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Abstract—Dependability-critical systems (e.g., space systems) 

need to be engineered according to dependability standards 

(e.g. ECSS standards), which require the application of various 

dependability analyses, including Fault Tree Analysis (FTA).  

Due to the complex nature of such systems, conducting FTA 

may turn out to be time-consuming and error prone. Thus, 

automation is highly desirable. In this paper, we build on top 

of our previous work and we propose FLA2FT, a tool-

supported Fault Tree (FT) generation from ConcertoFLA 

results. More specifically, we integrate FTA in a well-

established existing system modeling and analysis methodology 

to generate FT automatically using model transformations. To 

illustrate the usage of FLA2FT, we apply it to the space 

domain and automate the generation of ECSS-compliant FTs 

for an Attitude Control System (ACS). Finally, we draw our 

conclusions and sketch future work. 
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I.  INTRODUCTION  

The development of dependable (safety-critical) 
embedded systems is regulated by standardization bodies, 
which issue domain specific standards, and certification 
bodies, which are responsible for checking compliance. 
Space software systems for instance are engineered 
according to the standards proposed by European 
Cooperation for Space Standardization (ECSS). More 
specifically, ECSS-Q-ST-30c [1] and ECSS-Q-ST-40c [2] 
list requirements for the assurance of dependability and 
safety respectively along with the methods for analysis and 
assurance of these properties. Fault Tree Analysis (FTA) is a 
deductive method for analyzing system to identify the causes 
of system failure. Performing FTA manually for such 
complex systems is time consuming and error prone [3]. 
Automatic generation of Fault Tree (FT) and integration with 
other automated activities in a standard Software 
Development Life Cycle (SDLC) could reduce the cost and 
effort and enable compliance to the applicable standards.  

Model driven and component-based engineering 
represent established engineering methods to master 
complex systems. CHESS [4] is one such tool-supported 
methodology targeting high integrity embedded systems. 
CHESS provides a dependability profile [5] implemented in 
CHESS Modeling Language (CHESS ML), which itself is a 
profile of SysML [6]. ConcertoFLA [7] is a tool-supported 
failure logic analysis method (part of CHESS toolset), which 
calculates the failure behaviour of a system based on the 
failure behaviour of composing components (specified in 
CHESS ML). System design represented via CHESS ML 

models and their enrichment for safety analysis are coherent 
and supportive to standards, e.g., in space domain ECSS-E-
ST-40C [8] and ECSS-Q-ST-40c [1] referring to system 
design and safety respectively. 

In our previous work [9], we discussed about the 
feasibility of exploiting the causality paths generated by 
ConcertoFLA, to derive ECSS compliant FTA results 
manually. In this paper, we move a step further and we 
propose FLA2FT, a tool-supported fault tree generator, 
which generates fault trees from ConcertoFLA results. 
FLA2FT empowers an existing toolset by producing the 
certifiable evidences (compliance means) automatically. 
FLA2FT is based on a master thesis presented in [10]. It will 
soon be integrated into PolarSys OpenCert tools platform 
[11] and available to download. 

The remainder of this paper is organized as follows. 
Section II provides the background information. Section III 
gives an overview of FLA2FT. Section IV, presents the 
mapping and implementation of transformation. Section V, 
describes the application of FLA2FT to Attitude Control 
System (ACS). Section VI discusses related work. Finally, in 
Section VII, we present conclusion and sketch future work.  

II. BACKGROUND 

In this section, we present the background information 
relevant to our work.  

A. Model Driven Engineering (MDE) and Model 

Transformation 

Model Driven Engineering (MDE) is a methodology, 
which raises the level of abstraction and produces well-
structured and maintainable systems. In MDE, the 
development life cycle of a system is automated through the 
usage of models [12]. Object Management Group (OMG) 
proposed Model Driven Architecture (MDA) to standardize 
and implement MDE. In this regard, a general purpose 
modeling language is proposed i.e., Unified Modeling 
Language (UML), which conforms to Meta-Object Facility 
(MOF) [13] another OMG standard for specifying, 
manipulating and integrating metadata. Eclipse Modeling 
Framework (EMF) [14] implements MDA and provides 
support for defining MOF compliant meta models, and its 
code generation feature enables to build tool support. The 
meta models explained in Section II.B and II.C are defined 
using EMF and tool support is provided through the above-
mentioned code generation feature.   

Model transformation is a set of rules, which defines the 
translation of one model to another model often referred to as 
the source and target model respectively. Epsilon 
Transformation Language (ETL) [15] is a hybrid model-to-



model transformation language. Thus, provides both 
declarative and imperative features to handle the wider range 
of transformation scenario. The former is provided through 
transformation rules, and targets higher abstractions, where 
the latter is supported via transformation operations and 
addresses the transformation on lower level.   

B. Fault Tree Analysis 

IEC 61025 [16], a specific FTA standard referred to in 

ECSS, defines FTA as “a deductive (top-down) method of 

analysis aimed at pinpointing the causes (faults) or 

combinations of causes that can lead to the defined top 

event”. Faults, their causes and the relation between them, 

specified via Boolean logic, are represented graphically (see 

[17] for the details regarding the graphical notation). In this 

work, the focus is on the generation of qualitative FT from 

1) existing models (representing the system design at 

various level of abstractions, i.e., high level, low level etc.), 

and 2) dependability analysis results. In [17] a meta-model 

is proposed to represent FTs. Fig. 1 (adopted from [19]) 

shows this meta-model, which defines the abstract syntax of 

the language for representing FTs. The meta-model has 

following three elements: 1) FTAModel,  represents  FT and 

contains all of  its events and their relation in the form of 

gates, 2) Event, is associated to FTAModel as a root and 

many containing events, 3) Gate, represents the relationship 

between an event and causing events. Both event and gate 

could be of different types, where all the applicable types 

are defined using enumeration entity and referred to as 

EventType and GateType respectively. To this end, for 

representing qualitative FT, our approach uses two events 

i.e., Basic & Intermediate and two gates i.e., OR & AND. 

An open source EMF based tool [13] implements this meta-

model as well as provides support for editing and 

graphically visualizing the FTs.   

 

 
Figure 1.  FTA Metamodel (adopted  from [14]) 

C. ConcertoFLA 

ConcertoFLA [7] is a failure logic analysis approach, 

which builds on top of Failure Propagation Transform 

Calculus (FPTC) [20] and calculates the failure behaviour of 

a system using the failure behaviour of composing 

components of the system. In ConcertoFLA, FPTC rules are 

used as a set of logical expressions to relate the failures on 

the output ports of a component with the failures occurring 

on its input port to compose the failure behaviour of the 

component. ConcertoFLA, supports three abstract failure 

types/modes i.e., value, timing and provision with 

specializations for each as Subtle/Coarse, early/late and 

Omission/Commission respectively. FPTC rule is a 

combination of input expression mapped to the output 

expression, defined as “Inputport.failuretype” and 

“Outputport.failuretype” respectively. Fig. 2 shows Failure 

Logic Analysis Meta Model (FLAMM), proposed in [22], 

which defines an abstract syntax for the language to 

represent the ConcertoFLA results. The elements of 

FLAMM and their relations are explained as below. 

 

 
Figure 2. Failure Logic Analysis Meta Model (FLAMM) [18] 

  

A Component can be defined as a CompositeComponent 

or a SimpleComponent. The former represents a system, 

while the latter refers to its composing components. The 

parent attribute of component describes the relation of 

composite and composing components. Component has 

InputPorts and OutputPorts of element Port type. The 

failure behaviour discussed above is specified on these 

input/output ports. The port element has a reference to itself 

to support the connected ports, as component based systems 

assembly is achieved by connecting the ports of composing 

components in a required configuration. This relation is 

used to determine the path of failure propagation and 

transformation. SimpleComponent has rules describing its 

failure behaviour, composed of InputExpression and 

OutPutExpression. The Expression associates the Failure 

and Port. Similar to port, failure has an association to itself 

referring to the previous failures (i.e., causes of this specific 

failure).  ConcertoFLA is also supported with an EMF based 

tool support, which implements the FLAMM and enables a 

support to decorate component based architectural models 

with above-mentioned FPTC rules, executes failure logic 

analysis and back propagates the analysis results to the 

model. The tool support extends its predecessor CHESS-

FLA [20], and is integrated in CHESS toolset. 

III. FLA2FT OVERVIEW 

In Fig. 3, we recall the overall approach that builds on 
top of our previous work [9], and initially presented in [7] 
and further developed in [22]. In this paper, the manual step 



in previous work [9] for generation of FT is automated and a 
tool support has been proposed (highlighted in the Fig. 3). 
Similar to [9], the approach is customized in the context of 
ECSS to perform the failure logic analysis at sub/system 
level, improve the design and automatically generate ECSS 
complaint FT using ConcertoFLA results and FT generation 
plugin (implemented in this work) respectively.  

 

 
Figure 3. Overview of the approach (adopted from [7]) 

 

The overall approach presented above, involves two 
model-to-model transformations as illustrated in Fig. 4. The 
system model annotated with dependability information 
conforms to the CHESSML. ConcertoFLA plugin transforms 
this model in to FLA results, which conforms to FLAMM. 
Lastly, the FT generator plugin transforms FLA results into 
FT model expressed using EMFTA meta-model. This final 
transformation is presented in the next section. 

 

 
Figure 4. Model Transformation of overall approach 

IV. FLA2FT TRANSFORMATION 

This section presents the transformation mapping of 

FLA2FT along with the implementation and integration of 

this mapping.  

A. Mapping of the entities from source to target  

Table 1. provides transformation mapping rules of the 
elements and attributes of the source model (FLAMM) to the 
elements and attributes of the target model (EMFTA). A 
combination of Port and Failure is mapped to a specific 
event. The name of an event is a combination of the name of 
port, the component it belongs to and the id of failure – this 
is to identify the events uniquely in a FT. The 
previousFailures attribute of the Failure determines the type 
of the event in the target model. If a failure has no previous 
failures, this suggests that the event type should be Basic as 
it refers to the root cause of system failure. Rule and its 
attributes input/outputExpression transforms to gate and 
determines the type of gate between the input/output events. 
For a specific outputExpression in a rule, if the number of 
inputExpression exceeds than one, AND type of gate shall be 
created between the input and output event. The rationale is 

that all of the failures on the ports specified in the 
inputExpression shall occur to cause the failure of the 
outputExpression. Each of the output port of composite 
component along with the failures is transformed into a new 
FTAModel – this is to generate a separate FT for each 
system level failure.  Fig. 5 shows the corresponding ETL 
implementation, where each output port and failure is 
transformed to a new FTAModel. This transformation 
mapping is realized in following two steps: 1) composite 
component output ports to FTAModel and generation of top 
event, and 2) population of FT.  

1) Composite component output ports to FTAModels 

and generation of  top event 

Each output port of the composite component and the 

failure modes on that specific port corresponds to a separate 

FT; each of these FTs refers to the causes of a particular 

system level failure. In Figure 6. the algorithm  shows the 

steps for the generation of FTAModel and identifying the 

top event. In step six and seven, for each output port that 

belongs to the composite component and for all failures on a 

specific port a new FT is generated with a top event 

referring to that specific port name and failure id. 

TABLE I.  TRANSFORMATION MAPPING 

Source (FLAMM) Target (EMFTA) 
Element Attribute Element Attribute 

Port name Event name 

owner name 

connectedPorts gate 

Failure previousFailures Event type 

id name 

Rule input/output 

Expression 

Gate type 

Composite 
Component 

OutputPort 

failures FTAModel name 

name 

owner 

 

2) Population of the Fault Tree 

By population of FT, we refer to the identification of 

remaining intermediate & basic events and the 

corresponding Boolean logic (gates) to connect these events. 

In FLAMM structure, the ports have failures and connected 

ports. To populate the FT we use a top down approach and 

start with the output port of composite component and its 

failures, which together refers to the top event of FT (as 

shown in Section IV.A.1). Using this output port, we 

identify the connected port and its failure to transform it into 

FT event. This algorithmic solution recursively identifies 

the causing events with respect to each connected port until 

all the ports are explored or port has no failure. This top-

down recursion has similarities with a typical depth first 

search. During this process, three different types of ports 

can be identified via the connected ports. Fig. 6 illustrates 

the algorithm for FT population, which lists these three 

cases referring to the identified ports in the form of if 



conditions in step two, thirteen and sixteen. These three 

cases are discussed in detail next.  

 

 
Figure 6. FT Population Recursive Algorithm 

 

 
Figure 5.  ETL code 

 

a) Output port of a simple component 

Output port of a simple component is connected to the 

output port of the composite component, which refers to the 

top event and identified in Section IV.A.1. For each failure 

on the output port of simple component, the contributing 

failures and the logical gate is determined through the rules 

of the component. The output port and failure is matched 

against the output expression of each rule. For each matched 

outputExpression the numbers of input expression are 

determined to identify the gate – if the number of input 

expression is greater than one, the events shall be connected 

through the AND gate otherwise OR gate. The former refers 

to the scenario that more than one failures need to occur to 

cause the resulting failure on the output port. Once, the gate 

is determined for the connecting ports; all of the input ports 

and their failures from each input expression is analyzed to 

identify the remaining corresponding events of FT, via 

recursively calling same method. 

a) Input port of a simple component   

A new intermediate event is created, having an OR 

gate, in the FT corresponding to this port and its failure.  

Input port of a simple component can be connected either to 

the output port of another simple component or an input of 

the composite port. The former is already discussed in 

previous section. 

b) Input port of the composite component    

In this case, a new basic event is created in FT referring 

to the port and the failure. The FT population stops when 

the search reaches the boundary of the system i.e., the input 

port of the composite component or when the connected 

port does not have any failure.  

B. Transformation Implementation and Integration in 

CHESS Toolset 

The above-mentioned model to model transformation is 

implemented using ETL. An ETL rule is developed to 

implement the Algorithm 1 and a recursive ETL operation 

implements the Algorithm 2 shown in Fig. 6 and Fig. 7 

respectively. An Eclipse Plugin is developed which 

integrates this transformation, along with the functionalities 

to generate, visualize and edit FT in CHESS tool set.  A user 

(System/Safety Engineer) selects the Fault Tree Generation 

menu bar entry and navigate to select the input FLAMM 

file, which contains the ConcertoFLA results. The plugin 

invokes the ETL transformation and generates the number 

of fault trees equal to the number of output ports of 

composite component and the type of failures. This results 

in less complex FTs due to being smaller, and provide 

opportunity to study a specific system level failure in 

isolation. The generated FTs are stored separately in a folder 

and a user can visualize and edit a FT by opening it into the 

fault tree viewer (editor) shown in Fig. 9.  
 

 
Figure 7. FTAModel Generation Algorithm 

V. FLA2FT APPLICATION TO ATTITUDE CONTROL 

SYSTEM (ACS) ENGINEERING  

ACS implements the functions required to maintain the 

orientation of a satellite in space relative to a reference of 

frame. ACS can have different operational modes, which 

typically involve different devices [23]. For example, in Sun 

Acquisition and Survival Mode (SASM) the ACS measures 

the gyroscopic rates and the Sun direction using Gyroscope 

and Sun Sensor for computing and sending control torque 

commands to propulsion thrusters. 

ACS is engineered according to the ECSS standards, 

which require that FTA shall be conducted at all levels of 

system/sub-system development for safety and 

dependability analysis and assurance [1] [2]. In design 

phase, the analysis contributes in the evaluation of the 



dependability (reliability and safety) of the system as well as 

an improvement of high-level design through the 

identification of weaknesses and may consequently result in 

the refinement of safety and reiliability requirements. 

To apply FLA2FT approach for ACS engineering, we 

used the flow illustrated in Fig. 3. We start with modeling 

the architectural specifications of ACS in SASM mode 

using CHESSML. In SASM mode, ACS has following six 

components: 1) SignalConditioner, process and transforms 

sensor data to satellite reference frame, 2) StateEstimator, 

estimates the satellite state using the current state 

measurements and historical data, 3) PDController, 

provides the proportional and derivative torques based on 

these estimates, 4) SteerController, also computes torque 

but using different gains and control law, 5) 

FeedforwController,  compensates for the cross coupling 

torques, and 6) TorqueSelector, selects the applicable torque 

for maintaining the target attitude corresponding to current 

state.. 

We considerd a hypothetical scenario, that the sensor 

units provide inaccurate measurements. Therefore, we 

injected the ACS with valueCoarse fault on its input ports.  

In the preliminary design, the components propagate this 

valueCoarse type of failure – this behaviour is modeled 

using FPTC rules as discussed in Section II.C. We executed 

the ConcertoFLA, which calculated the failure behaviour of 

ACS based on the failure behaviour of its composing 

components and stored it into a FLAMM based file. Fig. 8 

shows the architecture of ACS, injected faults and back-

propagated system failure behaviour i.e., the result of 

ConcertoFLA. Finally, the FLA2FT transformation is 

executed to generate the FT from the ConcertoFLA results 

produced in previous step. Fig. 9 shows the partial view 

(due to the limitation of space) of corresponding FT 

generated using the implemented plugin presented in 

Section IV.B.  The top event in the Fig. 9, i.e., valueCoarse 

failure of ctrlTorque in ACSComposite, refers to the system 

failure and corresponds to the valueCoarse failure on the 

ctrlTorque output port of ACSComposite component as 

illustrated in Fig.8. 

A. Compliance to ECSS Standards  

The generated FT complies with the ECSS standards as it 

fulfills the syntactic and procedural guidelines provided by 

IEC-61025 [17], which is incorporated in ECSS system. 

 For example, [17] requires that the top event should be 

defined unambiguously – this can be seen in Fig. 9, where 

the top event is shown as the combination of the type of 

failure, port name and the system name. Another 

requirement is that the FTs need to be drawn vertically or 

horizontally. In our approach, the FT visualizer shown in 

Fig. 9 represents FTs vertically. In order to avoid the 

omittance of a failure mode, the standard [17] requires a 

strict adherence to the immediate cause. ConcertoFLA 

generates the failure propagation paths, by considering all 

the failure modes of every port of each component – this 

guarantees that none of the failures are omitted.  According 

to [17], the repeated events or common cause events should 

be shown repeatedly in the FT. In our approach, we generate 

the common cause events repeatedly and could be visualize 

using FT-Visualizer illustrated in Fig. 9.  

 

 
Figure 8. ACS with ConcertoFLA results 

 

 
Figure 9. Fault Tree and FT-Visualizer 

VI. RELATED WORK  

In the literature, several works exist regarding the 

automatic generation of FTs. These works differ based on 

system model (given in a different modelling language or 

given with different perspectives, e.g. structural or 

behavioural) used as a basis to derive the FT analysis. In 

[24] a combination of structure and behaviour system model 

specified via Internal Block Diagram (IBD) and sequence 

diagram respectively, of the SysML is utilized to derive FT. 

The system model is first translated to reliability 

configuration model and  then transformed into a FT model.  

IBD based system model using SysML is also utilized in 

[18] to automatically generate FT. The approach employs 

Modelling and Analysis of Real-time Embedded Systems 

(MARTE) and Dependability Analysis and Modelling 

(DAM) UML profiles in contrast to our approach which 

utilizes CHESSML (MARTE and SysML profile) and its 

dependability profile. In [25], a tool supported approach is 

proposed to automatically generate FT from the Simulink 

based system models, using Hip-Hops methodology. In 



[26], Formal Safety Analysis Platform (FSAP) along with a 

safety assessment engine NuSMV-SA (based on NuSMV2 

model checker) is proposed – FSAP enables automatic FT 

construction from NuSMV behavioural models. However, 

the automatically generated FT consists of cut-sets only and 

lack the failure propagation paths in comparison to our 

approach, which generates the FT reflecting the overall 

system architecture.  

I. CONCLUSION AND FUTURE WORK 

In this paper, we proposed FLA2FT, a novel automatic 

Fault Tree-generator, which generates FTs from 

ConcertoFLA results. The automation has the potential to 

reduce the effort and indirectly contributes in improving the 

design as well as the dependability requirements, through 

timely feedback. FLA2FT is integrated in a well-established 

existing MDE based methodology and tool-set (CHESS). 

The integration contributes in empowering the toolset, by 

offering the substantiation of means of compliance for 

certification.   

In the future, we aim at providing an empirical study for 

establishing the time and cost-effective nature of our 

approach through conducting case studies that are more 

comprehensive. In this regard, we aim to involve the 

students and AMASS [28] partners to conduct experiments, 

interviews etc. 
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