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Abstract—Adaptive autonomy plays a major role in the design
of multi-robots and multi-agent systems, where the need of collab-
oration for achieving a common goal is of primary importance. In
particular, adaptation becomes necessary to deal with dynamic
environments, and scarce available resources. In this paper, a
mathematical framework for modelling the agents’ willingness to
interact and collaborate, and a dynamic adaptation strategy for
controlling the agents’ behavior, which accounts for factors such
as progress toward a goal and available resources for completing
a task among others, are proposed. The performance of the
proposed strategy is evaluated through a fire rescue scenario,
where a team of simulated mobile robots need to extinguish all
the detected fires and save the individuals at risk, while having
limited resources. The simulations are implemented as a ROS-
based multi agent system, and results show that the proposed
adaptation strategy provides a more stable performance than a
static collaboration policy.

I. INTRODUCTION

Adaptive autonomy (AA) is the ability of agents to adapt

autonomously their behavior to continuously changing circum-

stances [1]. The implications of this definition are twofold:

(i) each agent decides itself on its autonomy levels, and

(ii) such decisions are taken continuously during execution.

Furthermore, to change autonomy levels means to change the

dependence relations among agents [2], e.g., an agent becomes

less autonomous if it depends on the assistance of other agents

to complete its task.

This paper deals with the development of local reasoning

mechanisms, adapting the level of cooperation among agents

based on several factors in order to improve the overall

performance. To this end, AA is modeled herein through the

willingness to interact [3], which allows agents to decide

when to give or ask for help. AA behavior is relevant in

those scenarios in which agents should be able to solve issues

locally—especially when assistance from human operators is

not available, e.g., due to unreliable communication channels.

One such application domain is Search and Rescue (SAR).

In this paper, a previously developed ROS-based agent simu-

lation [4] has been extended with a SAR scenario, and used

to evaluate the adaptive autonomous behavior of a group of

agents in a software simulation. Nevertheless, the long-term

goal is to develop AA strategies that can be used both in real

and artificial environments, and for heterogeneous agents.

II. BACKGROUND AND RELATED WORK

This section gives an overview of the SAR domain and

autonomy models, and it presents related work in multi-agent

systems (MASs) coordination and cooperation.

A. The SAR Domain

The SAR domain has served as a testbed for multi-robot and

multi-agent research in the past years. The RoboCup Rescue

competitions have been established since the 2000s [5], where

researchers would validate their findings either in simulation

(Rescue Simulation League), or with real robotic platforms

(Rescue Robot League) [6]. The Rescue Simulation League

is divided further into the virtual and agent competitions.

In regards to the virtual robot competition, attempts are

being made to provide interfaces to ROS (Robot Operating

System) and Gazebo, due to the fact that the latter allow

for better code-sharing among the community [7]. Kleiner

et al. proposed the RMasBench [8], that could serve as a

benchmark for coordination algorithms such as distributed

constraint optimization problems (DCOP), whilst hiding low

level details. Task allocation is usually expressed as the prob-

lem of assigning tasks to agents while also minimizing some

cost function [9], [10]. The problem addressed in the present

paper relates to how agents should interact with each other,

i.e., when they should ask or give help based on their state,

at any point in time. In particular, the ROS-based adaptive

autonomous agent simulation developed in [4] was extended

with the implementation of a SAR scenario.

Autonomy has been studied extensively in the literature,

albeit there is no unified theory or general framework yet.

Several autonomy changing schemes such as adaptive auton-

omy, adjustable autonomy, and mixed-initiative interaction,

have been compared in the context of the coordination of large-

scale teams of robots in a simulated Wilderness Search and

Rescue (WiSAR) [11]. Agents with adaptive autonomy attempt

at all times to keep the higher levels of autonomy. Furthermore,

they do not go to the lowest level, in which the operator

makes all the decisions. In the case of adjustable autonomy, the

operator decides on the different levels of autonomy of agents.

Whereas, mixed-initiative interaction allows both human and

agent to make decisions on autonomy levels based on the

circumstances. In these conditions, the third scheme yields the

best results in terms of individuals found. Another approach

uses a WiSAR scenario to evaluate the benefits of sliding

autonomy in producing better paths (compared to two other

methods that do not employ changes in autonomy), whilst not

increasing the workload of the human operator [12].
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In [13], a fire-fighter scenario is adopted in order to evaluate

the reasoning mechanisms that allow fire-fighter agents to

change their autonomy based on circumstances. Agent rea-

soning is based on two heuristic rules: (i) the more urgent a

task becomes, the higher its priority, e.g., if the agent’s health

is running low then the task of taking a rest becomes more

urgent as time passes, (ii) dedication to the organization, i.e.,

if the agent takes wrong information from the operator then it

will take more initiative on its own.

B. Agent Cooperation and Coordination

Cooperation and coordination in MASs has been studied

in other contexts that do not necessarily focus on the au-

tonomy aspect. Theoretical approaches are concerned with

providing taxonomies and definitions that set apart concepts

such as cooperation, coordination, and collaboration [14] [15].

Recent years have also seen a rise of interest in what are

called open MAS (parts of the system come from competing

third parties) [16] and pervasive systems (embedded sensors,

actuators, etc.) modeled as MASs [17]. Surveys in the area

have identified the following classes: stigmergy, chemical,

physical, biochemical, field-based, and swarms [17], [18].

Attention has also been paid to design patterns that target the

interaction among components in self-adaptive systems [19],

among which the stigmergy pattern (interaction through the

mediation of the environment), centralized pattern, and peer

to peer pattern. Others propose a framework in which speci-

fications related to permissions and obligations among agents

are adjusted at run-time [16]. Earlier works use a central

coordinator, e.g., Kaa [20], which approves or rejects changes

in permissions suggested by agents, and refers to an operator

in case a decision is not reached. It is assumed that when such

permissions change, so does the autonomy of agents.

III. THE ADAPTATION STRATEGY

In this Section, the agent model proposed in [3], is revised,

and the proposed adaptation strategy for AA is described.

A. The Agent Model

An agent is defined as a computer system that perceives

and acts in its environment through its sensors and actuators

respectively, and is capable of autonomous action [21]. Phys-

ical agents in addition to the previous characteristics, are able

to manipulate the physical world through their effectors (e.g.,

legs, wheels, or manipulators). Any such agent needs to pos-

sess the necessary skills, abilities, knowledge, and resources to

perform a particular task [22]. Moreover, an agent’s operation

is limited by its available resources, such as the battery level

(e.g., for a robot), the allowed power consumption, or the

available computational resources (e.g., for a software agent).

Therefore, the agent can be described in terms of its (i)

battery level, (ii) equipment (sensors, motors, manipulators,

and actuators), (iii) skill/ability set, and (iv) knowledge. The

agent’s knowledge can refer to what the agent knows about

itself, other agents, and the environment.

idlestart

execute interact out_of_order

regenerate

Figure 1: The proposed agent model composed of five states [3].

The agent model adopted in this paper is a finite-state

machine, shown in Figure 1. The agent has five states: idle,

execute, interact, out_of_order and regenerate. All agents start

their operation in the idle state. In this state, a task can be

generated. Consequently, the agent will switch to execute,

where either it executes its task, or it can decide to interact

with other agents asking for assistance. When the task is

completed, the agent returns to idle. When an agent receives

a request from another agent, it will switch to interact, where

it will decide to accept or discard it. In the former case,

the agent will put its current task, if any, back into a FIFO

queue, and start the new task. Otherwise it will return to its

previous state, either idle or execute. It is assumed that these

queues are infinite long. Moreover, any agent cannot execute

more than one task at the same time. When the energy level

of an agent is low, it will switch to out_of_order, and soon

after to regenerate, during which the recharging process takes

place. If regenerate is successful, the agent goes to idle, and

continues its normal operation. If regenerate fails, it will go

to out_of_order. In the current setting, the agent is always

assumed to regenerate successfully.

B. Willingness to Interact

Adaptive autonomous behavior is modeled through the will-

ingness to interact, composed of two components referred to

as the willingness to ask for, and give help [3]. The willingness

to ask for help represents the likelihood with which an agent

will ask another agent for help during the execution of a

task (execute state). Whereas, the willingness to give help

represents the likelihood with which an agent will provide

help upon a request from another agent (interact state). In

this paper, the goal of the agent is to decrease the disposition

of asking for help and increase the disposition of giving

help, when possible, promoting the cooperation among agents,

assuming that cooperation can improve the performance of the

MAS [23].

An agent computes the willingness to ask for help at time

t, γt ∈ [0, 1], by applying a correction to its initial value, as

γt = sat(γ0 + ut), (1)

where, sat(x) := min(max(x, 0), 1), and ut is the adaptive

correction at time t, computed as

ut =

n∑
i=1

φif
iγ
t , (2)
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where n is the number of factors, φi, i = 1, . . . , n, are weights

(constant or calculated at runtime), such that φi ∈ [0, 1],∑n
i=1

φi = 1, and f iγ
t , are the considered factors at time t.

An agent computes the willingness to give help at time t,
δt ∈ [0, 1], by applying a correction to its initial value, as

δt = sat(δ0 + vt). (3)

The correction vt integrates the effect of several factors, and

it is computed as

vt =
n∑

i=1

ζif
iδ
t (4)

where n is the number of factors, ζi, i = 1, . . . , n, are weights

(constant or calculated during runtime), such that ζi ∈ [0, 1],∑n
i=1

ζi = 1, and f iδ
t are the considered factors at time t. In

the following paragraphs, the time subscript is omitted for the

sake of simplicity.

The k-th factor fk∗ is updated at every iteration based on

the current measurements ψk of relevant quantities, e.g., the

battery level of the agent, the accuracy of the agent in carrying

out a specific task, etc, and on a minimal acceptable value

ψkmin. The update rules for the willingness to give and ask

for help are the following:

fkγ =

{
ψkmin − ψk, ψk > ψkmin

(1− α)(ψkmin − ψk) + α, ψk ≤ ψkmin

(5)

fkδ =

{
β(ψk − ψkmin) ψk > ψkmin

β(1− α)(ψk − ψkmin)− α, ψk ≤ ψkmin

(6)

where α ∈ {0, 1} and β ∈ {−1, 1} are control parameters,

and influence the calculation of different factors based on the

desired behavior. In general fk∗ ∈ [−1, 1]. When fkγ → 1, the

likelihood of asking for help is high, while when fkγ → −1
the likelihood of asking for help is low. Analogously, when

fkδ → 1, the likelihood of giving help is high, while when

fkδ → −1 the likelihood of giving help is low. Note that,

fk∗ does not necessarily dominate all the other factors. As a

result, ai might still decide to ask for or give help when the

threshold is exceeded.

The main rationale of (5) and (6) is that the factors should

be adjusted proportionally to the distance between the current

measurement ψk and the threshold value ψkmin. In particular,

when ψk ≥ ψkmin, agent ai does not need help to complete

its task, so it will decrease the likelihood of asking for help,

while, at the same time, it will increase its willingness to give

help to other agents.

In order for any factor to dominate all the factors (fk∗)

given certain conditions, the corresponding weights φi in (2),

or the corresponding weights ζi in (4), should be set to 1.

Since
∑n

i=1
φi = 1 and

∑n
i=1

ζi = 1, the weights for all

other factors are set to zero. If two or more of the factors

fk∗ is equal to one, then the weight of one of them is set to

one, whilst all others are set to zero. When no factor is equal

to one, weights for all factors are all equal and calculated as

φi = 1/n and ζi = 1/n.

C. Factor description

In order to calculate the corrections u and v, nine factors

(n = 9) have been identified in [3] as relevant in the process

of deciding when to ask and give help during runtime. All the

factors follow the update rules (5) and (6).

The battery factor f1∗ is the amount by which agent ai’s
battery level ψ1 = b ∈ [0, 1] will affect its willingness to

interact. f1∗ is computed with ψ1min = bmin + bτj , where

bmin ∈ [0, 1] is the minimum battery threshold for which ai
can operate in the execute state, bτj ∈ [0, 1] is the amount of

energy required by the task τj , α = 1, and β = 1.

The knowledge factor f2∗ is the amount by which the

agent’s confidence on its knowledge level ψ2 ∈ [0, 1] will af-

fect its willingness to interact. f2∗ is computed with ψ2min =
0, α = 1, and β = 1.

The skill/ability factor f3∗ is the amount by which the

agent’s skill efficiency level ψ3 ∈ [0, 1] in performing a task

will affect its willingness to interact. f3∗ is computed with

ψ3min = 0, and α = 1.

The equipment factor f4∗ is the amount by which the

agent’s equipment accuracy level ψ4 ∈ [0, 1] for performing

a task will affect its willingness to interact. f4∗ is computed

with ψ4min = 0, α = 1, and β = 1.

The resource factor f5∗ is the amount by which the agent’s

resource quality level ψ5 ∈ [0, 1], i.e., how much the type of

tools in the agent’s possession fit the task to be performed,

will affect its willingness to interact. f5∗ is computed with

ψ5min = 0, α = 1, and β = 1.

The performance factor f6∗ is the amount by which the

agent’s current performance level ψ6 ∈ [0, 1] will affect its

willingness to interact. Performance is a general indicator of

how well an agent’s outcome is with respect to the tasks

attempted in the past. f6∗ is computed with ψ6min ∈ [0, 1),
α = 0, and β = 1.

f7γ is the task progress factor, covers the progress towards

completion ψ′

7 ∈ [0, 1] of the current task, while f7δ is the

task trade-off factor, and it covers the trade-off ψ7′′ ∈ [0, 1]
between a task τj currently in execution, and a new task

proposed by another agent τ ′j . The two factors are computed

as (5) and (6), with ψ7min ∈ [0, 1), α = 0, and β = 1.

The environment factor f8∗ is the amount by which the

agent’s likelihood of succeeding in its environment ψ8 ∈ [0, 1]
will affect its willingness to interact. This likelihood could be

estimated based on the difficulties an agent perceives in its

environment, e.g., obstacles, harsh conditions and so on. f8∗

is computed with ψ8min ∈ [0, 1), the acceptable level for this

likelihood, α = 0, and β = 1.

The collaboration factor f9∗ is the amount by which the

agent’s estimated likelihood of a successful collaboration with

another ψ9 ∈ [0, 1] will affect its willingness to interact. f9∗

is computed with ψ9min ∈ [0, 1), the acceptable level of such

likelihood, α = 0, and β = −1, through equation (6). It can

be observed that this factor affects the willingness to give and

ask for help in the same way.

In this paper, only factors f1−5γ are considered to be

dominant, because it is assumed that in case either battery,
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abilities, equipment, knowledge, or tools are not adequate then

the agent should not attempt the task autonomously. Moreover,

it is assumed that the agent is able to estimate the different

factors.

IV. SIMULATION SETUP

The following paragraphs describe the implementation of

the SAR scenario, and the implementation of the agent model.

ROS [24] has been used as the underlying communication

middleware. The agents and environment are implemented as

ROS nodes (executables), and communicate with each other

through the ROS middleware.

A. Scenario instantiation

The environment is a 2D space with a specific width

gridw = 30 and height gridh = 30, and is generated

at the beginning of a simulation. Agents can move in this

space, from a point A to a point B, according to the shortest

Euclidean path between two points. Obstacles and collisions

are not considered because they are not crucial to the level of

interactions discussed here. In this space, a fixed number of

fires (nf = 40) is generated at random locations (x, y), with

the same intensities I ∈ {75, 100} (the value of the intensities

depends on the difficulty of the simulation). The intensities are

kept fixed in time for simplicity. After a fire is extinguished,

the trapped individuals (who lie at the same location as fires)

become visible and can thereafter be saved. The number of

these individuals at a particular location is the same for each

location, nv ∈ {15, 20} (depending on the difficulty of the

simulation). Moreover, two base stations, one for fire brigades

and one for ambulances, are initiated at two random locations

in the grid.

The environment node publishes continuously the current

state of fire intensities, fire status (active/inactive), number

of trapped individuals, and location in the grid. Fire extin-

guishing, and individual extraction is simulated by having the

appropriate agent make a ROS service call to the environment

node. As a result, the corresponding variable (fire intensity or

number of trapped individuals) will decrease by a predefined

step = 1.

B. Agent instantiation

Agents are implemented as ROS nodes. Their interactions

with each other are realized through the ROS publish/subscribe

mechanism (for broadcasting), and action server mechanism

(for one to one calls). There are three types of agents: fire

brigades, ambulances, and police. Fire brigade agents put out

fire. Ambulances extract and carry individuals to safety. Police

agents detect the fires/victims within their range, and broadcast

this message to the others. They all broadcast their identity and

abilities (e.g., fire extinguishing and transportation), as a result

they are known to one another.

Throughout the whole the simulation, agents perform con-

tinuous Levy walks in the generated 2D space, when in the

idle state. The Levy walk algorithm was implemented as it

has been considered an efficient strategy for search algorithms

independent of the target distribution [25]. During these walks,

agents publish their location to the environment node, and are

able to detect fires/individuals if they are within a specified

Euclidean distance (dv = 10%× gridw = 10%× gridh = 3).

Trapped individuals are not visible as long as the status of a

fire is active. Fire brigade agents can also be notified by police

agents about the existence of a fire, as a result their information

is not restricted to what is in their range of visibility at a

particular time. If there are visible fires, a fire brigade agent

will generate a corresponding task for extinguishing it. The

task will have as many iterations as the fire intensity. If more

than one fire location is visible, then one is chosen randomly

and pursued. Similarly, if there are visible trapped individuals,

ambulance agents will pick one randomly and generate a

corresponding task with the number of iterations being equal

to the number of individuals. When a task is generated, agents

will walk to the location of interest. They are assumed not to

need help for reaching any location in the 2D space. No initial

plan, or explicit global coordination is assumed. Nevertheless,

it might happen that several agents go for the same fire, or

individuals to extract. When an agent decides to ask for help,

it will ask the appropriate agents it knows one by one, until

either a task succeeds, or the list of agents to ask is exhausted.

Furthermore, an agent that is already waiting upon another for

a task, will discard on the spot any help requests it receives.

This is to ensure that agents do not wait on one another

pointlessly.

Each agent starts at the same level of battery, at ψ1 = 1,

corresponding to the maximum available energy of each agent.

During task execution, the agent’s energy level is decreased

with a certain level, in each iteration step. Also, when an

agent moves to the location of interest, its energy level is

reduced proportionally to the covered distance. There is a low

threshold bmin = 0.3 under which the agent will go to out of

order and thereafter recharge. Agents are assumed to have the

necessary knowledge for performing tasks, with knowledge

ψ2 = 1. The same assumptions hold for abilities (ψ3 = 1),

and equipment (ψ4 = 1). Initially, agents have the necessary

resources depending on their function, i.e., fire brigades have

water rw = 25 units of water, whereas ambulances have space

for rs = 5 individuals inside their vehicle. When the agent

has enough resources to extinguish the fire or to carry an

individual, the respective resource factor will be ψ5 = 1, and

it will be ψ5 = 0 otherwise. During the run of each task, these

resources decrease according to their usage. After that a task

is completed, each agent will move to its corresponding base

station and reset its own resources. Agents are assumed to be

able of estimating: environmental risk, potential collaborator

risk, their own performance, progress of their current task,

and task trade-off between two tasks. In these simulations,

the likelihood of success in the environment is kept constant

for simplicity. The likelihood of success with a potential

collaborator is estimated based on the the percentage of past

successful interactions. Agents calculate their performance

through ψ6 = tc/ttot, where tc is the number of completed

tasks, and ttot is the total number of attempted tasks. Task
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Figure 2: PDFs of the results for the % saved and % fires metrics, in SC1–2.
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Figure 3: PDFs of the results for the task per return and % dependent metrics, in SC1–2.

progress is calculated by itc/ittot, where itc is number of

iterations completed, and ittot is the total number of iterations.

Finally, the task trade-off for two tasks τ1 and τ2 is calculated

through R2−R1/R2+R1, where R1 and R2 are the respective

rewards. Finally, the thresholds for these factors are set to 0
for simplicity, thus ψ2−8min = 0.

V. RESULTS

The hypothesis, evaluated through simulations, is formu-

lated as follows: “Agents with adaptive autonomy perform

better than agents that do not display such behavior, in the

context of a simulated search and rescue scenario”. Perfor-

mance is assessed across several metrics (Section V-A). There

are two modes of execution for any of the simulation runs,

(i) static mode, in which the components of the willingness to

interact are set in the beginning, do not change during runtime,

and are independent of factors, and (ii) dynamic mode, in

which the components of the willingness to interact change

during runtime (every update is done against the same initial

value specified for each component) based on factors. For

both modes, the same couples 〈δ0, γ0〉 for the components

of the willingness to interact is used. In the evaluation,

the following couples are considered: 〈0.5, 0.0〉, 〈1.0, 0.0〉,
〈0.5, 0.2〉, 〈0.8, 0.2〉, 〈0.5, 0.5〉, 〈0.8, 0.5〉, 〈1.0, 0.5〉, and a

random configuration. In the first seven configurations, each

agent in the population is initialized with the same willingness

to interact. Whereas, in the random configuration, each agent

is initialized with different random values for δ0 and γ0.

Furthermore, simulations, for each configuration and both

modes, are run across two scenarios which differ in difficulty

(the random values for the willingness to interact are the same

within a scenario, but differ across scenarios). Difficulty is

defined as the ratio between the required resources on each

site (w ∈ {75, 100} and s ∈ {15, 20}) and the agent’s initial

resources (rw = 25 or rs = 5). All simulations were ran on

a system with 24 cores, 8GB RAM, with Ubuntu 14.04 LTS

operating system, and ROS Indigo1.

A. Evaluation metrics

The quality of the obtained results is evaluated according

to four metrics, as follows: (i) percentage of individuals saved

in the simulation with respect to the total number of trapped

individuals (% saved), (ii) percentage of fires extinguished

in the simulation with respect to the total number of fires

distributed in the 2D space (% fires), (iii) number of completed

tasks per return to the base (task per return), (iv) percentage of

dependent completed tasks with respect to all dependent tasks

attempted (% dependent). A task is dependent when an agent

needs assistance for its completion. The results are averaged

over the whole population of agents and over the number

of repetitions (30), for each simulation instance, i.e., for any

combination of scenario difficulty and initial configuration of

the willingness to interact.

B. Numerical results

Simulation results are displayed in Figures 2 and 3 as

probability density functions (PDFs) obtained with 30 different

runs of the considered scenarios. Each figure contains the

outcomes with respect to one of the metrics, across the

two difficulty scenarios (SC). Each sub-figure contains the

outcomes for the eight initial configurations and the two modes

of execution (the static and dynamic strategies). The red and

magenta lines refer to the static case (indicated with ‘s’ in the

legend), while the blue and black lines refer to the dynamic

strategy (indicated with ‘d’ in the legend).

Regarding the percentage of saved individuals, in both

difficulty scenarios, all dynamic agents and static agents with

γ0 ∈ {0.0, 0.2} manage to save all individuals within the

1The source code used in producing the results displayed in this paper is
publicly available at https://github.com/gitting-around/gitagent-sar.git .
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allotted time (Figures 2a-2b). Whereas, for static agents with

γ0 = 0.5 is nearly 0, and for the random configuration on

average 20%. Similar considerations apply for the percentage

of extinguished fires (Figures 2c-2d). This is to be expected,

because if by the time the simulation ends, only half of the

fires have been extinguished then only half of the individuals

could have been saved.

Dynamic agents achieve higher percentage of completed

tasks with respect to returns to the base, (Figures 3a-3b). In

SC1–2, all the static agents perform worse than the dynamic

counterparts. Nevertheless, among static agents, the ones with

γ0 = 0.0 achieve better results than others. Whereas in the

dynamic mode, the random configuration seems to produce

slightly worse results than the other configurations. The results

are consistent across the two scenarios.

Dynamic agents perform noticeably better as compared to

their static counterparts with respect to the percentage of

completed dependent tasks (Figures 3c-3d). The outcomes

are stable among different configurations and scenarios, with

the dynamic random configuration always performing slightly

worse than others (especially visible in SC2). In the static

mode, better results are obtained for configurations where

γ0 = 0.2. These results agree with previous work [4], which

shows that when agents need to depend on each other all the

time, and are highly likely to give help, the performance of

the system will degrade.

VI. CONCLUSION

The obtained results indicate that adaptive autonomous

behavior can positively impact the performance of a population

agents, in a context of a SAR scenario. Performance is

assessed with respect to four metrics: percentage of individuals

saved, percentage of fires extinguished, percentage of com-

pleted tasks with respect to the returns to base, percentage

of completed dependent tasks. Among the two difficulty

scenarios, the adaptive autonomous agents maintain a stable

behavior, seemingly independent of the initial configuration.

Whereas, static agents are quite dependent on the initial

configuration. The results displayed in the paper can have a

dependency on the platform used for the simulations. In more

powerful platforms, all agents can perform better overall, and

in less powerful ones, they are expected to have poorer per-

formance overall, i.e., less individuals saved and extinguished

fires within the allotted time for the simulation.

There are several directions for future work. Firstly, an

agent reasons on each iteration whether to ask for help. This

is particularly penalizing in the static case, where even with

low willingness to ask for help on each iteration, most tasks

end up being dependent tasks. Thus, the possibility that the

agent decides on whether to ask for help once in a couple

of iterations, needs to be investigated. Secondly, an agent can

accept to help another agent, even if it does not fulfill energy,

abilities, equipment, knowledge, or resource requirements.

Consequently, it will ask for help a third agent. It is needed to

compare this design choice, with the other option that involves

the agent declining upfront to help in such scenario. Finally,

cues regarding the grade of dependencies within the population

can be used as an additional factor, allowing the agent to

regulate its own behavior from the global perspective as well.
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