
Schedule Reparability: Enhancing Time-Triggered
Network Recovery upon Link Failures

Francisco Pozo, Guillermo Rodriguez-Navas and Hans Hansson
School of Innovation, Design and Engineering

Mälardalen University
Västerås, Sweden

Email: {francisco.pozo, guillermo.rodriguez-navas, hans.hansson}@mdh.se

Abstract—The time-triggered communication paradigm has
been shown to satisfy temporal isolation while providing end
to end delay guarantees through the synthesis of an offline
schedule. However, this paradigm has severe flexibility limitations
as any unpredicted change not anticipated by the schedule, such
as a component failure, might result in a loss of frames. A
typical solution is to use redundancy or replace and update
the schedule offline anew. With the ever increase in size of
networks and the need to reduce costs, supplementary solutions
that enhance the reliability of such networks are also desired. In
this paper, we introduce a repair algorithm capable of reacting
to unpredicted link failures. The algorithm quickly modifies the
schedule such that all frames are transmitted again within their
timing guarantees. We found that the success of our algorithm
increases significantly with the existence of empty slots spread
over the schedule, an opposite approach compared to packing
frames, commonly used in the literature. We propose a new
ILP formulation that includes a maximization of frame and
link intermissions to stretch empty slots over the schedule. Our
results show that we can repair with 90% success rate within
milliseconds to a valid schedule compared to a few minutes
needed to re-schedule the whole network.

I. INTRODUCTION

Time-triggered communication [1] has been successfully
adopted in many application domains such as automotive [2]
or aerospace [3] where proof of the deterministic behavior
is required. The implementation of a static pre-computed
schedule where the transmissions of all time-triggered frames
are determined and assured by a global synchronization clock
protocol [4] is a crucial feature to provide satisfactory proof.
Many different protocols have been implemented using the
time-triggered paradigm such as TTEthernet [5] and TSN [6].

A well-known drawback of the time-triggered paradigm is
the lack of a mechanism to react to unpredicted changes and
failures [7], the solution to which is either to re-compute
and update the whole network schedule or to implement
redundancy. With the increase in size and complexity of time-
triggered networks, the time needed to compute their schedules
is growing, thus posing serious difficulties to adaptation to
changes or failures. For instance, synthesizing the schedule
of industrial-size networks usually takes close to one hour
[8], and for larger networks it can ascend to several hours
[9]. With respect to tolerating communication link failures,
solutions based on redundancy incur in extra overhead and
introduce additional complexity in the schedule which may not

be suitable for large and loaded networks. The current trend
towards deploying larger networks, such as the Real-Time
Internet-of-Things [10], or cheaper implementations in mass-
production products, like autonomous vehicles [7], demands
developing novel methods to further enhance the reliability
and flexibility of the time-triggered networks.

In this paper, we focus on the specific problem of recovering
the predictability of the network when one or more of the
communication links are permanently faulty and making it
impossible for the frames scheduled over those links to reach
their destinations. The proposed solution is called a repair
algorithm and is a method that localizes which portion of the
schedule is affected by the link failure(s) to change (we say it
repairs) only those parts, instead of re-calculating the whole
schedule. The aim of this method is to reduce the number
of changes to the minimum such that a new and operational
schedule can be in place as soon as possible, reducing the
downtime of the network significantly. The rationale of the
repair algorithm is simple: whenever two adjacent nodes are
disconnected due to a link failure, the first step of the repair
algorithm is to find a new path that connects them and then
re-allocate on this path only the affected frames, i.e. the ones
transmitted over the faulty link, without modifying the rest of
the schedule. In case a valid schedule cannot be found like
this, the repair algorithm tries a second strategy and changes
the transmission times of all frames allocated over the links
of the new connecting path.

The evaluation of the repair algorithm shows promising
results. The algorithm is able to recover from consecutive
link failures in the order of milliseconds, while a whole re-
scheduling can take a few minutes. Additionally, we found
out that the effectiveness of the algorithm depends on certain
properties of the schedule, like the separation between frames
and the existence of empty slots spread regularly over time.
In particular, it was observed that generating schedules with
the frames packed together, a commonly-applied technique
known as minimizing the makespan of the schedule, is in fact
detrimental for our repair algorithm. Based on this, we define
a new set of scheduling constraints, based on ILP, that ensure
that the generated schedules are easier to repair using our
repair algorithm. Such constraints are based on the insertion
of frame and link intermissions (idle times). Our evaluation
shows that the schedules obtained considerably increase the

chances of the repair algorithm to be successful even when
consecutive link failures occur.

The contributions of this paper are: (i) an efficient and low-
cost repair algorithm to recover from link failures; (ii) the
introduction of the notion of schedule reparability as a measure
of how easily a certain schedule can be transformed into
another valid schedule, upon link failure; (iii) an optimization
constraint model for obtaining highly reparable schedules
using ILP solvers, and its performance evaluation; (iv) an
evaluation of the repair success rate when using a highly
reparable schedule compared to using a common makespan-
minimization schedule.

In Section II we introduce related work in schedule syn-
thesis, optimization, and the inclusion of failures in the
scheduling decision procedure. Section III presents the basics
of time-triggered networks and Section IV proceeds with the
scheduling problem ILP formulation. We propose the concept
of schedule reparability in Section V together with the repair
algorithm. In Section VI, we extend the ILP constraints to ob-
tain high reparability schedules. We evaluate the performance
of our scheduling approach and the repair algorithm in Section
VII. We present our conclusions and future work in Section
VIII.

II. RELATED WORK

Synthesizing schedules using a combination of SMT solvers
and ILP solvers in different protocols such as PROFINET,
FlexRay, etc. has been applied to obtain cyclic schedules
[11][12][13]. However, as the size and complexity of networks
increased with the introduction of Switched-Ethernet real-time
protocols, there was a need to combine solvers with incremen-
tal approaches [8][14] and a combination of heuristics and
solvers for larger networks [9][15] to address the deficient
scalability.

The implementation of optimization strategies to obtain
demanded attributes from the schedules has proven successful
applying both meta-heuristics and ILP Solvers. Serna et al.
[14] employed ILP solvers to reduce the number of gates
needed in Time-Sensitive Network switches. A tabu-search
meta-heuristic was adopted to minimize costs in mixed-
critically networks including the mapping of tasks into pro-
cessors to the network scheduling problem by Tamas et
al. [16]. There exist extensive literature in minimization of
the schedule make-span [17][18][19], especially in mixed-
critically networks. In the absence of any schedule attribute
to prioritize, many authors choose to minimize the make-span
to pack all time-triggered frames at the start of the schedule
trying to avoid interference with frames from other criticality
levels. Our work shows that this strategy is detrimental for
reparability and we will present an alternative optimization
model.

Different approaches have been proposed to tolerate tran-
sient and permanent link failures. Pop et al. include the
re-execution of frames to cope with arbitrary transient link
failures [20]. But this approach overloads the schedule with the
transmission of duplicated frames, which could even prevent

scheduling in highly congested networks. The same authors
eliminated frame re-execution with the formulation of qua-
sistatic schedules [21], where a set of schedules for different
link failures scenarios is designed, successfully reduced the
schedule overload. The limitation to a pre-defined link failure
scenario reduces the applicability of this techniques, as it does
not provide tolerance to any link failure, or combination of link
failures, outside the selected scenario. Scheduling along with
network redundancy was also proposed by Wisniewski et al.
[22]. Our approach is complementary to these solutions using
redundancy in networks, particularly for those in which the
cost of a totally redundant solution can be prohibitive.

Other research efforts investigated how to react to un-
predictable changes during run-time. Zhang et al. proposed
a cloud-based approach with a server containing alternative
possible schedules that can be launched after network changes
[23]. In the case that no schedule meeting the requirements is
available, a new one would be synthesized. Even though this
approach reacts to any change, note that the whole schedule
may need to be computed, which requires several seconds even
for small networks. Our approach aspires to repair industrial-
size networks with a response time milliseconds range. Avni et
al. implement a combined offline and online technique to toler-
ate link failures generating a k-resistant schedule together with
a simple recovery protocol [24][22], although it introduced the
possibility of some frames to be dropped after recovery, which
our approach avoids. Avni et al.’s work also presents scalability
issues because they rely on very computationally demanding
algorithms [25].

The introduction of slack in the schedule was studied in
time-triggered distributed systems to recover from intermittent
faults by Kandasamy et al. [26], where run-time recovery
policies could be employed as a consequence of the schedule
slack. Our approach differs in the possibility to also modify
part of the schedule while maintaining a low repair time.

III. PRELIMINARIES

A. Time-Triggered Networks

We define a multi-hop network as a directed graph G =
(V,L), where the vertices V represent a switch or an end
system and the edges L represent the links that connect
vertices including an associated capacity Cl measured in Bytes
per second. In time-triggered networks, information can be
exchanged between end systems through a frame f ∈ F ,
where F is the set of all frames in the network. A frame
can only be initiated by an end system sender but can be
dispatched to one or more end systems receivers. A direct
connection is not allowed between two end systems. An end
system can only be connected to switches, which can be
connected to both end systems and other switches.

Frames are transferred from a sender to a receiver through
a path called data flow path p that is a sequence of links
(vx, vy) ∈ L representing a connection from sender vs to
receiver vr such as:

p = [(vs, vx), ..., (vy, vr)] (1)

V 1

V 2

V 3

V 4

V 5

V 6

V 7
L1

L2

L3

L4

L5 L6

L7

L8

L9

L10

L11

L12

L13

L14

Fig. 1. Network Example

TABLE I
TRAFFIC MODEL FOR FIGURE 1

Frame ID Sender Receivers Tree Path Period Deadline
1 V1 V6 L1-L7-L11 8 8
2 V1 V6 L1-L7-L11 8 8
3 V2 V6 L3-L9-L11 8 8
4 V2 V6-V7 L3-L9-L11-L13 8 8

There may exist multiple possible paths to connect vs and vr.
In this paper, the frame is given the shortest path to connect
both end systems, but any other path can also be given. We
represent the associations of a frame that has multiple receivers
as the union of all data flow paths denoted as a tree path TP.

To illustrate tree paths, consider the network in Figure 1 that
contains four end systems (V 1, V 2, V 6, V 7), three switches
(V 3, V 4, V 5) and a total of fourteen directional links. In the
traffic presented in Table I we can perceive four different
frames with tree paths assigned by the shortest path to con-
nect the sender with the receivers. In the case of f 4, as it
contains multiple receivers, the tree path TP4 is assigned as
the union of a path from V 1 to V 6 and a path V 1 to V 7:
[L3, L9, L11] ∪ [L3, L9, L11] that can also be annotated as
TP4 = [(v2, v4), (v4, v5), (v5, v6)]∪ [(v2, v4), (v4, v5), (v5, v7)] =
[(v2, v4), (v4, v5), (v5, v6), (v5, v7)].

We can define a frame as a tuple:

f = 〈T f,Df,Lf,TPf〉 (2)

where T f is the period, Df is the deadline, Lf is the size in
Bytes and TPf is the tree path.

B. Scheduling Problem

A time-triggered network requires a cyclic schedule that
specifies the transmission times of all frames over each of
the links within the hyper-period, such that all reach their
destination on time. The schedule hyper-period TF is obtained
as the minimum common multiple of all the frame periods:
TF = LCM(T f) for all f ∈ F .

Every node keeps the schedule of their outcoming and
incoming links to identify when frames should be received
and when to send them to other nodes. Frames that have a
period smaller than the hyper-period require being transmitted
several times within the schedule. Each such transmission is
called a frame instance. The number of instances within an
hyper-period can be calculated as N f = TF

T f
.

A common practice to reduce the scheduling complexity
is to discretize the problem to the integer domain with the

inclusion of schedule granularity of a time slot [27]. In the
rest of this paper, we will consider the time slot as one
nanosecond to attempt to capture as much details as possible
while avoiding having to deal with continuous time.

We can then define the scheduling problem as finding an
assignment for the transmissions times of all frames such as
satisfies all the network and traffic constraints as they are
presented in Section IV:

Φf : [1,N f]× L→ N+ ∪ {∗} (3)

where the transmission time called Offset Φf(i, l) = t des-
ignates that the i-th frame instance of frame f will start its
transmission over link l at time t ∈ N. If Φf(i, l) = ∗, the
i-th frame instance is not transmitted over link l. For brevity,
to indicate that a frame is transmitted over link l at time t,
we will say that the frame is given an offset t over link l.
This assignment is what will be called the schedule. Note that
the solution is not unique, since there may be many different
schedules satisfying the constraints.

C. Fault Model

Our fault model only includes faults that have permanent or
long impact on the system schedulability, as these are the faults
that can be tolerated with network rescheduling. Specifically,
we consider only permanent link failures and transient link
failures that are long enough to cause the loss of a large
number of frames. Note that thanks to the global time notion
provided by the synchronization protocol and the schedule
stored in the network nodes, switches and end systems can
detect if any frame they should have been received is missing
or if it is not correctly synchronized. Whenever multiple
frames that are expected to be received in a link are missed,
the node recognizes such link as suffering a permanent failure,
or a long enough transient failure, that requires triggering the
repair algorithm.

IV. SCHEDULING CONSTRAINTS

In this section, we formally define the ILP formulation
constraints for Φ:

a) Frame Range Constraints: Every first frame instance
can only be transmitted in a range defined by the interval
(0,Df] that assures that the frame satisfies its deadline require-
ment:

∀f ∈ F,∀(vx, vy) ∈ TPf :

0 < Φf(1, (vx, vy)) ≤ Df (4)

Remember that since frames are strictly periodic, it is not
necessary to define a range for subsequent frame instances.
Instead, we only need to ensure that such frame instances are
strictly separated by the adequate distance, which is defined
as a multiple of the frame period, starting from the first frame
instance:

∀f ∈ F,∀(vx, vy) ∈ TPf,∀i = 2, ...,N f :

Φf(i, (vx, vy)) = Φf(1, (vx, vy)) + (T f × (i− 1)) (5)

b) Avoid Collision Constraints: Two frames cannot be
transmitted over the same link simultaneously. We model this
constraint considering every possible pair of frames sharing
the same link on their tree paths. However, we also need to
model which of the pair of frames will be transmitted before
and which will be transmitted after. The ILP formulation does
not allow us to naturally describe such interaction. We are
bound to create two new binary variables a, b where only a
or b can be active, hence a+b = 1 as to allow only one frame
at a time to be transmitted on the same link:

∀f i, f j ∈ F, i 6= j,∀(vx, vy) ∈ TPfi ,TPfj ,

∀d = 1, ...,N fi ,∀e = 1, ...,N fj :

a = 1→ Φfi(d, (vx, vy)) +
N fi

C(vx, vy)
≤ Φfj(e, (vx, vy)),

b = 1→ Φfj(e, (vx, vy)) +
N fj

C(vx, vy)
≤ Φfi(d, (vx, vy)) (6)

where if a = 1 indicates that the offset of f i over link (vx, vy)
happens before the offset of f j in the same link. On the other
hand, if b = 1 then the offset of frame f j happens before.
The frames offsets that need to be carried over the link are
calculated as N f

C(vx, vy)
.

To further reduce the formulation complexity, we will only
append the avoid collision constraint if both frame instances
can collide according to their available range, given by (Tf ×
(i− 1), Tf × (i− 1) + Df], i ∈ N f. If they cannot collide, we
do not need to model such impossible collisions, reducing the
number of constraints significantly.

c) Path Dependent Constraints: For a frame to success-
fully reach each of its receivers, it needs to follow the data
flow paths in an orderly manner. Therefore, a switch cannot
relay a frame if it has not received and processed it before. We
also utilize this constraint to specify the time that the switch
needs for processing the frame, which is measured from the
time the frame has been received until the time it is ready to
be transmitted.

∀f ∈ F,∀p ∈ TPf,∀(vx, vy), (vy, vz) ∈ p :

Φf(1, [vy, vz])− Φf(1, [vx, vy]) ≥ hopdelay (7)

where hopdelay specifies the switch processing time. Notice
that it is only needed to add the constraint for the first frame
instance because succeeding frame instances will inherit it as
a result of the strict periodicity.

d) End-to-End Delay Constraints: Time-triggered frames
often require to be received after a short delay measured from
the instant in which the sender started the transmission. We
design such function restricting the time difference between
the start and the end of each receiver:

∀f ∈ F,∀p ∈ TPf, (vs, vx), (vy, vr) ∈ p :

Φf(1, (vy, vr)− Φf(1, (vs, vx) ≤ endtoend (8)

where endtoend identifies the maximum end-to-end delay
allowed between the transmission on the first link (vs, vx) and
the transmission on the last link in the paths of any receivers

(vy, vr). By the same principle as the path constraints, we only
need to enforce it for the first frame instance.

V. REPARABILITY

The principal limitation of the time-triggered paradigm is
the inability to adapt to unpredicted changes, which causes
the uploaded schedule not to guarantee the transmission of all
frames within their timing requirements. If the network does
not contain a backup schedule predicting that specific change,
the schedule needs to be synthesized again from scratch, which
is computationally and timely expensive. In this section, we
present a method that generates a valid schedule with just a
limited number of changes, avoiding full re-scheduling.

A. Reparability Concept

Our repair algorithm is based on the notion that a schedule
S can be transformed into another schedule S′ by means
of modifications. Before describing the algorithm, we need
to differentiate between schedulability and reparability in the
presence of faulty links.

Given a network N , a set of frames F and a set of faulty
links LF ⊂ L, we say that N is Schedulable upon LF failures
if there exist a schedule that satisfies all constraints without
using any link of LF . This property gives us some intuition
about how the repair will happen, because it indicates which
faulty links a schedule can tolerate. If, let us say, S uses a
certain link l that S′ does not use, then, upon failure of l, S′

would be a valid repair of S.
To express such a relation between schedules, we define

the following notion. Given a network N , configured with
schedule S, a set of faulty links LF ⊂ L and a repair algorithm
A, we say that network N is reparable by A upon LF failures,
if either S does not use any link of LF or A can transform S
into a new schedule S′ that does not transmit over LF . Note
that a network that is not schedulable, cannot be repaired;
but the reciprocal does not hold. However, in the trivial case
in which A implies a full re-scheduling of the network, then
schedulability and reparability are equivalent (i.e. if a system
is schedulable upon LF failures, then it is reparable).

For all other cases, and to evaluate the quality of a repair
algorithm, we should measure the ability of the algorithm to
find a valid schedule when a valid schedule exists, and relate it
to the number of faulty links. To calculate that, we define the
notion of Schedule Reparability SRn(A,N, S) = [0, 1] ∈ R,
with n ∈ N being the number of faulty links. For instance, a
value SRn(A,N, S) = 0.5 implies that in any scenario having
exactly n faulty links and in which N is schedulable, algorithm
A is able to repair S (on average) only one out of every
two times. In Section V-C, it will be shown that SRn does
not depend exclusively on the algorithm A, but also on the
characteristics of the initial schedule S.

SRn(A,N, S) is calculated by dividing all the occurrences
where A repairs the schedule by all the occurrences where the
network is schedulable, with |LF | = n. A reparability of 1
implies that given the initial schedule S and repair algorithm
A, it is possible to repair acany arbitrary set of n link failures,

provided that the network is schedulable upon such failures.
Note that if for all LF of size n there is no schedule, then
SRn(A,N, S) = 1 irrespective of A and S. We state this for
completeness, though it is a property that will not be evaluated.

In the following subsections, we will present the imple-
mentation of a computationally efficient repair algorithm and
will discuss how to find a so-called highly reparable initial
schedule.

B. Low-Cost Repair Algorithm

We introduce a repair algorithm A that seeks to repair S
with low complexity, which in this paper involves reducing
the number of frame offset modifications. The procedure starts
with a link failure. The general idea is to reconnect both end
nodes of the faulty link with another available path. If such
path exists, we then start the algorithm, which is composed
of two phases (from less complex to more complex) for the
schedule repair problem:

1) The first phase obtains all the frame offsets that were
transmitted in the faulty link. We create new frame
offsets for every link that connects both end nodes of
the faulty link. Then we try to allocate such new frame
offsets within their timing requirements.

2) If no solution was found in the first phase, we try again
in the second phase, but this time we allow for all the
frame offsets in the new path to be re-allocated too
within the link they are transmitted. This phase is more
computationally expensive but has a higher probability
to find a valid frame offset allocation. If both phases
fail, we conclude that the repair has failed.

The pseudo-code of the repair algorithm can be examined
in Listing 1. Given faulty link, in line 2 we try to find
if there exists an alternative path that connects both nodes.
If no such path exists, we cannot repair the schedule. If
it exists, we iterate over all frames to check which among
them include a transmission over the faulty link, and save
them in a list of affected frames. In the same loop, we
also check if any frame has a transmission already in the
links of the newly obtained path, to save them to the list of
immutable offsets for that link. Once all frames have been
inspected, the function calculate available ranges in line 13
checks when the predecessor and successor transmission times
in their frame path are allocated to set a permissible range
of the frame offsets without breaking any constraint. Once
all this information is extracted, we can start phase 1 by
executing the same scheduling algorithm presented in Section
IV; recognizing that the affected frames need to be in the
obtained ranges, and the fixed offsets cannot be modified from
the initial schedule.

If phase 1 fails, we start phase 2 also calculating the
available ranges of the fixed offsets as done before with the
affected frames. We continue by allowing the transmission
times of the fixed offsets to be re-adjusted by adding them to
the list of affected frames. Finally, we execute the scheduling
algorithm again. The purpose of phase 2 is to allow the links in
the new obtained path to be fully re-scheduled. If any of both

phases returns a schedule, we can update the current schedule
with the values obtained. However, if both phases fail, the
repair algorithm is unable to find a new schedule. In the case
that the network has more than one failure at the same time,
we perform the repair algorithm sequentially, with one failure
at a time.

Notice that the presented repair algorithm seeks simplicity
and rapid execution so as to support the proof of the repara-
bility concept. Other algorithms can be implemented in which
the search for more efficient alternative paths may increase
the chances for repair. We leave that improvement for future
work.

Listing 1. repair Algorithm Pseudo-code
1 function repair_Algorithm (link (vx, vy))
2 newpath ← find_shortest_path(vx, vy)
3 if not newpath then
4 return false
5 for f ∈ F, (vw, vz) ∈ TPf do
6 if (vx, vy) == (vw, vz) then
7 for (vt, vv) ∈ newpath do
8 affected_frames ← Φf(i, (vt, vv))
9 for (vt, vv) ∈ newpath do

10 if (vw, vz) == (vw, vz) then
11 fixed_offsets ← Φf(i, (vw, vz))
12 %% Phase 1
13 ranges ← calculate_available_ranges

(affected_frames)
14 if schedule (ranges, affected_frames,

fixed_offsets) failed then
15 %% Phase 2
16 ranges ← calculate_available_ranges

(fixed_offsets)
17 affected_frames ← fixed_offsets
18 if schedule (ranges, affected_frames) failed then
19 return false
20 update schedule

Let us illustrate how the algorithm operates with an exam-
ple. If we recollect the network in Figure 1 with the traffic in
Table I, we can execute a scheduler that tries to minimize the
make-span to obtain the schedule shown in Figure 2a. Given
a failure of link L7, the repair algorithm starts by finding that
there is an alternative path, L5-L9, that connects nodes V 3
and V 5. Furthermore, it observes that f 1 and f 2 are affected
and can be allocated in the ranges [2, 2] and [3, 3] respectively.
However, when we perform phase 1 we cannot find a schedule
as, even if we can designate their frame offsets in L5, we still
would need to transmit at the same time frames f 1 and f 3, and
frames f 2 and f 4, breaking the avoid collision constraint, as
illustrated in Figure 2b.

When performing phase 2, we are also unable to find a valid
schedule as observed in 2c. Even though frames f 3 and f 4 were
able to be reallocated due to the L5 and L9 re-scheduling,
frames f 1 and f 2 still violate the path dependent constraint
when trying to transmit both frames at the same time (as shown
in red). The fundamental issue of the initial schedule is that,
as frames are packed as much as possible due to the make-
span minimization, in the event that we need to extend a link
on the frame path to a larger one, we typically fail since slots
requited are already allocated.

C. Initial Schedule

As manifested in the previous example, the repair algorithm
is not the only factor for reparability; the characteristics of

TimeSlot
Link 1
Link 3
Link 5
Link 7
Link 9

Link 11
Link 13

1 2 3 4 5 6 7 8
1

1

1

2

2

2

3

3

3

4

4

4 4

(a) Obtained schedule with a minimization solver
TimeSlot

Link 1
Link 3
Link 5
Link 7
Link 9

Link 11
Link 13

1 2 3 4 5 6 7 8
1

1

1

2

2

2

3

3&1

1 2

3

4

4&2

4

4

(b) Obtained schedule with a minimization solver after
link 7 failure in phase 1

TimeSlot
Link 1
Link 3
Link 5
Link 7
Link 9

Link 11
Link 13

1 2 3 4 5 6 7 8
1

1

1

2

2

2

3

31

1 2

3

4

42

4

4

(c) Obtained schedule with a minimization solver after
link 7 failure in phase 2

Fig. 2. Example of impossibility to repair an initial poor reparability schedule

the initial schedule S are also relevant. The example gives us
some insight: to be reparable, a schedule requires shifting to
other schedules in which transmissions do not occur on certain
(faulty) links.

We observed that it is crucial for affected frame offsets re-
allocated to links in a new path to find an extensive range of
time slots at any schedule position. To do so, the transmission
of the frame offsets over its original paths have to be as distant
as possible to each other. This Frame Distance is a critical
feature: if the new path is much longer, it will demand fitting
all the new frame offsets in-between without adjusting any
other frame offsets in the path.

Let us clarify this notion with the same network used before.
If we maximize as much as possible the distances between
frames we produce a schedule such as the one in Figure 3a,
where we utilize the whole schedule hyper-period. Despite
the existence of more slack between frames, we still cannot
find a schedule when applying the repair algorithm in phase
1, as shown in Figure 3b. Frame f 2 still has no time left
to be transmitted on L9 due to the interference of frames
already allocated on the same link: f 3 and f 5. However, when
applying phase 2 of the repair algorithm, we can reallocate the
aforementioned frames and obtain a valid schedule as shown
in Figure 3c.

Even though we were able to repair the schedule, we would
like to avoid applying phase 2 as it is more computationally
expensive than phase 1. We saw in Figure 3b that because
all frames offsets were allocated consecutively over the same
link, we needed to reallocate them and broaden for new
frame offsets with limited transmission range. As an approach
to avoid performing phase 2 habitually, we also propose to
maximize the distances between frame offsets in the same link,
which we call Link Porosity. If the links have good porosity,
new frame offsets regularly will find some available time slots,
reducing the time to repair a schedule, particularly for larger
networks as it will be shown in the evaluation.

Figure 4a shows a schedule for the same example maximiz-
ing both frames distances and link porosity. We can appreciate
that frames in the same link are separated when possible, but
bear in mind that frame distances have higher priority than link
porosity, since non-existent links porosity can be solved by
phase 2 in most cases. In Figure 4b we can see how the repair
algorithm can solve the schedule in phase 1, only needing to
reallocate four offsets instead of six offsets when applying
phase 2.

VI. SCHEDULE OPTIMIZATION

To find a schedule that maximizes frames distances and
link porosity we need to introduce optimization to our ILP
scheduling model. However, maximizing every frame distance
and link porosity is costly as, even for small networks, there
exist a considerable amount of new variables to optimize,
which negatively impacts the scheduler scalability. We sim-
plify the problem by modelling frame distances with an
individual frame intermission for every frame. Link porosity
is also changed by an individual link intermission for every
link. Using intermissions reduces the number of variables
to optimize to the number of frames plus the number of
links, and also simplifies the implementation on the current
scheduling model. Frame intermissions can be added to the
path dependent constraint, while link intermissions can be
included to the avoid collision constraint.

a) Optimization Function: The optimization function
maximizes the cost as the summation of all the frames and
links intermissions:

maximize
|F |∑
f=1

(wf ∗ If) +

|L|∑
l=1

(wl ∗ Il) (9)

where wf is an user-defined weight influencing all the frame
intermissions and wl all the link intermissions. Different values
of such weights will impact the preference to maximize frames
or links intermissions.

b) Path Dependent Constraint: We incorporate frame
intermission as an additional value added, different for every
frame, to the switch processing time to the original path
dependent formulation:

∀f ∈ F,∀p ∈ TPf,∀(vx, vy), (vy, vz) ∈ p :

Φf(1, [vy, vz])− Φf(1, [vx, vy]) ≥ hopdelay + If (10)

where If designates the frame intermissions of the frame for
which the constraint is being added.

c) Avoid Collision Constraint: We model link intermis-
sion for every link similarly to the frame intermission adding

TimeSlot
Link 1
Link 3
Link 5
Link 7
Link 9

Link 11

1 2 3 4 5 6 7 8
1

1

1

2

2

2

3

3

3

4

4

4

4

(a) Obtained schedule maximizing frame distance
TimeSlot

Link 1
Link 3
Link 5
Link 7
Link 9

Link 11
Link 13

1 2 3 4 5 6 7 8
1

1

1

1

2

2

2

3

3&2

3

4

4&2

4

4

(b) Obtained schedule maximizing frame distance after
link 7 failure in phase 1

TimeSlot
Link 1
Link 3
Link 5
Link 7
Link 9

Link 11
Link 13

1 2 3 4 5 6 7 8
1

1

1

1

2

2

2

3

2 3

3

4

4

4

4

(c) Obtained schedule maximizing frame distance after
link 7 failure in phase 2

Fig. 3. Example of application of repair algorithm when frame distances are maximized

TimeSlot
Link 1
Link 3
Link 5
Link 7
Link 9

Link 11

1 2 3 4 5 6 7 8
1

1

1

2

2

2

3

3

3

4

4

4

4

(a) Obtained schedule maximizing both frame distance
and link porosity

TimeSlot
Link 1
Link 3
Link 5
Link 7
Link 9

Link 11

1 2 3 4 5 6 7 8
1

1

1

1

2

2

2

2

3

3

3

4

4

4

4

(b) Obtained schedule maximizing both frame distance
and link porosity after link 7 failure in phase 1

Fig. 4. Example of application of repair algorithm when frame distances and link porosity are maximized

a different variable for every link to the frame size:

∀f i, f j ∈ F, i 6= j,∀(vx, vy) ∈ TPfi ,TPfj ,

∀d = 1, ...,N fi ,∀e = 1, ...,N fj :

a = 1→ Φfi(d, (vx, vy)) +
N fi

C(vx, vy)
+ I(vx, vy) ≤ Φfj(e, (vx, vy)),

b = 1→ Φfj(e, (vx, vy)) +
N fj

C(vx, vy)
+ I(vx, vy) ≤ Φfi(d, (vx, vy))

(11)

where I(vx, vy) designates the link intermissions of the link for
which the collision is being avoided.

VII. EVALUATION

We have implemented a scheduler prototype that imple-
ments all the model and optimization constraints presented
in this paper. We selected the ILP Solver Gurobi v.7.5.2 with
its Python API, but any ILP Solver could be employed. The
experiments were run on a MacBook Pro with macOS High
Sierra, 2.9 GHz CPU Intel Core i7 and 16 GB of RAM.

A. Description

To evaluate the performance of our scheduling and repair al-
gorithm we created two synthetic networks topologies that are
schedulable despite any single faulty link. The first network,
as illustrated in Figure 5, is a small network consisting of 3
switches, 6 end systems and 28 links where the initial shortest
path is 2. The second network in Figure 6 is a larger network,
to study how longer paths may impact both scheduling and
reparability performance. It consists of 8 switches, 8 end
systems and 54 links with the initial shortest path of 5. Links
in the network are configured with two different capacities:
50MB/s when connecting an end system with a switch and
100MB/s when connecting two switches. We assume switches
need 100 ns from receiving a frame until it is ready for
transmission.

The traffic is classified into three types depending on the
number of receivers:

Fig. 5. Small Network Topology

Fig. 6. Larger Network Topology

• Single: one sender and one receiver are selected ran-
domly.

• Multi: one sender is selected randomly, and an arbitrary
number of receivers are selected randomly.

• Broadcast: one sender is selected randomly, and the
remaining end systems are set as receivers.

To analyze how a different number of frame offsets affects
our evaluation while maintaining the number of frames, we
selected two different frame distributions. Low Distribution
(LD) where we have 70%, 20% and 10% of single, multi
and broadcast frames respectively, and High Distribution (HD)
where we have 10%, 40% and 50% of single, multi and
broadcast frames respectively.

Every frame size is set to the maximum allowed by the
Ethernet protocol, while periods are (10, 20, 40) ms at same
percentages, obtaining an hyper-period of 40 ms. As the time
slot size is set to 1 ns, every link will contain 4 × 107 time
slots. The frame deadline is always equal to the period. We
decided to set the end to end delay to a 1/4 of the frame
period to limit the frame transmission expanding to the whole
frame period to give our approach disadvantages. We found
that, in our experiments, using a frame intermission weight
wf = 5 and a link intermission weight wl= 0.2 yielded a good

Fig. 7. Synthesis time to obtain a schedule for the both networks with different
traffic distributions and different number of frames

prioritization of frame intermissions while still not neglecting
link intermissions.

B. Scheduling Results

We first seek to evaluate the synthesis time needed for
ILP Solver to obtain any valid schedule for both synthetic
networks, without implementing any optimizations. For every
network, we generate the traffic randomly 10 times, and each
traffic was executed 10 times also, obtaining a total of 100
time measurements.

In Figure 7 we can observe the results for the small network
and the larger network. As the larger network has longer paths,
it also increases the number of frame offsets, which at the same
time increases the synthesis time. However, the distribution has
a much higher impact, where HD also increases the synthesis
time as the tree path contains more offsets. Note that this
substantial increase can be explained as the schedule becomes
more constrained with less available time slots and therefore
is harder to find for the ILP solver. It is also apparent that the
scalability with the HD distribution starts to be problematic
if we increase the number of frames. The scalability problem
can be solved using an incremental algorithm which we do
not show here due to space limitations [8].

To evaluate the performance adding the frame and link
intermissions together with the optimization function, we
allow the ILP Solver to be running 10 times more than the
mean synthesis time obtained for each execution. We prefer
to synthesize the schedule with higher possible reparability
because this process is performed offline, and then we can
allocate a larger amount of time to obtaining the schedule.

In Figure 8 and 9 we can see the obtained MIP Gap
from the solver over the executing time for both network
with different number of frames highly distributed. The MIP
gap is the relative difference in lower and upper objective
bound collected by the solver. A lower MIP Gap indicates
a better maximization of the intermissions and being closer

Fig. 8. Obtained MIP Gap for the small network and different number of
frames with high distribution over time

Fig. 9. Obtained MIP Gap for the larger network and different number of
frames with high distribution over time

to the optimal values. We can observe that the solver only
requires between two and four times the synthesis time for
the small network and four to six times for the larger network
to stabilize. The MIP for the small network is lower as there
are fewer links in the network and it is easier for the solver
to optimize. The reason why there is no MIP Gap at the start
in some networks can be explained as the inherit randomness
of the ILP solver may not find any valid solution in some
occasions when the allowed time is too small.

C. Reparability Results

We evaluate now the reparability obtained applying the
repair algorithm described in section V-B. We compare our ini-
tial schedule maximizing frames distances and links porosity
against conventional schedules minimizing the make-span. We
choose to evaluate both networks only with an HD traffic and
50 frames, which is the most adverse scenario for our method.

TABLE II
SCHEDULABILITY FOR THE SMALL AND LARGER NETWORKS WITH

DIFFERENT NUMBER OF LINK FAILURES

Num Link Failures Small Network Larger Network
1 1.0 1.0
2 0.968 0.986
3 0.904 0.957

Note that higher number of frames and higher distribution are
more challenging for repair.

We first show in Table II the schedulability for the small
network and larger network, respectively. We can notice that,
as indicated before, the schedulability of both networks is
1 when only one link failure occurs. However, it starts to
decrease as the number of link failures increase as all possible
paths connecting end systems start to become unusable. We
did not get results for more than three link failures as there
exist more than 100.000 possible link failure combinations.

To compare the reparability, we allow 10 times the mean
synthesis time for both maximizing the frame and link inter-
missions, and for minimizing the make-span. We also include
optimizations to the repair algorithm to get high reparability
repaired schedules too. To minimize the make-span, we only
have to exchange the optimization function to:

minimize
|F |∑
f=1

|L|∑
l=1

Φf(i, l) (12)

We can observe in Figure 10 the reparability for all combi-
nation of one, two and three link failures where our approach
is superior, obtaining perfect reparability for one failure and
approximately 90% for more failures. An unexpected result is
that minimizing the make-span still yields a surprisingly high
reparability. It can be explained for the small network because
it is the scenario in which minimizing has more chances to
succeed, for two main reasons. The first cause is that many
links do not transport any frames due to the selection of the
shortest paths, and therefore their failures do not affect the
schedule. The second cause is related to the path length. Even
when minimizing the make-span, the phase 2 of the repair
algorithm still succeeds because the frame offset of the path’
last link available range is not constrained by the subsequent
link in the path. There is a high probability for many frames
not to be too constrained as all frames in the initial schedule
have a path length of only two. However, for more than
one failure, the reparability starts to decrease rapidly because
path lengths also increase. This is also much slower than our
approach, as many repairs are done by phase 2, with an average
repair time close to one second, compared to tens of ms.

In Figure 11, with the presence of longer paths, our ap-
proach performs better with a reparability above 95%, while
minimizing the make-span deteriorates notably for more than
one link failure. For the considered experiments, our approach
seems to have a more positive impact on larger networks,
which is encouraging.

Fig. 10. Comparison of the reparability for the small HD network with 50
frames using a high reparability schedule against minimizing make-span

Fig. 11. Comparison of the reparability for the larger HD network with 50
frames using a high reparability schedule against minimizing make-span

VIII. CONCLUSIONS

Time-triggered networks offer high predictability with low
jitter assurance provided by the pre-computation of an offline
schedule that all nodes in the network follow. However, it
comes at the cost of low flexibility as any unpredicted change
demands re-scheduling, which is computationally expensive.
We proposed the concept of schedule reparability as a de-
sirable characteristic to recover from an unpredicted change
adjusting only a small schedule section. We demonstrate that
maximizing the distances between frames and adding link
porosity helps to recover from link failures within an average
time of tens ms, using a low-complexity repair algorithm.
We reached a probability of success superior to 90% for the
networks evaluated.

Our on-going work direction is to schedule larger networks
while maintaining high reparability. We consider that employ-

ing an incremental approach or a combination of heuristics and
ILP Solvers might produce the best results concerning scala-
bility. Despite the fact that we foresee that the optimization
on the schedules might deteriorate, particularly link porosity
is difficult to maintain, a suitable trade-off between scalability
and reparability should be further studied.

Having achieved schedule repair delays in the tens of ms
range, the possibility to create a protocol to repair link failures
during run-time without losing many frame transmissions has
been opened. We would like to develop a protocol by which
nodes, without knowledge of the network, can cooperate to
recover to a valid schedule after one or multiple link failures
have been detected.

ACKNOWLEDGMENT

The research leading to these results continues the funding
received from the People Programme (Marie Curie Actions)
of the European Union’s Seventh Framework Programme
FP7/2007-2013/ under REA grant agreement n◦607727.

REFERENCES

[1] H. Kopetz and G. Bauer, “The Time-Triggered architecture,” Proceed-
ings of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[2] L. L. Bello, “The Case for Ethernet in Automotive Communications,”
ACM SIGBED Review, vol. 8, no. 4, pp. 7–15, 2011.

[3] K. Bisson and T. Troshynski, “Switched Ethernet Testing for Avion-
ics Applications,” IEEE Aerospace and Electronic Systems Magazine,
vol. 19, no. 5, pp. 31–35, 2004.

[4] W. Steiner and B. Dutertre, “SMT-based Formal Verification of a
TTEthernet Synchronization Function,” in International Workshop on
Formal Methods for Industrial Critical Systems. Springer, 2010,
Conference Proceedings, pp. 148–163.

[5] W. Steiner, “TTEthernet Specification,” TTTech Computertechnik AG,
Nov, vol. 39, p. 40, 2008.

[6] “Intstitute of Electrical and Electronics Engineers, Inc. 802.1Qbv
- Enhancements for Scheduled Traffic.” [Online]. Available:
http://www.ieee802.org/1/pages/802.1bv.html

[7] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-Time
Motion Planning Methods for Autonomous on-road Driving: State-of-
the-art and Future Research Directions,” Transportation Research Part
C: Emerging Technologies, vol. 60, pp. 416–442, 2015.

[8] W. Steiner, “An Evaluation of SMT-based Schedule Synthesis for
Time-Triggered Multi-hop Networks,” in Real-Time Systems Symposium
(RTSS), 2010 IEEE 31st. IEEE, Conference Proceedings, pp. 375–384.

[9] F. Pozo, G. Rodriguez-Navas, W. Steiner, and H. Hansson, “Period-
Aware Segmented Synthesis of Schedules for Multi-Hop Time-Triggered
Networks,” in Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA), 2016 IEEE 22nd International Conference on. IEEE,
Conference Proceedings, pp. 170–175.

[10] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and its
role in the Internet of Things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, Conference
Proceedings, pp. 13–16.

[11] Z. Hanzálek, P. Burget, and P. Sucha, “Profinet IO IRT Message
Scheduling with Temporal Constraints,” IEEE Transactions on Industrial
Informatics, vol. 6, no. 3, pp. 369–380, 2010.

[12] H. Zeng, W. Zheng, M. Di Natale, A. Ghosal, P. Giusto, and
A. Sangiovanni-Vincentelli, “Scheduling the Flexray Bus using Op-
timization Techniques,” in Proceedings of the 46th Annual Design
Automation Conference. ACM, 2009, Conference Proceedings, pp.
874–877.

[13] J. Huang, J. O. Blech, A. Raabe, C. Buckl, and A. Knoll, “Static
Scheduling of a Time-Triggered Network-on-Chip based on SMT
Solving,” in Design, Automation and Test in Europe Conference and
Exhibition (DATE). IEEE, 2012, Conference Proceedings, pp. 509–
514.

[14] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling
Real-Time Communication in IEEE 802.1 Qbv Time Sensitive Net-
works,” in Proceedings of the 24th International Conference on Real-
Time Networks and Systems. ACM, 2016, Conference Proceedings, pp.
183–192.

[15] F. Pozo, W. Steiner, G. Rodriguez-Navas, and H. Hansson, “A Decompo-
sition Approach for SMT-based Schedule Synthesis for Time-Triggered
Networks,” in 20th IEEE Conference on Emerging Technologies and
Factory Automation (ETFA). IEEE, 2016, Conference Proceedings, pp.
1–8.

[16] D. Tamas–Selicean and P. Pop, “Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-constrained Partitioned Ar-
chitectures,” in 32nd IEEE Conference on Real-Time Systems Symposium
(RTSS). IEEE, 2011, Conference Proceedings, pp. 24–33.

[17] T. Carle and D. Potop-Butucaru, “Predicate-aware, Makespan-Preserving
Software Pipelining of Scheduling Tables,” ACM Transactions on Archi-
tecture and Code Optimization (TACO), vol. 11, no. 1, p. 12, 2014.

[18] L. Wisniewski, M. Schumacher, J. Jasperneite, and C. Diedrich, “In-
creasing Flexibility of Time Triggered Ethernet based Systems by
Optimal Greedy Scheduling Approach,” in 20th IEEE Conference on
Emerging Technologies and Factory Automation (ETFA). IEEE, 2015,
Conference Proceedings, pp. 1–6.

[19] C. Schöler, R. Krenz-Bååth, A. Murshed, and R. Obermaisser, “Optimal
SAT-based Scheduler for Time-Triggered Networks-on-a-Chip,” in 10th
IEEE International Symposium on Industrial Embedded Systems (SIES).
IEEE, 2015, Conference Proceedings, pp. 1–6.

[20] P. Pop, K. H. Poulsen, V. Izosimov, and P. Eles, “Scheduling and Volt-
age Scaling for Energy/Reliability Trade-offs in Fault-Tolerant Time-
Triggered Embedded Systems,” in Proceedings of the 5th IEEE/ACM
international conference on Hardware/software codesign and system
synthesis. ACM, 2007, Conference Proceedings, pp. 233–238.

[21] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Scheduling of Fault-
Tolerant Embedded Systems with Soft and Hard Timing Constraints,”
in Proceedings of the conference on Design, automation and test in
Europe. ACM, 2007, Conference Proceedings, pp. 915–920.

[22] L. Wisniewski, V. Wendt, J. Jasperneite, and C. Diedrich, “Scheduling
of Profinet IRT Communication in Redundant Network Topologies,” in
IEEE World Conference on Factory Communication Systems (WFCS).
IEEE, 2016, Conference Proceedings, pp. 1–4.

[23] L. Zhang, D. Roy, P. Mundhenk, and S. Chakraborty, “Schedule
Management Framework for Cloud-Based Future Automotive Software
Systems,” in Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA), 2016 IEEE 22nd International Conference on. IEEE,
Conference Proceedings, pp. 12–21.

[24] G. Avni, S. Guha, and G. Rodriguez-Navas, “Synthesizing Time-
Triggered Schedules for Switched Networks with Faulty Links,” in
International Conference on Embedded Software (EMSOFT). IEEE,
2015, Conference Proceedings, pp. 1–10.

[25] G. Avni, S. Goel, T. A. Henzinger, and G. Rodriguez-Navas, “Computing
Scores of Forwarding Schemes in Switched Networks with Probabilistic
Faults,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2017, pp. 169–187.

[26] N. Kandasamy, J. P. Hayes, and B. T. Murray, “Transparent Recovery
from Intermittent Faults in Time-Triggered Distributed Systems,” IEEE
Transactions on Computers, vol. 52, no. 2, pp. 113–125, 2003.

[27] A. K. Mok and W. Wang, “Window-Constrained Real-Time Periodic
Task Scheduling,” in 22nd Proceedings on Real-Time Systems Sympo-
sium (RTSS). IEEE, 2001, pp. 15–24.

