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Abstract—Although atomicity, isolation and temporal correct-
ness are crucial to the dependability of many real-time database-
centric systems, the selected assurance mechanism for one prop-
erty may breach another. Trading off these properties requires to
specify and analyze their dependencies, together with the selected
supporting mechanisms (abort recovery, concurrency control,
and scheduling), which is still insufficiently supported. In this
paper, we propose a UML profile, called UTRAN, for specifying
atomic concurrent real-time transactions, with explicit support
for all three properties and their supporting mechanisms. We also
propose a pattern-based modeling framework, called UPPCART,
to formalize the transactions and the mechanisms specified in
UTRAN, as UPPAAL timed automata. Various mechanisms can
be modeled flexibly using our reusable patterns, after which
the desired properties can be verified by the UPPAAL model
checker. Our techniques facilitate systematic analysis of atomicity,
isolation and temporal correctness trade-offs with guarantee, thus
contributing to a dependable real-time database system.

Keywords—Transaction, Atomicity, Isolation, Temporal Correct-
ness, Unified Modeling Language, Model Checking

I. INTRODUCTION

In many database-centric systems, critical data such as
account balance and configuration parameters are stored in
databases and managed by DataBase Management Systems
(DBMS). To maintain the consistency of data, a DBMS
organizes operations as transactions, and manages them with
various Abort Recovery (AR) and Concurrency Control (CC)
mechanisms [1]. Abort recovery restores the database to a
consistent state when a transaction is aborted due to errors, and
thus achieves atomicity. Rollback, which undoes all changes
of an aborted transaction, is a common AR technique [2].
Concurrency control prevents inconsistency by regulating the
concurrent access to data from different transactions. Locks
are often applied to avoid arbitrary access of data, as a widely
applied CC technique [1]. Together, AR and CC ensure that
critical data are dependable for applications relying on them.

Many database-centric systems are also time-critical, such
as industrial control systems [3] and automotive systems [4],
whose configurations and states can be stored in databases.
Reading an outdated sensor value, or fetching the calibration
parameter too late, could result in catastrophic consequences
such as loss of lives. In such real-time database systems, there-
fore, transactions must also be temporally correct, meaning
that they must be scheduled to use fresh data, and have to
meet specified deadlines [5]. The assurance of atomicity and
isolation, however, may jeopardize the assurance of temporal
correctness. CC may cause a transaction to be blocked for
a long time. AR introduces extra workload when performing
recovery. To make matters worse, some CC algorithms may
directly abort transactions, while the recovery may again lock

data and block other transactions further, which could lead
to deadline misses. Therefore, trade offs may need to be
considered during the design of Real-Time DBMS (RTDBMS)
[6], with respect to deciding on “variants” [7] of atomicity and
isolation, and the selection of the AR and CC mechanisms.

To achieve an appropriate trade off, it is helpful to specify
all three properties, together with AR, CC, and scheduling,
explicitly in a high-level language familiar to system designers.
To ensure the correctness of the trade off, one should be
able to analyze such specifications, and reason about whether
the properties can be satisfied with the selected mechanisms.
Although the specification and analysis of one or two of
these properties have been targeted by the research community,
existing techniques do not take all three into consideration.
However, since atomicity, isolation and temporal correctness
are closely inter-dependent, omitting one of them in the analy-
sis may compromise the dependability of the whole RTDBMS.

The contribution of this paper is two-fold. First, we propose
a UML (Unified Modeling Language) profile as an extension of
the Activity Diagram [8], for the specification of transactions,
with explicit support for atomicity, isolation and temporal
correctness. We choose UML because it is a well-accepted
modeling language for software systems, including real-time
systems and database systems, hence it is popular with de-
signers. Our proposed UML profile, called UTRAN, models
a transaction as an activity, and includes modeling elements
to express abort recovery mechanisms such as rollback and
compensation, scheduling policies, as well as isolation levels
and concurrency control. Time-related properties such as dead-
lines and periods, which are reused from the UML-MARTE
(Modeling and Analysis of Real-Time Embedded systems)
profile [9], can be annotated to transactions and operations.

Second, to facilitate the analysis of all three properties,
we extend our UPPAAL-based analysis framework [10] that
models only transactions with isolation and temporal correct-
ness concerns in UPPAAL Timed Automata (TA) [11], to
include atomicity also. The new framework, called UPPCART
(UPPaal for Concurrent Atomic Real-time Transactions), mod-
els transactions with encoded timing information, as well
as the selected AR, CC and scheduling mechanisms, and
the inconsistency to be avoided, as a network of UPPAAL
TA. To reduce the modeling effort, we propose a set of
reusable basic modeling units, for describing various CC and
AR mechanisms, as well as the transactions. Specifications
in UTRAN can potentially be automatically transformed into
UPPCART models. We also propose patterns for formalizing
the atomicity, isolation and temporal correctness properties as
UPPAAL specifications [11]. The formalized properties can
then be verified rigorously by the model checker UPPAAL,
which provides a guarantee of the correctness of the design.
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The remainder of the paper is organized as follows. In
Section II we present the preliminaries of the paper. In Sec-
tion III and Section IV, we introduce our proposed UTRAN
profile and UPPCART framework, respectively. We present an
example to illustrate our approach in Section V. We discuss
the related work in Section VI, after which we conclude the
paper and outline future work in Section VII.

II. BACKGROUND

In this section, we present the preliminaries of this paper,
including the concepts of transactions, atomicity, isolation and
temporal correctness (Section II-A), UML profiles (Section
II-B), and UPPAAL TA (Section II-C).

A. Real-Time Transactions

In database systems, clients read and write data through a
DBMS that guarantees data consistency via transaction man-
agement. A transaction is a partially-ordered set of logically-
related operations, called a Work Unit (WU) that, as a whole,
ensures the ACID properties [2]: Atomicity (a transaction either
runs completely or makes no changes at all), Consistency (a
transaction executing alone must ensure logical constraints),
Isolation (concurrent transactions do not interfere each other),
and Durability (committed changes are made permanent).
The lifecycle of a transaction is managed by the following
operations: begin (start a transaction), commit (terminate a
transaction while making its changes permanent and visi-
ble), and abort (terminate a transaction and recover from its
changes). Two types of aborts exist in a database system.
System aborts are initiated by the DBMS due to system errors
or data contentions. User aborts are issued by clients to stop the
transaction deliberately according to the application semantics.

a) Atomicity: Under full atomicity, “commit” means the
completion of “all” changes, and “abort” means that “nothing”
is changed. In this paper, we are particularly interested in the
recovery of transactions terminated by errors. Therefore, our
semantics of “commit” remains “all”, while “abort” could have
various meanings depending on the variants of atomicity.

We refer to the “nothing” semantics of full atomicity as
failure atomicity. Failure atomicity is achieved by rollback, a
recovery mechanism that undoes all changes and returns to
the states before the transaction starts when it gets aborted
[2]. Since failure atomicity may be restricted in terms of
performance and functionality, a number of variants of relaxed
atomicity have been proposed, which allow changes to be
partially undone, or recover inconsistency with extra operations
[12]. The following abort recovery mechanisms that support
relaxed atomicity are considered in this paper. Immediate
compensation recovers inconsistency due to abort by immedi-
ately executing a sequence of operations, such as to update a
record that represents the error state. Deferred compensation,
in contrast, schedules an extra normal transaction to restore
consistency. In both variants, the operations are designed
flexibly, depending on the application semantics. An atomicity
manager, which possesses the knowledge of the atomicity
variants, performs the recovery at runtime.

b) Isolation: In literature, isolation has been quantified
as various levels [13]. An isolation level is defined as the avoid-
ance of a particular set of phenomena, which are interleaved
transaction executions that can lead to inconsistent data. If we
use rji to denote that transaction Ti reads data Dj , wj

i to denote
that Ti writes Dj , the following execution is considered as a

phenomenon: <r00 , w0
1 , w1

1 , r10>, representing the execution “T0

reads D0, T1 writes D0, T1 writes D1, T0 reads D1”. In this
example, T0 reads an old version of D0 before the change
of T1, but a new version of D1 after the change of T1. If
D0 and D1 are a pair of configuration parameters that should
be compatible, the consequence of T0 using these inconsistent
parameters may result in unsafe system behaviors. An isolation
level precludes a subset of such phenomena, thus avoiding the
inconsistency. Isolation levels are also a flexible way to relax
isolation, as the precluded phenomena are adjustable according
to the particular semantics.

DBMS ensures isolation by associating a concurrency
control manager to the managed data, which regulates the
interleaved transaction executions according to a selected
CC algorithm [1]. Pessimistic Concurrency Control (PCC), a
family of CC algorithms commonly applied in DBMS [1],
is considered in this paper. PCC exploits locks to prevent
unwanted interleavings. Depending on the algorithm, a trans-
action needs to hold a specific type of lock, before reading
or writing the data. Locks are acquired at a certain time point
before the operations, and are released at a certain time point
afterwards. Upon receiving requests, the CC manager decides
which transactions should obtain the lock, wait, or even be
aborted, according to the selected algorithm. The atomicity
manager, in case a transaction gets aborted by CC, performs
the abort and recovery of the transaction.

c) Temporal Correctness: In a real-time database sys-
tem, temporal correctness involves the transaction timeliness,
and temporal data consistency [5]. Transactions need to meet
their deadlines, which is referred to as timeliness [5]. Tem-
poral data consistency includes two aspects. Absolute validity
requires that data read by a transaction must not be older than
a specified validity interval. Relative validity requires that,
if a transaction reads a group of data, these data must be
generated within a specified interval so that the results are
temporally correct. Temporal correctness is directly influenced
by the scheduling policy adopted by the RTDBMS, which
schedules the operations issued clients. Commonly applied
scheduling policies include First-In-First-Out (FIFO), round-
robin, or based on the priorities of the transactions [1]. In
addition to deadlines and validity intervals, other important
time-related information includes execution times of the oper-
ations, and the arrival patterns of transactions (that is, whether
a transaction is started with a period, with a bounded inter-
arrival interval, or randomly) [5].

The ACID properties often need to be relaxed in order
to guarantee temporal correctness [6], for instance, by using
compensation rather than rollback for relaxed atomicity [14].
Real-time characteristics of transactions are incorporated in
many CC algorithms for better timeliness. A widely applied
real-time PCC is Two Phase locking - High Priority (2PL-HP)
[15]. In this algorithm, a transaction acquires a readlock (write)
on data before it performs a read (write) operation, and releases
all locks during commitment. If two transactions try to lock
the same data, and at least one of them requires a write lock, a
CC conflict occurs. The transaction with higher priority will be
granted with the lock, while the transaction with lower priority
will be aborted by the RTDBMS. As a result, transactions with
higher priorities are more likely to meet their deadlines.

B. UML Profiles and MARTE

UML is one of the most widely accepted modeling lan-
guage in software development [8]. The profile mechanism is
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Fig. 1. A network of timed automata

designed to extend UML for languages customized for specific
domains. A profile defines a package of stereotypes, which are
domain-specific concepts derived from existing UML concepts,
and constraints to associate them. A stereotype can have tagged
values as attributes. Profiles may be used as specification
languages to model systems, or adopted to add supplementary
information that is used for analysis or code generation. As
timing information is essential for our analysis and thus needs
to be supported in the specifications, we reuse the relevant
concepts from the MARTE (Modeling and Analysis of Real-
Time Embedded systems) [9] profile. MARTE is a profile
that defines the basic concepts to support the modeling of
real-time and embedded applications, as well as to provide
information for performance and schedulability analysis. In
this paper, we propose a profile that encodes the information
of transaction management and transactional properties for
formal analysis. The following MARTE concepts are reused:
(i) MARTE::NFP_Duration, a data type for time intervals; (ii)
MARTE::ArrivalPattern, a data type for arrival patterns, such
as periodic, sporadic and aperiodic patterns.

C. UPPAAL Timed Automata (TA)

Timed Automata are finite-state automata extended with
real-valued clock variables [16]. UPPAAL TA extends TA with
discrete data variables, synchronization channels, user-defined
functions, among other modeling features [11]. Multiple TA
can form a network via parallel composition, in which an
individual automaton can perform its internal actions, while
pairs of automata can perform hand-shake synchronization.

As an example to illustrate UPPAAL TA, Fig. 1 shows a
network of TA modeling a simple concurrent real-time system,
in which automaton A1 sporadically increments a variable a
and synchronizes with automaton A2. A1 consists of a set
of locations (L1, L2 and L3), and edges connecting them. A
clock variable cl is defined in A1 to measure the elapse of time,
and progresses continuously at rate 1. A discrete variable a is
defined globally, and shared by A1 and A2. Semantically, a
state of the network of TA consists of the current locations
of the automata, together with the values of the clock and
discrete variable. At each location, an automaton may stay at
the location, as long as the invariant, which is a conjunction
of clock constraints associated with the location, is satisfied.
Alternatively and non-deterministically, the automaton may
take a transition along an edge, if the guard, which is
a conjunction of constraints on discrete or clock variables
associated with the edge, is satisfied. In Fig. 1, A1 may delay
in L2 as long as cl ≤ 3, or follow the edge to L3 when cl
≥ 1. Each edge may have an associated action, which is the
synchronization with other automata via a channel. Binary
channels are used to synchronize one sender (indicated by a
mark “!”) with a single receiver (indicated by a mark “?”).
In Fig.1, A1 sends a message to A2 via binary channel ch,
while taking the edge from L2 to L3. The synchronization

can take place only if both the sender and the receiver are
ready to traverse the edge. A broadcast channel is used to
pass messages between one sender and an arbitrary number
of receivers. When using broadcast channels, the sender does
not block even if some of the receivers are not ready. An edge
may have an assignment, which resets the clocks or updates
discrete variables when the edge is traversed. In UPPAAL TA,
both guards and assignments can be encoded as functions in
a subset of the C language, which brings high flexibility and
expressiveness to modeling. In our example, when A1 moves
from L2 to L3, a is incremented using the function inc(a).

A location marked as “U” is an urgent location, meaning
that the automaton must leave the location without delay in
time. Another automaton may fire transitions as long as time
does not progress. A location marked as “C” is a committed
location, which indicates no delay in time, and immediate
transition. Another automaton may NOT fire any transitions,
unless it is also at a committed location.

The UPPAAL model checker can verify properties speci-
fied as UPPAAL queries, in UPPAAL’s property specification
language [11] that is a decidable subset of Computation
Tree Logic (CTL) [17]. For instance, the invariance prop-
erty “A1 never reaches location L3” can be specified as
“A[ ]notA1.L3”, in which “A” is a path quantifier and reads
“for all paths”, whereas “[ ]” is the “always” temporal operator.
If an invariance property is not satisfied, the model checker
will provide a counterexample. The liveness property “If A1
reaches L2, it will eventually reach L3” can be specified, using
the “leads-to (→)” operator, as “A1.L2 → A1.L3”, which
is equivalent to “A[ ] (A1.L2 imply A <> A1.L3)”, where
“<>” is the “eventually” temporal operator.

In our previous, we model a concurrent transaction system
as a network of UPPAAL TA, as follows [10]:

N ′ ::= A0 || ... || An−1 || ACCManager || O0 || ... || Ok−1 ||
D0 || ... || Dl−1,

where A0, ..., An−1 are the TA of work units of transactions
T0, ..., Tn−1, respectively. ACCManager is the automaton that
models the CC algorithm. O0, ..., Ok−1 are the TA that observe
the phenomena to be precluded by isolation, respectively. D0,
..., Dl−1 are the TA that monitors the time of data. Isolation
and temporal correctness can be verified by UPPAAL model
checker. We extend this framework in this paper to include
atomicity and AR.

III. UTRAN PROFILE FOR SPECIFICATION OF ATOMIC
CONCURRENT REAL-TIME TRANSACTIONS

In this section, we first present the domain model of real-
time transactions in Section III-A, after which we introduce
our proposed UTRAN profile in Section III-B.

A. Domain View

The domain model of real-time transactions is presented in
Fig. 2. A transaction can be conceptually modeled as an activ-
ity in the UML activity diagram. In order for the RTDBMS to
manage the life cycle of a transaction, a unique id is assigned
to each transaction when it is started. A transaction may be
assigned with a TemporalCorrectnessSpecification for time-
related properties. This specification may specify a priority
for the transaction, and a relative deadline that defines the
maximum allowed time interval between the start and the
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Fig. 2. Domain model of real-time transactions as a UML diagram

termination of the transaction. The arrival pattern can be
specified for the transaction, such as periodic, sporadic and
aperiodic, as well as the value of the period (or minimum
inter-arrival time) if applicable. A transaction may also have a
specified relative validity interval, for the validity of a group
of data read by the transaction.

A transaction consists of a set of operations, represented as
actions in an activity. Two types of operations are considered
explicitly: DBOperations and TMOperations. DBOperations
directly performs read and write of the data. Such read and
write operations, denoted as ReadOP and WriteOP respec-
tively, are atomic, whose worst-case execution times are also
known. A ReadOP may be assigned with an absolute validity
interval for the data it reads.

Multiple transactions managed by the same RTDBMS are
related to an RTDBMSScope. A scheduling policy, which can
be FIFO, RoundRobin and Priority-based, can be specified
for the RTDBMSScope. An isolation level is specified for the
RTDBMSScope, indicating the degree of isolation that should
be provided for the set of transactions. Essentially, an isolation
level defines a set of IsolationPhenoma to be precluded,
which are illegal sequence of operations that lead to logical
inconsistency. Therefore, an IsolationPhenomenon is basically
an OperationPartialOrder. While some isolation levels have
been defined in the SQL-92 standards (ReadUncommitted,
ReadCommitted, RepeatableRead, Serializable) which can be
selected from, customized isolation levels can also be defined
with specified IsolationPhenoma. A ConcurrencyControlAlgo-
rithm specifies the lock-based concurrency control algorithm
selected for the specified isolation. Such an algorithm defines a
set of lock types, each having its rules about, not only to which
data it should apply, but also when a lock should be acquired
and released. These rules are specified as LockingRule and
UnlockingRule. A ConcurrencyControlAlgorithm also needs to
specify a resolution policy, which describes how the conflicts
are resolved when two transactions try to lock the same data.

An AtomicitySpecification specifies the atomicity variant
to restore consistency when it gets terminated by error, as
well as the desired recovery time. An AtomicitySpecification
can either be attached to a transaction, which specifies the
atomicity handling when the latter is aborted by the transaction
management system, or to an abort operation, specifying the
handling of abort issued by the clients. An AtomicitySpecifi-
cation contains an AtomicityVariant, which is an enumeration
of the supported atomicity variants, including FailureAtomicity

and RelaxedAtomicity. An AbortRecoveryMechanism is associ-
ated with the atomicity variant. For FailureAtomicity, Rollback
is the AR mechanism, by which the RTDBMS will undo all
the changes in the database that have been done by aborted
transaction. ImmediateCompensate and DeferredCompensate
are the AR mechanisms for RelaxedAtomicity by compensa-
tion to restore the consistency of the database. The difference
is that, the former allows the compensation to be executed
immediately with highest priority, while in the latter case the
compensation is scheduled as a separate transaction with the
same priority as the aborted one. If no AtomicitySpecification
is specified, atomicity is totally relaxed, and the partially
changed data will not be recovered or compensated at all.

B. UTRAN Profile

Fig. 3 presents our UTRAN profile that contains the ex-
tensions to model the concepts in the previous domain model.
The «Transaction» stereotype, extending the UML Activity
metaclass, maps the Transaction domain element. Each activity
stereotyped with «Transaction» may have a «TemporalCorrect-
nessSpecification» and an «AtomicitySpecification», which are
associated comments that extends the Comment metaclass. A
«TemporalCorrectnessSpecification» contains the information
about the deadline, priority, arrival pattern, period, and rela-
tive validity of the transaction. An «AtomicitySpecification»
specifies the selected AtomicityVariant and ARMechanism,
from an enumeration of supported variants, as well as the
recovery time, and the id of the compensation transaction
which is a special transaction specified by the stereotype
«Compensation». The actions in a «Transaction» are stereo-
typed as «Operation», each having the transaction id that
they belong to, respectively. «DBOperation», «TMOperation»
and «ClientOperation» map the DBOperation, TMOperation
and ClientOperation, respectively. A «DBOperation» specifies
the execution time to execute such an operation, and the id
of the data it accesses. «ReadOP» and «WriteOP» extends
«DBOperation», to map the ReadOP and WriteOP, respec-
tively. A «TMOperation» specifies the execution time for the
transaction management operation, which can be «BeginOP»,
«CommitOP», or «AbortOP».

IV. UPPCART FRAMEWORK FOR MODELING ATOMIC
CONCURRENT REAL-TIME TRANSACTIONS

In order to analyze the transactions specified in UTRAN
formally, we propose a pattern-based framework, called UP-
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PCART (UPPaal for Concurrent Atomic Real-time Transac-
tions), for modeling real-time transactions with concurrency
control and abort recovery in UPPAAL TA. The proposed
framework is based on our previous work [10], which focuses
on isolation and temporal correctness only. In this work, we
extend the previous framework with several substantial aspects.
First, we extend the framework to incorporate the modeling of
atomicity, via a set of reusable patterns for modeling various
AR mechanisms, especially their interplays with CC. We also
extend existing patterns for time-related behaviors, such as
periodicity and delays. In addition, the proposed framework
improves reusability of existing modeling units for transactions
and CC, by proposing a unified reusable modeling unit for all
read, write, begin and commit operations, as well as
a more generic unit for CCManager, which is suitable for a
wider range of concurrency control algorithms.

We model the transactions together with the CC and the
AR as a network of UPPAAL TA, defined as follows:

N ::= A0 || ... || An−1 || ACCManager || O0 || ... || Ok−1 ||
D0 || ... || Dl−1 || AATManager,

where A0, ..., An−1 are the TA of work units of transactions
T0, ..., Tn−1, respectively. They also model the WU’s interac-
tion with the transaction manager with respect to concurrency
control and abort recovery. ACCManager is the CCManager
automaton that models the CC algorithm, and interacts with the
work unit TA. O0, ..., Ok−1 are the TA of IsolationObservers
that observe the phenomena to be precluded by isolation,
respectively. D0, ..., Dl−1 are the TA that monitor the time of
data. AATManager is the ATManager automaton that models
the atomicity controller of recovery mechanisms upon abort.

We define two types of reusable structures for constructing

the TA models. A pattern, consisting of a set of variables, loca-
tions, edges and even other patterns, is a parametrized structure
representing the repetitive modeling unit in our framework. A
pattern can be composed with the rest of the automaton after
instantiation. A skeleton is a special type of pattern that defines
the basic structure of a type of constituent automata of N , that
is, a work unit skeleton, a CCManager skeleton, an ATManager
skeleton, an IsolationObserver skeleton, and a Data skeleton.
We also provide an algorithm to construct UPPCART models
from UTRAN specification, which is included in the technical
report [18] due to space limit.

In the following texts, we first introduce the details of
UPPCART (Section IV-A), followed by the verification of the
desired properties (Section IV-B).

A. The Proposed Modeling Framework

In the following subsections, we first introduce the skele-
tons and patterns for work units and concurrency control, as
well as the skeleton of IsolationObserver. After this, we present
the skeletons and patterns for atomicity and abort recovery
mechanisms, and show how they are integrated with the work
units and the CCManager.

1) Modeling Work Units:

a) Work Unit Skeleton: A WU Automaton (WUA)
models the work unit of a transaction and its interaction with
the CC and atomicity managers. A WU skeleton, as shown
in Fig. 4, is a parametrized structure that consists of the
common variables, locations and edges of a WU automaton.
Starting from the initial location, the automaton immediately
initializes the transaction with the specified id ti and priority
p using function initialize(ti, p), and moves to the location
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trans_aborted

tc>DEADLINE tr>RECOVERY_DEADLINE

C

initialize(ti, p)

…tc<=DEADLINE

tc<=PERIOD
tc>=PERIOD
tc:=0

tr<=RECOVERY_DEADLINE

wait

initial

start_trans[ti]?

Delays

Fig. 4. TA skeleton for a work unit

tp>=MIN_delay

tp:=0

delaytp<=MAX_delay

previous_location

next_location

Fig. 5. Delay pattern

ready. After an arbitrary delay, it moves to the location begin,
indicating the begin of the transaction, and sets clock variable
tc to 0. The location trans_committed represents the committed
state of the transaction. Between begin and trans_committed
locations, there is a set of connected instantiated operation
patterns that model the database and transaction management
operations, and delays between the operations. If the value
of tc is greater than the specified DEADLINE, the automaton
moves to the location miss_deadline, indicating a deadline
miss. Otherwise, it waits until the specified PERIOD has been
reached, and moves to begin for the next activation. During the
operations, the WUA may receive a message from the atom-
icity manager ATManager via channel abort_trans[ti], and
moves to the instantiated abort recovery pattern, which models
the AR mechanism. The location trans_aborted represents the
aborted state of the transaction. Similarly, if the value of tr is
greater than a specified RECOVERY_DEADLINE, timeliness
is breached, and the WUA moves to miss_deadline.

b) Delay Pattern: The pattern in Fig 5 models the
delays between operations. The automaton may stay at location
delay for at least MIN_delay, and at most MAX_delay time
units, which are provided as parameters.

2) Modeling CC and Isolation Phenomena:

a) Operation-CC, Locking and Unlocking Patterns:
We define a pattern to model the begin, commit, read and
write operations in each work unit, respectively. Since within
each operation, the work unit may interact with the CC
manager according to the specific CC algorithm, our operation
pattern also comprises CC-related activities such as locking
and unlocking as sub-patterns. Our Operation-CC pattern is
presented in Fig. 6. Scheduling is modeled by three func-

sch()==ti
cs:=ti

check_sched

C

C

enq_sch(ti)

sch()!=ti

cpu_free?

do_operation
tp<=WCRT_op

C

C

tp>=BCRT_op
notify_op[ti]!

cpu_free!
cs:=FREE, deq_sch(ti)

finish_operation

start_operation

Instantiated Locking/Unlocking Patterns

Instantiated Locking/Unlocking Patterns

tp:=0

wait

notified_observer

Fig. 6. Operation-CC pattern

wait[ti][di]?

try_to_lock_di

C

C

C

wait_for_lock

C

cpu_free!
cs:=FREE

grant[ti][di]?
cs:=ti

finish_locking

start_locking

grant[ti][di]?

locktype[ti][di]!

(a) Locking pattern

C

C start_unlocking

finish_unlocking

unlock[ti][di]!

(b) Unlocking pattern

Fig. 7. Locking and unlocking patterns

tions, enq_sch(ti), deq_sch(ti) and sch(), which specify the
selected scheduling policy. After the start_operation location,
the enq_sch(ti) function pushes the transaction id into the
scheduling queue. On the edges from the location check_sched,
the function sch() checks if the transaction is the next to
be scheduled. If it is the case, the automaton moves to
do_operation; otherwise, the automaton waits at location wait,
until some transaction or the CCManager releases CPU via the
cpu_free channel. The automaton may stay at do_operation
for at most WCRT_op time units, and at least BCRT_op time
units, which represent the longest and shortest allowed time
to complete the operation, respectively. Upon the completion
of the operation, a signal is sent to the IsolationObservers
via channel notify_op[ti]. Before reaching finish_operation, the
CPU is set free, and the transaction is removed from the queue
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C

C

C

C

C

cs_dbms==0
i:trans_t, j:data_t
locktype[i][j]?
updateRequest(i,j,LOCKTYPE), 
cs_dbms:=1

cs_dbms==0 
i:trans_t, j:data_t 
unlock[i][j]?
updateUnlock(), cs_dbms:=1

next_id==-1
cs_dbms:=0

getNext()

needAbort() 
cc_conf!

!needAbort() 
grant[request_id][data_id]!
updateGrant()satisfyPolicy()

satisfy:=true

!satisfyPolicy()
satisfy:=false next_id!=-1

grant[next][data_id]!
updateGrant(), getNext()

lock_request_received unlock_request_received

decide_grant

decide_reject

decide_grant_next

call_ATManager

grant[request_id][data_id]!
updateGrant()

!needAbort() 
wait[request_id][data_id]!
updateReject()

C

cc_conf_done!

C

cs_dbms:=0

idle

atomicity_resolved

needAbort() 
cc_conf!

call_ATManager2

C
cc_conf_done! atomicity_resolved2

C

cs_dbms:=0

Fig. 8. TA skeleton for the CCManager

by the function deq_sch(ti).

According to the selected CC algorithm, the transaction
needs to lock and unlock data, before or after the operations.
This is modeled by the Locking and Unlocking patterns
inserted into the operation patterns, as illustrated in Fig. 6.
The Locking and Unlocking patterns are presented in Fig. 7.
In the Locking pattern, the automaton sends a request to the
CCManager via channel locktype[ti][di], in which “locktype”
is parametrized for the particular type of lock, such as a
readlock, specified by the CC algorithm. The automaton then
either moves to location finish_locking, if it is granted by
CCManager via channel grant[ti][di], or releases the CPU and
gets blocked at location wait_for_lock, until the CCManager
grants it later. In the Unlocking pattern, the automaton sends
the request via channel unlock[ti][di], which is received and
processed by the CCManager.

b) CCManager Skeleton: The CCManager skeleton
(Fig. 8) provides a common structure for modeling various CC
algorithms, as well as the interaction with the transactions and
the atomicity manager. The particular resolution policy of a CC
algorithm is encoded in the functions. When CCManager re-
ceives a locking request, it updates the status of the transaction
and the data by calling updateRequest(), and judges whether
the requester can obtain the lock by calling satisfyPolicy(). The
satisfying requester is granted with the lock, if the algorithm
does not abort any transactions in order to resolve conflicts.
If any transactions need to be aborted due to concurrency
conflicts, as suggested by needAbort(), CCManager sends a
signal to ATManager via channel cc_conf, and waits until all
abort and recovery are handled, before it grants the lock to the
requester. On the other hand, if the requester does not satisfy
the policy, it is either aborted, decided needAbort() according
to the CC algorithm, or blocked. When CCManager receives an
unlocking request, it updates the status of the transaction, and
grants locks to all legitimated blocked transactions. The next
granted transaction is decided using the getNext() function.

c) IsolationObserver Skeleton: The skeleton for an
IsolationObserver is shown in Fig. 9. Each IsolationObserver
observes a specified sequence of operations, by accepting
the corresponding notification messages from the work unit
automata via the notify_op[ti][di] channel when an oper-
ation is completed. If the monitored sequence indicating
the phenomeon occurs, the automaton moves to the isola-
tion_phenomenon location.

isolation_phenomenon

notify_read [ti][tj]?

notify_write[tm][dn]?

…

r_i_j

r_i_j_w_m_n

idle

C

notify_commit[ti]?
/notify_abort[ti]?

notify_commit[ti]?
/notify_abort[ti]?

ti_committed/
ti_aborted

Fig. 9. IsolationObserver skeleton

notify_write[di]?
age:=0

C updated

Fig. 10. TA skeleton for data

3) Modeling Data: Fig. 10 presents the skeleton of data.
The clock variable age, which is reset every time a write
operation is performed on the data, represents how old the
data is since the last update.

4) Modeling Atomicity and Abort Recovery: We separate
the atomicity control model into an ATManager automaton,
and the abort recovery parts in work unit automata. The
ATManager models the behavior of deciding the transactions
to be aborted upon errors, conflicts or user’s instructions. The
work unit automata include the instantiated abort recovery
patterns that model the selected mechanisms for the specific
transactions. We distinguish two types of abort, which are
user abort that is issued by a client using an abort operation
deliberately, and system abort that occurs due to internal
conflicts and system failures, such as CC conflicts.

a) ATManager Skeleton: Our ATManager skeleton
provides a common structure for modeling the atomicity
manager. As shown in Fig. 11, the ATManager may receive
user abort requests via the user_abort[i] channel, or system
abort due to CC via cc_conf channel from CCManager. Other
types of errors, such as communication errors, can be modeled
similarly. The function getAbort() specifies the logic to decide
the transaction to be aborted. The automaton then sends the
abort signal to the corresponding WU automaton via channel
abort_trans[abort_id], and waits until the abort is done by
the WU. ATManager then updates the status and locks of
transactions and data using the function updateAbort(), and
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cc_conf_detected

C
getAbort()

Ccc_conf?
error_type:=CC

abort_id!=-1
abort_trans[abort_id]!

C

report_abort[abort_id]?
updateAbort(), getAbort()

abort_id==-1
cc_conf_handled!

idle
do_abort abort_done

i:trans_t
user_abort[i]?

abort_id:=ti, error_type:=USER

user_abort_detected
C

Fig. 11. TA skeleton for the ATManager

tp <=WCRT_op1

start_rollback/
start_immed_comp

tp >=BCRT_op1
C

tp:=0
op_1

tp:=0
C…

trans_rolledback/
trans_compensated

report_abort[ti]!
deq_sch(ti)

C
notify_abort[ti]!

abort_notified

Fig. 12. RollbackImComp pattern

start_deferred_comp

C

wait_for_comp

C

trans_compensated

start_trans[ci]! notify_commit[ci]?

C

report_abort[ti]!
deq_sch(ti)

C

notify_abort[ti]!

abort_notified

async_report

Fig. 13. DeferredComp pattern

checks if more transactions need to be aborted.

b) Abort Recovery Patterns: RollbackImComp and
DeferredComp: The AR mechanisms are modeled by the Roll-
backImComp pattern (Fig. 12), and the DeferredComp pattern
(Fig. 13), respectively, which are composed into the work
unit automata. The former models the rollback and immediate
compensation mechanisms, while the latter models the deferred
compensation mechanism. The Rollback-ImmeComp pattern
models the execution of a series of operations by the DBMS.
In case of rollback, the operations are the ones completed
before the abort of the transaction. In case of immediate
compensation, the operations are specified for the transaction.

In the RollbackImComp pattern, each operation is repre-
sented by a location op_n, at which the automaton may stay for
at most (least) WCRT_opn (BCRT_opn) time units. When all
operations are completed, the work unit reports the completion
of recovery to the ATManager via channel report_abort[ti],
removes the transaction from the scheduling queue by function
deq_sch(ti), and notifies the IsolationObserver via channel
notify_abort[ti]. In case of deferred compensation, the De-
ferredComp pattern starts the compensation transaction via
channel start_trans[ci], where ci is the id of the compensating
transaction, and immediately reports to ATManager and re-
moves the aborted transaction from the scheduling queue. The
compensating transaction ci is modeled as a separate work unit,
using the work unit skeleton and the operation patterns. When
ci commits, the DeferredComp pattern receives the notification,
and notifies that the transaction is aborted and recovered via
channel notify_abort[ti].

c) SystemAbort Pattern: System abort is modeled as
a composition of an instantiated operation pattern with a
Rollback-ImmComp pattern or a DefComp pattern, as shown
in Fig. 14. We refer to this compensation as the SystemAbort
pattern. In this pattern, when the WU automaton receives an
abort_trans[ti] signal from the ATManager, it moves to the
corresponding abort recovery patterns.

abort_trans[ti]?
tr:=0

Instantiated
Operation-CC

Pattern

Instantiated Abort
Recovery Patterns

Utrans_aborted

Fig. 14. SystemAbort pattern

sch()==ti
tp:=0, cs:=DBMS

check_sched
C

enq_sch(ti)

sch()!=ti

cpu_free?

start_user_abort

C

user_abort[ti]!

abort_trans[ti]?
tr:=0

Instantiated Abort
Recovery Patterns

C finish_user_abort

cpu_free!
cs:=FREE

U

trans_aborted

call_ATManager

abort_trans[ti]?
tr:=0

Fig. 15. UserAbort pattern

d) UserAbort Pattern: The UserAbort pattern is de-
fined in Fig. 15. When the work unit is scheduled as the
next one to execute by function sch(ti), it issues the abort
request to ATManager via channel user_abort[ti]. After it gets
the permission from ATManager, the automaton moves to the
corresponding abort recovery pattern. When the recovery is
completed, the automaton sets the CPU to be free, and moves
to location trans_aborted.

B. Verification

We propose an algorithm in our technical report [18] to
construct UPPCART models from UTRAN using the afore-
mentioned skeletons and patterns, which can potentially be
automated. With the transactions as well as the AR and CC
mechanisms modeled in UPPAAL TA, we are able to formally
verify the atomicity, isolation and temporal correctness prop-
erties. Table I lists the patterns to formalize the properties in
UPPAAL queries. Among them, atomicity is formalized as a
liveness property, while isolation and temporal correctness are
formalized as invariance properties.
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TABLE I. UPPAAL QUERY PATTERNS FOR VERIFYING TRANSACTIONAL PROPERTIES

Property Type Property Description UPPAAL Query Pattern
Atomicity Ti aborted due to ERRORTYPE is eventually rolled back

(compensated)
(ATManager.abort_id == i&&ATManager.error_type
== ERRORTY PE) → Ai.trans_rolledback (Ai.trans_compensated)

Isolation The specified isolation phenomena never occur A [ ] not (O1.isolation_phenomenon || ... ||On.isolation_phenomenon)
Timeliness Ti never misses its deadline A [ ] notAi.miss_deadline
Absolute Validity When read by Ti, Dj is never older than the absolute validity

interval AVI(j)
A [ ] (Ai.read_di_done imply Dj.age <= AV I(j))

Relative Validity Whenever Ti reads Dj or Dl, the age differences of Dj and Dl

is smaller than or equal to the relative validity interval RVI(j,l)
A[ ] ((Ai.read_dj_done ||Ai.read_dl_done) imply ((Dj.age−Dl.age
<= RV I(j, l))&& (Dl.age−Dj.age <= RV I(j, l))))

V. ILLUSTRATIVE EXAMPLE

Let us take two autonomous wheel loaders and their
controller as an example. All data, including the positions of
the wheel loaders, their working conditions, the work plan,
and the speed configurations, are stored in the controller’s
database. Assume that loader A is patrolling on the location
with its predefined speed, and periodically updates its position
in the database. A human operator can update the configuration
data, that is, the work plan, and the speed settings of the
wheel loader A. These data should be updated at the same
time. If the update fails, the data should be rolled back to the
previous values. The controller may get a command to start a
job with loader B. It updates the status of the job to “start”,
reads the current location of loader A, reads the work plan
in the database, reads the speed configuration of loader A,
and calculates the estimated speed and direction of the wheel
loader B. Loader B then moves to the position and informs the
controller, which updates the job to “finish”. If this job fails,
due to some reason, the estimated position should be updated
as “unknown”, and the job status as “failed”.

a) Specification in UTRAN: We consider three transac-
tions in this scenario. The first transaction (UpdateConfTrans)
updates the configuration data. The second (JobTrans) controls
the loader B to do the job. The third transaction (Update-
LocA) updates the location of A periodically. The temporal
correctness properties are specified in their respective attached
«TemporalCorrectnessSpecification», with their deadlines and
validity intervals. The atomicity variant of UpdateConfTrans,
which is rollback, is specified in its «AtomicitySpecification».
On the contrary, JobTrans selects ImmediateCompensate, as
specified in its «AtomicitySpecification», and compensates its
failure with the compensation transaction LogError, which
updates the estimated position and logs the error. The trans-
actions are in the scope of the RTDBMS, stereotyped with
«RTDBMSScope», whose isolation level is set to be Repeat-
ableRead in its «IsolationSpecification», which disallow the
phenomena InconsistencyConfigs1 and InconsistencyConfigs2,
both stereotyped as «IsolationPhenomenon». The specification
in UTRAN, due to space limit, is presented in the report [18].

b) Construct UPPCART models: We construct UP-
PCART models from UTRAN following the algorithm in
the report [18]. The work unit skeleton, the Operation-CC
pattern, the locking/unlocking patterns, as well as the abort
recovery patterns, are used to construct work unit automata.
The CCManager for 2PL-HP shares the same structure with the
CCManager skeleton in Fig. 8. The ATManager is constructed
using the ATManager skeleton in Fig. 11. The IsolationOb-
servers and data automata are instantiated using the skeletons
in Fig. 9 and Fig. 10, respectively. The functions that model
the priority-based scheduling and the abort decision, as well
as other TA models, are included in the technical report [18].

c) Verification: We use the patterns in Table I to
formalize the properties for the system, and verify them using
the UPPAAL model checker. The verification results are listed

in Table II, which shows that all properties are satisfied with
the selected CC, AR and scheduling mechanisms.

VI. RELATED WORK

A number of high-level description languages have been
proposed for transaction-based systems. Some of them, like
ours, extend UML or existing profiles. Marouane et al. [19]
extends MARTE for real-time database systems. Timing prop-
erties can be specified using their profile, while atomicity and
isolation are not considered. Unified Transaction Modeling
Language (UTML) [20] and its extension [21] are UML-
based languages for transactions that enables selection of
the ACID properties. Atomicity and isolation are treated as
monolithic properties respectively, rather than tunable variants
[7]. Timeliness is not the authors’ focus. The Business Process
Execution Language (BPEL) [22] and the Business Process
Model and Notation (BPMN) [23] are XML-based, high-level
description languages for specifying business processes, which
is a flexible transaction model with various atomicity. Rollback
and compensation can be specified at transaction level and
for internal activities. Charfi et al. [24] and Sun et al. [25]
introduce extra concepts for transactions to BPEL, which allow
transaction policies for atomicity to be specified explicitly.
Compared with their work, our proposed profile can specify
variants of isolation as well as timing properties. Watahiki et
al. [26] introduce temporal constraints to BPMN and verify
them with UPPAAL. Isolation and CC are not part of this
framework. Both ASSET [27] and KALA [28] use procedural
languages for flexible transaction models, in which operations
and AR are specified using designated primitives. Compared
to these works, ours supports specification of temporal correct-
ness, and the selection of CC algorithms.

Much effort has been dedicated to formally model and
analyze transaction properties. The ACTA framework [29]
specifies transaction models in first order logic and allows
for formal reasoning. Gallina [7] uses higher-order logic to
specify transaction properties, which can be formally analyzed
by the Alloy tool. Both frameworks are restricted in the
formal specification and analysis of ACID, while temporal
correctness, especially the impact of CC and abort recovery
mechanisms, are not included. Derks et al. [12] propose to
model and verify transactions with atomicity variants in Petri
nets. Liu et al. [30] model and analyze a transaction model
using Maude. Lanotte et al. [31] propose a timed-automata-
based language for long running transactions with timing
constraints. Committing protocols for atomicity variants can
be modeled and analyzed. In contrast to these works, our
work provides a formal framework for modeling transactions
together with abort recovery and CC mechanisms, in which
atomicity, isolation, temporal correctness, as well as their
impacts on each other, can be analyzed in a unified framework.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a UML profile called
UTRAN for specifying atomic concurrent real-time transac-
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TABLE II. VERIFICATION RESULTS OF THE EXAMPLE SYSTEM

Property Type UPPAAL Query Pattern Verification Time Explored States Verification Result
Atomicity (ATManager.abort_id == 1&&ATManager.error_type == CC)

→ A1.trans_rolledback
5.99s 344107 Satisfied

Atomicity (ATManager.abort_id == 2&&ATManager.error_type == USER)
→ A2.trans_rolledback

6.13s 344475 Satisfied

Atomicity (ATManager.abort_id == 2&&ATManager.error_type == CC)
→ A2.trans_compensated

6.13s 355050 Satisfied

Isolation A [ ] not (InconsistentConfig1.isolation_phenomenon
|| InconsistentConfig2.isolation_phenomenon)

5.60s 336405 Satisfied

Timeliness A [ ] not (A1.miss_deadline ||A2.miss_deadline ||A3.miss_deadline) 5.62s 336405 Satisfied
Absolute Validity A [ ] (A2.read_d4_done imply D4.age <= 150) 9.45s 423960 Satisfied
Relative Validity A[ ] ((A2.read_d1_done ||A2.read_d2_done) imply

((D1.age−D2.age <= 15)&& (D2.age−D1.age <= 15)))
18.35s 547479 Satisfied

tions. UTRAN supports specification of transaction atomicity,
isolation and temporal correctness, as well as the selection of
AR, CC and scheduling mechanisms, in high level. Specified as
UML activities with UTRAN, transactional properties can be
explicitly specified, and be extracted and further analyzed by
tools. We have also proposed a framework based on UPPAAL
TA to formally model the UTRAN specification, which allows
the specified properties to be rigorously verified by UPPAAL
model checker. We provide a set of parametrized automata
skeletons and patterns to model the transaction system. Via
instantiation and composition, these skeletons and patterns
enable flexible modeling of a wide range of abort recovery
mechanisms and CC algorithms. Properties are formalized
as UPPAAL queries for verification. We have also proposed
an algorithm to construct the TA model from an UTRAN
specification, which can potentially be automated by a tool.

Our future work will focus on a tool chain that facilitates
the entire process, from high-level specification, to automatic
model generation and verification. Another future work is to
improve the scalability of our formal framework. In case of
large systems, exhaustive model checking may not converge
due to state explosion. Other formal techniques such as statis-
tical model checking could be integrated for better scalability.
The verification of the C functions encoding the mechanisms
by employing a program verifier is also a future work.
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