
FLA2FT: Automatic Generation of Fault Tree from ConcertoFLA Results

 Zulqarnain Haider, Barbara Gallina, Enrique Zornoza Moreno

IDT, Mälardalen University

Västerås, Sweden

zulqarnain.haider@mdh.se

Abstract—Dependability-critical systems (e.g., space systems)

need to be engineered according to dependability standards

(e.g. ECSS standards), which require the application of various

dependability analyses, including Fault Tree Analysis (FTA).

Due to the complex nature of such systems, conducting FTA

may turn out to be time-consuming and error prone. Thus,

automation is highly desirable. In this paper, we build on top

of our previous work and we propose FLA2FT, a tool-

supported Fault Tree (FT) generation from ConcertoFLA

results. More specifically, we integrate FTA in a well-

established existing system modeling and analysis methodology

to generate FT automatically using model transformations. To

illustrate the usage of FLA2FT, we apply it to the space

domain and automate the generation of ECSS-compliant FTs

for an Attitude Control System (ACS). Finally, we draw our

conclusions and sketch future work.

Keywords-Model Driven Engineering; Fault Tree Analysis;

Attitude Control System

I. INTRODUCTION

The development of dependable (safety-critical)
embedded systems is regulated by standardization bodies,
which issue domain specific standards, and certification
bodies, which are responsible for checking compliance.
Space software systems for instance are engineered
according to the standards proposed by European
Cooperation for Space Standardization (ECSS). More
specifically, ECSS-Q-ST-30c [1] and ECSS-Q-ST-40c [2]
list requirements for the assurance of dependability and
safety respectively along with the methods for analysis and
assurance of these properties. Fault Tree Analysis (FTA) is a
deductive method for analyzing system to identify the causes
of system failure. Performing FTA manually for such
complex systems is time consuming and error prone [3].
Automatic generation of Fault Tree (FT) and integration with
other automated activities in a standard Software
Development Life Cycle (SDLC) could reduce the cost and
effort and enable compliance to the applicable standards.

Model driven and component-based engineering
represent established engineering methods to master
complex systems. CHESS [4] is one such tool-supported
methodology targeting high integrity embedded systems.
CHESS provides a dependability profile [5] implemented in
CHESS Modeling Language (CHESS ML), which itself is a
profile of SysML [6]. ConcertoFLA [7] is a tool-supported
failure logic analysis method (part of CHESS toolset), which
calculates the failure behaviour of a system based on the
failure behaviour of composing components (specified in
CHESS ML). System design represented via CHESS ML

models and their enrichment for safety analysis are coherent
and supportive to standards, e.g., in space domain ECSS-E-
ST-40C [8] and ECSS-Q-ST-40c [1] referring to system
design and safety respectively.

In our previous work [9], we discussed about the
feasibility of exploiting the causality paths generated by
ConcertoFLA, to derive ECSS compliant FTA results
manually. In this paper, we move a step further and we
propose FLA2FT, a tool-supported fault tree generator,
which generates fault trees from ConcertoFLA results.
FLA2FT empowers an existing toolset by producing the
certifiable evidences (compliance means) automatically.
FLA2FT is based on a master thesis presented in [10]. It will
soon be integrated into PolarSys OpenCert tools platform
[11] and available to download.

The remainder of this paper is organized as follows.
Section II provides the background information. Section III
gives an overview of FLA2FT. Section IV, presents the
mapping and implementation of transformation. Section V,
describes the application of FLA2FT to Attitude Control
System (ACS). Section VI discusses related work. Finally, in
Section VII, we present conclusion and sketch future work.

II. BACKGROUND

In this section, we present the background information
relevant to our work.

A. Model Driven Engineering (MDE) and Model

Transformation

Model Driven Engineering (MDE) is a methodology,
which raises the level of abstraction and produces well-
structured and maintainable systems. In MDE, the
development life cycle of a system is automated through the
usage of models [12]. Object Management Group (OMG)
proposed Model Driven Architecture (MDA) to standardize
and implement MDE. In this regard, a general purpose
modeling language is proposed i.e., Unified Modeling
Language (UML), which conforms to Meta-Object Facility
(MOF) [13] another OMG standard for specifying,
manipulating and integrating metadata. Eclipse Modeling
Framework (EMF) [14] implements MDA and provides
support for defining MOF compliant meta models, and its
code generation feature enables to build tool support. The
meta models explained in Section II.B and II.C are defined
using EMF and tool support is provided through the above-
mentioned code generation feature.

Model transformation is a set of rules, which defines the
translation of one model to another model often referred to as
the source and target model respectively. Epsilon
Transformation Language (ETL) [15] is a hybrid model-to-

model transformation language. Thus, provides both
declarative and imperative features to handle the wider range
of transformation scenario. The former is provided through
transformation rules, and targets higher abstractions, where
the latter is supported via transformation operations and
addresses the transformation on lower level.

B. Fault Tree Analysis

IEC 61025 [16], a specific FTA standard referred to in

ECSS, defines FTA as “a deductive (top-down) method of

analysis aimed at pinpointing the causes (faults) or

combinations of causes that can lead to the defined top

event”. Faults, their causes and the relation between them,

specified via Boolean logic, are represented graphically (see

[17] for the details regarding the graphical notation). In this

work, the focus is on the generation of qualitative FT from

1) existing models (representing the system design at

various level of abstractions, i.e., high level, low level etc.),

and 2) dependability analysis results. In [17] a meta-model

is proposed to represent FTs. Fig. 1 (adopted from [19])

shows this meta-model, which defines the abstract syntax of

the language for representing FTs. The meta-model has

following three elements: 1) FTAModel, represents FT and

contains all of its events and their relation in the form of

gates, 2) Event, is associated to FTAModel as a root and

many containing events, 3) Gate, represents the relationship

between an event and causing events. Both event and gate

could be of different types, where all the applicable types

are defined using enumeration entity and referred to as

EventType and GateType respectively. To this end, for

representing qualitative FT, our approach uses two events

i.e., Basic & Intermediate and two gates i.e., OR & AND.

An open source EMF based tool [13] implements this meta-

model as well as provides support for editing and

graphically visualizing the FTs.

Figure 1. FTA Metamodel (adopted from [14])

C. ConcertoFLA

ConcertoFLA [7] is a failure logic analysis approach,

which builds on top of Failure Propagation Transform

Calculus (FPTC) [20] and calculates the failure behaviour of

a system using the failure behaviour of composing

components of the system. In ConcertoFLA, FPTC rules are

used as a set of logical expressions to relate the failures on

the output ports of a component with the failures occurring

on its input port to compose the failure behaviour of the

component. ConcertoFLA, supports three abstract failure

types/modes i.e., value, timing and provision with

specializations for each as Subtle/Coarse, early/late and

Omission/Commission respectively. FPTC rule is a

combination of input expression mapped to the output

expression, defined as “Inputport.failuretype” and

“Outputport.failuretype” respectively. Fig. 2 shows Failure

Logic Analysis Meta Model (FLAMM), proposed in [22],

which defines an abstract syntax for the language to

represent the ConcertoFLA results. The elements of

FLAMM and their relations are explained as below.

Figure 2. Failure Logic Analysis Meta Model (FLAMM) [18]

A Component can be defined as a CompositeComponent

or a SimpleComponent. The former represents a system,

while the latter refers to its composing components. The

parent attribute of component describes the relation of

composite and composing components. Component has

InputPorts and OutputPorts of element Port type. The

failure behaviour discussed above is specified on these

input/output ports. The port element has a reference to itself

to support the connected ports, as component based systems

assembly is achieved by connecting the ports of composing

components in a required configuration. This relation is

used to determine the path of failure propagation and

transformation. SimpleComponent has rules describing its

failure behaviour, composed of InputExpression and

OutPutExpression. The Expression associates the Failure

and Port. Similar to port, failure has an association to itself

referring to the previous failures (i.e., causes of this specific

failure). ConcertoFLA is also supported with an EMF based

tool support, which implements the FLAMM and enables a

support to decorate component based architectural models

with above-mentioned FPTC rules, executes failure logic

analysis and back propagates the analysis results to the

model. The tool support extends its predecessor CHESS-

FLA [20], and is integrated in CHESS toolset.

III. FLA2FT OVERVIEW

In Fig. 3, we recall the overall approach that builds on
top of our previous work [9], and initially presented in [7]
and further developed in [22]. In this paper, the manual step

in previous work [9] for generation of FT is automated and a
tool support has been proposed (highlighted in the Fig. 3).
Similar to [9], the approach is customized in the context of
ECSS to perform the failure logic analysis at sub/system
level, improve the design and automatically generate ECSS
complaint FT using ConcertoFLA results and FT generation
plugin (implemented in this work) respectively.

Figure 3. Overview of the approach (adopted from [7])

The overall approach presented above, involves two
model-to-model transformations as illustrated in Fig. 4. The
system model annotated with dependability information
conforms to the CHESSML. ConcertoFLA plugin transforms
this model in to FLA results, which conforms to FLAMM.
Lastly, the FT generator plugin transforms FLA results into
FT model expressed using EMFTA meta-model. This final
transformation is presented in the next section.

Figure 4. Model Transformation of overall approach

IV. FLA2FT TRANSFORMATION

This section presents the transformation mapping of

FLA2FT along with the implementation and integration of

this mapping.

A. Mapping of the entities from source to target

Table 1. provides transformation mapping rules of the
elements and attributes of the source model (FLAMM) to the
elements and attributes of the target model (EMFTA). A
combination of Port and Failure is mapped to a specific
event. The name of an event is a combination of the name of
port, the component it belongs to and the id of failure – this
is to identify the events uniquely in a FT. The
previousFailures attribute of the Failure determines the type
of the event in the target model. If a failure has no previous
failures, this suggests that the event type should be Basic as
it refers to the root cause of system failure. Rule and its
attributes input/outputExpression transforms to gate and
determines the type of gate between the input/output events.
For a specific outputExpression in a rule, if the number of
inputExpression exceeds than one, AND type of gate shall be
created between the input and output event. The rationale is

that all of the failures on the ports specified in the
inputExpression shall occur to cause the failure of the
outputExpression. Each of the output port of composite
component along with the failures is transformed into a new
FTAModel – this is to generate a separate FT for each
system level failure. Fig. 5 shows the corresponding ETL
implementation, where each output port and failure is
transformed to a new FTAModel. This transformation
mapping is realized in following two steps: 1) composite
component output ports to FTAModel and generation of top
event, and 2) population of FT.

1) Composite component output ports to FTAModels

and generation of top event

Each output port of the composite component and the

failure modes on that specific port corresponds to a separate

FT; each of these FTs refers to the causes of a particular

system level failure. In Figure 6. the algorithm shows the

steps for the generation of FTAModel and identifying the

top event. In step six and seven, for each output port that

belongs to the composite component and for all failures on a

specific port a new FT is generated with a top event

referring to that specific port name and failure id.

TABLE I. TRANSFORMATION MAPPING

Source (FLAMM) Target (EMFTA)
Element Attribute Element Attribute

Port name Event name

owner name

connectedPorts gate

Failure previousFailures Event type

id name

Rule input/output

Expression

Gate type

Composite
Component

OutputPort

failures FTAModel name

name

owner

2) Population of the Fault Tree

By population of FT, we refer to the identification of

remaining intermediate & basic events and the

corresponding Boolean logic (gates) to connect these events.

In FLAMM structure, the ports have failures and connected

ports. To populate the FT we use a top down approach and

start with the output port of composite component and its

failures, which together refers to the top event of FT (as

shown in Section IV.A.1). Using this output port, we

identify the connected port and its failure to transform it into

FT event. This algorithmic solution recursively identifies

the causing events with respect to each connected port until

all the ports are explored or port has no failure. This top-

down recursion has similarities with a typical depth first

search. During this process, three different types of ports

can be identified via the connected ports. Fig. 6 illustrates

the algorithm for FT population, which lists these three

cases referring to the identified ports in the form of if

conditions in step two, thirteen and sixteen. These three

cases are discussed in detail next.

Figure 6. FT Population Recursive Algorithm

Figure 5. ETL code

a) Output port of a simple component

Output port of a simple component is connected to the

output port of the composite component, which refers to the

top event and identified in Section IV.A.1. For each failure

on the output port of simple component, the contributing

failures and the logical gate is determined through the rules

of the component. The output port and failure is matched

against the output expression of each rule. For each matched

outputExpression the numbers of input expression are

determined to identify the gate – if the number of input

expression is greater than one, the events shall be connected

through the AND gate otherwise OR gate. The former refers

to the scenario that more than one failures need to occur to

cause the resulting failure on the output port. Once, the gate

is determined for the connecting ports; all of the input ports

and their failures from each input expression is analyzed to

identify the remaining corresponding events of FT, via

recursively calling same method.

a) Input port of a simple component

A new intermediate event is created, having an OR

gate, in the FT corresponding to this port and its failure.

Input port of a simple component can be connected either to

the output port of another simple component or an input of

the composite port. The former is already discussed in

previous section.

b) Input port of the composite component

In this case, a new basic event is created in FT referring

to the port and the failure. The FT population stops when

the search reaches the boundary of the system i.e., the input

port of the composite component or when the connected

port does not have any failure.

B. Transformation Implementation and Integration in

CHESS Toolset

The above-mentioned model to model transformation is

implemented using ETL. An ETL rule is developed to

implement the Algorithm 1 and a recursive ETL operation

implements the Algorithm 2 shown in Fig. 6 and Fig. 7

respectively. An Eclipse Plugin is developed which

integrates this transformation, along with the functionalities

to generate, visualize and edit FT in CHESS tool set. A user

(System/Safety Engineer) selects the Fault Tree Generation

menu bar entry and navigate to select the input FLAMM

file, which contains the ConcertoFLA results. The plugin

invokes the ETL transformation and generates the number

of fault trees equal to the number of output ports of

composite component and the type of failures. This results

in less complex FTs due to being smaller, and provide

opportunity to study a specific system level failure in

isolation. The generated FTs are stored separately in a folder

and a user can visualize and edit a FT by opening it into the

fault tree viewer (editor) shown in Fig. 9.

Figure 7. FTAModel Generation Algorithm

V. FLA2FT APPLICATION TO ATTITUDE CONTROL

SYSTEM (ACS) ENGINEERING

ACS implements the functions required to maintain the

orientation of a satellite in space relative to a reference of

frame. ACS can have different operational modes, which

typically involve different devices [23]. For example, in Sun

Acquisition and Survival Mode (SASM) the ACS measures

the gyroscopic rates and the Sun direction using Gyroscope

and Sun Sensor for computing and sending control torque

commands to propulsion thrusters.

ACS is engineered according to the ECSS standards,

which require that FTA shall be conducted at all levels of

system/sub-system development for safety and

dependability analysis and assurance [1] [2]. In design

phase, the analysis contributes in the evaluation of the

dependability (reliability and safety) of the system as well as

an improvement of high-level design through the

identification of weaknesses and may consequently result in

the refinement of safety and reiliability requirements.

To apply FLA2FT approach for ACS engineering, we

used the flow illustrated in Fig. 3. We start with modeling

the architectural specifications of ACS in SASM mode

using CHESSML. In SASM mode, ACS has following six

components: 1) SignalConditioner, process and transforms

sensor data to satellite reference frame, 2) StateEstimator,

estimates the satellite state using the current state

measurements and historical data, 3) PDController,

provides the proportional and derivative torques based on

these estimates, 4) SteerController, also computes torque

but using different gains and control law, 5)

FeedforwController, compensates for the cross coupling

torques, and 6) TorqueSelector, selects the applicable torque

for maintaining the target attitude corresponding to current

state..

We considerd a hypothetical scenario, that the sensor

units provide inaccurate measurements. Therefore, we

injected the ACS with valueCoarse fault on its input ports.

In the preliminary design, the components propagate this

valueCoarse type of failure – this behaviour is modeled

using FPTC rules as discussed in Section II.C. We executed

the ConcertoFLA, which calculated the failure behaviour of

ACS based on the failure behaviour of its composing

components and stored it into a FLAMM based file. Fig. 8

shows the architecture of ACS, injected faults and back-

propagated system failure behaviour i.e., the result of

ConcertoFLA. Finally, the FLA2FT transformation is

executed to generate the FT from the ConcertoFLA results

produced in previous step. Fig. 9 shows the partial view

(due to the limitation of space) of corresponding FT

generated using the implemented plugin presented in

Section IV.B. The top event in the Fig. 9, i.e., valueCoarse

failure of ctrlTorque in ACSComposite, refers to the system

failure and corresponds to the valueCoarse failure on the

ctrlTorque output port of ACSComposite component as

illustrated in Fig.8.

A. Compliance to ECSS Standards

The generated FT complies with the ECSS standards as it

fulfills the syntactic and procedural guidelines provided by

IEC-61025 [17], which is incorporated in ECSS system.

 For example, [17] requires that the top event should be

defined unambiguously – this can be seen in Fig. 9, where

the top event is shown as the combination of the type of

failure, port name and the system name. Another

requirement is that the FTs need to be drawn vertically or

horizontally. In our approach, the FT visualizer shown in

Fig. 9 represents FTs vertically. In order to avoid the

omittance of a failure mode, the standard [17] requires a

strict adherence to the immediate cause. ConcertoFLA

generates the failure propagation paths, by considering all

the failure modes of every port of each component – this

guarantees that none of the failures are omitted. According

to [17], the repeated events or common cause events should

be shown repeatedly in the FT. In our approach, we generate

the common cause events repeatedly and could be visualize

using FT-Visualizer illustrated in Fig. 9.

Figure 8. ACS with ConcertoFLA results

Figure 9. Fault Tree and FT-Visualizer

VI. RELATED WORK

In the literature, several works exist regarding the

automatic generation of FTs. These works differ based on

system model (given in a different modelling language or

given with different perspectives, e.g. structural or

behavioural) used as a basis to derive the FT analysis. In

[24] a combination of structure and behaviour system model

specified via Internal Block Diagram (IBD) and sequence

diagram respectively, of the SysML is utilized to derive FT.

The system model is first translated to reliability

configuration model and then transformed into a FT model.

IBD based system model using SysML is also utilized in

[18] to automatically generate FT. The approach employs

Modelling and Analysis of Real-time Embedded Systems

(MARTE) and Dependability Analysis and Modelling

(DAM) UML profiles in contrast to our approach which

utilizes CHESSML (MARTE and SysML profile) and its

dependability profile. In [25], a tool supported approach is

proposed to automatically generate FT from the Simulink

based system models, using Hip-Hops methodology. In

[26], Formal Safety Analysis Platform (FSAP) along with a

safety assessment engine NuSMV-SA (based on NuSMV2

model checker) is proposed – FSAP enables automatic FT

construction from NuSMV behavioural models. However,

the automatically generated FT consists of cut-sets only and

lack the failure propagation paths in comparison to our

approach, which generates the FT reflecting the overall

system architecture.

I. CONCLUSION AND FUTURE WORK

In this paper, we proposed FLA2FT, a novel automatic

Fault Tree-generator, which generates FTs from

ConcertoFLA results. The automation has the potential to

reduce the effort and indirectly contributes in improving the

design as well as the dependability requirements, through

timely feedback. FLA2FT is integrated in a well-established

existing MDE based methodology and tool-set (CHESS).

The integration contributes in empowering the toolset, by

offering the substantiation of means of compliance for

certification.

In the future, we aim at providing an empirical study for

establishing the time and cost-effective nature of our

approach through conducting case studies that are more

comprehensive. In this regard, we aim to involve the

students and AMASS [28] partners to conduct experiments,

interviews etc.

ACKNOWLEDGMENT

This work has been partially financially supported by the

AMASS project [28].

REFERENCES

[1] European Cooperation for Space Standardization ECSS-Q-ST-30C
Space product assurance - Dependability 06/03/2009.

[2] European Cooperation for Space Standardization ECSS-Q-ST-40C
Space product assurance – Safety 06/03/2009.

[3] F. Mhenni, N. Nguyen, and J. Choley, “Automatic Fault Tree
Generation from SysML System Models”, IEEE/ASME International
Conference on Advanced Intelligent Mechatronics, Besacon, 2014.

[4] PolarSys CHESS, https://www.polarsys.org/chess/

[5] L. Montecchi and B. Gallina, “SafeConcert: a metamodel for a
concerted safety modeling of socio-technical systems”, 5th Int.,
Symp., on Model-Based Safety and Assessment, Trento Italy, 2017.

[6] SysML v1.4 Specification Release September 2015,
http://www.omgsysml.org/specifications.htm

[7] B. Gallina, E. Safer and A. Refsdal, “Towards Safety Risk
Assessment of Socio-Technical Systems via Failure Logic

Analysis”, IEEE International Symposium on Software Reliability
Engineering Workshops, Naples, 2014.

[8] European Cooperation for Space Standardization ECSS-E-ST-40C
Space Engineering – Software 06/03/2009.

[9] B. Gallina, Z. Haider and A. Carlsson, “Towards generating ECSS-
compliant fault tree analysis results via ConcertoFLA”, IOP
Conference Series: Materials Science and Engineering, 2018.

[10] E. Z. Moreno, Model-based approach for automatic generation of
IEC-61025 standard compliant fault trees, Master Thesis, 2018.

[11] PolarSys OpenCert, https://www.polarsys.org/opencert/

[12] D. Cetinkaya, A. Verbraeck and M. D. Seck, “MDD4MS: A model
driven development framework for modeling and simulation”,
Proceedings of the Summer Computer Simulation Conference, 2011.

[13] Meta Object Facility, https://www.omg.org/spec/MOF

[14] Eclipse Modeling Framework,
https://www.eclipse.org/modeling/emf/

[15] Epsilon Transformation Language,
https://www.eclipse.org/epsilon/doc/etl/

[16] Internationl Electrotechnical Commission IEC 61025 fault tree
analysis (FTA) IEC 61205:2008.

[17] P. Feiler and J. Delange, “Automated Fault Tree Analysis from
AADL Models”, ACM SIGAda Ada Letters, 2017.

[18] B. Alshboul and D. Petriu, ‘Automatic Derivation of Fault Tree
Models from SysML Models for Safety Analysis’, Journal of
Software Engineering and Applications, 2018.

[19] EMFTA Tool, https://gitlab.fbk.eu/CPS_Design/EST

[20] B. Gallina, M. A. Javed, F. Ul Muram and S. Punnekkat, “Model-
driven dependability analysis method for component-based
architectures” 38th Euromicro Conference on Software Engineering
and Advanced Applications, Cesme, Izmir, 2012.

[21] M. Wallace, Modular architectural representation and analysis of fault
propagation and transformation, Electronic Notes in Theoretical
Computer Science vol, 141, issue 3, 2005.

[22] CONCERTO Deliverable D3.3 November 2015 Design and
implementation of analysis methods for nonfunctional properties –
Final version.

[23] R. Noteborn, L. S. Hanbury, R. Larsson, S. Veldman, J. Myatt, M.
Pigg, M. Yu, A. Prezzavento, and J. Touaty, “FDIR and robustness
for the solar orbiter AOCS”, 9th International ESA Conference on
Guidance, Navigation & Control Systems, Portugal, 2014.

[24] J. Xiang, K. Yanoo, Y. Maeno, K. Tadano, “Automatic Synthesis of
Static Fault Trees from System Models”, IEEE 5th International
Conference on Secure Software Integration and Reliability
Improvement, Jeju Island, 2011.

[25] Y. Papadopoulos, M. Maruhn, “Model-based Synthesis of Fault Trees
from Matlab-Simulink Models”. International Conference on
Dependable Systems and Networks, Goteborg, Sweden, 2001.

[26] M. Bozzano and A. Villafiorita, “The FSAP/NuSMV-SA safety
analysis platform,” Int. J. Softw. Tools Technol. Transfer, 2007.

[27] AMASS (Architecture-driven, Multi-concern and Seamless
Assurance and Certification of Cyber-Physical Systems).
http://www.amass- ecsel.eu

http://www.omgsysml.org/specifications.htm
https://www.polarsys.org/opencert/
https://www.omg.org/spec/MOF
https://gitlab.fbk.eu/CPS_Design/EST

