
Toward a Systematic and Safety Evidence
Productive Verification Approach for Safety-Critical

Systems

Aiman Gannous
Department of Computer Science

University of Denver
Denver, USA

aiman.gannous@du.edu

Anneliese Andrews
Department of Computer Science

University of Denver
Denver, USA

andrews@cs.du.edu

Barbara Gallina
IDT, MRTC

Mälardalen University
Västerås, Sweden

barbara.gallina@mdh.se

Abstract—In safety-critical systems, the verification and val-
idation phase in the software development life cycle plays an
important role in assuring safety. The artifacts’ outputs of
the verification and validation processes represent the evidence
needed to show a satisfactory fulfillment of the safety require-
ments. Providing strong evidence to show that the requirements
of the domain standards are met is the core of demonstrating
safety standards compliance. In this paper, we propose a sys-
tematic approach for verifying safety-critical systems efficiently
by integrating model-based testing, combinatorial testing, and
safety analysis; this is all driven by providing safety assurance.
The approach provides both testing and formal verification
capabilities, and it is easy to implement into a tool for use in
an industry setting. To show how our approach could contribute
to safety standards compliance, we investigated it’s capability to
fulfill the safety requirements by analyzing and linking the data
produced from the steps in the approach to a safety evidence
taxonomy.

Keywords-safety certification; safety assurance; standards com-
pliance; testing safety-critical systems; model-based testing; com-
binatorial testing; safety analysis;

I. INTRODUCTION

The number of safety-critical functions that are being con-
trolled by software is increasing, and as a result, the demand
for correctness and availability of the software is increasing
too [1]. To commercialize a safety-critical system, the soft-
ware product must comply with the corresponding domain
standards. A proof of compliance to these standards must
be prepared and documented by the system developers and
delivered to the corresponding certification governing body
[2]. Certification is about arguing that the system is reliable
and safe based on evidences that have an appropriate degree
of confidence [3].

An example of these standards is the DO-178C [4], the
standard for developing and assuring avionics. DO-178C is
an objective-based standard as it contains a set of objectives
that the developers need to meet. According to [5], more than

half of the DO-178C objectives are verification objectives.
Verification of safety-critical systems (SCS) is an important
part of the certification process; as a result, testing is a primary
requirement for safety certification. However, each domain has
its own set of standards and guidelines on how to perform the
testing activities and what objectives need to be met.

Some other examples of such standards and relevant do-
mains are: ISO 10218 [6] for robots in an industrial environ-
ment, and ISO 13482 [7] for robots for personal use, EN 50126
[8] the European standard for safety in the railway domain,
ISO 26262 [9] for the automotive domain and last but not
least, IEC 62304 [10] for the medical software domain.

To obtain successful certification approval of their systems,
developers are required to follow these standards throughout
the software development life cycle. In some domains, provid-
ing a safety case is also required. A safety case as described
by Bloomfield and Bishop in [11] is a ”documented body of
evidence that provides a valid argument that the system is safe
for a given application in a given environment”.

For safety-critical systems, arguing compliance is costly.
Therefore, the need for a cost-effective compliance arguing
process is pressing. Most of the mentioned domain standards
urge conducting the verification activities at each phase of
the software development life cycle. The use of a verification
methodology that produces the proper safety evidences may
offer efficiency and effectiveness in the compliance argu-
ing process. Therefore, it is crucial to choose the adequate
verification methodology that fulfills as many objectives or
requirements of the domain standards as possible.

Formal methods have been used successfully in some safety-
critical domains as verification techniques to prove correctness.
However, in some domains, testing is still used to meet the
required level of confidence in the product [1]. Airbus and
Dassault-Aviation had successfully used formal methods for
system verification. They showed that it is practical and cost-
effective. However, at the software level, system-functional
safety testing still could not be replaced by formal methods



[12]. Since formal methods are proven to be cost-effective but
can not replace testing completely, we believe that the cost-
effective verification approach could be the one that combines
both formal verification and testing.

In certification, gaps between the developers and the com-
pliance auditors exist, especially regarding the verification
and validation requirements. One of the challenges which
contribute to these gaps is the ambiguity of the certification
standards. Policies and certificate regulators do not usually
explain in detail how the compliance arguing process should
be executed and what types of evidence should be presented;
rather, they just specify what should be executed [13]. In
addition, due to new advances in technology being introduced
and used, such as Artificial Intelligence and Machine Learning
techniques, current domains’ de facto standards do not yet
include clear guidance on how to verify and certify the systems
that use these technologies. We believe that assessing veri-
fication methodologies with respect to certification activities
will help in bridging these gaps. This will also motivate the
researchers to build their methodologies based on meeting the
certification requirements.

In this paper, we introduce a systematic verification ap-
proach based on Model-based testing (MBT), Combinatorial
testing (CT) and safety analysis for the purpose of safety-
critical systems verification. The approach is presented in
five tasks using SPEM 2.0 models. We aim to contribute to
narrowing the gaps between the developers and the compli-
ance auditors by showing an assessment of our methodology
contribution in the certification process. We measure the
methodology adequacy in the arguing compliance process
based on what safety evidences it could provide from the
safety evidence taxonomy adopted from Nair et al. [14].
This taxonomy is a result of a systematic literature review
classifying the artifacts, tools and methodologies outputs that
were considered as evidences for safety.

The rest of the paper is structured as follows: In Section
II, we present background information on the related subjects
and tools used in this research. In Section III, we introduce
our verification approach. In Section IV, we show an evidence-
based assessment of the proposed approach regarding the
certification process. In Section V, we discuss our findings.
In Section VI, we provide an overview of the related work,
and finally, in Section VII, we present concluding remarks and
future work.

II. BACKGROUND

A. Testing Safety-critical systems

To ensure safety of a safety-critical system (SCS), safety
analysis techniques are used to identify possible hazards such
as Fault Tree Analysis (FTA), Preliminary Hazard List Analy-
sis (PHLA), Failure Mode and Effects Analysis (FMEA) [15].
Then the identified hazards must be shown to be prevented
or mitigated. Testing SCSs is different from other classes of
systems, since testing SCSs should be performed with the
presence of failures to cover testing for proper mitigation of
undesired behavior in addition to the normal functioning in

the absence of failures. In testing SCSs, Sánchez et al. [16],
proposed a test case generation methodology based on faults.
Their methodology uses Extended Finite State Machines
(EFSM) as a model-based technique to build the behavior
model and construct fault trees to identify the possible failures
in system states. Nazier et al. [17] also used a model-based
approach for testing SCS’s but they used model checking for
system safety verification. Gario et al. [18] proposed a model-
based approach for testing SCS using Communicating Ex-
tended Finite State Machines (CEFSM) to build the behavioral
model and integrate the model with the transformed fault trees
to generate test paths using different graph coverage criteria.
All the previous mentioned contributions had to perform a
compatibility step in their approaches since they are integrating
behavioral models with fault models. Andrews et al. [19]
proposed a methodology for testing proper failure mitigation
of SCSs. They used an applicability matrix to identify the
possible points of failure in test paths generated from the
behavioral models. From the mitigation requirements of the
system under test (SUT), they modeled the mitigation behavior
using EFSMs and integrated them successfully into the identi-
fied points of failure to generate failure mitigation tests. These
mentioned contributions present novel approaches for testing
SCSs, however, none of them consider safety certification
issues nor do they provide an assessment regarding safety
evidence production.

B. Model-based testing (MBT)

Model-based testing uses models such as finite state
machines (FSM) to model system behavior and then generate
tests from these models [20]. In MBT, usually five steps are
performed as follows:
1. Build the model.
2. Define the test selection criteria.
3. Generate test paths from the models.
4. Generate concrete test cases from the test paths and
5. Execute the test cases and report the results.

In their literature survey, Dias-Neto et al. [21] classified
MBT methods into five different classes. The classification is
based on the representation of information from the software
requirements. One of the tools that has been used successfully
in formal modeling is FSM. FSMs basic formalism does
not provide the capability of modeling all the aspects of
software components behavior such as conditions and triggers.
However, the extended versions EFSM and CEFSM can cover
this drawback [22].

C. Combinatorial testing (CT)

Combinatorial testing techniques such as pair-wise coverage
are crucial in producing the minimal efficient test suite size
since exhaustive testing is too expensive, without compromis-
ing the effectiveness [23]. Combinatorial methods as defined
by Grindal et al. [24] in their literature survey, are methods
that select test cases by choosing values then combine them
strategically. In the survey, they classified these methods into



two classes, deterministic and non-deterministic. An example
of a deterministic combinatorial method is the In-parameter-
order algorithm (IPO). The IPO algorithm could be used to
generate a pair-wise coverage-based test suite by creating a test
suite for a subset of the identified parameters then add more
parameters incrementally one at a time until all parameters are
covered [25].

D. Systems Process Engineering Meta-Model Specification
Version 2.0 (SPEM 2.0)

SPEM 2.0 provides a meta modeling graphical language
of the software engineering process standardized by Object
Management Group (OMG). SPEM 2.0 offers process oriented
modeling elements. A description of a subset of these elements
that are used in this research to model our approach are
illustrated next. See [26] for more details and more SPEM
2.0 modeling elements.
Task: defines the work being performed.
Role: identifies who holds responsibility to perform the task.
Work Product: an element that is required as input to a
specific task/s or an output that is produced by a task.
Guidance: identifies the source that provide the required
information or knowledge to perform a task.
Fig. 1 shows some of the SPEM 2.0 graphical modeling
elements.

Fig. 1. Sample of SPEM 2.0 modeling elements

III. APPROACH: MODEL-COMBINATORIAL BASED
TESTING (MCBT)

Here we introduce our systematic testing methodology.
The proposed methodology combines model-based testing,
combinatorial-based testing and safety analysis techniques,
aiming at providing various testing and verification activities
that produce different safety evidences to support a successful
and efficient safety certification process. The MCbt consists
of five tasks, each task is illustrated in this paper using SPEM
2.0 meta modeling in Figures 2 - 6.

Task-1: The purpose of this task is to construct a behavioral
model for each component in the system. As shown in
Fig. 2, the tester creates models that are independent from
the development team to perform testing activities. The inputs
to this task are system requirements and safety specification.
Here we recommend the use of formal modeling to allow the
application of formal verification. The output is a model for
each of the system under test (SUT) components.

Task-2: The purpose of this task is to generate test paths for
each of the system component models. As illustrated in Fig. 3,
the inputs to this task will be the behavior models created in
task 1. The use of formal modeling techniques such as FSMs to

model the system behavior will provide the capability of using
various graph coverage criteria such as prime-path, edge, and
node coverage criterion to automate the construction of these
test paths [27]. The output of this task is a set of test paths
for each component of the SUT.

Fig. 2. Task1, Building the behavioral models process

Fig. 3. Task2, test paths generation process

Task-3: As illustrated in Fig. 4, we use combinatorial
techniques to combine test paths for different SUT components
efficiently. In this task, the inputs are sets of test paths for
two or more different components of the SUT. We could
face a complexity challenge both in the time to create these
combinations and in the size of the constructed combinations.
However, these challenges can be overcome by using pair-wise
combinatorial algorithms designed for combinatorial testing,
such as In-parameter order algorithm [24]. Outputs of task
3 will be a combination of test paths for a set of SUT
components.

Task-4: The purpose of this task is to perform a safety
analysis to build a fault tree (FT) for each identified failure.
Safety requirements of the SUT are used as inputs to this
step to produce fault trees using fault tree analysis (FTA) as
guidance. The output from task 4 will be a fault tree for each
possible failure. This task is shown in Fig. 5.

Task-5: The purpose of this task is to classify the com-
bination of test paths based on different testing targets. The
inputs are the FTs that were produced from task 4, and a set



Fig. 4. Task3, test paths combination process

Fig. 5. Task4, constructing failure fault trees process

of combined test paths produced by task 3. The task is to use
failure occurrence derived from the related FTs to classify the
set of the inputted combined test paths. Two classes of test
paths shall be identified; a subset of the combined test paths
that does not produce failures, which will be used for normal
behavior testing, and a subset of the combined test paths that
create failures from undesired state combinations of different
components. The later subset of test paths will be used for
robustness and fail-safe testing of the SUT components. Task-
5 process is shown in Fig. 6.

Fig. 6. Task5, combined test paths classification process

IV. MAPPING MCBT OUTPUTS TO SAFETY EVIDENCES

In this section we will assess MCbt’s contribution to the
certification process based on the safety evidence type it
produces. The assessment metric will be based on the number
of safety evidences it can provide. We do that by mapping
MCbt outputs to the possible safety evidence type they can
provide from the safety evidence taxonomy adopted from
[14]. The taxonomy consists of 49 different evidence types,
however, in the verification and validation (V&V) results
category, we are interested in 16 types of safety evidence after
excluding review and inspection activities evidences. In the
safety analysis category, 5 types of safety evidence have been
identified. Our evaluation of MCbt will be based on the pos-
sible mapping of MCbt outputs to these 21(16 + 5) evidence
types as we propose a V&V approach that combines Model-
based testing, Combinatorial testing and Safety analysis. To
show the mapping, we will use the evidence type definition to
match the output from MCbt steps.

The 21 evidence are categorized as follows: 5 from safety
analysis, 3 from formal verification and 13 from testing.

In Safety Analysis, 2 out of 5 evidences are provided by
MCbt. Those evidences are:

a. Risk analysis: defined in [28] as an analysis that provides
expected danger specification in case of hazard activation.

b. Hazard cause specification: defined by [28] as the con-
ditions and elements that enable a SCS to enter a hazardous
state.

From the above definitions, safety analysis using fault trees
is one of the techniques that could produce these two types
of evidences. In MCbt, task 4 outputs (FTs) will provide
these types of evidences. The rest of the evidence types in
this category, Accident specification, Hazard specification and
Hazard mitigation specification are not provided by MCbt
at its current level of maturity. However, it is still probably
possible to derive these evidences as the maturity level of
MCbt increases or as more safety analysis techniques are
added to the process.

In the Formal verification category, safety evidence usually
can be derived from the results of three formal methods
verification techniques: Theorem proving, Model checking and
Automated static analysis. In MCbt, building the system
component behavioral models is done in task 1. Using formal
modeling techniques in this task such as CEFSMs or Timed
Petri Nets, will enable the tester to use model checking.
Results from Theorem proving, and Automated static analysis
are not provided by MCbt as the first needs a non-graphical
system representation, and the latter applies to source code
which is not one of the inputs in the process.

In the third category of safety evidences, Testing, there are
13 evidences that could be obtained from the testing results,
and they are classified into three subcategories as follows:



1. Target-based testing, three out of three types of testing
in this subcategory are enabled using MCbt:

a. Unit testing: applicable using MCbt as in task 1, each
component/unit behavior is modeled separately, and in task
2, test paths from each model will be generated using graph
coverage criteria. These test paths are then used to create
concrete test cases for each unit.

b. Integration testing: also applicable using MCbt in the
collaboration of tasks 1, 2, and 3. As in task 2, test paths will
be generated from the component models and in task 3, the
combination of two or more components test paths will enable
integration testing as a new component/unit behavior model is
constructed.

c. System testing: on the system level, as a pair-wise
combination is recommended for efficient combination of
test paths from different components, a combination of all
component test paths will provide the capability for system
testing. Therefore, outputs from task 5’s work product could
be used for system testing.

2. Environment-based testing: only one type of testing
in this subcategory is enabled using MCbt. It is not obvious
how MCbt outputs could be used to contribute in Non-
operational testing, however, in Operational testing, a
pair-wise combination of all components test paths that is
filtered using FTs as illustrated in task 5, could be used to
verify the system behavior in its actual operating environment
as Operational testing defined in [29].

3. Objective-based testing category: MCbt can produce
evidences from the results of 4 out of 8 types of Objective-
based testing. Those four testing types are:

a. Normal range testing: the verification of a critical
system behavior under normal conditions as defined by [30].

b. Acceptance testing: the validation of a critical system
behavior with respect to customer requirements as defined by
[29].

c. Functional testing: as defined by [29], the validation of
the conformance of the behavior of a critical system to its
specifications.

From MCbt tasks, the component models are reflecting
the normal behavior, the test paths originally generated from
the components models, and the component models created
using system specification and requirements, therefore, the
above three types of testing can be performed using the work
product output in task 5 of MCbt.

d. Robustness testing: as defined in [29], is the verification
of a critical system behavior in the presence of failures.

This type of testing can be performed using the work
product output in task 5 of MCbt. From the work product,
the identified subset of combined test paths that leads to a

failure will be used to test for robustness.

From the other four testing types in this subcategory, Struc-
tured coverage testing cannot be performed since MCbt is a
black-box testing technique. Finally, based on their definitions
in [29], Performance, Stress and reliability testing cannot be
completely ruled out at this time. Their results could be im-
plicit in MCbt tasks, and therefore, they need an experimental
evaluation to see if they can be made explicit.

Fig. 7, adopted from [14], shows safety evidences related to
V&V and safety analysis that are covered by MCbt. The green
boxes represent the evidences that MCbt can provide, while
the yellow ones are the evidences that need more experimental
analysis to clarify MCbt’s contribution toward them. The white
boxes are the evidences that MCbt cannot provide.

Table. I shows MCbt SPEM 2.0 work product outputs that
we successfully mapped to safety evidences in the safety
evidence taxonomy.

TABLE I
SUMMARY OF MCBT OUTPUTS MAPPING TO SAFETY EVIDENCE TYPE

NO. Safety Evidence Source Task SPEM.WP
1 Risk Analysis 4 Fault trees
2 Hazard Cause Specs. 4 Fault trees
3 Model Checking 1 Behavior Models
4 Unit Testing 2 Test Paths
5 Integration Testing 5 Normal/Failure Test Paths
6 System Testing 5 Normal Test Paths
7 Operational Testing 5 Normal Test Paths
8 Normal Range Testing 5 Normal Test Paths
9 Acceptance Testing 5 Normal Test Paths

10 Functional Testing 5 Normal Test Paths
11 Robustness Testing 5 Test Paths for failure

V. DISCUSSION

Our proposed verification approach, MCbt, was driven by
safety evidence production for efficient safety-critical system
verification and certification. The use of Model-based test-
ing offers a systematic test path construction from system
requirements, which provide a threefold advantage related
to certification. First, it provides requirements-based testing
activities, second, it provides traceability between test cases
and high-level requirements, third, using models constructed
independently from the developers design, provides indepen-
dent testing. In addition, modeling the SUT components indi-
vidually will allow us to perform unit testing and integration
testing in parallel with the software development process.

Integrating combinatorial testing using pair-wise coverage
algorithms, will keep the generation of test paths combination
efficient while maintaining the required effectiveness.

Safety analysis using FTs will provide results from risk
analysis and hazard cause specification, while at the same time
being used as decision rules to identify test paths for failures
from different SUT components’ test paths combinations.
Those identified test paths could be used for robustness and
fail-safe testing.



TABLE II
SAFETY ANALYSIS AND VERIFICATION & VALIDATION RELATED EVIDENCE TYPES USED IN DIFFERENT SCS DOMAINS. X MEANS EVIDENCE HAS BEEN

IDENTIFIED TO BE USED IN THE DOMAIN.

NO. Evidence Source Aerospace Automotive Aviation Medical Maritime Nuclear Railway Robotics
1 Risk Analysis x x x x x x x x
2 Accident Specification x x x - x x x x
3 Hazard Mitigation Specification x x x x x x x x
4 Hazard Specification x x x x x x x x
5 Hazard Cause Specification x x x x x x x x
6 Automated Static Analysis x x x x - x x x
7 Model Checking x x x x - x - x
8 Theorem Proving x x x - x - x x
9 Operational Testing x - x - - - - x

10 Non-operational Testing - - x x - - x -
11 Normal Range Testing - x - - - - x x
12 Acceptance Testing - - x - - x x -
13 Functional Testing - - x x - - - -
14 Robustness Testing - x x x - x - -
15 Structural Coverage Testing x x x - - x x x
16 Performance Testing x - x - - - - -
17 Stress Testing x - x - - - - -
18 Reliability Testing x - x - - x x -
19 Unit Testing x x x x x x x x
20 Integration Testing x x x - - x x -
21 System Testing x - x - - - - -

Total 16 13 20 10 7 13 14 12

Fig. 7. Safety evidences coverage by MCbt. Evidences provided by MCbt are shown in green filled boxes. Yellow filled boxes are evidences that
need experimental analysis. Evidences in the white filled boxes are not provided by MCbt.

Regarding safety evidences production, from 21 safety
evidences divided between 3 classes, safety analysis, formal
verification and testing, 11 safety evidences were provided by
MCbt. As illustrated in Fig. 8, from the safety analysis class
MCbt provides 2 out of the 5 (40%) safety evidences, while
in V&V, MCbt could provide 1 out of the three (33%) formal
verification activities and 8 out of 13 (61%) of the testing
safety evidences.

Adopted from [14], in safety-critical domains, each one has
a different set of evidence that are used in the certification pro-

cess derived from V&V activities and safety analysis. Based
on that, MCbt safety evidences production covers multiple
domains with slight variations.

From Tables I and II, in the Aerospace domain, 16 different
safety evidence out of the 21 V&V activities and safety
analysis are recorded to be used in the certification process.
MCbt provides 7 (44%) of them. In the Automotive domain 13
different safety evidence out of 21 are recorded to be used in
the certification process. MCbt provides 6 (46%) of them. In
the Aviation domain, 20 different safety evidence out of 21 are



recorded to be used in the certification process. MCbt provides
10 (50%) of them. In the Medical domain, 10 different safety
evidence out of 21 are recorded to be used in the certification
process. MCbt provides 5 (50%) of them. In the Maritime
domain, 7 different safety evidence out of 21 are recorded to
be used in the certification process. MCbt provides 3 (43%)
of them. In the Nuclear domain, 13 different safety evidence
out of 21 are recorded to be used in the certification process.
MCbt provides 6 (46%) of them. In the Railway domain, 14
different safety evidence out of 21 are recorded to be used in
the certification process. MCbt provides 5 (36%) of them and
in the Robotics domain, 12 different safety evidence out of
21 are recorded to be used in the certification process. MCbt
provides 6 (50%)of them. Fig. 9, shows these percentages
of the safety evidence that MCbt provides in each safety-
critical domain. The higher evidence coverage percentages
were in aviation, medical, and robotics domains with 50% of
the recorded evidence provided, while the lowest was in the
railway domain with 36% of the recorded evidence provided
by MCbt. We can also observe that MCbt provides three types
of evidence that have been identified in all SCS domains,
Hazard Cause Specification, Risk Analysis Results and Unit
Testing Results.

Fig. 8. MCbt safety evidences production in each V&V activities type.

Fig. 9. MCbt safety evidences use in common safety-critical domains.

VI. RELATED WORK

Arguing whether a development or a verification technique
is fulfilling the required objectives in a given activity by
domain standards is an active research field that needs more
practical evaluation by both academia and industry. Cârlan et
al. [31] contribute to the problem of appropriately employing
verification techniques in the avionic domain by extending
the Structured Assurance Case Meta-model (SACM), describe
relationship types between heterogeneous verification results
collaborating to the achievement of one safety goal and use
the proposed meta-model to provide safety case patterns for
arguing the appropriateness of a certain technique.

Gannous et al. [2] introduced an end-to-end testing approach
for testing safety-critical systems called Fail-safe Model Based
Testing (Fail-safeMBT). Fail-safeMBT is the result of merging
Gario et al. [18] approach and Andrews et al. [19] approach.
The two approaches share a major activity as they both use
CEFSM to build the behavior model for test generation. Gario
et al. approach aims at generating failures, while Andrews et
al. approach aims at verifying the mitigation for these failures.
Gannous et al. applied Fail-safeMBT to the Autopilot system
basic functionality as a case study. They also examined the
adequacy of Fail-safeMBT in the standard compliance process
by linking what it could achieve in DO-178C Verification of
the Verification process results objectives compliance. They
argued by using evidence produced from the process outputs
and showed that Fail-safeMBT offers partial compliance with
the standards, specifically as a requirements-based testing
technique, providing complete coverage in testing high-level
requirements in addition to providing the independence prop-
erty when required by the safety level.

Also, in [32], Gallina et al. used a Model Driven Safety
Certification method to show that Fail-SafeMBT, can be partly
used as testing-planning related evidence within a safety case.
They focused on specific sections of the DO-178C and its sup-
plements related to verification process compliance and argued
about Fail-SafeMBT compliance with the related verification
process planning elements.

Cofer et al. [3], investigated the use of formal methods and
tools in the certification of a Flight Guidance System design
that is deployed in commercial aircraft. Three case studies
were provided to show the use of theorem proving, model
checking, and abstract interpretation in satisfying related cer-
tification objectives defined in DO-178C and its supplement,
DO-333. They showed how each technique could be applied to
different life cycle data items and how the evidence produced
by these three techniques might be used in the certification
process.

VII. CONCLUSION AND FUTURE WORK

The need for a better safety-critical system development
process that produces clear safety evidences is one of the
main challenges in safety-critical system certification [14].
Verification is not just an important phase in any software
development process, but also tends to be included in every
development life cycle. This motivated us to introduce, in this



paper, a proposal for a systematic verification methodology
we call Model-Combinatorial based testing (MCbt) to be used
in testing safety-critical systems and produce safety evidences
that contribute positively in the process of safety certification.
The MCbt framework is an integration of model-based testing,
combinatorial testing and safety analysis to perform testing
activities at different system levels and testing targets. We
presented MCbt tasks using SPEM 2.0 meta models and
we performed an evaluation on the work product output of
these tasks with respect to safety evidence type production.
Based on the taxonomy provided by Nair et al. in [14], the
evaluation was conducted by linking work product outputs
of each MCbt task to a safety evidence using the definition
of each testing activity that could be conducted using MCbt.
MCbt showed preliminary results regarding safety evidence
production with about 52% safety evidence coverage. In order
to experimentally validate and evaluate MCbt scalability in
testing safety-critical systems, in a future work, we will
apply MCbt to different case studies from different safety-
critical domains and investigate MCbt’s contribution to the
certification compliance process. This could also help identify
more safety evidences that were not clear if they could be
produced at this current level of analysis and maturity of
MCbt.

ACKNOWLEDGMENT

This work was partially supported in part by NSF grant
#1439693 to the University of Denver. The author B. Gallina
is financially supported by the EU and VINNOVA via the
ECSEL JU project AMASS (No. 692474).

REFERENCES

[1] J. Frost, ”An Ada95 solution for certification of embedded safety critical
applications,” In: Gonzlez Harbour M., de la Puente J.A. (eds) Reliable
Software Technologies Ada-Europe 99. Ada-Europe. Lecture Notes in
Computer Science, vol. 1622, Springer, Berlin, Heidelberg 1999.

[2] A. Gannous, A. Anneliese and B. Gallina, ”Bridging the gap between
testing and safety certification,” In IEEE Aerospace Conference, 2018.

[3] D. Cofer and S. Miller, ”DO-333 Certification case studies,” In: Badger
J.M., Rozier K.Y. (eds) NASA Formal Methods, Lecture Notes in
Computer Science, vol. 8430, Springer, Cham 2014.

[4] RTCA DO-178C, ”Software Considerations in Airborne Systems and
Equipment Certification. RTCA Inc,” Washington DC, 2013.

[5] L. Rierson, Developing safety-critical software: a practical guide for
aviation software and DO-178C compliance. CRC Press, 2013.

[6] ISO 10218, ”Robots and robotic devices – Safety requirements for
industrial robots. International Standard,” 2011.

[7] ISO 13482, ”Robots and robotic devices – Safety requirements for
personal care robots. International Standard,” 2014.

[8] EN 50126, Railways Applications – The specification and demonstration
of Reliability, Availability, Maintainability and Safety,” 2017.

[9] ISO 26262, ”Road vehicles – Functional safety. International Standard,”
2011.

[10] IEC 62304, ”Medical device software software life cycle processes.
International Electro-technical Commission,” Geneva, 2006.

[11] R. Bloomfield and P. Bishop, ”Safety and assurance cases: past, present
and possible future an Adelard perspective,” Making Systems Safer,
Springer, London, pp 51-67, 2010.

[12] B. Monate, E. Ledinot, H. Delseny, V. Wiels and Y. Moy, ”Testing or
Formal Verification: DO-178C Alternatives and Industrial Experience,”
IEEE Software vol. 30, p. 50-57, 2013.

[13] U. Zdun, A. Bener and E. L. Olalia-Carin. Introduction: Software
Engineering for Compliance. In IEEE Software, vol. 29, no. 3, pp. 24-
27, 2012.

[14] S. Nair, J. de la Vara, M. Sabetzadeh, and L. Briand, ”An extended
systematic literature review on provision of evidence for safety certi-
fication,” Information and Software Technology, Vol. 56, Issue 7, pp.
689-717, 2014.

[15] C. Ericson, Hazard Analysis Techniques for System Safety. John Wiley
& sons Inc., 2005.

[16] M. Sánchez and M. Felder, ”A systematic approach to generate test cases
based on faults,” In Argentine Symposium in Software Engineering,
Buenos Aires, Argentina, 2003.

[17] R. Nazier and T. Bauer, ”Automated risk-based testing by integrating
safety analysis information into system behavior models,” In IEEE
23rd International Symposium on Software Reliability Engineering
Workshops (ISSREW), pp. 213-218, 2012.

[18] A. Gario, A. Andrews and S. Hagerman, ”Testing of safety-critical
systems: An aerospace launch application,” 2014 IEEE Aerospace
Conference, pp. 1-17, 2014.

[19] A. Anneliese, S. ELakeili, A. Gario, and S. Hagerman, ”Testing proper
mitigation in safety-critical systems: An aerospace launch application,”
In IEEE Aerospace Conference, 2015.

[20] M .Utting, A. Pretschner, and B. Legeard, ”A taxonomy of model-
based testing approaches,” Software Testing, Verification & Reliability
Journal, vol. 22, no. 5, pp. 297-312, 2012.

[21] A. Dias Neto, R. Subramanyan ,M. Vieira, and G. Travassos, ”A
survey on model-based testing approaches: a systematic review,” 1st
ACM International Workshop on Empirical Assessment of Software
Engineering Languages and Technologies, pp. 31-36, 2007.

[22] M. Fantinato and M. Jino, ”Applying extended finite state machines
In software testing of interactive systems,” International Workshop on
Design, Specification, and Verification of Interactive Systems, Springer,
2003.

[23] C. Nguyen, A. Marchetto, and P. Tonella, ”Combining model-based and
combinatorial testing for effective test case generation,” In Proceedings
of the 2012 International Symposium on Software Testing and Analysis
(ACM), pp. 100-110, 2012.

[24] M. Grindal, J. Offutt, and S. Andler, ”Combination testing strategies: a
survey,” Software Testing, Verification and Reliability Journal, vol.
15, no. 3, pp. 167-199, 2005.

[25] Y. Lei and K. Tai, ”In-Parameter-Order: A test generation strategy for
pair-wise testing”, Proceedings of the Third IEEE High Assurance
Systems Engineering Symposium, IEEE Computer Society Press, pp.
254261, 1998.

[26] OMG, 2008, Software & systems process Engineering Meta-model
(SPEM), v 2.0. Full Specification formal/08-04-01, Object Management
Group.

[27] P. Ammann and J. Offutt, Introduction To Software Testing, 1st ed.,
Cambridge University Press, 32 Avenue of the Americas, New York,
NY 10013, USA, 2008.

[28] C. Ericson, ”Concise Encyclopedia of System Safety: Definition of
Terms and Concepts,” Wiley, Hoboken, 2011.

[29] A. Abran, and J.W. Moore, ”Guide to the software engineering body of
knowledge,” IEEE Comput. Soc, 2004.

[30] V. Hilderman, and T. Baghi, ”Avionics certification: a complete guide
to DO-178 (software), DO-254 (hardware),” Avionics Communications,
2007.

[31] C. Cârlan ,B. Gallina , S. Kacianka and R. Breu, ”Arguing on software-
level verification techniques appropriateness,” In: International confer-
ence on Computer Safety, Reliability, and Security. SAFECOMP 2017.
Lecture Notes in Computer Science, vol 10488, pp. 39-54, Springer,
Cham, 2017.

[32] B. Gallina, and A. Andrews, ”Deriving verification-related means of
compliance for a model-based testing process,” Digital Avionics Systems
Conference (DASC), IEEE/AIAA 35th, 2016.


