
Adopting MBSE in Construction Equipment
Industry: An Experience Report

Jagadish Suryadevara
Volvo Construction Equipment, Sweden

jagadish.suryadevara@volvo.com

Saurabh Tiwari
Mälardalen University, Sweden

saurabh.tiwari@mdh.se

Abstract—This paper is an experience report about introducing
Model-based Systems Engineering (MBSE) at Volvo (Construc-
tion Equipment) and describes lessons learned. The recent growth
in technologies such as electromobility, automation etc. in heavy
construction machinery such as loaders, haulers, excavators etc.
leads to increased complexity being addressed within embedded
systems and software. Hence there is an increasing need for
model-based development methodologies to facilitate flexible
and distributed development scenarios, enhance communication
among cross-functional teams, more importantly, traceability
from requirements to system and software architectures. In this
paper, we describe how the MBSE methodology was initially
conceived, applied in an ongoing project, the challenges faced,
and lessons learned. The paper also points to related works and
future directions towards a holistic Model-Driven Development
(MDD) framework.

Index Terms—Model-Based Systems Engineering (MBSE),
construction equipment industry, experience report, guidelines

I. BACKGROUND

Volvo (CE1) is a leading manufacturer of heavy construc-
tion machinery such as Wheel Loaders, Articulated Haulers,
Excavators, etc. and is among top three in the corresponding
market segment.

Over the past decade, the mechanical aspects within heavy
equipment machines, are replaced with increasing amount of
Electrical and Electronics. For instance, as shown in Fig. 1,
hydraulic motors are being replaced with electric versions, new
versions of the drive-line system are considered where elec-
trified hub motors are introduced into wheels. The advanced
technological changes described above in large complex prod-
ucts cause challenges for existing software development teams.

Besides the new functional aspects (e.g., machine features),
the new design concepts lead to major changes in hardware
and software. The traditional function-oriented development
techniques are usually based on small incremental changes
to existing software which is largely monolithic lacking the
notions of “software architecture” and “system approach”.
These approaches increasingly lead to quality issues as well as
maintainability, traceability problems. To manage the increas-
ing complexity, instead model-based techniques such as MBSE
(Model-based Systems Engineering) and MBD (Model-based
Design) have gained industrial attention. However, application
of these techniques at industrial scale requires established

1Construction Equipment AB, Sweden

Fig. 1. Driveline system with Electrical motors in wheel hubs

guiding principles, best practices, standardization, as well as
evidence of tangible benefits for the stakeholders involved. It
can be noted that the application of MBSE is based on the
assumption of standard systems engineering practices in place
(so called “document-based”). However lack of such standard
practices leads to additional challenges while introducing
“model-based” approach. Fortunately, there exist powerful
modeling tools and methodologies to support introduction of
MBSE approach, albeit with a steep learning curve. This paper
describes challenges in adopting MBSE within large industrial
contexts, such as Volvo.

II. INTRODUCTION

According to International Council on Systems Engineering
(INCOSE2), “Model-based Systems Engineering (MBSE) is
the formalized application of modeling as well as information
management to support system requirements, design, analysis,
verification and validation activities”. The classical V-model
way of developing systems require tool support to enable
rigours and agile way of system development referred as
continuous development.

The term “model-based” concerns the application of in-
formation modeling (visual and textual) methods, techniques
and tools to SE activities (as defined by existing standards).
For instance, the SE standard ISO 152883 related to systems
engineering defines related processes and lifecycle phases. On
the other hand, the standard ISO 420104 defines a framework

2https://www.incose.org/
3https://www.iso.org/standard/63711.html
4http://www.iso-architecture.org/ieee-1471/

for the formal description of the system as well as software
architectures – in terms of viewpoints and views of the sys-
tem and software aspects. The viewpoints correspond to the
addressing stakeholder concerns that can be captured using
relevant views (the views and viewpoints are further discussed
later in the paper). Recently, new standards such as ISO 42020,
and 42030 define enterprise level processes as well as process
evaluation frameworks. These standards are aimed at emerging
System-of-Systems (SoS) approaches and corresponding needs
for enterprise level architecting methodologies e.g., service-
oriented architectures.

In our view, the above described standards constitute the
necessary foundations required for adoption of MBSE. For
instance, at Volvo, the standard ISO 15288 has been adopted
albeit with necessary customization required to reflect the
organizational structure and corresponding responsibility inter-
faces. However there has been some gaps in formal documen-
tation of “software architectures” as well as following truly
“systems approach” within development process. Introduction
of MBSE, provides and opportunity to address these gaps
besides other benefits described previously.

This paper is a report describing initial experience gained
in adopting MBSE approach at VCE, the experience of the
system engineers towards MBSE, the lessons learned and
challenges faced in applying the methodology. Besides, we
attempt to evaluate (somewhat qualitatively) the effectiveness
of the approach as well as overall maturity of the methodology
based on the standards and the existing “best-practices” as
described later in the paper.

The rest of the paper is organized as follows. In the next
section, we present an overview of the state-of-practices about
MBSE approaches. Based on this, we further arrive at a quali-
tative criteria to evaluate MBSE methodology described in this
paper. Section IV describes the initial methodology i.e., the
initial kick-off phase, planned work-flows etc. In Section V, we
present an overview of the modeling techniques and patterns
developed. In Section VI, we analyze the methodology on
the basis of the validation criteria as well as the interviews
conducted with various stakeholders. Finally, in Section VII,
we make conclusions and point to some future works.

III. MBSE OVERVIEW: THE STATE-OF-PRACTICE

In this section, we present an overview of the documented
methodologies for MBSE.

According to Hallqvist et al. [1], MBSE is more than a mere
technical task. It is essentially a “change process” affecting a
very complex system where the important system elements are
humans. Further, they rightly argue that adopting MBSE is not
about learning a “modeling language” e.g., SysML, but more
importantly addressing the stakeholders “concerns” during the
change process. They rightly stated that the problem domain
is valuable in defining common concepts and procedures, and
further suggested that more time should be spent to build up a
friendly infrastructure towards modeling, else MBSE practices
become a burden, if not well defined until extensively used in

the organization. In the rest of this section, we present an
overview of MBSE methodologies and tools.

A. Methodologies & Tools: An Overview

Table I outlines the well-known methodologies for
implementing MBSE. For large industrial contexts, these
methodologies require customization to support the internal
development processes and other organizational requirements.
Besides these methodologies, there exist other approaches
involving light-weight and comprehensive methods. For
instance, Kass et al. [8] proposed a simplified MBSE schema
based on traceability and maintainability. The rationale behind
this schema is to avoid a steep learning curve for systems
engineers. Spangelo et al. [9] reported their experience on
applying domain-specific modeling techniques to model a
standard CubeSat. They have tried to map the CubeSat terms
with SysML concepts (SysML element and diagram types)
and found that this improves the design and operation of
CubeSat missions [10]. Hammarström et al. [11] reported
the challenges encountered in the development of the Gripen
Fighter aircraft, when combining the traditional SE with the
MBSE methodology. They found that the identified system
structure is not consistent with the domain structure, and thus
employed domain analysis mechanism within the architecting
process. Malone et al. [12], based on their experiences
with MBSE at Boeing, reported that the MBSE helps in
understanding the system architecture besides supporting SE
processes. Friedenthal et al. [13] pioneered approaches to
support MBSE using SysML, the standard system modeling
language. Also, Bleakley et al. [14] proposed a methodology
that enables users to explore the design space using SysML.

Tools are an integral part of MBSE methodologies and play
significant role in the success or failure of the methodologies.
There exist established tool frameworks e.g., Rhapsody (IBM
Rational5), MagicDraw (NoMagic6), Integrity Modeler (PTC7)
etc. in support of standard methodologies described earlier
in this section. These tools provide a collaborative design,
development and test environment for systems engineers and
software engineers, using SysML/UML, the standard system
and software modeling languages respectively. Other modeling
tools like Modelio8, Papyrus9 also provide the UML/SysML
environment for creating visual models. Roques et al. [15] de-
scribe the benefits of MBSE with the ARCADIA (Architecture
Analysis and Design Integrated Approach) and the Capella10

tool. Capella is a model-based solution deployed in a wide
variety of industrial contexts. However, in spite of many mod-
eling tools that exist today, there is lack of compatibility and
interoperability that impede successful deployment of MBSE
for large-scale development environment. To address this gap,

5https://www.ibm.com/
6https://www.nomagic.com/
7https://www.ptc.com/
8https://www.modelio.org/
9https://www.eclipse.org/papyrus/
10https://www.polarsys.org/capella/index.html

TABLE I
AN OVERVIEW OF MAIN MBSE METHODOLOGIES

S.No. MBSE Methodology Approach Work-flows Modeling
Language

Tool Support

1 Harmony SE from
IBM Telelogic [2]

Consistent with V
model

Requirements analysis, system
functional analysis, and design
synthesis

SysML Rhapsody TAU

2 OOSEM from
INCOSE [3][4]

Consistent with V
model

Analyze stakeholders needs, de-
fine systems requirements, de-
fine logical architecture, synthe-
size allocated architectures, op-
timize and evaluate alternatives,
validate, and verify system

SysML OMG SysML tools
(integrated with
other engineering
tools)

3 RUP SE from IBM
Rational [5]

Consistent with the
spiral model

Inception, elaboration, construc-
tion, transition, and use case flow
down activities

UML/SysML Rational method
composer with
RUP SE plug-in

4 Vitech MBSE method-
ology [6] from Vitech
Corporation

Concurrent design,
incremental
approach

Requirements analysis, behavior
analysis, architecture/synthesis,
and design V&V

System definition
language (SDL)

CORE

5 INCOSE MBSE-
based Agile
Systems Engineering
Framework [4][7]

Distributed teams,
incremental
approach

Analyze stakeholders needs, de-
fine systems requirements, define
roles, define architecture, and ver-
ify system

- -

the tool consortiums are moving towards a standard-based in-
teroperability framework, namely Open Services for Lifecycle
Collaboration (OSLC11). However, OSLC implementations are
currently vendor-specific and far from providing a seamless
integration of SE processes across wide tool spectrum (often
multi-vendor) within large-scale industrial contexts, such as
Volvo.

B. Validation Criteria

Reflecting on the MBSE overview presented in previous
sections, we outline a qualitative evaluation criteria below,
to be able to evaluate MBSE methodology described in the
paper. Based on this criteria, a questionnaire is derived, as
presented later in this paper, to interview the stakeholders
and systems engineers involved in the application of the
methodology. We state the criteria along four dimensions
such as Organization, Methodology, Process and Tools.

Does the methodology,
1) Organization

• provide mechanisms to address the stakeholders
concerns?

• provide a collaborative environment for cross-
functional domains/teams?

• imply a steep learning curve for system engineers,
project leaders?

• provide a shared development platform, for both
system and software teams?

2) Methodology
• support reusability of system/software artifacts?
• provide traceability at system and software levels?
• define easy to use work-flows as well as modeling

patterns for complex tasks?

11https://open-services.net/

• define guidelines and check-lists for modeling
tasks?

• define the modeling views and patterns w.r.t ISO
42010 framework?

• support multiple development approaches such as
water-fall, iterative, agile etc.?

• support analysis techniques such as FTA / FMEA /
Safety using models?

3) Processes
• supports main technical processes specified in ISO

15288?
• provides enhanced requirement engineering?
• provides architecture development techniques?
• support verification and validation (V&V) of system

/ software models?
4) Tool support

• supported by existing tool frameworks?
• supported by configuration management, change

management capabilities (at model level)?
• include simulation, code-generation support?
• based on multi-tool environment with seem-less

integration?

IV. MBSE: KICK-OFF PHASE

This initial phase was aligned with traditional pre-project
activities, as the decision was taken to “try-out” the strategy
within new “Pilot” project (to develop new generation of
construction machinery with “electrified” subsystems as main
focus). The outlined mission statement was “to deliver high
quality Electronic Control System” for the corresponding
product family. Several brainstorm sessions were organized
among several key stakeholders as well as MBSE experts (as
consultants) to outline an initial strategy for MBSE, albeit
within a “limited scope”. Fig. 2 shows the “model context”

AB 123

Executable
Models
(Simulink)

Software Development

Product Specification
System Specification

Project
Team place

Func Descr 1
Func Descr 2
…

N
o
d
e

Comp behavior
Req + design

Func. Req

“VnV”Req + design Verif. spec

Control SW

Fig. 2. Legacy Information “network” (illustration)

in the organization where there exist a variety of artifacts,
spread across different tool contexts, some as the source of
information while others are the target of overall information
structure to be formally controlled, and change/configuration
managed. The initial objectives of the MBSE strategy were
limited to following:

1) Improve communication between the main “software”
teams i.e., the Control system and Driveline System.

2) Improve system specifications and the functional re-
quirements.

3) Enhance software verification and validation activities
(system level).

4) Enhance traceability between System and Software lev-
els and support analysis tasks (FTA [16], FMEA [17],
Safety etc.)

Following activities were performed during this initial
phase:

• Initial MBSE team was formed, with all relevant stake-
holders besides new roles such as a modeling leader,
modeler(s), model architect, and subject matter expert
(consultant).

• Initial training sessions with focus on MBSE methodol-
ogy, SysML modeling, tool (Rhapsody) conducted.

• A high-level methodology/work-flows defined (see Fig. 3)
• A set of guidelines describing “Modeling patterns” and

checklists created to help with the modeling tasks.
• A scrum team setup initiated to coordinate the project

tasks through sprints.

In spite of the “well-structured” setup described above,
certain amount of “chaos” has kicked-in immediately after the
start up of the project. This was essentially not due to “MBSE”
but due to existing “information network” (see Fig. 2) over
several sources as well as heterogeneous tool environments.
This “network” represents legacy information artifacts often
inconsistent, as well duplicated. However, these impediments
were to be “expected” though the initial time-plan regarding
developing the models and review process (ref. Fig. 3) were
often not met.

Some of other challenges faced during the kickoff phase as
below:

Functional Descriptions

Modeling Functionality

Peer ‐ Review

Modeling of Complete
System

Find 1st Order Architecture

Identification of needs (sensors,
actuators, ECU's, and other

machines Hardware) to realize
behavior

Find topology and create pin
out list

Allocate functionality, topology,
and pin out list in place

A
nalyze R

equirem
ents

- C
om

pleteness
- R

equirem
ents U

nderstood

A
nalyze Possible
Interference

betw
een functions

Se
co
nd

D
es
ig
n
St
ep

Fi
rs
t

D
es
ig
n
St
ep

Establish Structural Parts
D

esign
E&

E System

Fu
nc
tio

na
lit
y

G
ro
up

s
Pr
es
en

t

Fig. 3. The adopted work-flow for MBSE implementation.

• The choice of SysML diagrams for specific modeling
tasks was not clear often leading to long discussions and
“unscheduled” brainstorm sessions.

• Existing “guidelines” were not sufficiently adequate and
instead in-house development of “guidelines” and “pat-
terns” was identified.

• The tooling environment was not considered very
“friendly” (partly due to inexperience working with the
tool)

• Collaborative environment of the tool was not very effi-
cient.

However, after the initial impediments, the progress had
slowly settled-in, towards a stable work-flow (Fig. 3) as well as
the methodology development. In the next section, we describe
the methodology in detail.

V. METHODOLOGY DESCRIPTION

The main work-flow as shown in Fig. 3, consisting of several
modeling tasks, can be divided into two phases corresponding

System of
Interest

Stakeholder
Architecture
Description

Concern
Architecture

View

Architecture
Model

Modeling
Diagrams

has interests in
1

1..*

1

1

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1

1

1..*

has identifies

identifies

identifies

addresses

Fig. 4. Conceptual model (Ref. ISO 42010)

to Systems Engineering and Software Engineering. These
phases correspond to creating necessary architectural “views”
(refer Fig. 4) such as logical, functional, software, as well
as hardware. These views correspond to corresponding stake-
holder “concerns”. Further “modeling patterns” are developed
to capture these views.

The overall objectives of MBSE methodology, as outlined
in previous section, is to identify “quality” requirements
as well as transform requirements into initial design (i.e.,
architecture development), referred as logical architecture, as
well as develop system and software functional architectures.
The proposed SysML-based methodology (Fig. 5) is the main
vehicle to achieve the objectives.

A. Systems Engineering Phase

The corresponding tasks (as per the main work-flow de-
scribed earlier) as below:

Analyze requirements: Based on the existing documents
(e.g., system specifications), the requirements are analyzed
and modeled. The specific modeling pattern is based on
“requirements modeling”, “use case modeling” if necessary
complemented with “sequence diagrams”.

Develop logical & functional breakdown structures: Both
logical and functional architectures are created in parallel
(referred as the “1st Order Architecture” in the workflow).
While the logical architecture refers to the “problem domain”
i.e., external to the wheel-loader context, the high-level func-
tional breakdown structure refers to the “solution domain” i.e.,
current system designs, and paves the way for detailed system
architectures, incremental fashion. It may be noted that these
first-cut architectures also correspond to the organizational
entities at VCE. This is a very pragmatic approach, as well
facilitate identifying the organizational interfaces and division
of responsibilities (thus central to systems engineering pro-
cesses). The modeling pattern adopted was based on SysML
BDD (Block Definition Diagram) and IBD (Internal Block

Diagram). Statemachines too were employed to capture the
functional behavior (also incrementally).

Analyze functions: The task is performed in two phases.
Initially functions are analyzed in isolation. This step also
includes identifying the functional requirements. After all the
functions (or at least a collection of related functions) are
analyzed, the “models” corresponding to these functions are
“combined”. This phase is further described in the next task
below.

System-of-Interest view: In this work, the System-of-
Interest approach is employed in a restricted sense, with refer-
ence to break-down structures described above. For instance,
the overall functional behavior of a System-of-Interest (SoI)
is captured in a piece-meal fashion (described in previous
step above) giving plenty of opportunity for communica-
tion between different stakeholders. Also, an opportunity to
evaluate the function under consideration away from rest of
the functionality. This paves the way for quality functional
requirements to be verified and validated against implemented
design concepts as well as the corresponding software.

System Specifications: The combined functional view of
a SoI, developed in incremental steps, as a system specifica-
tion document. The corresponding modeling pattern consists
mainly of a state machine. These constitute the “white-box”
view of the system corresponding to the “black-box” view w.r.t
the system architecture described above.

B. Software Engineering Phase

In this phase, a system (e.g., the main Control System, Drive
line System etc.) is implemented largely in Software. However,
the “Software Parts” are identified during the realization view.
Further, the “Software Architecture” views are developed to
support allocation of software parts to ECUs (besides sensors,
and actuators, also part of the hardware view).

Realization Views: These views correspond to actual con-
ceptual design in terms of hardware and software allocations as
well the most important design decisions. Also, the modeling
views correspond to methodological interface between Sys-
tems Engineering (earlier views described above) and Software
Engineering domains (e.g., Simulink models). The SysML
operations within a system specification are “divided” into
control or “intelligence” parts (i.e., Software) alt. non-control
parts corresponding to hardware implementation.

Software Views: This is the final phase of the SysML-
modeling activity and concerns the software architecture mod-
eling. The models in the previous sections play an important
role in identifying the “software” parts from “hardware”
parts. However, certain amount of domain expertise is needed
besides the technical trade-offs to be made regarding whether
a certain SysML “Operation” is to be implemented in software
or hardware (e.g., sensor).

An example of the SysML diagrams corresponding to the
work-flow and the views described above are presented in the
Appendix Section.

Functions

Logical Views

Functional Views

Combined Logical
View

Realization
Views

Simulink Models

Stakeholders needs
& concerns

System Specification
document & Legacy

MBSE Methodology

Functions and their
elaboration

Combined functional
model

System Specifications

Software
Views

Hardware
Views

...

Work flows Modeling Modeling Views Modeling Patterns

Functional Views
- Use Case Diagrams
 - Sequence Diagrams

System Specification
- Internal Block Diagram
- Block Definition Diagram
- State Diagram

Functional Requirements
& Constraints
- Requirement Diagrams

Software Views
Specification Views
- Internal Block diagrams
- Package diagrams
(Allocation of ECU to H/W)

Product Breakdown Structure

I.

II.

III.

IV.

V.

Functional Views

Fig. 5. Methodology Overview: Architecture & Modeling Patterns

VI. METHODOLOGY VALIDATION

In this section, we analyze the proposed MBSE method-
ology on the basis of the validation criteria described in
Section III-B. Four stakeholders (one interview per role) such
as system engineers, function leaders, architects, and verifica-
tion leaders were interviewed. The responses were collected
on the four-point Likert scale (Strongly Agree (SA); Agree
(A); Disagree (D); Strongly Disagree (SD)). Additionally,
we recorded their general experiences as well as the lessons
learned with the MBSE methodology.

Table II shows the responses collected across the four
dimensions i.e., organization, methodology, process, as well
tool support. This qualitative evaluation revealed that the
methodology

1) provides sufficient work-flows e.g., structured reviews,
modeling views to address the stakeholder concerns.

2) provides a “collaborative environment” for cross-
functional teams.

3) provide a shared “development platform”, for both sys-
tem and software teams.

4) thanks to inherent object-oriented features, support
reusability of system/software artifacts (models).

5) provide traceability across system and software levels
within single tool environment though, i.e Rhapsody.

6) define easy to use work-flows as well as modeling “pat-
terns” to simplify complex modeling tasks for systems
engineers not experienced in modeling.

7) define guidelines and checklists for modeling tasks to
ensure overall “quality” and consistency of the models.

8) provides enhanced requirement engineering process,
thanks to cross-functional teams and collaborative en-
vironment.

9) provides architecture development techniques paving the
way for improved specification of “interfaces” as well
“interface Requirements”. This further enhances system
integration and verification aspects.

However, some shortcomings and limitations of the method-
ology too identified, as below.

• In spite of the initial training sessions and standing
support from methodology expert, the methodology did
imply a steep learning curve. This was partly due the ini-
tial training largely focused on learning “SysML” instead
more important methodology aspects such as architecture
development.

• Lacks support for analysis techniques such as FTA /
FMEA / Safety using new artifacts i.e., models (this
points to need for integrating corresponding “domain
ontologies” into the methodology as part of future work).

• The major shortcoming of the methodology was insuffi-
cient V&V activities. The reasons were two-fold; lack of
model-based testing (MBT) knowledge within the team.
The second reason was lack of tool integration between
Rhapsody and existing testing environment.

• The scope of the methodology was limited to architecture

TABLE II
EVALUATION RESULTS [STRONGLY AGREE (SA); AGREE (A); DISAGREE (D); STRONGLY DISAGREE (SD)]

Dimension Criteria System Engineer Function Leader Architect Verification Leader

Organisation

Does the methodology provide mechanisms
to address the stakeholders “concerns”?

SA SA SA SA

Does the methodology provide a collabo-
rative environment for cross-functional do-
mains/teams?

A A A A

Does the methodology imply a steep learn-
ing curve for system engineers, project lead-
ers?

SA SA SA SA

Does the methodology provide a shared
development platform, for both system and
software teams?

SA A A A

Methodology

Does the methodology support reusability
of system/software artifacts (models)?

A SA A A

Does the methodology provide traceability
across system and software levels?

A A A A

Does the methodology define easy to use
work-flows as well as modeling patterns for
complex tasks?

A A A A

Does the methodology define guidelines and
check-lists for modeling tasks?

SA SA SA SA

Does the methodology define the modeling
views and patterns w.r.t ISO 42010 frame-
work?

A A A A

Does the methodology support multiple de-
velopment approaches such as waterfall,
iterative, agile etc.?

A A A A

Does the methodology support analysis
techniques such as FTA/FMEA/Safety us-
ing models?

SD D D D

Processes

Does the methodology supports main tech-
nical processes specified in ISO 15288?

A A A A

Does the methodology define the modeling
views and patterns w.r.t ISO 42010 frame-
work?

SA SA SA SA

Does the methodology provides enhanced
requirement engineering?

A A A A

Does the methodology provides architecture
development techniques?

A A A A

Does the methodology support verification
and validation (V&V) of system/software
models?

D D D SD

Tool Support

Is the methodology supported by existing
tool frameworks?

D D D D

Is the methodology supported by configura-
tion management, change management ca-
pabilities (at model level) of existing tools?

D D SD SD

Does the methodology include simulation,
code-generation support?

D D D D

Does the methodology based on multi-tool
environment with seem-less integration?

D SD D SD

modeling, and not integrated well with general tool ca-
pabilities available e.g., simulation and code generation.

• Lack of tool integration, and thus existing processes,
was a major factor in limiting the benefits. For instance,
possibility of OSLC implementation in existing tools
investigated (e.g., to integrate requirements with existing
test practices) but not succeed due several factors includ-
ing budget over-runs.

In nutshell, the methodology was largely “successful” and
results “satisfactory” as far as the defined scope and stated

objectives are considered. In the next section, we describe
some general lessons learned.

A. Lessons Learned

The major lessons learned are as follows:

1) The modeling language SysML is a major factor in the
methodology. However, MBSE concerns creating an op-
timal set of sufficient models corresponding to existing
“document-based” artifacts. The latter task is beyond the

scope of a single project and requires sufficient resources
and commitment from the organization.

2) In spite of long-term objectives with MBSE, some
short time benefits can be easily obtained. For instance,
communication between cross-functional teams, single
source of information, traceability between requirements
and system artifacts etc. Project planning need take this
into account and commit sufficient resources in advance
avoiding budget over-runs later.

3) MBSE does imply heavy investment as well as a steep
learning curve, especially in the initial phases, and is
beyond the scope of a single project. Fortunately, this
was well recognized by both the stakeholders as well as
the system engineers.

4) The Tool interoperability plays a major role to the
organizational level success of MBSE. To this extent,
the successful implementations of OSLC standard within
major tools is awaited eagerly, especially in the context
of integrating legacy tools.

5) One major area of concern, is how to integrate non-
model based artifacts within MBSE framework. This
is particularly important in view of organizational units
that prefer to keep SE practices document-based.

VII. CONCLUSIONS AND FUTURE WORK

Hallqvist et al. [1] describe a phased approach in introduc-
ing MBSE in large-scale industrial contexts. Their MBSE jour-
ney had begun with a pre-study aimed at modeling a part of
an existing system, gradually extended to modeling a complete
system. The overall approach divided into addressing specific
systems engineering processes i.e., Requirements Manage-
ment, Product Development, and System Design. Instead of
Requirements engineering process, the first phase focused on
architecture development process addressing identification of
system interfaces and the design process for modeling the
logical architecture.

Malone et al. [12] at Boeing introduced MBSE for the
purpose of verification and validation of the large-scale system.
By executing a well-formed set of model analysis queries, it
was possible to identify both modeling as well as the specifica-
tion errors. Bonnet et al. [18] at Thales Group shared their four
years of MBSE experience within the organization, identifying
the stakeholders responsible for this cultural changes and the
system engineers who play the critical role in this change.

The above described large-scale industrial experiences em-
phasize that adoption of MBSE cannot be achieved in one go.
Besides the technical aspects of developing the models, it re-
quires a cultural change which affects the overall organization
structure in terms of adopting new ways of working integrated
with system engineering processes.

The MBSE methodology described in this paper, mainly
focuses on four different processes, as shown in Fig. 6, namely
Requirements Analysis, Architecture Design, Implementation,
and Integration Process with the purpose of introducing mod-
eling to the system engineers. However, the requirements
engineering was indirectly supported. The main emphasis

was the identification of functional interfaces, modeling the
software and hardware architectures of the system as well
enable allocation of logical aspects to physical architectures (to
support traceability). However, the verification and validation
processes have not been explored, as it was not clear how to
extend/integrate current non-model based artifacts e.g., test-
cases etc to model artifacts. This would be the focus of next
phase of MBSE activity.

The MBSE methodology described in this paper was primar-
ily a reverse-engineering effort in modeling the functionality
from legacy architectures and implementations. However, the
work flows, architectural views, modeling patterns etc. are
generic and also applicable in truly top-down approach. Thus
the methodology developed follows the general principles and
guidelines of SE practices.

Adopting MBSE methodology for a complex industrial
context is a long drawn process, gaining maturity over several
projects. Currently, an extended version of the methodology
is being developed with support from a major tool provider
(PTC). The Integrity tool chain from PTC, consisting of
Lifecycle Manager, Modeler as well as Windchill, with seem-
less tool integration facilitated by the OSLC standard, will be a
major enabling factor towards a holistic MBSE methodology
(integrating both ALM (Application Lifecycle Management)
as well as PLM (Product Lifecycle Management) domains).

ACKNOWLEDGEMENT

This work is partially funded from the Electronic Com-
ponent Systems for European Leadership Joint Undertaking
(ECSEL-JU) under grant agreement No. 737494 and The
Swedish Innovation Agency, Vinnova (MegaM@Rt2).

REFERENCES

[1] J. Hallqvist and J. Larsson, “Introducing MBSE by using systems
engineering principles,” in INCOSE International Symposium, vol. 26,
no. 1, Wiley Online Library, pp. 512–525, 2016.

[2] J. Estefan, “Survey of model-based systems engineering (MBSE)
methodologies,” Incose MBSE Focus Group, vol. 25, no. 8, pp. 1–12,
2007.

[3] J. Estefan, “MBSE methodology survey,” INSIGHT, Wiley Online Li-
brary, vol. 12, no. 4, pp. 16–18, 2015.

[4] S. Friedenthal, R. Griego, and M. Sampson, “INCOSE model based
systems engineering (MBSE) initiative,” in INCOSE 2007 Symposium,
2007.

[5] M. Cantor and R. Plug, “Rational unified process for systems engineer-
ing part 1: Introducing RUP se version 2.0,” The Rational Edge (August
2003), 2003.

[6] A. L. Ramos, J. V. Ferreira, and J. Barcel, “Model-based systems engi-
neering: An emerging approach for modern systems,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 42, no. 1, pp. 101–111, Jan 2012.

[7] B. Schindel and R. Dove, “Introduction to the agile systems engineering
life cycle MBSE pattern,” INCOSE International Symposium, vol. 26,
no. 1, pp. 725–742, 2016.

[8] N. Kass and J. Kolozs, “Getting started with MBSE in product develop-
ment,” INCOSE International Symposium, vol. 26, no. 1, pp. 526–541,
2016.

[9] S. C. Spangelo, D. Kaslow, C. Delp, B. Cole, L. Anderson, E. Fosse,
B. S. Gilbert, L. Hartman, T. Kahn, and J. Cutler, “Applying model
based systems engineering (MBSE) to a standard CubeSat,” in 2012
IEEE Aerospace Conference, March 2012, pp. 1–20, 2012.

ISO 15288
Technical Processes

Stakeholders
Requirements definition

process

Requirements Analysis
Process

Architecture Design
Process

Implementation Process

Integration Process

Verification Process

Transition Process

Validation Process

- No requirements management used in system model

- Identification and definition of internal interfaces
- Hardware and Software Requirements
specifications are copied into modeling tool

- Modeling of logical architecture
- Modeling of physical architecture and allocation
logical-to-physical

MBSE Adoption Phase I

Brake Pedal

<function>
<function>

<function>

Developed Artifacts

System Model
(Functional Architecture)

Software
Architecture

Hardware
Architecture

Fig. 6. Systems Engineering processes and corresponding modeling artifacts.

[10] D. Kaslow, L. Anderson, S. Asundi, B. Ayres, C. Iwata, B. Shiotani,
and R. Thompson, “Developing and distributing a CubeSat model-based
system engineering (MBSE) reference model,” in Proceedings of the 31st
Space Symposium, pp. 1–14, 2015.

[11] P. Hammarström and E. Herzog, “Experience from integrating domain
driven software system design into a systems engineering organization,”
INCOSE International Symposium, vol. 26, no. 1, pp. 1192–1203, 2016.

[12] R. Malone, B. Friedland, J. Herrold, and D. Fogarty, “Insights from
large scale model based systems engineering at Boeing,” INCOSE
International Symposium, vol. 26, no. 1, pp. 542–555, 2016.

[13] S. Friedenthal and R. Burkhart, “Evolving SysML and the system
modeling environment to support MBSE,” INSIGHT, vol. 18, no. 2,
pp. 39–41, 2015.

[14] A. L. Graham Bleakley and A. Whitfield, “Determining the right solution
using SysML and model based systems engineering (MBSE) for trade
studies,” INCOSE International Symposium, vol. 21, no. 1, pp. 783–795,
2011.

[15] P. Roques, “MBSE with the ARCADIA method and the Capella tool,” in
8th European Congress on Embedded Real Time Software and Systems
(ERTS 2016), 2016.

[16] C. A. Ericson, “Fault tree analysis,” Hazard analysis techniques for
system safety, pp. 183–221, 2005.

[17] D. H. Stamatis, Failure mode and effect analysis: FMEA from theory to
execution. ASQ Quality Press, 2003.

[18] S. Bonnet, J.-L. Voirin, V. Normand, and D. Exertier, “Implementing
the MBSE cultural change: Organization, coaching and lessons learned,”
INCOSE International Symposium, vol. 25, no. 1, pp. 508–523, 2015.

APPENDIX

The modeling has been done using IBM Rational Rhapsody
tool. The snapshot of the overview of the SysML System
Model for the Drive Line System (DLS) is shown in Fig. 7.

In order to perform braking (the example behavior de-
scribed), the following subsystems and entities are defined.
Fig. 8 presents the BDD (Block Definition Diagram) for
the logical view of the corresponding product break-down
structure.

• Operator represents a person who operates the machine
by sending a “braking request” through appropriate inter-
face.

• World represents the machine environment aspects such
as ground, temperature etc.

El··MJ" WLO_SysMl_Sys1tem_Model (RO)
$···(2 C ommen1ts
$··· D Components
[tl··· D Pa1d::age Diag1rams
El·· CJ Pa1ckag1es

l·····D Default (RO)
[tl···itJ Predefined/Types (RE'l
[tl···itJ PredefinedlypesCpp (REF)
l·····itJ Sy.s01 _OverviewAnd5cope (RO)
[tl···itJ Sy.s02_FlJJlndionalRequiremenls (RO)
[tl···itJ .Sys03 _PatterosAod\Ar,chiteduralCorm:rairds (RO)
�l··itJ .Sys04_Fil!l[ndiona1Views. (RO)
I El··· CJ Packages
I [tl···itJ Fv01 _ UseCasesAndAnaly.sis (RO)
I l!l··itJ Fv03 _ Corn bine

d
FlJJlndionalMod,el (RO)

El···itJ .Sy.s05,_RealizationViews (RO)
El··· CJ Packages

[tl···itJ AH�rdwareRe.alizationExarnple (RO)
[tl···itJ Rlzn01 _Partlibraries (RO)
[tl···itJ Rlzn02_SoftwareMod,els (RO)
lll··itJ Rlzn03 _HlardwareM�od!els (RO)

�--·it] .Sy.s06_Com111on (RO)
El···itJ .Sys01 _System1Views (RO)

El··· CJ Packages
[tl···itJ Sys_H,dra11licS,ystem1 (RO)
[tl···itJ SysOO_DrivelineS,stem (RO)
[tl···itJ Sy.s01 _H!Jbrid!VoltageSysten11 (RO)
[tl···itJ Sy.s02_MotorDriveSystem (RO)
[tl···itJ Sys03 _ fieneratorDriveSystem (R0)1
[tl···D S1ys04_SRS, (RO)
[tl···itJ Sys05 _Propullsion (RO)
[tl···itJ Sy.s06_Hvdb (RO)
[tl···itJ Sys01 _EagrineSystem1 (RO)
[tl···itJ Sys10_Hl!l[bUnitSystem (RO)
[tl···itJ Sys11 _PT10Systern1 (RO)
[tl···itJ Sys1 ,2_�chine:5ystem (RO)
[tl···itJ Sy.s13 _PowertrainSystem1 (RO)
[tl···itJ Sy.s15 _ Cooling§ys.tem (RO)
IB···itJ Sys17 _Dclm1 (RO)

B···itJ Sy.s0.8_S1pedficationViews (RO)
El··· CJ Packages

[tl···itJ AllocationViews (RO)
[tl···itJ I rnterfaceDescriptioRS (RO)

. IB···itJ I rnterf aceSpedificatioRS (RO)
III··· D Prof i�es

Fig. 7. The System Model: Package View

• WLO represents the complete machine, consists of two
subsystems (w.r.t the braking behavior): Requester and
Powertrain.

Fig. 8. Product Break-down Structure (logical)

Fig. 9. Realization View

• Powertrain is a subsystem that includes following sub-
systems: Engine, Drivetrain and Wheels (#4).

Fig. 9 shows a partial “realization view” of the whole
machine representing both hardware and software interfaces.

