
A Runtime Verification Tool
for Detecting Concurrency Bugs in

FreeRTOS Embedded Software
Sara Abbaspour Asadollah∗, Daniel Sundmark∗, Sigrid Eldh†, Hans Hansson∗

∗Mälardalen University, Västerås, Sweden
{sara.abbaspour, daniel.sundmark, hans.hansson}@mdh.se

†Ericsson AB, Kista, Sweden
sigrid.eldh@ericsson.com

Abstract—This article presents a runtime verification tool for
embedded software executing under the open source real-time
operating system FreeRTOS. The tool detects and diagnoses
concurrency bugs such as deadlock, starvation, and suspension-
based-locking. The tool finds concurrency bugs at runtime
without debugging and tracing the source code. The tool uses the
Tracealyzer tool for logging relevant events. Analysing the logs,
our tool can detect the concurrency bugs by applying algorithms
for diagnosing each concurrency bug type individually.

In this paper, we present the implementation of the tool, as
well as its functional architecture, together with illustration of
its use. The tool can be used during program testing to gain
interesting information about embedded software executions. We
present initial results of running the tool on some classical bug
examples running on an AVR 32-bit board SAM4S.

I. INTRODUCTION

Runtime Verification is concerned with checking a trace of
the program against properties described in some logic [1].
When a property is violated, the program is able to take action
in order to deal with the situation. Moreover, since the check is
done during the program execution only practically reachable
states are considered. Runtime verification is useful in both
testing and monitoring. For instance, if a user comes up with
a test case [2] and he/she wants to exercise a possible bug,
then a runtime verification tool can be considered to automate
the creation of oracles for detecting errors. Further, if a user
is interested to take action in response to the violation of a
property then he/she could consider runtime verification as a
monitor while it may be used to define how the program reacts
to bugs, possibly steering it to the correct behavior [3].

Due to increasing software system complexity, there is
renewed interest in implementing tools for detecting faults
and managing recovery from them during runtime. Concurrent
programming also increases the complexity of different types
of software.

Meanwhile, concurrent programming introduces the possi-
bility of new types of software bugs, known as concurrency
bugs [4]. The bugs typically appear under very specific situa-
tions which can nondeterministically occur e.g., due to thread
interleavings between shared memory accesses. The effects of
the bugs spread through the software and potentially cause

the software to crash, hang or produce incorrect output. Such
nondeterministic bugs are typically considered to be problem-
atic errors [5], [6], since they are difficult to reproduce. A
goal of the proposed tool is monitoring of embedded software
behavior in order to determine whether it complies with the
properties of the different concurrency bugs. To the best of our
knowledge, this research is the first effort implement a tool for
detecting concurrency bugs in embedded software based on the
FreeRTOS 1 platform.

A. Paper Contributions

In summary, the following are our main contributions:
1) We propose a functional architecture of a runtime ver-

ification tool for embedded software in order to detect
concurrency bugs.

2) We implement a tool based on the proposed func-
tional architecture, covering deadlock, starvation and
suspension-based-locking bugs for software running un-
der FreeRTOS.

3) We evaluate the implemented runtime verification tool
for detecting the concurrency bugs on FreeRTOS run-
ning on a SAM4S Xplained platform.

B. Paper Layout

The rest of the article is organized as follows: We sur-
vey related work in Section II. FreeRTOS and Tracealyzers’
backgrounds as well as the terminologies, are presented in
Section III. The functional architecture of our proposed tool
in addition to our proposed algorithms are described in Sec-
tion IV. The tool user interface together with three different
examples are illustrated in Section V. Finally, we conclude the
study and highlight the direction of future work in Section VI.

II. RELATED WORK

Java PathExplorer (JPAX) is a runtime verification tool
proposed by Havelund and Rosu [8], [9] for monitoring the
execution of sequential and concurrent Java programs. The

1FreeRTOS is an open source, portable, and real-time operating system
kernel [7].

prototype of Java PathExplorer has been applied to the execu-
tive module of the NASA Ames planetary Rover K9 [8]. The
general concept of the tool concerns extracting events while
the program is executing and then analysing these events with
a remote observer process. JPAX instruments Java byte code
to send a set of relevant events to the observation module that
performs two kinds of verifications: 1) logic based monitoring
and 2) error pattern analysis. Logic-based monitoring is a kind
of specification based monitoring which counts upon an under-
lying logic and the user can express any application dependent,
logical requirements. Error pattern analysis implements more
or less standard programming language dependent algorithms,
e.g., exploring execution trace to detect potential concurrency
errors, including Deadlocks and Data races, even they do not
explicitly occur in the trace.

Falcon is another tool for on-line monitoring and steering
of large-scale parallel programs [10]. Its monitoring subsystem
consists of higher-level view specification and low-level sensor
specification. Programmers define application-specific sensors
for capturing the program behavior and attributes during
runtime. Falcon has another subsystem to permit users for
implementing on-line display system to graphically display
data structures, runtime program behaviors, and performance
information. Falcon is designed for distributed systems and
its implementation relies on the C threads library on several
hardware platforms.

Java with Assertions (Jass) is a monitoring approach de-
veloped for sequential and concurrent systems written in
Java [11]. Jass translates annotations to programs written in
Java into pure Java code. Compliance with the specified anno-
tations is dynamically tested during runtime. It checks specifi-
cation violations dynamically at runtime by adding assertions
which provide the specification of the program. Assertions
are boolean expressions of Java with certain keywords and
quantifications over finite sets. They are in the form of class
invariants, loop invariants, method post and pre-conditions and
additional checks which can be inserted into every part of the
code. Jass is able to detect possible interferences in a parallel
program by having the thread in Jass classes which start in
the main method. When an assertion in one thread becomes
invalid through statements in another thread then Jass is able
to detect it.

In summary, there are a few runtime verification tools
available, but none is a runtime verification tool for embedded
software to detect concurrency bugs. For instance, XPA is a
runtime verification tool for monitoring and detecting potential
concurrency errors in Java programs. From our understanding,
it cannot detect these concurrency bugs for embedded software
running of freeRTOS framework. In addition, the proposed
tool cannot detect other types of concurrency bugs such as
Starvation and Suspension bugs. Similarly, Jass is a monitor-
ing approach considering Java applications and not able to
detect if the interferences are protected by synchronization
methods [11] while it is not the case for our proposed tool.
Moreover, the other tool (Falcon) relies on C libraries, however
our proposed tool is designed and implemented to monitor

the embedded software in order to detect special type of bugs
(concurrency bus).

III. PRELIMINARIES

In this section, we present the FreeRTOS, Tracealyzer and
the terminology used in this article.

A. FreeRTOS

FreeRTOS is an open source real-time operating system.
It is licensed under a modified GPL and developed by Real
Time Engineers Ltd. FreeRTOS is available for 35 different
hardware architectures ranging from 8-bit to 32-bit micro-
controllers, particularly targeting small embedded systems [7].

The FreeRTOS kernel supports cooperative, preemptive
and hybrid scheduling, supporting static and dynamic task
priorities. Round-Robin (RR) is considered in its fixed-priority
preemptive scheduling.It supports multitasking by any number
of tasks [12]. The context-switching in FreeRTOS kernel is
efficient and its library contains efficient commands such as
binary, counting and recursive semaphores; Mutexes for re-
source protection and synchronization; and queues for message
passing among tasks.

B. Tracealyzer

Tracealyzer, developed by Percepio AB since 2004 [13], is a
stand-alone application for tracing and visualizing embedded
software executions. Tracealyzer for FreeRTOS is designed
for 32-bit processors, including MCUs, and is configured
for minimal RAM and ROM usage. It has plug-ins and
integrations for common development tools such as Atmel
Studio 7, SEGGER J-Link debug probes, Microchip MPLAB
X IDE and IAR Embedded Workbench.

Tracealyzer offers more than 25 graphical views of system
behavior in order to give insight into the firmware at runtime,
making it easier to reveal errors and bottlenecks, speed up
debugging, validation and optimization. It offers two main
tracing modes: snapshot and streaming mode. In snapshot
mode, the trace data is kept in a target-side RAM buffer until
explicitly uploaded. In streaming mode, the data is transferred
continuously to the host PC, allowing for very long trace
durations.

C. Terminology

The terminology for software problems are not entirely
consistent and different terms like fault, error, bug, failure
are sometimes used interchangeably. Bug is a problem which
impairs or prevents the functions of the software [14]. In this
article, we use the term bug to refer to an observed behavior
in the embedded software under test, although this may not
be entirely in line with the mentioned terminology.

Leucker and Schallhart defined runtime verification [15] as
“the discipline of computer science that deals with the study,
development, and application of those verification techniques
that allow checking whether a run of a system under scrutiny
satisfies or violates a given correctness property”. In other
words, runtime verification is an analysis and execution ap-
proach based on extracting information from a running system

and using it to detect, and possibly react to, observed behaviors
satisfying or violating certain properties.

Concurrency bugs are problems that may not occur in
sequential software. Examples of concurrency bugs include
deadlocks and data races. In our previous study [16] we
proposed a taxonomy for concurrency bugs by classifying the
bugs in a common structure considering relevant observable
properties. This classification is based on an assumption that
a concurrency bug has occurred, i.e., the properties of each
bug may not be sufficient to identify a bug, but once a
concurrency bug has occurred the properties can be used
to uniquely identify which type of bug it is [17]. Three
classes of the proposed taxonomy are considered in this study
viz., Deadlock, Starvation and Suspension-based locking (also
named Blocking suspension). The detailed information of each
type and their properties are described in [16], [6].

Deadlock is a condition where a task in a program cannot
proceed because it needs to obtain a resource which is held by
another task while itself is holding a resource that the other
task(s) needs [6]. During deadlock, all involved tasks are in a
waiting state.

Starvation is a condition where a task in a program delayed
because other processes are always given preference [6] while
this delay is not accepted by the program’s users (or testers
or developers). At least one of the involved tasks remains in
the ready queue during starvation bug.

Suspension-based locking occurs when a calling task waits
for an unacceptably long time in a queue to acquire a lock for
accessing a shared resource [6]. We call it Suspension bug in
this article.

IV. TOOL IMPLEMENTATION

The primary contribution of this paper is a runtime ver-
ification tool for concurrency bug detection in FreeRTOS
embedded software. The implementation details of the tool
are presented in this section. We describe the functional
architecture of the proposed tool with detailed information
of each module. We also describe the algorithms used for
detection of each type of concurrency bug.

A. Functional Architecture

As shown in Figure 1, the tool’s functional architecture
is comprised of five separate modules, viz., Parser Module,
Starvation Bug Diagnosis Module, Deadlock Bug Diagnosis
Module, Suspension Bug Diagnosis Module, and Data Visual-
isation Module.

During execution of the target system, Tracealyzer will trace
the system-level control flow events (e.g., task switches, syn-
chronization calls, etc.) of the embedded software execution.
Upon a user request, the Tracealyzer will save the event log
file. The log file has a defined template which we found
by contacting the Percepio AB company [13]. The collected
data can describe the fraction of the execution time spent
in each task over some period of time. The log files tend
to be large, thus an effective analysis is needed. If the user
sends a request to the tool in order to analyze the log file for

record

saving
event log

Parser Module

Tracealyzerevent

concurrency
bugs analyzing

Embedded Software

Tool

Suspension
Bug

Diagnosis
Module

Starvation
Bug

Diagnosis
ModuleDeadlock

Bug
Diagnosis
Module

Data Visualization Module

User
request

fin
di

ng
de

ad
lo

ck

finding
starvation bug

finding
suspension bug

Event
Handler
Module

Figure 1. Functional architecture of the runtime verification for detecting
concurrency bugs in embedded software

detecting concurrency bugs, then first the Parser Module will
parse the log file and extract (or calculate) the relevant data.
The following list illustrates each field and Table I presents
the format of extracted data from Parser Module.

• ‘TaskName” is the name of one of the available task(s)
saved in the log file.

• “Status” is the current status of the task (Running, Sus-
pended or Ready). We analyse the extracted information
and each line of log file to set the value. For instance,
when we reach a context switch in the log file, we will
update the status of other task(s) to Ready (if it is not
Suspended) and set the status of current task to Running.

• “FromTime” indicates the time since the status of the task
was changed.

• “WaitingReason” shows the reason which holds the task
in Suspended status (either of User Requested, Semaphore
or Queue). We set this value by analysing each line of
the log file. For instance, if the status of a task changed
to Suspended due to asking for a semaphore while the
semaphore is already taken by other task then we set this
value to Semaphore.

• If a task is suspended the “WaitingForObject” shows
which object is keeping the task in waiting. We set this
value by analysing each line of the log file. For instance,
if the status of a task changed to Suspended due to asking

for semaphore5 while the semaphore5 is already taken by
other task then we set this value to Semaphore5.

• The current object which holds the task is saved in
“TakenObject”. We can check the objects are taken by
each task during parsing the log file. For instance, when
we reach XSemaphoreTake sem3 in the log file, we will
set the “TakenObject” value to sem3 and if we reach the
XSemaphoreGive sem3 for the same task after then, we
will update the value of this filed by removing the sem3
from the field’s value.

• “MaxInReady” represents the maximum time that a task
is spending in Ready status. We will calculate the maxi-
mum time that each task has spend in Ready status during
parsing the log file.

• “MaxInReady FromTime” presents the start time of the
“MaxInReady” for the task.

• “MaxInSuspend” shows the maximum time that a task is
continuously spending in Suspended status.

• The “MaxInsuspend FromTime” indicates the start time
of the “MaxInSuspend” for the task. We will calculate
the maximum time that each task has spend in Suspended
status during parsing the log file

For each of the three bug diagnosis modules, the extracted
data will be analysed and compared to the corresponding bug
property patterns. In case there is a match, the bug (and its
type) is reported.

For the starvation- and suspension-type bugs, a delay toler-
ance will be requested from the user by the tool. This value
represents the maximum acceptable time for the task to stay
in Ready and Suspended states respectively. A user can set
distinct values for all tasks independently of each other.

Data Visualisation Module is a combination of functions
and procedures for displaying the results of the Parser , Starva-
tion Bug Diagnosis, Deadlock Bug Diagnosis and Suspension
Bug Diagnosis modules.

B. Overview of Bug Detection Algorithms

The pseudocode depicted in Algorithm 1, 2 and 3 respec-
tively, provides overviews of the inner workings of the Dead-
lock Bug Diagnosis, Starvation Bug Diagnosis and Suspension
Bug Diagnosis modules.

The Deadlock detection algorithm (Algorithm 1) takes input
in the form of a dataset (suspendedTasks) which contains
extracted data from Parser Module for the tasks that are
in state Suspended and with WaitingReason Semaphore or
Queue. Table I shows the general data structure. “deadlockSet”
holds the length of the set of tasks that have the deadlock
bug. The variables “deadlockSet”, “isDeadlock” and “possi-
bleBug” are global variables that are used by both procedures,
DeadlockDetection and findNode. It also returns a dataset
(ResultDataset), which contains the information of the tasks
causing the deadlock.

The pseudocode of the algorithm for detecting starvation
bugs is presented in Algorithm 2. Similar to Algorithm 1,
this algorithm has an input dataset (extractedData) and an
output dataset (ResultDataset). As explained in Section IV-A,

Algorithm 1 for detecting Deadlock bugs

1: procedure DeadlockDetection (suspendedTasks) {
2: suspendedTasks ¬ select the tasks with Status = ‘Suspended’ and

WaitingReason =! ‘User request’ from suspendedTasks
3: if (suspendedTasks is not null) then
4: { deadlockSet = 1 , isDeadlock = False
5: while (suspendedTasks is not null)
6: { waitObj = suspendedTasks[0][waitingForObject]
7: possibleBug ¬ findNode(suspendedTasks[0], waitObj , deadlockSet)
8: possibleBug ¬ null
9: suspendedTasks remove the fist task }*/ end of while / } */ end of if /
10: return ResultDataset }

100: procedure findNode(checkingTask, waitObj , deadlockSet) {
101: possibleBug.add(checkingTask)
102: checkingDataset¬ select the tasks with waitingForObject =
checkingTask[takenObj] from suspendedTasks
103: if (checkingDataset.rows.count > 0)
104: { for (i= 0 to checkingDataset number of tasks -1; i++)
105: { if (checkingDataset[i][takenObj] contains waitObj)
106: { possibleBug.add(checkingDataset[i])
107: isDeadlock = True }
108: else
109: { possibleBug¬ findNode(checkingDataset[i], waitObj,

deadlockSet)
110: possibleBug remove the last task}
111: if (possibleBug is not null)
112: possibleBug remove the last task} */ end of for

} */ end of if (checkingDataset is not null)/
113: if (isDeadlock = True)
114: { ResultDataset.add (all tasks from possibleBug with all id = deadlockSet)
115: deadlockSet ++ , isDeadlock = False }
116: return possibleBug }

the Parser Module is responsible for calculating the maximum
time that a task has spent in Ready state from the log file. This
value is essential to detect the Starvation bugs in Algorithm
2. The algorithm shows that the delay tolerance value can
be asked from a user for each task (Line 3). Then the
algorithm will compare the MaxInReady of each task to its
delay tolerance value given by the user. If the MaxInReady
of each task is bigger than user acceptation of the task then
the task is subject to starvation and we add its data to the
ResultDataset.

Algorithm 2 for detecting Starvation bugs

1: procedure StarvationDetection (extractedData)
2: TaskNameSet¬ select all TaskName from extractedData
3: read UserDelayTolerance for each task of TaskNameSet
4: for (i= 0 to count of TaskNameSet ; i++) {
5: selectedTask¬ select the task with TaskName = TaskNameSet[i] from extractedData
6: if (selectedTask[MaxInReady] ≧ TaskNameSet (UserDelayTolerance)[i])
7: selectedTask add to ResultDataset } /* end of for
9: return ResultDataset

Algorithm 3 presents the pseudocode of the algorithm
for detecting Suspension bugs, also with an input dataset
(extractedData) and an output dataset (ResultDataset). The
calculated value for MaxinWaiting field is essential to detect
the Suspension bugs in this algorithm. MaxinWaiting value
is calculated in Parser Module to shows the maximum time
that a task has waited in Suspended state. If the MaxinWaiting
for each task is bigger than user expectation (delay tolerance
value) then the task is subject to a suspension bug and the
task’s data will be added to the ResultDataset.

Table I
THE DATA STRUCTURE OF EXTRACTED DATA FROM Parser Module

Field Type Description
TaskName String Represents text as a sequence of UTF-16 code units

FromTime String
The value is based on the H1H2:M1M2:S1S2.m1m2m3.µ1µ2µ3 format. That represents hour in two digits
separated by “:” from minute in two digits separate by “:” from second in two digits separate by “.” from
millisecond in three digits separated by “.” from microsecond in three digits.

Status Enum The value can be one of the value from the set {Running, Suspended, Ready}
WaitingReason Enum The value can be one of the value from the set {User Requested, Semaphore, Queue}
WaitingForObject String The value can be ether the name of an object or “No Object”

TakenObject String The value can be a name of object. If there is more than one object then all names will add to this field and will
separate by “;”

MaxInReady Long Unsigned number with the range of 0 to 4,294,967,295

MaxInReady FromTime String
The value is based on the H1H2:M1M2:S1S2.m1m2m3.µ1µ2µ3 format. That represents hour in two digits
separated by “:” from minute in two digits separate by “:” from second in two digits separate by “.” from
millisecond in three digits separated by “.” from microsecond in three digits.

MaxInSuspend Long Unsigned number with the range of 0 to 4,294,967,295

MaxInsuspend FromTime String
The value is based on the H1H2:M1M2:S1S2.m1m2m3.µ1µ2µ3 format. That represents hour in two digits
separated by “:” from minute in two digits separate by “:” from second in two digits separate by “.” from
millisecond in three digits separated by “.” from microsecond in three digits.

Algorithm 3 for detecting Suspension bugs

1: procedure SuspensionDetection (extractedData)
2: TaskNameSet¬ select all TaskName from extractedData
3: read UserDelayTolerance for each task of TaskNameSet
4: for (i= 0 to count of TaskNameSet ; i++) {
5: selectedTask¬ select the task with TaskName = TaskNameSet[i] from extractedData
6: if (selectedTask[MaxInWaiting] ≧TaskNameSet (UserDelayTolerance)[i])
7: selectedTask add to ResultDataset } /* end of for
9: return ResultDataset

V. TOOL UI AND EXAMPLES

Figure 2 presents the snapshot of the tool after running
the Parser Module. This module also is able to differentiate
between the kernel and user tasks. If a user wants to detect
concurrency bugs among the user tasks then he/she can select
the “User Task” button. After browsing and selecting the saved
log file, the tool (Parser Module) will add the extracted data
into a dataset and present them via a data grid.

To run the initial evaluation and to demonstrate the result
of analysing and detecting the three mentioned concurrency
bugs, we developed practical examples with injected con-
currency bugs with the help of expert embedded software
developers. Each example is developed to inject one of the
deadlock, starvation and suspension bugs. Test Scenario 1
(Section V-A) illustrates the evaluation for deadlock, Test
Scenario 2 (Section V-B) demonstrates the evaluation for
starvation and Test Scenario 3 (Section V-C) shows the output
of the tool after injecting a suspension bug example into the
embedded software code. Then we traced and saved the event
log files during software execution time for each example. All
measurements are performed on the target platform Xplained
SAM4S [18].

A. Test Scenario 1

In this section, we explain the generated deadlock example
implemented in Atmel Studio 72 by presenting the tool’s

2Atmel Studio 7 is an integrated development platform (IDP) for developing
and debugging Atmel SMART ARM-based and Atmel AVR microcontroller
(MCU) applications [19].

output after tracing and analysing the injected deadlock bug.
For clarity, we use a simple example. As shown in Figure 3,
the deadlock bug example is implemented by creating two
tasks, both of which have access to two shared recourses
(semaphores). The tasks are created by calling the xTaskCre-
ate() and the scheduler started by calling vTaskStartSched-
uler(). The deadlock bug example contains two tasks with the
same priority. Each task is able to run a function while both
of them are designed to run concurrently.

We use binary semaphores in the examples, created
by vSemaphoreCreateBinary(), and taken and released
by xSemaphoreTake() and xSemaphoreGive(), respectively.
xSemaphoreTake() has a parameter timeout parameter deter-
mining how long to wait for the semaphore. We set this
parameter to portMAX DELAY which makes the task to
block indefinitely without a timeout. In order to connect the
examples to the Tracealyzer, we add trace a recorder library
from Tracealyzer, and specify the Tracealyzer recording mode
to Snapshot.

In order to start the trace recording by Tracealyzer, we use
vTraceEnable(TRC START) which is added at the beginning
of the non-returning function (typically main()).

We execute the injected embedded software and save the
event log file by Tracealyzer during execution. The save log
file is considered as a raw data for our tool, thus, we parse
and analyse the obtained log file. Figure 6 shows the output
of our tool after analysing the extracted data from the log file
in order to detect Deadlock bugs. As we expected, Task1 and
Task2 are the causes of detected deadlock bug.

B. Test Scenario 2

We implement a simple starvation example by calling three
tasks while all of them access to two shared variables. The
following APIs define the shared variable in the Atmel Studio
where gCounter defined for keeping a number (with the
value of 100 as the initial value) and cTextGlobalVariable is
supposed to keep the task’s name (it initially is empty).

int gCounter = 100;
char *cTextGlobalVariable = "";

Figure 2. A snapshot of the tool’s output after parsing an event log file

void vTaskFun1()
{ while (true)

{
xSemaphoreTake(xBinarySemaphore1, portMAX_DELAY);
taskYIELD();
xSemaphoreTake(xBinarySemaphore2, portMAX_DELAY);
printf(”Function 1”);
xSemaphoreGive(xBinarySemaphore2);
xSemaphoreGive(xBinarySemaphore1);
taskYIELD();

}
}

void vTaskFun2()
{ while (true)

{
xSemaphoreTake(xBinarySemaphore2, portMAX_DELAY);
taskYIELD();
xSemaphoreTake(xBinarySemaphore1, portMAX_DELAY);
printf(”Function 2”);
xSemaphoreGive(xBinarySemaphore1);
xSemaphoreGive(xBinarySemaphore2);
taskYIELD();

}
}

Figure 3. A simple Deadlock bug example implemented in Atmel Studio
injected to a FreeRTOS embedded software

Figure 4. A snapshot of the tool’s output for detecting a Deadlock bug

The injected Starvation bug example consists of three tasks
(TaskA, TaskB, and TaskC) with two priorities. The following
block is added in the main() function in order to create and
schedule these three tasks. It shows TaskA and TaskB have
same and higher priority (2) and TaskC has lower priority
(1). The FreeRTOS scheduler ensures that the task placed into
the Running state is always the highest priority task and the
Ready state tasks with equal priority will share the available
processing time using a time sliced round robin scheduling

scheme.

xTaskCreate(vTaskFun1, "TaskA", 512, , 2, NULL);
xTaskCreate(vTaskFun2, "TaskB", 512, , 2, NULL);
xTaskCreate(vTaskFun3, "TaskC", 512, , 1, NULL);
vTaskStartScheduler();

The functions in Figure 5 indicate that TaskA will add one to
the gCounter and assign “Task A” to the cTextGlobalVariable
and then send a request for context switching to another task
(by taskYIELD()). TaskB will subtract one from the gCounter
variable, assign “Task B” to the cTextGlobalVariable and then
send a request to another task for context switching. TaskC
will display the current values of cTextGlobalVariable and
gCounter in the screen and then send a request to next task
for context switching.

void vTaskFun1()
{ while (true)

{
xSemaphoreTake(xBinarySemaphore1, portMAX_DELAY);
cTextGlobalVariable = "Task A ";
gCounter = gCounter + 1;
xSemaphoreGive(xBinarySemaphore1);
taskYIELD();

}
}

void vTaskFun2()
{ while (true)

{
xSemaphoreTake(xBinarySemaphore1, portMAX_DELAY);
cTextGlobalVariable = Task B ";
gCounter = gCounter - 1;
xSemaphoreGive(xBinarySemaphore1);
taskYIELD();

}
}

void vTaskFun3()
{ cTextGlobalVariable = "Task C ";

while (true)
{

printf("%s ", cTextGlobalVariable);
printf("%d\n", gCounter);
taskYIELD();

}
}

Figure 5. A simple Starvation bug example implemented in Atmel Studio
injected to a FreeRTOS embedded software

Suppose we expect to get the result of the injected example
before 0.2 seconds (200000 microseconds). Otherwise, we
consider a concurrency bug. In order to investigate if a bug
has occurred, we execute the embedded software and save
the event log file by Tracealyzer during execution. Then we
parse and analyse the obtained log file with the proposed tool.
Figure 6 presents the output of the proposed tool. As it is
shown the maximum time that TaskC is spent in Ready status
is longer than the user delay tolerance (0.2 second) thus it can
be the cause of detected Starvation bug.

Figure 6. A snapshot of the tool’s output for detecting a Starvation bug

Figure 7. A snapshot of the tool’s output for detecting a Starvation bug

C. Test Scenario 3

In this third example, we explain a simple suspension bug
and the proposed tool’s output after tracing and analysing
the injected Suspension bug into an embedded software. The
injected Suspension example contains three tasks with the
same priority (1).

The injected example is race-free, meaning that we manage
to protect the shared variables by using a binary semaphore
(xBinarySemaphore1) and any data corruption during runtime
will not be caused by a data race.

However suppose we expect to get the result of TaskM
and then TaskN respectively. Figure 9 presents a snapshot
of the example’s output and it shows TaskM and TaskN did
not execute in the expected order. Therefore, it shows a data
corruption has happened due to getting the result of TaskN in
two consecutive printouts.

In order to detect this bug with our proposed tool, we
execute the embedded software and save the event log file by
Tracealyzer during execution. Then we parse and analyse the
obtained log file with the tool. Figure 10 indicates the output
of the tool by setting 200 microseconds as our delay tolerance
for each task. In the other words, if a task stays longer than 200
microseconds in suspended state then we expect a suspension
bug possibility for the task. Figure 10 shows TaskM and TaskN
stayed in suspension state longer than 200 microseconds while
TaskM waited longer in compare to TaskN, therefore, TaskN

void vTaskFun1()
{ while (true)

{
xSemaphoreTake(xBinarySemaphore1, portMAX_DELAY);
cTextGlobalVariable = "Task M ";
gCounter = gCounter + 1;
xSemaphoreGive(xBinarySemaphore1);
taskYIELD();

}
}

void vTaskFun2()
{ while (true)

{
xSemaphoreTake(xBinarySemaphore1, portMAX_DELAY);
cTextGlobalVariable = Task N ";
gCounter = gCounter - 1;
xSemaphoreGive(xBinarySemaphore1);
taskYIELD();

}
}

void vTaskFun3()
{ while (true)

{
xSemaphoreTake(xBinarySemaphore1, portMAX_DELAY);
printf("%s %d\n ", cTextGlobalVariable, gCounter);
xSemaphoreGive(xBinarySemaphore1);
taskYIELD();

}
}

Figure 8. A simple Suspension bug example implemented in Atmel Studio
injected to a FreeRTOS embedded software

Figure 9. A snapshot of the example’s output in Atmel Studio

could be the cause of the detected bug. The tool also is able to
detect the cause of Suspension bug by setting different delay
tolerance for each task.

Figure 10. A snapshot of the tool’s output for detecting a Suspension bug

VI. CONCLUSION AND FUTURE WORK

In this article, we proposed a functional architectural model
for runtime verification of three types of concurrency bugs,

i.e., Deadlock, Starvation and Suspension bugs. These bugs
are detectable if their properties can be observed, monitored
and derived from the collected runtime verification data. This
model act as the basis for developing a tool which can detect
and identify concurrency bugs during execution of embedded
software. Thus, we implemented a tool based on the proposed
model using the FreeRTOS framework.

We have verified our implementation and performed an ini-
tial evaluation on an ARM Cortex-M-based micro-controller.
We have checked the tool by injecting three predefined types
of concurrency bugs in Atmel Studio and saved the log file
during execution time usin the Tracealyzer tool. Then we used
the log file as input to our tool in order to detect the injected
bugs. As described in SectionV, the implemented tool was
able to detect the injected bugs.

Evaluating the tool with complete embedded software (and
not only inject predefined bugs into some part of the software)
in order to find the real bugs would be an interesting future
direction. Moreover, extending the proposed functional archi-
tecture model and tool for detection other type of concurrency
bugs (i.e., Data race, Atomicity violation, Order violation and
Livelock) based on their distinct properties would be another
interesting direction for future work.

ACKNOWLEDGMENT

We acknowledge the Swedish Research Council (VR, EX-
ACT project) for supporting this work. Additionally, we would
like to thank Percepio for giving permission to use their tool
(Tracealyzer) and for their valuable discussions, specially Dr.
Johan Kraft and Niclas Lindblom.

REFERENCES

[1] M. d’Amorim and K. Havelund, “Event-based runtime verification of
java programs,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–7,
May 2005.

[2] C. Artho, D. Drusinksy, A. Goldberg, K. Havelund, M. Lowry, C. Pasare-
anu, G. Roşu, and W. Visser, Experiments with Test Case Generation
and Runtime Analysis. Springer Berlin Heidelberg, 2003, pp. 87–108.

[3] F. Chen and G. Rou, “Towards monitoring-oriented programming:
A paradigm combining specification and implementation,” Electronic
Notes in Theoretical Computer Science, vol. 89, no. 2, pp. 108 – 127,
2003.

[4] D. A. Weiser, Hybrid Analysis of Multi-threaded Java Programs. Pro-
Quest, 2007.

[5] P. Godefroid and N. Nagappan, “Concurrency at Microsoft: An ex-
ploratory survey,” in CAV Workshop on Exploiting Concurrency Effi-
ciently and Correctly, Princeton, USA, 2008.

[6] S. Abbaspour Asadollah, D. Sundmark, S. Eldh, and H. Hansson,
“Concurrency bugs in open source software: a case study,” Journal of
Internet Services and Applications, vol. 8, no. 1, p. 4, Apr 2017.

[7] “About freertos,” https://www.freertos.org/RTOS.htmll, accessed: 201-
02-15.

[8] K. Havelund and G. Rosu, “Java pathexplorer-a runtime verification
tool,” 2001.

[9] K. Havelund and G. Roşu, “Monitoring java programs with java pathex-
plorer,” Electronic Notes in Theoretical Computer Science, vol. 55, no. 2,
pp. 200–217, 2001.

[10] W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko, J. Vetter,
and N. Mallavarupu, “Falcon: On-line monitoring and steering of large-
scale parallel programs,” in Frontiers of Massively Parallel Computation,
1995. Proceedings. Frontiers’ 95., Fifth Symposium on the. IEEE, 1995,
pp. 422–429.

[11] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim, “Jass java with
assertions,” Electronic Notes in Theoretical Computer Science, vol. 55,
no. 2, pp. 103 – 117, 2001.

[12] R. Inam, J. Carlson, M. Sjödin, and J. Kunar, “Predictable integration
and reuse of executable real-time components,” Journal of Systems and
Software, vol. 91, pp. 147 – 162, 2014.

[13] “Tracealyzer for freertos,” https://percepio.com/tz/freertostrace/, ac-
cessed: 2018-02-18.

[14] S. A. Asadollah, “Bugs and debugging of concurrent and
multicore software,” pp. 1–147, May 2016. [Online]. Available:
http://www.es.mdh.se/publications/4434-

[15] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp.
293 – 303, 2009.

[16] S. Abbaspour A., H. Hansson, D. Sundmark, and S. Eldh, “Towards
classification of concurrency bugs based on Observable properties,”
in International Workshop on Complex Faults and Failures in Large
Software Systems, Italy, 2015.

[17] S. Abbaspour Asadollah, D. Sundmark, S. Eldh, H. Hansson, and
W. Afzal, “10 years of research on debugging concurrent and multicore
software: a systematic mapping study,” Software Quality Journal, pp.
1–34, 2016.

[18] “Atmel: Smart sam4s series mcu,”
http://ww1.microchip.com/downloads/en/devicedoc/atmel-11177-
atmel-smart-sam4s flyer.pdf, accessed: 2018-02-10.

[19] “Atmel studio,” https://www.microchip.com/avr-support/atmel-studio-7,
accessed: 2018-01-22.

