processor-memory communication in HMC is carried
out by a packet-based approach, in which each memory
request/response in the form of packets.

In addition to implementing memory controller, HMC
2.0 implements several simple in-memory arithmetic and
logic instructions at its logic layer that can be called by the
host processor by some specific packet types. In this paper,
we extend the PIM capability of HMC by adding sequence
alignment operations to it.

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

III. PROPOSED PROCESSING IN MEMORY ARCHITECTURE

GPGPUs, as the most efficient class of massive parallel
machines, have been extensively used to solve the sequence
alignment problem in several previous studies [1]. However,
several previous works show that FPGA- and ASIC-based
application-specific architectures that is designed to fit the
specific computation and data movement pattern of the
alignment algorithm can outperform a GPU by up to 15x
[11]. As a result, this paper proposes an application-specific
architecture, as a replacement for GPGPUs, for the sequence
alignment problem.

An ideal accelerator has sufficient processing power to
exploit the maximum available parallelism in the alignment
algorithm: it calculates each DP matrix cell immediately
after the three surrounding cells are calculated (See Figure
1.b). The maximum number of cells that can be calculated in
parallel varies between one and the sequence size.

Using 32-bit data to keep DP cells and 2-bit data to keep
sequence letters, our evaluation shows that each pairwise
alignment task between two sequences requires about
18GB/s memory bandwidth. This evaluation assumes (1)
1GHz clock frequency for the accelerator and (2) single
cycle DP matrix calculation.

Obviously, this high bandwidth demand of a single cell
prohibits extracting the inherent parallelism of the sequence
alignment algorithm. This bandwidth demand exceeds the
maximum bandwidth of many conventional DDR
generations and even modern memory technologies; this
lengthens the alignment process, particularly when a query is
to be aligned with a large database of reference sequences.
By moving the alignment process closer to the memory, as
we will show shortly, we can push this bandwidth wall and
narrows the gap to the maximum achievable performance.

A. Memory-side accelerator design

Figure 2 illustrates the architecture of the proposed PIM
design. The vault controller at the logic layer of a baseline
HMC-like 3D memory is now equipped with multiple
processing elements (PEs).

The reference sequences of the target database are read
from disk and are distributed across the vaults at the
initialization phase. Afterwards, all PEs receive the same
query sequence and align it to the reference sequences placed
in their vaults. The algorithm is executed concurrently on all
vaults, with each vault finds the best alignment in the portion
of the database assigned to it. PEs can just communicate with
the DRAM banks of their vault through high-speed TSVs.

The key components of each PE are a programmable
DRAM address generation unit (AGU) and a customized
datapath. In each PE, the datapath is controlled by AGU
through a simple handshaking mechanism. AGU fetches the
required data from memory and passes them, along with a
start signal, to datapath. The datapath then computes the
output in a single cycle. The AGU, in the next cycle, writes
the datapath output back to the memory.

In order to generate the right sequence of addresses,
AGU itself is programmed by the host processor through
special PIM packets. PIM packets contain the AGU
programming data and are tagged with the target vault
number. PIM packets are directed to the right vault by the
input crossbar of the memory.

HOSTXVault 31

Vault 0

PE+Vault
Ctrl+TSVs

Mem. Queue

PIM Queue

PE+Vault
Ctrl+TSVs

Mem. Queue

PIM Queue

Link Ctrl.

Link Ctrl.

(a)

Memory Queue

PIM QueueScheduler

PE #0

AGU

Data
Path

...

...

PE #n

Add. queue

Store queue..
.

V
au

lt

C
o

n
tr

o
lle

r

Address

Write Data

Read Data

..
.

..
.

(b)

Fig. 2. (a) 3D memory and memory-side PEs, (b) inside a vault logic layer

At each vault, the PIM packets are separated from
read/write packets by writing them to a separate queue (PIM
queue in Figure 2.a). A credit-based flow control mechanism
between the memory and host guarantees that the queues
never overflow.

B. Memory management and program control at host

A host processor initiates the processing of PEs by
configuring (programming) the AGUs with the size and
address of the under-test sequences and the corresponding
DP matrix. Calling a PE is done by sending a PIM packet to
its vault.

The host initiates the execution of a single pairwise
alignment (between the query and one of the reference
sequences) at a time. For example, if a vault accommodates
10k reference sequences, the AGUs of that vault should be
programmed 10k times.

Memory initialization. Before the execution phase, the
reference sequences are read from the target database and are
mapped into the physical address space of the memory

mli01
Highlight

mli01
Highlight

module. The host keeps the start address and length of each
reference sequence to later use to program the memory-side
AGUs.

When a specialized memory-side accelerator is invoked
by a host processor, a hardware mechanism automatically
builds and sends a packet to the memory-side PEs.

Like some prior work, the address range of sequences is
marked as non-cacheable to prevent cache coherency
overhead [12].

The programs on the host work with virtual address.
However, when host processor sends a packet to PEs in order
to initiate memory-side computation, it simply translates the
virtual address of the target sequences to physical address by
accessing its TLB, as memory-side PEs work with physical
addresses only.

The PEs at each vault align the query sequence to all
reference sequences mapped into their vault to find the
maximum score of that vault. The host then compares the
local maximum value at each vault and finds the sequence
with the global maximum alignment score across all vaults.

Hash Function Score Table

Max

A

B

Direction Value

Gap penalty

From memory

From memory

Gap penalty

North West

From

memory

To memory

West

North

Fig. 3. The datapath of a PE

C. The datapath structure

At each invocation, the datapath calculates the value of a
single DP matrix cell. According to Equation 1, the datapath
that computes the value of DP cells can be implemented by a
few comparator and adder units. The architecture of the
datapath is depicted Figure 3. In this architecture, once the
input data, i.e. two characters from the two sequences under
comparison and the required DP cell value, are written to
input registers the process starts.

As mentioned before, the forward pass starts form the
first row of the DP matrix and proceeds row by row. For
each row of DP, it starts from the first column and proceeds
column-by-column. As Figure 1.b indicates, in addition to
the string characters, we need two cells of the previous row
of DP (stored in North and North-West registers in Figure 3)
and one cell of the current row (stored in West register in
Figure 3) to calculate the value of each DP cell.

The West register is the most recent cell value calculated
by the PE and we directly forward the last PE output to the
West register (see the connection between the Max. unit and
West register in Figure 3). Further, the DP cell that is
currently the north cell, will act as the north-west cell in the
next iteration of the algorithm. Thus, at each iteration, the
North-West register receives the old value of the North
register.

However, the content of the North register should be read
from memory. To accelerate accessing the cells of the
previous row of DP when filling the North register, we can
also cache a complete row (once completely calculated) in
the PE. Whereas this scheme works well for short sequences,
the in-PE storage requirements of sequences with thousands
or millions of characters are prohibitive. Nonetheless, we
evaluate the effect of cache size on the performance in the
next sections.

In Figure 3, the score table keeps the matching score of
each pair of characters. For the current implementation, we
set the alignment score a match (when two characters are
identical) to 1 and a mismatch and matching with gap to -1.
For proteins that feature a 20-value alphabet, the matrix is
larger (20x20), in which each cell may contain a different
score based on the biological problem. For such problems,
the two head characters of the sequences are used as the
address to the score matrix (combined by hash function in
Figure 3 to make the matrix address).

D. Address generation unit (AGU)

 The address generation unit (AGU) is responsible to
generate the sequence of memory addresses required to
calculate the value of DP cells and manage data movement
between memory and the datapath. Note that we use a
separate AGU for each individual PE.

A light-weight scheduler at each vault distributes the PIM
packets across the PEs of each vault (Figure 2.b). AGUs
have an agu_ready signal to indicate whether they are ready
to receive a new task from scheduler. Since four data
structures are involved in the process (that are the two
sequences (A and B), dynamic programming matrix (DP),
and direction matrix (Dir)) the packet contains six
parameters: the start address of these four data structures and
the length of A and B.

After receiving a packet, AGU is programmed to
generate a sequence of addresses according to pseudo code in
Figure 4. The pseudo code is designed based on the
computation flow depicted in Figure 1.a. The registers in the
pseudo code (A, B, West, North, North West, Value, and
Direction) appear with the same name in Figure 3. As
mentioned earlier, AGU just provides values for A, B, and
North registers in each iteration (the other registers are filled
internally).

The addresses made by each AGU are formatted as a
memory request and are queued in the vault controller to be
serviced in a FIFO manner (Figure 2.b). In a vault, the
contents of the queues of each PE are sent to the vault
controller in a round robin manner. We set the length of this
queue to 10 and an AGU is stalled if the queue is full.

Once the two requested data are ready, AGU asserts a
data_ready signal to initiate data processing at datapath.
Then, as the latency of datapath is one cycle, AGU generates
appropriate addresses to write the output of the datapath to
the memory.

The matrix-based structures are stored as a linear row-
major array in the memory, but we use two-dimensional
addressing in the pseudo code for the sake of readability. We
also ignore the column and row inserted for gap.

In addition, as each memory access returns a 32-bit word,
we should read a new word from the DNA sequences every

mli01
Highlight

16 cycles (as each DNA character can be encoded in two
bits). If the sequences are protein, we should read a new
word every four to six cycles (as each protein character is
encoded in five bits). This involves slightly modifying the
pseudo code to reduce the sequence access rate proportional
to the target sequence type. This pseudo code can be easily
implemented by a state machine.

Once the maximum alignment score is found across all
database strings, the Dir matrix is used to specify the
alignment path. We omit the details of this step, as it is not
executed for all sequences. Once the sequence with the
highest score is found across all vaults, the host processor
can perform the alignment aging to find the alignment path.
So, although the pseudo code of Figure 4 includes data
accesses required by this step, it is called only one time
during the alignment of a query sequence to a database and
its overhead can be completely ignored.

Wait Until &A, &B, &DP, &Dir, A.length, and B.length are
received from scheduler // read from buffer

agu_ready = 0; // busy state

For i = 0 to A.length
 Register A = A[i]; //generate address &A[i] and

forward the received data to A
 For j = 0 to B.length
 Register B = B[j]; //generate address &B[j] and

forward the received data to B
 Register North = DP[i-1,j];
 //generate address &DP[i-1,j]and

forward the data to North

 data_ready= 1; //send ready signal to the datapath
 Wait For one clock;

 //wait for datapath computation to
finish

 DP[i,j] = Value Register;
//generate address &DP[i,j] to
write Value register

 Dir[i,j] = Direction Register;
//generate address &Dir[i,j] to
write Direction register

 End For //j
End For //i

agu_ready = 1; // signal the scheduler to send a new

task

Fig. 4. AGU description

IV. EXPERIMENTAL SETUP AND METHODOLOGY

In this paper, we evaluate the efficiency of the proposed
PIM-based alignment design in terms of throughput and
power consumption.

Simulator. We developed a cycle-accurate description
for performance evaluation in C++ and validated it with
HMCsim [13], which is the most accurate publically-
available model of HMC 2.0. In the simulator, the memory
specification parameters are set based on the HMC 2.0
specifications [9][12] and are outlined in Table 1. The timing
of DRAM and vault controller is taken from HMCsim.

We assume that all memory accesses come from the
alignment algorithm and no other programs on the host
access the memory during the algorithm execution. We
model the host at a high abstraction level: it only copies the
sequences from the disk to memories and sends PIM packets

to initiate processing at PEs. We believe this level of
abstraction is sufficient for current work, as this paper
focuses on comparing the memory-side and processor-side
accelerator speedups under the sequence alignment
application. The behavior and performance gain of the
proposed PIM accelerators are agnostic to the type of the
host processor and this method can be used with any host
that can meet the requirements discussed in Section 3.b.

The major contributor to the speedup of memory-side
accelerators is the ratio of the available internal to external
bandwidth of the memory module. The internal bandwidth,
which is defined as the memory bandwidth available to the
PEs at the logic layer, depends on the number of vaults,
number of TSVs per vault, and the TSV speed (working
frequency). The considered internal bandwidths in recent
state-of-the-art PIM designs vary from 160 GB/s to 512 GB/s
[14][15]. In this work, we adopt the HMC.20 configuration
that provides 10 GB/s bandwidth per vault (320 GB/s
bandwidth per memory module).

The external bandwidth, which is defined as the
bandwidth that memory provides to the host processor, is
also determined by the number of links, number of lanes per
link, and the lane speed. This important parameter also
comes with different values in recent state-of-the-art PIM
designs, with the value varying from 40 GB/s to 320 GB/s
[12][15]. We set this parameter to 240 GB/s, which is the
maximum available external bandwidth of HMC2.0 (with
four 16-bit 60GB/s links).

We further evaluate the impact of different internal and
external bandwidth numbers in the next section. The access
size through external links is 32 bytes and we have
implemented several basic HMC transactions in our
simulator according to the protocol and packet format
presented in the HMC specifications [9]. The implemented
packets include read request, read reply, write request, PIM
alignment initiation packet (to program an AGU), and flow
control packet (from memory to processor to inform PIM
buffer occupancy status).

The results of the simulations show 27% protocol
overhead on the external bandwidth (mainly due to the need
for 8-byte header and tail flits) that corroborate prior
overhead reports (including Micron reports [16]). Even with
this overhead, HMC provides significantly higher bandwidth
than the fastest conventional DDR memory [9].

TABLE I. SIMULATION PARAMETERS [12][13]

External bandwidth (up to 4 links) Up to 240 GB/s

Internal bandwidth (peak per vault) 10 GB/s

DRAM layers 4

Layer size 1 GB

Number of vaults 32

Word Size 32 bits

Row buffer size 256B

Workloads. In this paper, we focus on the global DNA
alignment problem, in which a query sequence is compared
to a large set of reference sequences. Since DNA sequences
can be much longer than protein sequences, our experiments
target DNA sequences. We use strings with different sizes as
benchmark. We can select realistic benchmarks from
standard repositories, but the algorithm and architecture are
agnostic to the sequence contents: it is just the string length

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

that affects the performance. Thus, we consider DNA
sequences with different lengths, in which every character
can take four different values, and randomly fill the
sequences.

Each DP matrix cell is 32-bit, as it should keep the
cumulative alignment score, which can become quite large as
the algorithm approaches to the last cells (upper left corner of
the matrix) for long sequences. We store four characters of a
DNA sequence in one byte. Since each HMC access returns
32 bits, each access provides either 16 characters of a
sequence or one cell of a DP matrix.

PE implementation. The clock frequency, power
consumption, and area of the PEs (datapath and AGU) are
calculated by synthesizing the VHDL model of the design in
32nm TSMC using Synopsis synthesis and power evaluation
tools. According to the synthesis results in 32nm, the critical
path of the datapath depicted in Figure 3, is approximately
320ps, resulting in 3.1GHz operating frequency. Working at
this frequency, however, may result in thermal issues,
particularly when considering the small area footprint of the
datapath. According to the synthesis results, the area of a PE
is 0.0018mm2: this small area increases power density of
PEs, and hence makes them prone to thermal problems. Note
that thermal issues are more sever in 3D architectures,
because the logic and DRAM layers share the same path to
the heat sink.

We use the Hotspot 6.0 temperature estimation tool with
its 3D stacking feature [17] to evaluate the thermal behavior
of the proposed design. The technology-dependent
parameters of the thermal simulation are obtained from [18].

To estimate the temperature of the memory-side PEs in
our design, we calculate the temperature of a PE surrounded
by eight neighboring PEs (direct and orthogonal neighbors in
a grid-like floorplan) in the logic layer of a 3D memory
system. The logic layer is sandwiched between the heat sink
and four DRAM layers. This way, the impact of neighboring
PEs, the power consumption of the target PE itself, and the
DRAM slices in the upper layers has been taken into
account, but the impact of elements with less significant
contribution, i.e. farther PEs, TSVs, and vault controller is
ignored. All PEs (the target and neighboring PEs) work the
same frequency. The power consumption of the PE and
DRAM slices are calculated by the HDL model and
DRAMsim 2.0 [19], respectively, based on the activity factor
back-annotated from the C++ simulator.

The HMC 2.0 specification states that the operating
temperature of the logic and DRAM dies has to be less than
383˚K and 378˚K, respectively. Thermal simulation shows
that the peak steady-state temperature of PEs violates the
temperature threshold when working at 3.4GHz, but will go
lower than the threshold across all PEs when the frequency is
reduced to 0.673 GHz. So, we set the clock frequency of the
memory-side PEs to 0.67 GHz in our experiments.

Number of PEs. Each iteration of the datapath
execution, as discussed in Section 3.5, requires four data
accesses (two data reads and two data writes). One read
operation fills the 32-bit North register by some DP cell. The
other read operation targets the 2-bit reference sequence
characters, where one access can provide data for 16 cycles.
Write operations also transmit the 2-bit Dir matrix cells
(done every 16 cycles) and the calculated 32-bit DP cell
value to memory. So, ignoring the infrequent access to the

query sequence characters (which are read one time for each
row), each iteration of the algorithm involves approximately
2.125 memory accesses (8.5 bytes), on average.
Consequently, approximately two memory-side PEs can
work concurrently at each vault to fully exploit the 10 GB/s
internal vault bandwidth (calculated as: (10 GB/s)/(0.67
GHz × 8.5 B/clock)). This gives a total of 64 PEs per HMC
(with 32 vaults). Note that area constraints do not limit the
PE count, as more than half of the 68mm2 area of an HMC
module is free to implement accelerators [12][9]: it is by far
larger than the total area footprint of our accelerators (that is
64×0.0018mm2).

Processor-side accelerator configuration. We compare
the results with the case where the PEs are implemented at
the processor side and receive data from an off-chip memory
(with the bandwidth listed as “external bandwidth” in Table
1). We refer to this configuration as processor-side. Note that
this configuration also adopts the 3D HMC-like memory
(and not a conventional 2D DDR), but the PEs are
implemented at the processor side.

The same numbers of PEs as the memory-side
configuration are considered for the conventional design
(processor-side PEs). In the simulations, the processor-side
PEs work at 2.2 GHz, as our temperature estimation shows
that the aforementioned 383˚K thermal constraint cannot be
met beyond this frequency.

V. EXPERIMENTAL RESULTS

A. Throughput evaluation

Figure 5 compares the throughput of the conventional
processor-side and the proposed memory-side
configurations. The results are normalized to the memory-
side configuration to give a better insight into the obtained
improvements.

The system aligns a 100k-character query sequence
against a database containing 320k reference sequences. We
repeat the evaluation with multiple reference sequence
lengths and processor-side cache sizes to evaluate the impact
of them on speedup. Each vault accommodates 10k reference
sequences. The query sequence is replicated in all vaults.

As Figure 5 illustrates, the proposed PIM-based method
outperforms the conventional processor-side accelerator
design by 2.2x, on average.

0.54
0.42 0.410.42 0.38 0.38

0

0.2

0.4

0.6

0.8

1

10K 100k 1M

N
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

Average reference sequnece length (characters)

Memory-side Processor-side 128 KB cache

Processor-side 32KB caceh

Fig. 5. Throughput comparison for different reference sequence lengths and

cache sizes

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

The main reason is the higher bandwidth available for in-
memory PEs, but processor-side PEs (although working at
higher frequency) are bound by the more limited off-chip
bandwidth. As a result of this underutilization, processor-side
PEs offer lower throughput than their memory-side
counterparts.

As the figure shows, the throughput improvement is
almost agnostic to sequence length and is approximately
proportional to the ratio of the internal to the external
bandwidth.

To evaluate the impact of cache, we repeat the previous
experiment with two private data cache sizes (32KB and
128KB) for each PE of the processor-side configuration (for
a total of 2MB and 8MB caches for the entire system,
respectively). The cache features single cycle access latency
and is configured as four-way set-associative.

Bioinformatics algorithms exhibit poor temporal locality,
because once a reference sequence is fetched, it will never be
used again for the current query. DP matrix cells also suffer
from a large reuse distance that is proportional to the
sequence length.

As Figure 5 shows, the cache can improve the
performance for short sequences, because they exhibit better
caching behavior for the DP matrix. The figure shows that
long DNA sequences cannot benefit much from reasonably-
sized data caches. This poor caching behavior do not justify
the area and power overheads of further using more
sophisticated multi-level cache structures.

B. Power evaluation

Figure 6 shows the power consumption of a PE in the
two configurations. The power consumption of the PEs are
extracted from the hardware implementation of the designs
(as described earlier in this section) and the memory access
power consumption for memory-side and processor-side PEs
are set to 3.7 pJ/bit and 10 pJ/bit, respectively, based on the
energy results reported in [12].

The figure shows that the proposed PIM-based
implementation can also outperform the processor-side
design in terms of power consumption. The main source of
power reduction in the proposed architecture is the
elimination of on-board data transfer that has a considerable
contribution to the total power consumption of computers
[20].

0

200

400

600

Memory-side Processor-side

P
E

 P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (m
W

)

Fig. 6. The power usage comparison of PEs

C. Sensitivity to internal and external bandwidths

To study the effect of the ration of the internal to external
bandwidths on the benefits of our design, Figure 7 shows the
speedup of the memory-side accelerators when the internal
bandwidth is 1x, 2x, 3x, and 4x higher than the external
bandwidth. In the simulations, we fix the internal bandwidth

to 320 GB/s and scale down the external bandwidth
proportionally. The processor-side accelerators have 128K
data cache per PE. As we expect, the speedup increases
proportional to the bandwidth ratio and as Figure 7
demonstrates, reaches to 3.8x when the internal bandwidth is
4 times higher.

Again, the cache can partially bridge the gap between the
memory-side and processor-side designs for shorter
sequences, but fall short in reducing the stress on the off-chip
bandwidth for long sequences.

0

0.4

0.8

1.2

10K 1M 10K 1M 10K 1M 10K 1M

1x 2x 3x 4x
N

o
rm

a
li

ze
d

 T
h

ro
u

gh
p

u
t

Internal to external bandwidth ratio

Memory-side Processor-side

Fig. 7. Throughput comparison for different internal to external bandwidth

ratios with 128 KB processor-side cache

VI. CONCLUSION

In this paper, we proposed a processing-in-memory
approach to accelerate bioinformatics algorithms. As
biological sequence alignment is the base of the majority of
bioinformatics algorithms, we target accelerating this
operation and focused on the well-known Needleman–
Wunsch dynamic programming approach. The main
motivation behind this proposal is the low operation density
(operation per byte) of sequence alignment algorithms that
make them bandwidth-limited. The proposed architecture
consists of a set of processing elements implemented at the
logic layer of a 3D DRAM chip. Each processing element is
composed of an address generation unit and a datapath
customized for the sequence alignment problem.
Experimental results show that moving the processing
elements to the memory side leads to more than 2.4x
improvement in throughput and 41% reduction in power
consumption for the global alignment problem.

REFERENCES

[1] S. Aluru and N. Jammula, “A Review of Hardware Acceleration for
Computational Genomics,” in IEEE Design & Test, vol. 31, no. 1,
2014, pp. 19-30.

[2] J. Zhang, et al., "cuBLASTP: Fine-Grained Parallelization of
Protein Sequence Search on CPU+GPU," in IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol.
14, no. 4, pp. 830-843, 2017.

[3] J. Cohen, “Bioinformatics-an introduction for computer scientists,”
in ACM Computing Surveys, vol. 36, no. 2, 2004, pp. 122-158.

[4] E. Sandes, et al., “Parallel Optimal Pairwise Biological Sequence
Comparison: Algorithms, Platforms, and Classification,” in ACM
Computing Surveys, vol. 48, no. 4, 2016.

[5] https://www.ncbi.nlm.nih.gov/genbank/statistics, Apr. 2018.

[6] S. Sarkar, et al., “Hardware accelerators for bio-computing: A
survey”, in Proc. of ISCAS, 2010.

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

mli01
Highlight

[7] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM caches
for servers: hit ratio, latency, or bandwidth? have it all with
footprint cache,” in Proc. of ISCA, 2013, pp. 404-415.

[8] D. U. Lee et al., “25.2 A 1.2V 8Gb 8-channel 128GB/s High-
Bandwidth Memory (HBM) Stacked DRAM with Effective
Microbump I/O Test Methods Using 29nm Process and TSV,” in
Proc. of ISSCC, 2014, pp. 432-433.

[9] “Hybrid memory cube specification 2.0,” Hybrid Memory Cube
Consortium, Tech. Rep., Nov. 2014.

[10] M. Modarressi, et al., “Hardware accelerator for biological protein
sequence alignment on reconfigurable Networks-on-Chip,” in
Proc. of East-West Design & Test Symposium, 2015, pp. 1-4.

[11] K. Benkrid, A. Akoglu, C. Ling, Y. Song, Y. Liu, and X. Tian,
“High performance biological pairwise sequence alignment:
FPGA versus GPU versus cell BE versus GPP,” in International
Journal of Reconfigurable Computing, vol. 2012, no. 7, pp. 1-11,
Feb.2012

[12] D. Kim, et al., “Neurocube: A Programmable Digital
Neuromorphic Architecture with High-Density 3D Memory,” in
Proc. of ISCA, 2016, pp. 380-392.

[13] J. D. Leidel and Y. Chen, "HMC-Sim-2.0: A Simulation Platform
for Exploring Custom Memory Cube Operations," in Proc. of

International Parallel and Distributed Processing Symposium
Workshops, 2016, pp. 621-630.

[14] K. Hsieh, et al., “Transparent offloading and mapping (TOM):
enabling programmer-transparent near-data processing in GPU
systems,” in Proc. of ISCA, 2016, pp. 204-216.

[15] J. Ahn, S. Hong, S. Yoo, O. Mutlu and K. Choi, “A scalable
processing-in-memory accelerator for parallel graph processing,”
in Proc. os ISCA, 2015, pp. 105-117.

[16] Hybrid Memory Cube Webinar, available:
https://www.micron.com/, Apr 2018.

[17] Hotspot, available: http://lava.cs.virginia.edu/HotSpot.

[18] M. Keramati, et al., “Thermal management in 3d networks-on-
chip using dynamic link sharing,” Elsevier Journal of
Microprocessors and Microsystems, vol. 52, 2017, pp. 69-79.

[19] DRAMSim 2.0, available at: https://eng.umd.edu/~blj/dramsim/,
Apr. 2018.

 [20] A. Boroumand, et al., “Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks”, in Proc. of ASPLOS,
2018.

.

http://lava.cs.virginia.edu/HotSpot

