
Fully Automatic, Parametric Worst-Case Execution Time Analysis

Björn Lisper
Dept. of Computer Science and Engineering, Mälardalen University

P.O. Box 883, SE-721 23 Västerås, SWEDEN
bjorn.lisper@mdh.se

Abstract

Worst-Case Execution Time (WCET) analysis means to
compute a safe upper bound to the execution time of a piece
of code. ParametricWCET analysis yields symbolic upper
bounds: expressions that may contain parameters. These
parameters may represent, for instance, values of input pa-
rameters to the program, or maximal iteration counts for
loops. We describe a technique for fully automatic paramet-
ric WCET analysis, which is based on known mathematical
methods: an abstract interpretation to calculate parametric
constraints on program flow, a symbolic method to count in-
teger points in polyhedra, and a symbolic ILP technique to
solve the subsequent IPET calculation of WCET bound. The
technique is capable of handling unstructured code, and it
can find upper bounds to loop iteration counts automati-
cally.

1 Introduction

Parametric (or symbolic) WCET analysis derives a for-
mula for the execution time, expressed in parameters of the
program, rather than just a single number. The parame-
ters can be either external, or internal like a symbolic upper
bound to a loop count. A parametric WCET formula con-
tains much more information than just a single WCET esti-
mate, and it can be used for applications like online schedul-
ing of tasks where parameters are unknown until runtime, or
to find which parts of a code that has the strongest influence
on the WCET. Thus, it is also potentially much more useful.

Previous approaches to parametric WCET have been
based on the program timing schema model [4], or paths [1,
2]. These methods need manual annotations for constraints
on loop counters and infeasible paths. An iterative method
to compute parametric WCET bounds for simple loops has
also been suggested [10].

Our method is potentially much more powerful than pre-
vious approaches. It can find loop bounds and infeasible
path constraints automatically, and is capable of using such

complex constraints in the calculation phase. Here we give
a short account for the method followed by an explanatory
example. A more detailed description is found in [8].

2 The Method

The analysis consists of a symbolic flow analysis, a sym-
bolic summation, and a symbolic IPET calculation. See
Fig. 1. The analysis uses a control flow graph model for
programs, which means it works also for unstructured codes
with jumps.

In the flow analysis, upper bounds for execution counts
are derived in the form of symbolic expressions. If the pro-
gram terminates, then the actual execution count for a pro-
gram point equals the number of different states encoun-
tered in that point. Our method derives an upper approxi-
mation to the set of possible states in each program point,
and then calculates the number of points in this set approxi-
mation. This yields an upper bound to the actual number of
states and thus, under the assumption that the program ter-
minates, the execution count. The set approximation may
be parameterized: the counting is then performed symbol-
ically. Program variables that affect the program flow, but
do not change during the execution, are classified as param-
eters since varying their values will give rise to more states
than are actually traversed during a single execution.

Set approximations can also be used to limit the num-
ber of states for which certain program paths can be taken.
This can be used to find infeasible paths. It is also use-
ful when analyzing program flows for pipelined processors,
where different execution paths must be explored for possi-
ble pipeline overlap effects.

Sets of states in program points can be approximated
from above by classical abstract interpretation [5]. Ab-
stract interpretation is a framework that covers many pos-
sible ways to approximate sets of states. One abstract in-
terpretation of particular interest is Halbwach’spolyhedral
abstract interpretation [6], which computes polyhedra as
set approximations. Each program variable that may affect
the program flow corresponds to a dimension in the polyhe-

1

(control flow graph)
program Polyhedral

flow analysis
symbolic
counting

Parametric
Integer
Programming

Parametric
WCET
formula

Figure 1. Structure of the method.

dral space. For instance, the set of states in a nested loop
with loop indices�, � and upper (parametric) loop limits
�, � will be bounded by a four-dimensional polyhedron in
��� ���� ��-space.

Polyhedra are convex approximations. They describe
linear loop index dependencies in nested loops, such as tri-
angular loops, well but will overapproximate index sets for
loops with non-unit strides. Other parametric set approx-
imations are certainly possible, and will then provide dif-
ferent tradeoffs between precision and speed. Investigating
these tradeoffs is an interesting topic of future research.

The next step is to count the numbers of points in poly-
hedra. Two techniques are known: through successive pro-
jection using known formulae for sums of powers of inte-
gers [9], and usingEhrhart Polynomials [3]. Both methods
can compute parametric results. In our loop example above
we would count points with respect to� and�, and return a
sum that is parametric in� and�.

The final phase is the IPET calculation. It is done by
Parametric Integer Programming (PIP) [7], which is a para-
metric extension of integer linear programming. This algo-
rithm finds the optimum of a linear objective function over
the parameterized set

� �� � �� � ��� ����	�
 � �� � ��� �� integral�

where�
 is a vector of parameters.
The parametric sums derived by the flow analysis are

typically nonlinear in the parameters. However, each such
sum can be replaced by a new symbolic parameter in the
symbolic IPET calculation. The constraints will then be-
come linear in these new parameters: PIP can compute
an optimum expressed in them, and a subsequent substi-
tution with the original sums followed by a simplification
will yield the optimum expressed in the original parame-
ters of the program. However, the new parameters often
have direct interpretations, such as upper bounds to execu-
tion counts in program points, and can thus be interesting in
their own right. An option is to leave them in the final an-
swer. The resulting formula will then provide information
how sensitive the WCET is for changes in loop counts and
similar, which is interesting when tuning the code for best
WCET.

The procedure outlined above is a fully automatic
method for parametric WCET analysis that goes all the way
from flow analysis to final WCET calculation. As far as we

know, no other parametric method achieves this. The para-
metric calculation generalizes conventional IPET and can
deal with advanced architectural features such as pipelining
and caches in the same way.

3 An Example

Consider the CFG in Fig. 2. We assume each node��

in the CFG has an execution time��. Each arc� has an
execution count��. We first analyze it in order to extract
upper bounds for the execution counts for all statements.
It suffices to analyze the program w.r.t. the possible values
of � and�, since they are the only variables affecting the
program flow. We assume that B1 and B2 are basic block
that update neither� nor �. There is one polyhedron �

for each program point�, however � � � and� � �

since B1 and B2 touch neither� nor�. We must also have
� � �. The system is solved byfixed-point iteration for
the simplified system, which converges in nine iterations.
The result is shown in Table 1. (� stands for the universal
set:� � � thus means that we allow any starting state in
the analysis.)

We now calculate the number of points in the polyhedra.
In the CFG in Fig. 2, the conditions depend on� and� only.
� is never updated, and is thus considered a parameter. For
each node, the number of elements in the abstract state on
the preceding edge provides an upper bound on the execu-
tion count. The execution count for node� � is trivially one.
By the method in [9], we obtain:

�
��

�
� � �

�
��

�
� �

�
��

�
� � �� � � � ���� � ���� �

�
��

�
� � �� � � �� ���� �� �� ���� �

�
��

�
� � �� � � � ����

�� � � �� ���� �� ���� �

���� �

This yields bounds�� �
�
��
�
�, where�� is execution count

for basic block��.
� is overapproximated in the analysis. Therefore, there

is no upper bound for��. This may seem awkward. How-
ever, there arestructural flow constraints on the execution
counts in addition to the upper bounds: for any node in the
CFG, the sum of the execution counts for the input arcs must

2

i := 0 start

i < n

i < n−10

stop
false

B1 B2

falsetrue

i := i+1

true

S2
S10

S3

S5

S6 S7

S8

S9

S4

S0S1
n0

n2

n3

n4 n5

n8

Figure 2. A simple flowchart program.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

� �

� � �� � � � �� �� �� �� � � � �� � � � � � � �

Table 1. Result of abstract interpretation for example flowchart.

x4

x8

s4

s8

20 + 50x4 + 140x8 = k Increasing k

Figure 3. Maximizing the objective function in
the IPET example.

equal the corresponding sum for the output arcs. These con-
straints will ensure finiteness of��, see below.

We finally perform a parametric IPET calculation. The
WCET estimate is��	�

�
�	����������� �����. The execution

count bounds derived from the abstract interpretation yield
constraints�� � ��� � � �� � � � � ��, where�� is a symbolic
parameter for

�
��
�
�. We also have non-negativity constraints

�� � �� � � �� � � � � ��.

The structural flow constraints of the CFG can be used to
reduce the number of variables down to two. Selecting� �

and�� as basis yields the reduced problem��	��� � �� �
����� � ��� � ����� � �� � �� � ���� under the constraints
� � �� � ��, � � �� � ��. Let us assume computation
times �� � ��, �� � ��, �� �
�, �� � ���, �� � ���,
and�� � ��. We then obtain the WCET estimate���� �
����� �
� for �� � ��, �� � ��. See Fig. 3. With��,
�� as the functions of� given by the polyhedral abstract
interpretation we obtain (after simplification):

� � �� ����� ���
� � � � �� �����
�

otherwise
�

4 Conclusions and Further Research

We have described and exemplified a fully automatic
method for parametric WCET calculation, that can deal
with complex flow constraints and advanced architectural
processor features. Future work involves a full implementa-
tion in order to evaluate the method with respect to accuracy
and practical time complexity.

3

References

[1] G. Bernat and A. Burns. An approach to symbolic
worst-case execution time analysis. InProc. 25th
Workshop on Real-Time Programming, Palma, Spain,
May 2000.

[2] R. Chapman. Worst-case timing analysis via finding
longest paths in SPARK Ada basic-path graphs. Tech-
nical Report YCS246, The British Aerospace Depend-
able Computing System Centre, Dept. of Computer
Science, Univ. York, Oct. 1994.

[3] P. Clauss. Counting solutions to linear and nonlin-
ear constraints through Ehrhart polynomials: Appli-
cations to analyze and transform scientific programs.
In Proc. International Conference on Supercomput-
ing, pages 278–285, Philadelphia, PA, 1996. ACM.

[4] A. Colin and G. Bernat. Scope-tree: a program repre-
sentation for symbolic worst-case execution time anal-
ysis. In Proc. 14th Euromicro Conference on Real-
Time Systems, Vienna, June 2002.

[5] P. Cousot and R. Cousot. Abstract interpretation: A
unified model for static analysis of programs by con-
struction or approximation of fixpoints. InProceed-
ings of the 4th ACM Symposium on Principles of Pro-
gramming Languages, pages 238–252, 1977.

[6] P. Cousot and N. Halbwachs. Automatic discovery
of linear restraints among variables of a program. In
Proceedings of the 5th ACM Symposium on Principles
of Programming Languages, pages 84–97, 1978.

[7] P. Feautrier. Parametric integer programming.RAIRO
Recherche Opérationnelle, 22:243–268, Sept. 1988.

[8] B. Lisper. Fully automatic, parametric worst-case
execution time analysis. MRTC report, Dept. of
Computer Science and Engineering, Mälardalen
University, Apr. 2003.
http://www.mrtc.mdh.se/publ.php3?id=0531 .

[9] W. Pugh. Counting solutions to Presburger Formulas:
How and why. InProc. ACM SIGPLAN’94 Confer-
ence on Programming Language Design and Imple-
mentation, pages 121–134, Orlando, FL, June 1994.
ACM.

[10] E. Vivancos, C. Healy, F. Mueller, and D. Whal-
ley. Parametric Timing Analysis. In J. Fenwick and
C. Norris, editors,Proc. ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Embedded Sys-
tems (LCTES’2001), pages 88–93, Snowbird, Utah,
June 2001.

4

