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Abstract—Sequence alignment is the most widely used 

operation in bioinformatics. With the exponential growth of the 

biological sequence databases, searching a database to find the 

optimal alignment for a query sequence (that can be at the order 

of hundreds of millions of characters long) would require 

excessive processing power and memory bandwidth. Sequence 

alignment algorithms can potentially benefit from the processing 

power of massive parallel processors due their simple arithmetic 

operations, coupled with the inherent fine-grained and coarse-

grained parallelism that they exhibit. However, the limited 

memory bandwidth in conventional computing systems prevents 

exploiting the maximum achievable speedup. In this paper, we 

propose a processing-in-memory architecture as a viable solution 

for the excessive memory bandwidth demand of bioinformatics 

applications. The design is composed of a set of simple and light-

weight processing elements, customized to the sequence 

alignment algorithm, integrated at the logic layer of an emerging 

3D DRAM architecture. Experimental results show that the 

proposed architecture results in up to 2.4x speedup and 41% 

reduction in power consumption, compared to a processor-side 

parallel implementation. 

Keywords—Sequence Alignment, Accelerator, Processing-in-

memory. 

I. INTRODUCTION 

  Aligning two biological sequences in a pairwise manner 
is the primary operation in many computational biology and 
genomics problems. The sequences can be a chain of amino 
acids that make a protein sequence or an ordered set of 
nucleotides that form a DNA [1]. 

Among various solutions, dynamic programming-based 
methods make a better compromise between accuracy and 
speed, and thereby, has gained popularity [1][2][3]. Dynamic 
programming-based implementations, as will be discussed 
shortly, involve simple character comparison and low-
precision integer arithmetic operations. However, the entire 
alignment procedure can be quite time-consuming, as it has 
to handle extremely large datasets.  

First, a biological sequence can be very long: the size of 
protein sequences can be as large as tens of thousands of 
amino acids (characters) and the sizes of DNA sequences can 
range from a few to hundreds of millions of nucleotides 
(characters) [4]. For example, the longest human sequence in 
the related databases is about 249 million nucleotides long 
[4]. Further, genomic databases against which a given 
sequence should be aligned are growing at an exponential 

rate and major widely-used public databases currently 
contain up to 200 million sequences [5]. 

This huge amount of data makes the sequence alignment 
a heavy and expensive task, in terms of the bandwidth and 
processing power demand. 

The simple logic and inherent parallelism of the sequence 
alignment problem can be exploited to accelerate them on 
massive parallel processors. The parallelism can be either 
fine-grained (by parallelizing the alignment algorithm [4]) or 
coarse-grained (by concurrent alignment of a given sequence 
to multiple sequences of a database).  

Prior work have explored the speedup of alignment 
algorithms on various hardware platforms, including 
application-specific architectures, graphical processing units 
(GPUs), and high-performance clusters [1][6]. Particularly, 
the inexpensive simple processing units of the problem 
enable designers to integrate a large amount of processing 
units into a customized accelerator chip to fully exploit the 
potential coarse- and fine-grained parallelism of sequence 
alignment algorithms.  

However, the expected speedup can hardly be achieved 
due to the limited insufficient memory bandwidth in 
conventional processing architectures [7]. In particular, low 
operational density (operations per byte) is the key reason for 
the excessive memory bandwidth demand of bioinformatics 
algorithms. Moreover, the lack of temporal locality makes 
the cache less effective in reducing the bandwidth demand. 

To tackle this bandwidth challenge, this paper presents a 
novel processing-in-memory (PIM) architecture for the 
sequence alignment problem. The architecture consists of a 
set of processing units, customized for the sequence 
alignment processing requirements, stacked on top of 
multiple layers of DRAM in a 3D fashion. 

PIM minimize data movement and access latency by 
moving the computation closer to data. In addition to access 
latency, PIM also increases memory bandwidth by stacking 
the memory and logic layers on top of each other and 
providing data through high bandwidth vertical links.  

Taking advantage of abundant memory bandwidth, a 
massive parallel accelerator at the logic layer of a 3D 
memory chip can push the bandwidth wall to exploit much 
higher potential parallelism of the alignment problem, 
effectively yielding higher speedup. 



Some major memory chip vendors already ship 3D-
memory chips with an integrated logic layer [8][9]. The logic 
layer often implements memory controller and, in some 
recent versions (such as HMC 2.0), can execute a set of 
simple in-memory instructions [9].  

The memory-side accelerator presented in this paper 
consists of a set of processing elements and a programmable 
address generator logic that is programmed by the host 
processor to automatically direct data to the right memory-
side processing element.  Experimental results show it can 
considerably increase the performance and reduce the power 
consumption. 

The rest of the paper is organized as follows. Section 2 
covers important background and related studies. Section 3 
describes the proposed PIM-based design. Section 4 outlines 
the implementation and evaluation methodology, followed 
by experimental results in Section 5. Finally, Section 6 
concludes the paper. 

II. BACKGROUND 

A. Pairwise sequence alignment 

Biological sequences can be either a chain of nucleotides 
that make DNA sequences or a chain of amino acids that 
form protein sequences [4]. DNA sequences are composed of 
four types of nucleotides, but protein sequences are 
composed of 20 types of amino acids. We refer to amino 
acids and nucleotides as characters, hereinafter.  

Pairwise global sequence alignment is the most basic 
operation in many bioinformatics applications that aims to 
find the most similar sequence of a database to a given query 
sequence [1][3][6][10]. It compares every pair of the 
characters of the sequences and assigns a predefined score to 
them, which are then summed up to get the alignment score 
of the two sequences. Score for each pair of aligned 
characters are got from a score matrix.  

The strings can also be extended by so called gap (blank) 
characters, which can be inserted at any position in the 
strings to get a better alignment. The sequence alignment 
problem then aims at finding the best alignment (with the 
highest possible score) of two sequences of characters by 
appropriately inserting the gap characters in either sequence.  

The Needleman-Wunsch algorithm is the most well-
known solution for the pairwise sequence alignment problem 
[3]. 

Using a dynamic programing approach, computing an 
optimal alignment between two sequences A=(a1a2…am) of 
length m, and B= (b1b2…bn) of length n involves computing 
a (m+1)×(n+1) matrix, called dynamic programming (DP) 
matrix, in two passes. 

In the forward pass, the DP matrix it iteratively filled 
from cell (0,0) to cell (m,n), with the value of each cell 
DP(i,j) is computed based on the values at some neighboring 
cells. Actually, DP(i,j) keeps the highest alignment score of 
partial sequences a1a2…ai of A and b1b2…bj of B (see 
Figure 1.a) [10].  

In the DP matrix, as shown in Figure 1.b, the value of a 
cell is computed based on its north, west, and northwest 
neighbors as [10]: 

 

 

Match = 1    Mismatch = -1       Gap = -1 
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Fig. 1. (a) Dynamic programming matrix for alignment of “SEND” and 

“AND” sequences and (b) maximum score propagation flow 

 

DP(i,j)=MAX                    

 

The flow depicted in Figure 1.b fills the DP cells row-by-
row until reaching to cell DP(m,n). To track the alignment 
with the highest score, each cell keeps a backward pointer to 
the cell from which the highest score is received. The 
pointers are stored in another matrix, called direction matrix 
(Dir). By traversing the pointers in backward direction from 
Dir(m,n) to Dir(0,0), the best alignment is formed. 

B. Processing in memory 

Our proposed method is based on the Micron’s Hybrid 
Memory Cube (HMC) architecture, which is a complete 
example of a 3D stacked DRAM with an integrated logic 
layer [9]. Thanks to the recent advances in semiconductor 
fabrication, which allows integrating dies with different 
technologies on top of each other in a 3D fashion, the logic 
layer can benefit from the abundant memory bandwidth 
provided by the high-speed TSVs that interconnect the 
layers. HMC can have up to 8 DRAM layers for a total of 
8GB capacity. Each DRAM layer is divided into 32 
partitions and the vertically adjacent partitions (that form a 
column of vertically stacked partitions) are called a vault. 
Each vault has its own DRAM controller, or vault controller, 
implemented on its logic die. Vaults act as independent 
memory channels and can be accessed simultaneously. 

HMC is connected to the host processor through up to 
four 16-bit full-duplex serial links. The logic layer provides a 
crossbar switch that connects the links to vault controllers.  
The processor-memory communication in HMC is carried 
out by a packet-based approach, in which each memory 
request/response in the form of packets.  

In addition to implementing memory controller, HMC 
2.0 implements several simple in-memory arithmetic and 
logic instructions at its logic layer that can be called by the 
host processor by some specific packet types. In this paper, 
we extend the PIM capability of HMC by adding sequence 
alignment operations to it. 
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III. PROPOSED PROCESSING IN MEMORY ARCHITECTURE 

GPGPUs, as the most efficient class of massive parallel 
machines, have been extensively used to solve the sequence 
alignment problem in several previous studies [1]. However, 
several previous works show that FPGA- and ASIC-based 
application-specific architectures that is designed to fit the 
specific computation and data movement pattern of the 
alignment algorithm can outperform a GPU by up to 15x 
[11]. As a result, this paper proposes an application-specific 
architecture, as a replacement for GPGPUs, for the sequence 
alignment problem.  

An ideal accelerator has sufficient processing power to 
exploit the maximum available parallelism in the alignment 
algorithm: it calculates each DP matrix cell immediately 
after the three surrounding cells are calculated (See Figure 
1.b). The maximum number of cells that can be calculated in 
parallel varies between one and the sequence size.  

Using 32-bit data to keep DP cells and 2-bit data to keep 
sequence letters, our evaluation shows that each pairwise 
alignment task between two sequences requires about 
18GB/s memory bandwidth. This evaluation assumes (1) 
1GHz clock frequency for the accelerator and (2) single 
cycle DP matrix calculation. 

Obviously, this high bandwidth demand of a single cell 
prohibits extracting the inherent parallelism of the sequence 
alignment algorithm. This bandwidth demand exceeds the 
maximum bandwidth of many conventional DDR 
generations and even modern memory technologies; this 
lengthens the alignment process, particularly when a query is 
to be aligned with a large database of reference sequences. 
By moving the alignment process closer to the memory, as 
we will show shortly, we can push this bandwidth wall and 
narrows the gap to the maximum achievable performance. 

A. Memory-side accelerator design 

Figure 2 illustrates the architecture of the proposed PIM 
design. The vault controller at the logic layer of a baseline 
HMC-like 3D memory is now equipped with multiple 
processing elements (PEs).  

The reference sequences of the target database are read 
from disk and are distributed across the vaults at the 
initialization phase. Afterwards, all PEs receive the same 
query sequence and align it to the reference sequences placed 
in their vaults. The algorithm is executed concurrently on all 
vaults, with each vault finds the best alignment in the portion 
of the database assigned to it. PEs can just communicate with 
the DRAM banks of their vault through high-speed TSVs. 

The key components of each PE are a programmable 
DRAM address generation unit (AGU) and a customized 
datapath. In each PE, the datapath is controlled by AGU 
through a simple handshaking mechanism. AGU fetches the 
required data from memory and passes them, along with a 
start signal, to datapath. The datapath then computes the 
output in a single cycle. The AGU, in the next cycle, writes 
the datapath output back to the memory. 

In order to generate the right sequence of addresses, 
AGU itself is programmed by the host processor through 
special PIM packets. PIM packets contain the AGU 
programming data and are tagged with the target vault 
number. PIM packets are directed to the right vault by the 
input crossbar of the memory. 
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Fig. 2. (a) 3D memory and memory-side PEs, (b) inside a vault logic layer 

 

At each vault, the PIM packets are separated from 
read/write packets by writing them to a separate queue (PIM 
queue in Figure 2.a). A credit-based flow control mechanism 
between the memory and host guarantees that the queues 
never overflow.  

B. Memory management and program control at host 

A host processor initiates the processing of PEs by 
configuring (programming) the AGUs with the size and 
address of the under-test sequences and the corresponding 
DP matrix. Calling a PE is done by sending a PIM packet to 
its vault.  

The host initiates the execution of a single pairwise 
alignment (between the query and one of the reference 
sequences) at a time. For example, if a vault accommodates 
10k reference sequences, the AGUs of that vault should be 
programmed 10k times. 

Memory initialization. Before the execution phase, the 
reference sequences are read from the target database and are 
mapped into the physical address space of the memory 
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module. The host keeps the start address and length of each 
reference sequence to later use to program the memory-side 
AGUs.  

When a specialized memory-side accelerator is invoked 
by a host processor, a hardware mechanism automatically 
builds and sends a packet to the memory-side PEs. 

Like some prior work, the address range of sequences is 
marked as non-cacheable to prevent cache coherency 
overhead [12].  

The programs on the host work with virtual address. 
However, when host processor sends a packet to PEs in order 
to initiate memory-side computation, it simply translates the 
virtual address of the target sequences to physical address by 
accessing its TLB, as memory-side PEs work with physical 
addresses only.  

The PEs at each vault align the query sequence to all 
reference sequences mapped into their vault to find the 
maximum score of that vault. The host then compares the 
local maximum value at each vault and finds the sequence 
with the global maximum alignment score across all vaults. 

 

Hash Function Score Table

Max

A

B

Direction Value

Gap penalty

From memory

From memory

Gap penalty

North West

From 

memory

To memory

West

North

  
Fig. 3. The datapath of a PE 

C. The datapath structure  

At each invocation, the datapath calculates the value of a 
single DP matrix cell. According to Equation 1, the datapath 
that computes the value of DP cells can be implemented by a 
few comparator and adder units. The architecture of the 
datapath is depicted Figure 3. In this architecture, once the 
input data, i.e. two characters from the two sequences under 
comparison and the required DP cell value, are written to 
input registers the process starts. 

As mentioned before, the forward pass starts form the 
first row of the DP matrix and proceeds row by row. For 
each row of DP, it starts from the first column and proceeds 
column-by-column. As Figure 1.b indicates, in addition to 
the string characters, we need two cells of the previous row 
of DP (stored in North and North-West registers in Figure 3) 
and one cell of the current row (stored in West register in 
Figure 3) to calculate the value of each DP cell.  

The West register is the most recent cell value calculated 
by the PE and we directly forward the last PE output to the 
West register (see the connection between the Max. unit and 
West register in Figure 3). Further, the DP cell that is 
currently the north cell, will act as the north-west cell in the 
next iteration of the algorithm. Thus, at each iteration, the 
North-West register receives the old value of the North 
register. 

However, the content of the North register should be read 
from memory. To accelerate accessing the cells of the 
previous row of DP when filling the North register, we can 
also cache a complete row (once completely calculated) in 
the PE. Whereas this scheme works well for short sequences, 
the in-PE storage requirements of sequences with thousands 
or millions of characters are prohibitive. Nonetheless, we 
evaluate the effect of cache size on the performance in the 
next sections.  

In Figure 3, the score table keeps the matching score of 
each pair of characters. For the current implementation, we 
set the alignment score a match (when two characters are 
identical) to 1 and a mismatch and matching with gap to -1. 
For proteins that feature a 20-value alphabet, the matrix is 
larger (20x20), in which each cell may contain a different 
score based on the biological problem. For such problems, 
the two head characters of the sequences are used as the 
address to the score matrix (combined by hash function in 
Figure 3 to make the matrix address). 

D. Address generation unit (AGU) 

 The address generation unit (AGU) is responsible to 
generate the sequence of memory addresses required to 
calculate the value of DP cells and manage data movement 
between memory and the datapath. Note that we use a 
separate AGU for each individual PE.  

A light-weight scheduler at each vault distributes the PIM 
packets across the PEs of each vault (Figure 2.b). AGUs 
have an agu_ready signal to indicate whether they are ready 
to receive a new task from scheduler. Since four data 
structures are involved in the process (that are the two 
sequences (A and B), dynamic programming matrix (DP), 
and direction matrix (Dir)) the packet contains six 
parameters: the start address of these four data structures and 
the length of A and B.  

After receiving a packet, AGU is programmed to 
generate a sequence of addresses according to pseudo code in 
Figure 4. The pseudo code is designed based on the 
computation flow depicted in Figure 1.a. The registers in the 
pseudo code (A, B, West, North, North West, Value, and 
Direction) appear with the same name in Figure 3. As 
mentioned earlier, AGU just provides values for A, B, and 
North registers in each iteration (the other registers are filled 
internally).  

The addresses made by each AGU are formatted as a 
memory request and are queued in the vault controller to be 
serviced in a FIFO manner (Figure 2.b). In a vault, the 
contents of the queues of each PE are sent to the vault 
controller in a round robin manner. We set the length of this 
queue to 10 and an AGU is stalled if the queue is full. 

Once the two requested data are ready, AGU asserts a 
data_ready signal to initiate data processing at datapath. 
Then, as the latency of datapath is one cycle, AGU generates 
appropriate addresses to write the output of the datapath to 
the memory.   

The matrix-based structures are stored as a linear row-
major array in the memory, but we use two-dimensional 
addressing in the pseudo code for the sake of readability. We 
also ignore the column and row inserted for gap. 

In addition, as each memory access returns a 32-bit word, 
we should read a new word from the DNA sequences every 
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16 cycles (as each DNA character can be encoded in two 
bits). If the sequences are protein, we should read a new 
word every four to six cycles (as each protein character is 
encoded in five bits). This involves slightly modifying the 
pseudo code to reduce the sequence access rate proportional 
to the target sequence type. This pseudo code can be easily 
implemented by a state machine.  

Once the maximum alignment score is found across all 
database strings, the Dir matrix is used to specify the 
alignment path. We omit the details of this step, as it is not 
executed for all sequences. Once the sequence with the 
highest score is found across all vaults, the host processor 
can perform the alignment aging to find the alignment path. 
So, although the pseudo code of Figure 4 includes data 
accesses required by this step, it is called only one time 
during the alignment of a query sequence to a database and 
its overhead can be completely ignored. 

 

Wait Until &A, &B, &DP, &Dir, A.length, and B.length are 
received from scheduler // read from buffer 

agu_ready = 0;                      // busy state  

For i = 0 to A.length 
    Register A = A[i];             //generate address &A[i] and        

forward the received data to A 
     For j = 0 to B.length 
        Register B = B[j];         //generate address &B[j] and        

forward the received data to B 
        Register North = DP[i-1,j];     
                                              //generate address &DP[i-1,j]and 

forward the data to North 
          
        data_ready= 1;              //send ready signal to the datapath 
        Wait For one clock; 

 //wait for datapath computation to  
finish 

        DP[i,j] = Value Register;                                                             
//generate address &DP[i,j] to 
write Value register 

        Dir[i,j] = Direction Register;                                                       
//generate address &Dir[i,j] to 
write Direction register 

     End For //j 
End For  //i 

agu_ready = 1;                 // signal the scheduler to send a new 

task 

Fig. 4. AGU description 

IV. EXPERIMENTAL SETUP AND METHODOLOGY 

In this paper, we evaluate the efficiency of the proposed 
PIM-based alignment design in terms of throughput and 
power consumption.  

Simulator. We developed a cycle-accurate description 
for performance evaluation in C++ and validated it with 
HMCsim [13], which is the most accurate publically-
available model of HMC 2.0. In the simulator, the memory 
specification parameters are set based on the HMC 2.0 
specifications [9][12] and are outlined in Table 1. The timing 
of DRAM and vault controller is taken from HMCsim. 

We assume that all memory accesses come from the 
alignment algorithm and no other programs on the host 
access the memory during the algorithm execution. We 
model the host at a high abstraction level: it only copies the 
sequences from the disk to memories and sends PIM packets 

to initiate processing at PEs. We believe this level of 
abstraction is sufficient for current work, as this paper 
focuses on comparing the memory-side and processor-side 
accelerator speedups under the sequence alignment 
application. The behavior and performance gain of the 
proposed PIM accelerators are agnostic to the type of the 
host processor and this method can be used with any host 
that can meet the requirements discussed in Section 3.b.  

The major contributor to the speedup of memory-side 
accelerators is the ratio of the available internal to external 
bandwidth of the memory module. The internal bandwidth, 
which is defined as the memory bandwidth available to the 
PEs at the logic layer, depends on the number of vaults, 
number of TSVs per vault, and the TSV speed (working 
frequency). The considered internal bandwidths in recent 
state-of-the-art PIM designs vary from 160 GB/s to 512 GB/s 
[14][15]. In this work, we adopt the HMC.20 configuration 
that provides 10 GB/s bandwidth per vault (320 GB/s 
bandwidth per memory module).  

The external bandwidth, which is defined as the 
bandwidth that memory provides to the host processor, is 
also determined by the number of links, number of lanes per 
link, and the lane speed. This important parameter also 
comes with different values in recent state-of-the-art PIM 
designs, with the value varying from 40 GB/s to 320 GB/s 
[12][15]. We set this parameter to 240 GB/s, which is the 
maximum available external bandwidth of HMC2.0 (with 
four 16-bit 60GB/s links).  

We further evaluate the impact of different internal and 
external bandwidth numbers in the next section. The access 
size through external links is 32 bytes and we have 
implemented several basic HMC transactions in our 
simulator according to the protocol and packet format 
presented in the HMC specifications [9]. The implemented 
packets include read request, read reply, write request, PIM 
alignment initiation packet (to program an AGU), and flow 
control packet (from memory to processor to inform PIM 
buffer occupancy status).  

The results of the simulations show 27% protocol 
overhead on the external bandwidth (mainly due to the need 
for 8-byte header and tail flits) that corroborate prior 
overhead reports (including Micron reports [16]). Even with 
this overhead, HMC provides significantly higher bandwidth 
than the fastest conventional DDR memory [9]. 

TABLE I. SIMULATION PARAMETERS [12][13] 

External bandwidth (up to 4 links) Up to 240 GB/s 

Internal bandwidth (peak per vault) 10 GB/s 

DRAM layers 4 

Layer size 1 GB 

Number of vaults 32 

Word Size 32  bits 

Row buffer size 256B 

 

Workloads. In this paper, we focus on the global DNA 
alignment problem, in which a query sequence is compared 
to a large set of reference sequences. Since DNA sequences 
can be much longer than protein sequences, our experiments 
target DNA sequences. We use strings with different sizes as 
benchmark. We can select realistic benchmarks from 
standard repositories, but the algorithm and architecture are 
agnostic to the sequence contents: it is just the string length 
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that affects the performance. Thus, we consider DNA 
sequences with different lengths, in which every character 
can take four different values, and randomly fill the 
sequences. 

Each DP matrix cell is 32-bit, as it should keep the 
cumulative alignment score, which can become quite large as 
the algorithm approaches to the last cells (upper left corner of 
the matrix) for long sequences. We store four characters of a 
DNA sequence in one byte. Since each HMC access returns 
32 bits, each access provides either 16 characters of a 
sequence or one cell of a DP matrix.  

PE implementation. The clock frequency, power 
consumption, and area of the PEs (datapath and AGU) are 
calculated by synthesizing the VHDL model of the design in 
32nm TSMC using Synopsis synthesis and power evaluation 
tools. According to the synthesis results in 32nm, the critical 
path of the datapath depicted in Figure 3, is approximately 
320ps, resulting in 3.1GHz operating frequency. Working at 
this frequency, however, may result in thermal issues, 
particularly when considering the small area footprint of the 
datapath. According to the synthesis results, the area of a PE 
is 0.0018mm2: this small area increases power density of 
PEs, and hence makes them prone to thermal problems. Note 
that thermal issues are more sever in 3D architectures, 
because the logic and DRAM layers share the same path to 
the heat sink. 

We use the Hotspot 6.0 temperature estimation tool with 
its 3D stacking feature [17] to evaluate the thermal behavior 
of the proposed design. The technology-dependent 
parameters of the thermal simulation are obtained from [18].  

To estimate the temperature of the memory-side PEs in 
our design, we calculate the temperature of a PE surrounded 
by eight neighboring PEs (direct and orthogonal neighbors in 
a grid-like floorplan) in the logic layer of a 3D memory 
system. The logic layer is sandwiched between the heat sink 
and four DRAM layers. This way, the impact of neighboring 
PEs, the power consumption of the target PE itself, and the 
DRAM slices in the upper layers has been taken into 
account, but the impact of elements with less significant 
contribution, i.e. farther PEs, TSVs, and vault controller is 
ignored. All PEs (the target and neighboring PEs) work the 
same frequency. The power consumption of the PE and 
DRAM slices are calculated by the HDL model and 
DRAMsim 2.0 [19], respectively, based on the activity factor 
back-annotated from the C++ simulator.  

The HMC 2.0 specification states that the operating 
temperature of the logic and DRAM dies has to be less than 
383˚K and 378˚K, respectively. Thermal simulation shows 
that the peak steady-state temperature of PEs violates the 
temperature threshold when working at 3.4GHz, but will go 
lower than the threshold across all PEs when the frequency is 
reduced to 0.673 GHz. So, we set the clock frequency of the 
memory-side PEs to 0.67 GHz in our experiments.  

Number of PEs. Each iteration of the datapath 
execution, as discussed in Section 3.5, requires four data 
accesses (two data reads and two data writes). One read 
operation fills the 32-bit North register by some DP cell. The 
other read operation targets the 2-bit reference sequence 
characters, where one access can provide data for 16 cycles. 
Write operations also transmit the 2-bit Dir matrix cells 
(done every 16 cycles) and the calculated 32-bit DP cell 
value to memory. So, ignoring the infrequent access to the 

query sequence characters (which are read one time for each 
row), each iteration of the algorithm involves approximately 
2.125 memory accesses (8.5 bytes), on average. 
Consequently, approximately two memory-side PEs can 
work concurrently at each vault to fully exploit the 10 GB/s 
internal vault bandwidth (calculated as:  (10 GB/s)/(0.67 
GHz × 8.5 B/clock  )). This gives a total of 64 PEs per HMC 
(with 32 vaults). Note that area constraints do not limit the 
PE count, as more than half of the 68mm2 area of an HMC 
module is free to implement accelerators [12][9]: it is by far 
larger than the total area footprint of our accelerators (that is 
64×0.0018mm2).  

Processor-side accelerator configuration. We compare 
the results with the case where the PEs are implemented at 
the processor side and receive data from an off-chip memory 
(with the bandwidth listed as “external bandwidth” in Table 
1). We refer to this configuration as processor-side. Note that 
this configuration also adopts the 3D HMC-like memory 
(and not a conventional 2D DDR), but the PEs are 
implemented at the processor side.  

The same numbers of PEs as the memory-side 
configuration are considered for the conventional design 
(processor-side PEs). In the simulations, the processor-side 
PEs work at 2.2 GHz, as our temperature estimation shows 
that the aforementioned 383˚K thermal constraint cannot be 
met beyond this frequency. 

V. EXPERIMENTAL RESULTS 

A. Throughput evaluation 

Figure 5 compares the throughput of the conventional 
processor-side and the proposed memory-side 
configurations. The results are normalized to the memory-
side configuration to give a better insight into the obtained 
improvements. 

The system aligns a 100k-character query sequence 
against a database containing 320k reference sequences. We 
repeat the evaluation with multiple reference sequence 
lengths and processor-side cache sizes to evaluate the impact 
of them on speedup. Each vault accommodates 10k reference 
sequences. The query sequence is replicated in all vaults.  

As Figure 5 illustrates, the proposed PIM-based method 
outperforms the conventional processor-side accelerator 
design by 2.2x, on average.  
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Fig. 5. Throughput comparison for different reference sequence lengths and 

cache sizes 
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The main reason is the higher bandwidth available for in-
memory PEs, but processor-side PEs (although working at 
higher frequency) are bound by the more limited off-chip 
bandwidth. As a result of this underutilization, processor-side 
PEs offer lower throughput than their memory-side 
counterparts. 

As the figure shows, the throughput improvement is 
almost agnostic to sequence length and is approximately 
proportional to the ratio of the internal to the external 
bandwidth. 

To evaluate the impact of cache, we repeat the previous 
experiment with two private data cache sizes (32KB and 
128KB) for each PE of the processor-side configuration (for 
a total of 2MB and 8MB caches for the entire system, 
respectively). The cache features single cycle access latency 
and is configured as four-way set-associative. 

Bioinformatics algorithms exhibit poor temporal locality, 
because once a reference sequence is fetched, it will never be 
used again for the current query. DP matrix cells also suffer 
from a large reuse distance that is proportional to the 
sequence length. 

As Figure 5 shows, the cache can improve the 
performance for short sequences, because they exhibit better 
caching behavior for the DP matrix.  The figure shows that 
long DNA sequences cannot benefit much from reasonably-
sized data caches. This poor caching behavior do not justify 
the area and power overheads of further using more 
sophisticated multi-level cache structures. 

B. Power evaluation 

Figure 6 shows the power consumption of a PE in the 
two configurations. The power consumption of the PEs are 
extracted from the hardware implementation of the designs 
(as described earlier in this section) and the memory access 
power consumption for memory-side and processor-side PEs 
are set to 3.7 pJ/bit and 10 pJ/bit, respectively, based on the 
energy results reported in [12].  

The figure shows that the proposed PIM-based 
implementation can also outperform the processor-side 
design in terms of power consumption. The main source of 
power reduction in the proposed architecture is the 
elimination of on-board data transfer that has a considerable 
contribution to the total power consumption of computers 
[20]. 
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Fig. 6. The power usage comparison of PEs 

C. Sensitivity to internal and external bandwidths  

To study the effect of the ration of the internal to external 
bandwidths on the benefits of our design, Figure 7 shows the 
speedup of the memory-side accelerators when the internal 
bandwidth is 1x, 2x, 3x, and 4x higher than the external 
bandwidth. In the simulations, we fix the internal bandwidth 

to 320 GB/s and scale down the external bandwidth 
proportionally. The processor-side accelerators have 128K 
data cache per PE. As we expect, the speedup increases 
proportional to the bandwidth ratio and as Figure 7 
demonstrates, reaches to 3.8x when the internal bandwidth is 
4 times higher.  

Again, the cache can partially bridge the gap between the 
memory-side and processor-side designs for shorter 
sequences, but fall short in reducing the stress on the off-chip 
bandwidth for long sequences. 
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Fig. 7. Throughput comparison for different internal to external bandwidth 

ratios with 128 KB processor-side cache 

VI. CONCLUSION 

In this paper, we proposed a processing-in-memory 
approach to accelerate bioinformatics algorithms. As 
biological sequence alignment is the base of the majority of 
bioinformatics algorithms, we target accelerating this 
operation and focused on the well-known Needleman–
Wunsch dynamic programming approach. The main 
motivation behind this proposal is the low operation density 
(operation per byte) of sequence alignment algorithms that 
make them bandwidth-limited. The proposed architecture 
consists of a set of processing elements implemented at the 
logic layer of a 3D DRAM chip. Each processing element is 
composed of an address generation unit and a datapath 
customized for the sequence alignment problem. 
Experimental results show that moving the processing 
elements to the memory side leads to more than 2.4x 
improvement in throughput and 41% reduction in power 
consumption for the global alignment problem.    
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