
Transforming SPEM 2.0-compatible Process
Models into Models Checkable for Compliance

Julieth Patricia Castellanos Ardila, Barbara Gallina, and Faiz UL Muram

IDT, Mälardalen University
Box 883, 721 23 Väster̊as, Sweden

{julieth.castellanos,barbara.gallina,faiz.ul.muram}@mdh.se

Abstract. Manual compliance with process-based standards is time-
consuming and prone-to-error. No ready-to-use solution is currently avail-
able for increasing efficiency and confidence. In our previous work, we
have presented our automated compliance checking vision to support
the process engineers work. This vision includes the creation of a process
model, given by using a SPEM 2.0 (Systems & Software Process Engi-
neering Metamodel)-reference implementation, to be checked by Regor-
ous, a compliance checker used in the business context. In this paper, we
move a step further for the concretization of our vision by defining the
transformation, necessary to automatically generate the models required
by Regorous. Then, we apply our transformation to a small portion of
the design phase recommended in the rail sector. Finally, we discuss our
findings, and present conclusions and future work.

Keywords: Software process, Compliance checking, Regorous, SPEM 2.0

1 Introduction

Claiming compliance with process-based standards requires that companies show,
via the provision of a justification which is expected to be scrutinized by an
auditor, the fulfillment of its requirements [1]. The manual production of this
justification is time-consuming and prone-to-error since it requires that the pro-
cess engineer checks hundreds of requirements [2]. A process-based requirement
is checkable for compliance if there is information in the process that corrobo-
rate that the requirement is fulfilled [3]. This checking can be facilitated by using
FCL (Formal Contract Logic) [4], a rule-based language that can be used to gen-
erate automatic support to reason from requirements and the description of the
process they regulate. In our previous work [5], we have presented our automatic
compliance checking vision (See Fig. 1). It consists of the combination of process
modeling capabilities via SPEM 2.0 [6]-reference implementation, specifically by
using EPF (Eclipse Process Framework) Composer [7], and compliance checking
capabilities via Regorous [8], an FCL-based reasoning methodology, and tool.

In our vision, EPF Composer contributes with the appropriate (minimal
set of) SPEM 2.0-compatible elements required by Regorous, which, in turn,
produces a report that can be used to analyze and improve compliance.

2 Lecture Notes in Computer Science: Authors’ Instructions

In this paper, we define the transformation necessary (dotted line region
shown in Fig. 1) to automatically generate the models required by Regorous, i.e.,
the FCL rule set, the structural representation of the process and the compliance
effects annotations (cumulative interactions between process tasks that produce
the desired global properties mandated by the standards [9]). Then, we apply
our transformation to a small portion of the design phase recommended in the
rail sector and discuss our findings.

Fig. 1: Automated Compliance Checking Vision [5].

The rest of the paper is organized as follows. In Section 2, we recall essential
background information. In Section 3, we present the transformations specifi-
cation for generating Regorous inputs. In Section 4, we illustrate the transfor-
mation with a small example from the rail sector. In Section 5, we discuss our
findings. In Section 6, we discuss related work. Finally, in Section 7, we derive
conclusions and future work.

2 Background

In this section, we provide basic information on which we base our work.

2.1 EPF Composer

EPF Composer [7] is an open-source tool aiming at supporting the modeling
of customizable software processes. We recall two open source standards used
by EPF Composer and also required in this paper. UMA (Unified Method Ar-
chitecture) Metamodel [10], a subset of SPEM 2.0 [6], is used to model and
manage reusable method content and processes. Method Content defines the
core elements used in a process, i.e., tasks, work products and roles. Managed

Title Suppressed Due to Excessive Length 3

Content defines textual descriptions, such as Concept and Reusable Asset. Cus-
tom Category defines a hierarchical indexing to manage method content. A de-
livery process describes a complete and integrated approach for performing a
specific project and it contains a Breakdown Structure, which allows nesting of
tasks. UML 2.0 Diagram Interchange Specification [11] supports diagram
interchange among modeling tools by providing an UML activity diagram repre-
sentation. An Activity corresponds to a process, while a Node represents a point
in the process, and an Edge is used to connects points. Nodes can be of different
types. An Activity Parameter Node represents a task. Initial and Final Nodes
represent the start and the end of the process. Fork and Join Nodes represent
the parallel flows and Decision and Merge Nodes represent conditional behavior.

2.2 Regorous

Regorous [8] is a tool-supported methodology for compliance checking in which
the compliance status of a process is provided with the causes of existing viola-
tions. To check compliance, Regorous requires a rule set, which is the formal rep-
resentation of the standard’s requirements in Formal Contract Logic (FCL) [4].
An FCL rule has the form r : a1, ..., an ⇒ c, where r is the unique identifier,
a1, ..., an, are the conditions of the applicability of a norm and c is the normative
effect. The different kind of normative effects can be found in [4]. A rule set is
represented in the schema called Combined Rule Set from which we recall some
elements. Vocabulary contains an element called term, which attribute atom is
used to describe rule statements. The second element, called Rule, is used to
define every rule of the logic. A rule is specified with the unique identifier called
label, the description of the rule called control objective, and the actual rule called
formal representation. Regorous current implemented tool uses the Canonical
Process Format (CPF) [12], a modeling language agnostic representation that
only describes the structural characteristics of the process. A Canonical Process
is the container of a set of Nets which represent graphs made up of Nodes and
Edges. Nodes types can be (OR, XOR, AND) Splits/Joint, which capture ele-
ments that have more than one incoming/outgoing edge. Nodes can also repre-
sent Tasks and Events, which are nodes that have at most one incoming/outgoing
edge. The compliance effect annotations, which represents the fulfillment of
a rule on a process element, are captured in Regorous by using a schema called
Compliance Check Annotations. A ruleSetList contains the ruleSets uri which is
the identification of the rule set. The conditions and the taskEffects represent the
process sequence flow and the tasks respectively and have an associated effects
name which corresponds to its actual compliance effects annotation.

2.3 Automatic Compliance Checking Vision: The Modeling Part

In this section, we recall the methodology used for modeling the SPEM 2.0-
compatible models in EPF Composer required by Regorous. The methodology
is explained with an example from ISO 26262 presented in [5]. The modeled

4 Lecture Notes in Computer Science: Authors’ Instructions

requirement is obtained from part 6 clause 8, number 8.1, which states: “Specify
software units in accordance with the architectural design and the associated
safety requirements”. The formal representation of this requirement is presented
in Equation 1.

r2.1 : addressSwUnitDesignProcess⇒ [OANPNP]− performSpecifySwUnit

r2.2 : performProvideSwArchitecturalDesign, performProvideSwSafetyRequirements

⇒ [P]performSpecifySwUnit

r2.2>r2.1

(1)

The modeling in EFP Composer required the creation of three plugins. Ini-
tially, we create a plugin for capturing standard’s requirements (See Fig. 2),
which contains not only their description in natural language e.g., R2, but also
its atomization e.g., r2.1 and r2.2. The requirement atomization is used to as-
sign the rule representation (See Equation 1). A second plugin is used to capture
process elements, as depicted in Fig. 3.

Fig. 2: Requirements
Plugin.

Fig. 3: Process Elements
Plugin.

Fig. 4: Process Activity
Diagram.

Finally, a third plugin is used to capture the compliance annotated tasks, in
which we also create the delivery process and its corresponding activity diagram
(See Fig. 4). To annotate the tasks, the concept that represents the compliance
effects is added to the task. The reader can discover more details about the
previous modeling in [5].

2.4 CENELEC EN 50128

CENELEC EN 50128 [13] is a standard that prescribes requirements for the
development, deployment, and maintenance of safety-related software for railway
control and protection application. The software component design phase is part
of the lifecycle required by the software quality assurance, which states that the
quality concerning the lifecycle shall address activities and tasks consistent with
the plans (e.g., the safety plan). We recall some requirements corresponding to
the software component design phase in Table 1.

Title Suppressed Due to Excessive Length 5

Table 1: Requirements from the Rail Standard.

ID Description

R1 Initiate component design phase.

R2 Input documents: Software Design Specification.

R3 A software component design shall be written under the responsibility of the designer.

3 Generating Regorous Inputs

In this section, we present the two steps required to generate Regorous inputs,
namely the mapping between the elements provided by EPF Composer and
required by Regorous, and their algorithmic solution. We start with the map-
ping of the elements required for creating the rule set. As presented in Table 2,
the information related to the rules is obtained from the Delivery Process pro-
vided by EPF Composer (described with UMA elements), and should conform to
the Regorous schema called Combined Rule Set. Then, in Table 3, we present the
mapping required for the process structure, which is provided in a UML activity
diagram and required to be transformed to the canonical process (CPF). Finally,
the compliance effects annotations require a structure that complies to the Re-
gorous schema called Compliance Check Annotations. This information can be
retrieved from EPF Composer taking into account that the process elements
can be extracted from the process structure (described with UML elements) and
the compliance effects annotations can be extracted from the delivery process
(described with UMA elements). The mapping is presented in Table 4.

Table 2: Mapping Elements from UMA to the Rule Set

UMA Rule Set Mapping Description

Reusable
Asset

Rule Set

Reusable Asset is used in EPF composer to storage the information
related to the rule set. Therefore, its information is transformed into
the rule set required by Regorus. The attributes transferred are name,
presentationName and briefDescription.

Concept Term

Concept is used in EPF Composer to storage the information related to
the vocabulary used in the creation of the rules. Therefore its content
is transformed into the vocabulary required in the rule set, specifically,
each Concept is a Term. The attribute transferred is name.

Content
Category

Rule
Content categories contain rules. Therefore, their content is transformed
into the body of the rule. The attributes transferred are name, presen-
tationName, and briefDescription.

The algorithmic solution for obtaining the rule set, which mapping is de-
scribed in Table 2, is presented in Algorithm 1. The algorithm initiates with
the description of its required input (DeliveryProcess), and the expected output
(RuleSet). Then, the input is parsed with the function getElemementsByTag-
Name, which searches the elements to be mapped, with the function Map to the
output. The first element searched is the uma:ReusableAsset, which attribute

6 Lecture Notes in Computer Science: Authors’ Instructions

Table 3: Mapping Elements from UML Diagram to the Canonical Process

UML CPF Mapping description

Activity
Canonical
Process

The UML activity diagram is used in EPF Composer to describe the dy-
namics of the software process. Therefore, its information is transformed
into a canonical process in CPF. The attribute transferred is id.

Initial
Node

Start
Event

The initial node of the activity diagram becomes a node with type start
event in CPF.

Parameter
Node

Task Type
Each parameter node in the activity diagram becomes a task type in the
CPF. Attributes transferred are id and name.

Control
Flow

Edge
Each control flow in the activity diagram becomes an edge in CPF.
Attributes transferred are id, name, source and target.

Final
Node

End Event
The final node in the activity diagram becomes an end event type in
CPF.

Decision
/Merge
Node

XOR Split
/Join

The decision/merge nodes in the activity diagram becomes an XOR-
Split/XORJoin Type in CPF.

Fork/Join
Node

AND
Split/Join

The fork/join nodes in the activity diagram becomes an ANDSplit/AND-
Join Type in CPF.

Table 4: Mapping from UMA/UML Metamodel to the Compliance Annotations

UML
/UMA

Compliance
Annotations

Mapping Description

Reusable
Asset

ruleSet
A reusable asset becomes a ruleSetList. The attribute transferred is
the name.

edge conditions
Each edge becomes a special element in the compliance annotations
file called condition. The attribute transferred is the id.

node Task Effects
Each node becomes a Task Effect. The attribute transferred is the id.
Then, the id is also used to search for the concepts that should be
converted into the compliance effects in the delivery process file.

Concept Effect
Every concepts associated to the task is transferred to the Effect. The
attribute transferred is the name.

name is mapped to the rules URI. Then, the algorithm searches for the ele-
ments uma:ContentCategory, which provides the attributes id, controlObjective
and formalRepresentation of each rule. Algorithm 2, which maps the elements
described in Table 3, takes as input the UML Activity Diagram and provide the
Canonical Format. The function getElementsByTagName searches for every ele-
ments that describes process structure and maps it to their counterpart in CPF.
The mapping of the process structural elements requires a unique identifier that
is generated internally each time the function Map is used. Algorithm 3 describes
the solution for mapping the elements presented in Table 4. The required inputs
are the UML Activity Diagram and the DeliveryProcess. The expected output
is the ComplianceEffectsAnnotations. The algorithm searches in the delivery
process the element tagged as uma:ReusableAsset and mapped it to the rule
set. Similarly, the algorithm searches for the elements tagged as uml:edge and
uml:node in the UML Activity Diagram and mapped them to the conditions and
taskEffects respectively. The node id is used to search for the elements tagged
as uma:concept in the DeliveryProcess, which is mapped to the effects.

Title Suppressed Due to Excessive Length 7

input : DeliveryProcess
output: RulseSet
LoadFile (DeliveryProcess);
NodeReusableAsset←getElementsByTagName (uma:ReusableAsset);
Map (ruleSet←ReusableAsset);
conceptsList←getElementsByTagName (uma:Concept);
for i← 0to getLength (ConceptsList) do

Map (Term.atom ←Concept.name)
end
contentCategoryList ← getElementsByTagName (uma:ContentCategory);
for j ← 0to getLength (contentCategoryList) do

ruleControlObjective←getAttribute (briefDescription);
if ruleControlObjective is not empty then

Map (rule←contentCategory)
end

end

Algorithm 1: Algorithm for Obtaining the Rule Set.

input : UMLActivityDiagram
output: CanonicalFormat
LoadFile (UMLActivityDiagram);
NodeActivity←getElementsByTagName (uml:Activity) ;
Map (CanonicalProcess← NodeActivity);
nodesList←getElementsByTagName (uml:node);
for i← 0 to getLength (nodesList) do

if nodeType=uml:ActivityParameterNode then
Map (TaskType←node)

end
if nodeType=uml:InitialNode then

Map (StatEvent←node)
end
if nodeType=uml:ActivityFinalNode then

Map (EndEvent←node)
end
if nodeType=uml:ForkNode then

Map (ANDSplitType←node)
end
if nodeType=uml:JoinNode then

Map (ANDJoinType←node)
end
if nodeType=uml:DecisionNode then

Map (XORSplitType←node)
end
if nodeType=uml:MergeNode then

Map (XORJoinType←node)
end

end
edgesList←getElementsByTagName (uml:edge);
for j ← 0to getLength (edgeList) do

Map (Edge←edge)
end

Algorithm 2: Algorithm for Obtaining the Process Structure.

8 Lecture Notes in Computer Science: Authors’ Instructions

input : UMLActivityDiagram,DeliveryProcess
output: ComplianceEffectsAnnotations
LoadFile (UMLActivityDiagram, DeliveryProcess) ;
NodeReusableAsset (from DeliveryProcess)←getElementsByTagName (uma:ReusableAsset) ;
Map ((ruleSet←ReusableAsset) ;
edgesList(from UMLProcess)← getElementsByTagName (uml:edge);
for i← 0 to getLength (edgeList) do

Map (conditions←edge)
end
nodeList(from UMLProcess)← getElementsByTagName (uml:node);
for j ← 0 to getLength (nodeList) do

Map (taskEffects←node) TaskId←ObtainUMAValue(nodeList);
ContentElementList(from DeliveryProcess)←

getElementsByTagName(ContentElement);
for k ← 0 to getLength (ContentElementList) do

if ContentElementList.id = TaskId then
ConceptsList(from DeliveryProcess)← getElementsByTagName(Concept);
for l← 0 to getLength (ConceptsList) do

Map (effects←Concept);
end

end

end

end

Algorithm 3: Algorithm for Obtaining the Compliance Effects Annotations.

4 Models Checkable for Compliance from the Rail Sector

The purpose of this section is to provide evidence that the models provided by
EPF Composer, and transformed with our algorithm, are checkable for compli-
ance with Regorous. The software process model to be checked for compliance is
the one modeled in Fig. 4 (originally created for compliance with an automotive
standard). In this evaluation, three steps are required. Initially, we generate the
compliance annotated software process in EPF Composer, following the method-
ology described in Section 2.3. Second, we apply the transformation described
in Section 3. Finally, we verify that the models generated have enough informa-
tion to be processed by Regorous. This verification is done manually, namely,
we highlight the mapping of the elements required for checking compliance. We
also check compliance with Regorous and describe the type of analysis that can
be carried out after compliance checking.

We start by annotation a small portion of the design phase (modeled in Fig. 4)
with the recommended requirements provided in the rail sector (see CENELEC
requirements in Section 2.4). First, we formalize the standard’s requirements
applying the definitions for creating the rules presented in Section 2.2. As the
formula 2) shows, the rule r1.1, which is the formalization of the requirement R1,
defines an obligation of addressing the phase. Rules r.2.1 and r.2.2 are related
to the requirement R2 in the following way: r.2.1 prohibits the specification of
the design, but r.2.2 permits the specification of software units if the software
design specification is obtained. Similarly to r.3.1 and r.3.2, which are related to
requirement R3. Rule r.3.1 prohibits the production of software units, but r.3.2
permits them if not only the specification is performed but also is a designer has
been assigned. In the previous rules, priority relations are defined to give higher
priority to the permits over the obligations.

Title Suppressed Due to Excessive Length 9

r1.1 : [OM]addressComponentDesignPhase

r2.1 : addressComponentDesignPhase⇒ [OANPNP]− performSpecifyComponentDesign

r2.2 : obtainSoftwareDesignSpecification⇒ [P]performSpecifyComponentDesign

r3.1 : performSpecifyComponentDesign⇒ [OANPNP]− produceSoftwareComponentDesign

r3.2 : performSpecifyComponentDesign,

assignDesigner ⇒ [P]produceSoftwareComponentDesign

r2.2>r2.1, r3.2>r3.1

(2)

Standards requirements and the respective rules are modeled in EPF Com-
poser in a plugin as depicted in Fig. 5.

Fig. 5: Requirements Plugin.

Then, we import the plugin that contains the process elements (See Fig. 3).
Finally, we create the plugin for annotating the process tasks. In this plugin,
we copy the tasks from the plugin that contains the process elements and make
them contribute to the original ones, which allows to extend them in an addi-
tional way. The tasks are annotated according to the compliance effects they
represent. For this, we check the process model depicted in Fig. 4. As we see,
the task Start Software Unit Design Process represents the initiation of the soft-
ware component design and therefore it produces the compliance annotation ad-
dressComponentDesignPhase. This task also responds to the compliance effect
obtainSoftwareDesignSpecification since it has a work product with a similar
name. Task Specify Software Units responds to the compliance effect perform-
SpecifyComponentDesign. Finally, the task Design Software Unit has a work
product Software Unit Design, which makes the task respond to the compliance

10 Lecture Notes in Computer Science: Authors’ Instructions

effect produceSoftwareComponentDesign. Once the tasks are annotated, we cre-
ate the delivery process and the activity diagram, export the plugins and apply
the transformations to obtain the Regorous inputs to check compliance.

In what follows, we provide essential code snippets, in which we highlight the
mapping of the elements required for checking compliance. We start showing the
generated Rule Set. As presented in Listing 1.1, the generated Rule Set has the
elements Vocabulary, which contains the rules, described in EPF Composer with
an uma:concept. It also contains the rules, which were described in the content
category elements that correspond to the rules.

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8” standa lone=” yes ”?>
<RuleSet xmlns=” ht tp : //www. n i c t a . com . au/bpc/ CombinedRuleSetDef init ion

/0 .1 ” u r i=” RuleSetRai lStandards ” >
<Vocabulary>

<Term atom=”addressComponentDesignPhase”/>
...<!−− other Term atoms −−>

</Vocabulary>
<Rules>

<Rule xmlns :x s i=” ht tp : //www. w3 . org /2001/XMLSchema−i n s t ance ”
x s i : t y p e=”DflRuleType” ru l eLabe l=” r1 . 1 ”>

<Contro lObject ive>r1 . 1 Address so f tware un i t des ign proce s s</
Contro lObject ive>

<FormalRepresentat ion>=> ; [OANPP] addressComponentDesignPhase</
FormalRepresentat ion>

</Rule>
...<!−− other r u l e s −−>

<SuperiorityRelations>
. . .

</SuperiorityRelations>
</RuleSet>

Listing 1.1: Rule set generated

In Listing 1.2, we present the generated process structure. We highlighted one
Node that represents the start point of the process and one node that represents
a task Type. An Edge represents a connection between the nodes.

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8” standa lone=” true ”?>
<ns4:CanonicalProcess name=” Software Unit Design Process ” . . .>

<Net id=” 1529072497607 ”>
<Node id=” 1529072497608 ” x s i : t y p e=”ns4:EventType” xmlns :x s i=” ht tp :

//www. w3 . org /2001/XMLSchema−i n s t ance ”>
<name>Star t</name>
<a t t r i b u t e value=” s ta r t ev en t1 ” typeRef=” Id ”/>

</Node>
<Node id=” 1529072497609 ” x s i : t y p e=”ns4:TaskType” xmlns :x s i=” ht tp :

//www. w3 . org /2001/XMLSchema−i n s t ance ”>
<name>Star t Software Design Process</name>
<a t t r i b u t e value=” StartSof twareDes ignProcess ID ” typeRef=” Id ”/>

</Node>
...<!−− other nodes −−>
<Edge id=” 1529072497612 ” ta r g e t Id=” 1529072497609 ” source Id=”

1529072497608 ” d e f a u l t=” f a l s e ”>
...<!−− other edges −−>

</Net>
</ns4:CanonicalProcess>

Listing 1.2: Process structure generated

In Listing 1.3, we present the compliance annotations. For example, the rule
set uri is the rule set identification, conditions element id represent control

Title Suppressed Due to Excessive Length 11

flows identification, and the taskEffects represent the tasks, which effects name
corresponds to the effects.

<?xml ve r s i on=” 1 .0 ” encoding=”ASCII”?>
<cca:ComplianceAnnotations xmi :ve r s i on=” 2 .0 ” xmlns:xmi=” ht tp : //www. omg .

org /XMI” xmlns :cca=” ht tp : //www. n i c t a . com . au/bpc/ e c l i p s e /
ComplianceCheckAnnotations”>

<ruleSetList>
<r u l e S e t s u r i=” RuleSetRai lStandards ”/>

</ ruleSetList>
<conditions elementId=” jNj1AExVEeiW4M4duzOA6Q”/>
<conditions elementId=” jukQUExVEeiW4M4duzOA6Q”/>
...<!−− other cond i t i ons−−>
<taskEffects elementId=” hCKUcExVEeiW4M4duzOA6Q”>

<e f f e c t s name=”addressComponentDesignPhase” negat ion=” f a l s e ”>
<e f f e c t s name=” obta inSo f twa r eDe s i gnSpec i f i c a t i on ” negat ion=” f a l s e ”>

...<!−− other t a s k E f f e c t s −−>
<localVocabulary/>

</cca:ComplianceAnnotations>

Listing 1.3: Compliance annotations generated

Then, we checked compliance with Regorous. The report results (See Fig. 6)
not only shows that the process in non-compliant, but also the description of the
uncompliant situation, the element that may be the source of the violation, the
rule that has been violated and the possible resolution. With this information,
it may be easier for the process engineer to make a focused analysis to improve
the compliance status. In the example, the rule 3.1 (highlighted in Fig. 5), refers
to Incomplete requirements for the design of software Components, which means
that we do not have the requirements in place to address the task called Spec-
ify Software Unit Design. To solve the uncompliant situation, we refer to the
counterpart rule, which is the one marked as r.3.2, in which the compliance
effects assign designer and produceSoftwareComponentDesign and performSpec-
ifyComponentDesign are included. To be able to complete the assignment of
these effects, we need to include a role called designer to the task Specify Soft-
ware Unit Design as presented in Fig. 7. The improved process is again checked,
resulting in a report with no violations of the rules.

Fig. 6: Compliance Report. Fig. 7: Activity Diagram.

12 Lecture Notes in Computer Science: Authors’ Instructions

5 Discussion

Automated compliance checking of software processes with Regorous generates a
compliance report that not only communicate the compliance status of the soft-
ware process, i.e., whether the process is compliant or not, but also the sources
of violations, i.e, the rules that have being violated and the target of the uncom-
pliant situations (specific tasks), and possible resolutions. This information may
increase efficiency in the process compliance since it permits the process engi-
neer to focus on specific process elements and the reparation policies they may
require. In the example presented in Section 6, it was clear, from the compliance
report, that the task affected was Specify Software Unit and we focus on it to
understand the missing process elements. If rules are correctly formalized, and
their formalization covers the standards requirements entirely, also confidence
can be increased since uncompliant situations, in all the levels, would be spot-
ted. Since we have modeled in detail the requirements provided in Table 1, we
can consider the checking of the small process reliable. A software process can
be checked for compliance with different standards. This specific aspect could
potentially be beneficial since it promotes process reusability, i.e., a process
engineer can take processes designed in previous projects, check their compli-
ance status with the normative requirements of the new project and improve
it, based on the violations reported. In the example, we saw that the software
process model created for automotive could be used as a base for model a small
portion of the design phase recommended in the rail sector.

As we see in Fig. 1, the adopted methodological approach for our auto-
matic compliance checking vision, is tool supported. While the maturity of the
methodology is high, its tool support still requires additional work. EPF Com-
poser and Regorous have been tested separately and the bridge between them,
namely, the transformations between the EPF Composer and Regorous, have
been designed and implemented. The transformations, applied to the portion of
the design phase recommended in the rail sector (See Section 4), are correct since
they have generated a complete set of inputs that are compatible with Regorous
schemas, making possible to check compliance. The transformation implemen-
tation, which is still in a prototyping stage, could be improved if techniques,
such as Model Driven Engineering (MDE) are applied. We consider essential to
further exploit the process modeling language agnosticism underlying Regorous
methodology to be able to perform a future seamless integration of the tools
required for our compliance checking vision.

6 Related Work

Automatic compliance checking of processes is one of the mechanisms that can
provide benefits, as we have discussed above, to compliance management. In
particular, researchers in the business and legal compliance context have ex-
plored potential formalisms to create compliance checking frameworks, such as
the ones presented in [14] and in [15]. However, they are based on temporal log-
ics, in which the modeling of normative requirements is still considered difficult.

Title Suppressed Due to Excessive Length 13

To model the rules more naturally, we have chosen Regorous, which underlying
formalism called FCL, permits the modeling of deontic notions (i.e., obligations,
prohibitions and permissions) which are the actual notions that describe nor-
mative requirements. Automatic compliance checking of safety-critical software
processes has not been as explored as in business management. However, in [16],
the authors presented initial steps of an approach for process reasoning and
verification, which is based on the combination of Composition Tree Notations
(CTN), a high-level modeling notation used for modeling process structure, and
Description Logics (DL). DL is used to reason about the compliance of the pro-
cess structure. Instead, our approach includes the accumulation of compliance
effects that trigger new effects, focusing on the process behavior. Another dif-
ference we have included in our approach is the use of SPEM 2.0-compatible
software process models, which may be preferred over other process modeling
languages since it allows the creation of process method contents that can be
reused in different kind of processes. SPEM 2.0-related community, to the best
of our knowledge, has not addressed compliance checking. However, based on
SPEM 2.0, some solutions for compliance management exists. In [3], compliance
tables are generated. Compliance tables require the modeling of the standard’s
requirements, which should be mapped to the process elements that fulfill them.
The modeling of compliance elements is also exploited in [17], in which the mod-
eling of standards requirements is required to detect whether the process model
contains sufficient evidence for supporting the requirements. The approach pro-
vides feedback to the safety engineers regarding detected fallacies and recom-
mendations to solve them. In our case, we have also exploited not only the
modeling of standard requirements, but also we have provided a mechanism to
include rules within the standard’s requirements, which facilitate the resolution
of uncompliant situations after the automatic compliance checking is performed.

7 Conclusions and future work

In this paper, we defined the transformation necessary to automatically generate
the models checkable for compliance in Regorous from SPEM 2.0-compatible
process models. We also applied our transformation to a small portion of the
software component design phase recommended in the rail sector and discussed
aspects related to our findings.

To increase the maturity of the results shown in this paper, a proper plugin
is going to be implemented to enable the push-button solution for the entire
generation of the inputs required by Regorous. Also, as presented in [5], we need
to further validate our approach and complete some tasks, i.e., the addition
of the rule editor to facilitate the modeling of FCL rules, which currently is
done manually, and the mechanism to back-propagate compliance results into
EPF Composer. This work is expected to be partly delivered within the final
release of the AMASS platform [18].

14 Lecture Notes in Computer Science: Authors’ Instructions

Acknowledgments. This work is supported by the EU and VINNOVA via the
ECSEL JU project AMASS (No. 692474) [19]. We thank Guido Governatori for
his guidance during the execution of this project.

References

1. Gallina, B., Ul Muram, F., Castellanos Ardila, J.: Compliance of Agilized (Soft-
ware) Development Processes with Safety Standards: a Vision. In: 4th international
workshop on Agile Development of Safety-Critical Software. (2018)

2. Castellanos Ardila, J., Gallina, B.: Towards Increased Efficiency and Confidence
in Process Compliance. In: 24th European Conference EuroSPI. (2017) 162–174

3. McIsaac, B.: IBM Rational Method Composer: Standards Mapping. Technical
report, IBM Developer Works (2015)

4. Governatori, G.: Representing business contracts in RuleML. International Journal
of Cooperative Information Systems. (2005) 181–216

5. Castellanos Ardila, J.P., Gallina, B., Ul Muram, F.: Enabling Compliance Checking
against Safety Standards from SPEM 2.0 Process Models. In: Euromicro Confer-
ence on Software Engineering and Advanced Applications. (2018)

6. Object Management Group Inc.: Software & Systems Process Engineering Meta-
Model Specification. Version 2.0. OMG Std., Rev (2008) 236

7. The Eclipse Foundation.: Eclipse Process Framework (EPF) Composer 1.0 Archi-
tecture Overview. http://www.eclipse.org/epf/composer architecture/ (2013)

8. Governatori, G.: The Regorous approach to process compliance. In: IEEE 19th
International Enterprise Distributed Object Computing Workshop. (2015) 33–40

9. Koliadis, G., Ghose, A.: Verifying Semantic Business Process Models in Verify-
ing Semantic Business Process Models in Inter-operation. In: IEEE International
Conference on Service-Oriented Computing. (2007) 731–738

10. IBM Corporation: Key Capabilities of the Unified Method Architecture (UMA)
11. Object Management Group: UML 2 . 0 Diagram Interchange Specification. (2003)
12. La Rosa, M., Reijers, H., van der Aalst, W., Dijkman, R., Mendling, J., Dumas,

M., Garćıa-bañuelos, L.: APROMORE: An advanced process model repository.
Expert Systems With Applications (2011) 7029–7040

13. EN50128 BS: Railway applications Communication, signalling and processing
systems Software for railway control and protection systems (2011)

14. Elgammal, A., Turetken, O., van den Heuvel, W., Papazoglou, M.: Formalizing
and applying compliance patterns for business process compliance. Software and
Systems Modeling. (2016) 119–146

15. El Kharbili, M.: Business Process Regulatory Compliance Management Solution
Frameworks: A Comparative Evaluation. 8TH Asia-Pacific Conference on Concep-
tual Modelling. (2012) 23–32

16. Kabaale, E., Wen, L., Wang, Z., Rout, T.: Representing Software Process in De-
scription Logics: An Ontology Approach for Software Process Reasoning and Veri-
fication. In: Software Process Improvement and Capability Determination. SPICE
2016. Communications in Computer and Information Science. (2016) 362–376

17. Ul Muram, F., Gallina, B., Gomez Rodriguez, L.: Preventing Omission of Key Evi-
dence Fallacy in Process-based Argumentations. In: 11th International Conference
on the Quality of Information and Communications Technology. (2018)

18. AMASS Platform: https://www.polarsys.org/opencert/
19. AMASS: Architecture-driven, Multi-concern and Seamless Assurance and Certifi-

cation of Cyber-Physical Systems. http://www.amass-ecsel.eu/

