
A Perspective on Ensuring Predictability in
Time-critical and Secure Cooperative Cyber

Physical Systems
Saad Mubeen⇤, Elena Lisova⇤, Aneta Vulgarakis Feljan†

⇤Mälardalen University, Sweden
†Ericsson Research, Sweden

saad.mubeen@mdh.se, elena.lisova@mdh.se, aneta.vulgarakis@ericsson.com

Abstract—Recent advancement in the development of embed-
ded systems and in the integration of operational and industrial
technologies has accelerated the progress of cyber-physical sys-
tems (CPSs) development. Cooperation of such systems allows
to achieve new functionalities. However, often these systems
are time-critical; hence, the developers of these systems are
required to provide guarantees of the systems’ properties, such
as predictability and security. In this paper, we start by glancing
through the research devoted to developing time predictable and
secure embedded systems. Thereon, we extend the discussion
to time-critical and secure CPSs and point out the challenges
related to ensuring predictability during their development. In
this context, we emphasize the importance of security as a
prerequisite for time predictability. Moreover, we identify the
gaps in the state of the art and describe our view on ensuring
predictability in time-critical and secure CPSs.

I. INTRODUCTION

Cyber-physical systems (CPSs) have been defined and in-
terpreted in a number of ways by the research community.
For instance, the International Conference on CPSs (ICPPS)1

defines CPSs as the “physical and engineered systems whose
operations are monitored, coordinated, controlled, and inte-
grated by computing and communication.” Lee and Seshia [1],
[2] describe CPSs as the systems that emphasize the link
between computation and physical processes, and as such
the link among time, space and energy. Embedded computers
monitor and control the physical processes, and vice versa
the physical processes affect the computations. The radical
transformation from an embedded system (ES) to a CPS comes
from the emphasis on integration of physical processes and a
more broad networking aspect. ESs have also been defined
in several ways and there is no comprehensive agreed-upon
definition of ESs as stated by Li and Yao [3]. According to
one of the most widely used definitions of ESs [4], [5], an
ES is designed to perform a dedicated functionality by means
of a computer hardware, software, and perhaps additional
mechanical components, sensors and other parts.

As this paper aims to investigate the support for predictabil-
ity and security in CPSs that include one or more ESs, it
is important to first clearly identify the boundary of the ES
within the CPS, which is often ambiguous. In this context, we
define an ES as the system consisting of hardware, software
and interfaces (ports) to receive/send sensor/actuator signals

1http://iccps.acm.org/2019/?q=CFP

and network messages. The inputs (sensor signals) arriving
at the input interface and the computed outputs (actuation
signals) delivered to the output interface of the system are
considered parts of the ES as shown in Fig. 1. The actual
sensors, actuators and physical processes that are sensed and
controlled respectively are not considered as parts of the ES.
Whereas, these entities, together with the ES and possibly
communication with the cloud constitute a CPS as depicted
in Fig. 1. For example, consider the airbag system in a car.
If the car crashes and its deceleration is fast enough, the
crash sensors are triggered, which send crash signals to the
computing unit that produces the actuation signals to inflate the
airbag. The sensor inputs, the computation unit (both hardware
and software) and the actuation outputs are part of the ES.
Whereas, the ES together with the crash sensors and the
physical process (environment) in which they are deployed,
the airbag actuator and the airbag itself constitute the CPS.
Note that if two or more ESs are connected via an on-board
network, the system is still regarded as an ES, more precisely
as a distributed ES, as shown by the on-board interconnection
of several ESs in Fig. 1.

The CPS considered in the above example is a time-critical
system as it is required to provide a logically correct response
(output) within a given amount of time (timing requirement);
failing to do so can result in the system failure. Assume that
the car in which the CPS is deployed is an autonomous vehicle.
The car cooperates with other vehicles and/or road-side units
(RSUs) to perform a certain cooperative functionality, e.g.,
avoid accidents. The above-mentioned CPS in the car together
with the corresponding CPSs inside the other vehicles or RSUs
provide an example of a time-critical cooperative CPS.

A system is considered to be predictable if its state/behavior
can be forecasted at any point in time, given a known execution
environment or a set of assumptions. The prediction can be
made either qualitatively or quantitatively, and during the
different system lifecycle stages. Predictability of a system is
related to proving, demonstrating or verifying the fulfillment
of the requirements that are specified on the system, whether
they are functional or extra-functional. This paper focuses on
the system development stage, and on two extra-functional
requirements that affect the system’s predictability: timing and
security. The term predictability has also been used lately in
the artificial intelligence community, where a system is capable



Embedded  Computer 
(Software + Hardware) 

Embedded System 1

Sensors ActuatorsPhysical Process 

CyberPhysical System
In
pu
t I
nt
er
fa
ce

O
ut
pu
t I
nt
er
fa
ce

Cloud/Fog 

Onboard  

Network Embedded  Computer 
(Software + Hardware) 

Embedded System 2

In
pu
t I
nt
er
fa
ce

O
ut
pu
t I
nt
er
fa
ce

Embedded  Computer 
(Software + Hardware) 

Embedded System N

In
pu
t I
nt
er
fa
ce

O
ut
pu
t I
nt
er
fa
ce

Fig. 1: Defining the boundaries of ES and CPS.

of predicting the future state changes and executing appro-
priate actions beforehand (e.g., for predictive maintenance),
however this is outside of the scope of this paper.

Extensive research has been devoted in defining and study-
ing predictability with respect to time [6], [7], [8], [9] and
security [10], [11], [12] in the ESs community. Security is a
broad term, that can be defined as a system property that allows
it “to perform its mission or critical functions despite risks
posed by threat” [13], where a threat can be defined as “the
potential source of an adverse event” [13]. A threat is realized
by an attack that exploits a vulnerability, i.e., a flow in the
system, and targets one of the system assets. A concrete threat
realization is an attack. One of the main security objectives
in ESs is to consider data integrity and authenticity, as it is
crucial to have enough confidence that the data received from
the sensors represents the physical process correctly. That is,
the data is not modified by an adversary or injected by an
adversary masking the real data. In order to ensure that the
input data is correct and not modified maliciously, we can as
well use prediction algorithms (extrapolation) and also security
mechanisms for integrity and authentication checks.

The main objective of this paper is to conduct an investiga-
tion of key issues involved in ensuring predictability in time-
critical and secure cooperative CPSs. We start by exploring
the state of the art for ensuring these properties in the ESs
community, and identify the level of existing support during
the design time in a broader context, i.e., for CPSs. In this
regard, we seek to answer the following questions.

1) Are the existing frameworks for the development of CPSs
expressive enough to specify timing and security require-
ments on the various components of CPSs?

2) Are there any existing methods and techniques that can for-
mally verify the specified timing and security requirements
of CPSs at the design time?

3) Are there any existing techniques to support time pre-
dictable and secure runtime environment for CPSs?

If the answer to any of the above questions is “no” or “may
be”, we further investigate the following two questions.

• What is missing from the existing solutions?
• How can the existing solutions be extended to support the

development of time-critical and secure CPSs?

Note that while answering the posed questions, we identify
potential gaps in the state of the art and propose extensions to
the existing techniques and frameworks.

II. RUNNING EXAMPLE: AUTONOMOUS QUARRY

In this work we illustrate our ideas with the help of an
example of autonomous quarry, which is depicted in Fig. 2.
A crusher machine crushes big stones into smaller ones. The
crushed stones are transported by battery-powered autonomous
haulers. The haulers cooperate with each other for efficient
transportation of the crushed material. It is crucial for the
production efficiency that the haulers arrive at the battery
charging stations in time to avoid stopping in the middle of the
quarry with drained batteries. It is undesirable for the haulers
to approach the stations too early with still enough charge
left in their batteries. The other important aspect is safe and
efficient transportation. The haulers should have an updated
map of the quarry with updated available routes and location
of the static objects to prevent any accidents, e.g., crashing
into obstacles or falling into pits. Each hauler should also
be aware of the location of the rest of the haulers to avoid
collisions with each other. We assume that the haulers receive
this information (e.g., a map of dynamic objects) from a com-
munication center, which has an established communication
link with each hauler. Moreover, the haulers receive the control
information regarding speed, direction and required actions
from the communication center. In case of an immediately
detected hazard or a communication failure, the haulers are
capable of overriding a command from the communication
center and relying fully on the information from the on-board
sensors and local processing of the surrounding environment.
Note that these systems operate in harsh environments, e.g.,
due to extreme amount of dust. Furthermore, these systems
also share the environment with humans, thus safety is a
crucial property to assure. In these systems, support for
time predictability is crucial in assuring safety. Interestingly,
wireless communication channels and increased connectivity
among the vehicles impose security threats that can affect
predictability, thereby jeopardizing the system safety.

III. TIME PREDICTABILITY IN CPSS

This section provides a comprehensive discussion on time
predictability in time-critical ESs and CPSs.



Fig. 2: Example of an autonomous quarry [14].

A. Predictability in Time-critical ESs
In this subsection, the scope of the discussion on time

predictability is within the on-board ESs in each hauler in
the example (discussed in Section II). Due to the time-
critical nature of many ESs, it is required that all actions
by these systems are performed in a timely manner such
that the specified timing requirements are satisfied. Hence,
at the design time, the developers of these systems need to
verify and ensure that the systems are time predictable. Time
predictability is a well-defined term in the real-time embedded
systems theory [6], [7], [8], [9]. For a given system model and
a set of assumptions, the system is said to be time predictable
if it is possible to prove or demonstrate that all specified timing
requirements will be satisfied when the system is executed.

The timing requirements can be specified on individual
tasks, set of tasks and task chains in a node (single- or multi-
core processor), individual messages in a network, and chains
of tasks and messages in a distributed ES. Traditionally, the
timing requirements mostly referred to the deadlines of tasks,
messages and task chains [15]. That is, the response time of a
task, message or a task chain, counted from the arrival of the
input value at the input ports or network interfaces until the
delivery of the computed output value to the output ports or
network interfaces of the system, must not exceed the specified
deadline. In the past few years, the research community
extended the use of timing requirements beyond the traditional
deadline requirement by considering several other timing re-
quirements such as the reaction and age constraints, among
others. These requirements have been incorporated in several
domain-specific modeling languages, e.g., Timing Augmented
Description Language (TADL2) [16], EAST-ADL [17] and the
Rubus Component Model (RCM) [18]. These requirements
have also become part of the domain-specific standards such
as the automotive standard AUTOSAR [19].

The predictability of a time-critical ES is ensured by verify-
ing its timing behavior during the design time and supporting
its predictable execution at runtime. The timing behavior can
be verified by using the schedulability analyses, whereas the
runtime environment can be provided by means of a real-time
operating system (RTOS). There is a plethora of schedulability
analyses developed by the research community [15], [20],
[21]. Similarly, there are many RTOSs that provide predictable
runtime environment, e.g., VxWorks, Rubus, FreeRTOS, just
to name a few. In crux, the development of predictable time-
critical ESs has gained considerable maturity.

B. Predictability in Time-critical CPSs
The time-critical ESs are only one part of time-critical

CPSs. Hence, the scope of time predictability in the CPS
must extend the boundaries of the ESs to include the timing
impact of sensors and actuators that are deployed in physical
processes. The sensor values in the running example might be
received from other haulers, RSUs or the control center. Two
key parameters have been identified in this regard [22].
1) Ready Time of Inputs: The ready time of inputs in the CPS

is referred to as the interval of time between the instant
when the value of a sensor that is deployed in the physical
process changes and the instant when the changed value
appears at the input interface of the ES. The ready time
of all sensor inputs coming from the physical processes
should be time predictable.

2) Ready Order of Inputs: In the case of more than one sensor
value arriving at the input interface of an ES, the computed
output that controls the physical processes depends heavily
on the arrival order of the inputs. The desired function of
the CPS requires a specific arrival order of the inputs from
the sensors that are deployed in the physical processes,
which must be time predictable. This is referred to as the
order predictability.

These two parameters are not considered in the definition of
time predictability for ESs because they exist outside their
interfaces. In order for a CPS to be time predictable, it should
be possible to prove or demonstrate at the design time that all
the timing requirements specified on the system are satisfied.
These requirements include the timing requirements on the
computations and communications as well as the requirements
that constrain the ready time and ready order of the inputs. If a
CPS offloads computations to the cloud as shown in Fig. 1, the
definition of time predictability should also consider the timing
impact of offloaded computations to the cloud controllers [23];
however, it is out of the scope of this paper.

It should be noted that even if a time-critical CPS is proven
to be predictable at the design time, the predictability of the
system can be jeopardized at runtime due to security threats to
the time-critical data entering the system, e.g., from sensors,
networks or other CPSs. Hence, the security of the data is
integral to the time predictability of the system. Such security
aspects will be discussed in the next sections.

IV. SECURITY IN TIME-CRITICAL CPSS

This section discusses the design-time security challenges
in ESs and relates them to the security of time-critical CPSs.
Further, it explores the feasibility of corresponding security
solutions in ESs to the security challenges in the CPSs.

A. Security Challenges and Solutions in ESs and CPSs
The security challenges in ESs have been extensively ad-

dressed by the research community [10]. The core security
challenges for ESs at the design time are as follows.
1) Resource Gap: Many ESs struggle with keeping up with

the requirements on computation and energy consumption
to support security solutions.

2) Flexibility: Security is dynamic in nature and it can be
challenging for ESs (which are often static) to provide
flexible platform to support constant security updates.



3) Tamper Resistance: It is a challenge for ESs to counter-
act attacks coming from malware, which are capable of
executing the downloaded applications.

4) Security Assurance: Assurance of security for ESs that tend
to have increased complexity is a challenge.

5) Cost: Security solutions can be costly, thus it is a challenge
to find the right balance between acceptable security level
and the system design investment in low-cost devices.

To tackle the first challenge of limited resources the re-
search community has developed many lightweight security
solutions [24], [25]. Generally, this challenge does not concern
CPSs as they can have relatively more resources, e.g., the
haulers in the running example may contain large batteries,
powerful processors (e.g., multi-cores) and high-bandwidth
onboard networks (e.g., Ethernet). Thus, from the security
perceptive CPSs do not have strict resource limitations.

The challenge of developing flexible platforms to provide
security in CPSs is inherited from ESs. Although, this chal-
lenge is already addressed in ESs [26], it is yet to be tackled in
CPSs, which are more open and connected compared to ESs
and thus have higher risks and stricter security requirements.
The hauler in the running example is more vulnerable to
security attacks as compared to an ES (e.g., brake-by-wire
system), due to its exposure to more attack surfaces, e.g., the
hauler receives time-sensitive information via wireless links
from the other haulers and the control center. Hence, an
investigation is required to check feasibility of the solutions
from the ESs domain for CPSs.

The challenge of tamper resistance can be tackled for ESs
via lightweight security solutions and generally by incorporat-
ing security considerations into the system design. For CPSs
which are more connected and especially for cooperating
CPSs, the challenge requires a dedicated effort starting from
the concept phase of the system design.

Security assurance in ESs is challenging because the system
security is not composable, i.e., composing the system from
individual components with specified security levels does not
ensure the security of the composed system. Thus, considering
a secure ES as a part of the CPS is not straightforward to
assure an overall system-level security. The assurance of ESs
is addressed for real-time properties [27] and safety [28],
e.g., the ISO 26262 [29] functional-safety standard for road
vehicles provides guidelines for assuring that any unreasonable
risks due to malfunctions of electrical and electronic systems
are avoided. However, the challenge of security assurance for
ESs is not solved yet. The notion of the security assurance
case exists [30], however there are not that many works in
the area. The main showstopper is the dynamic nature of
security, as new threats and vulnerabilities are constantly being
discovered [31]. In the case of time-critical cooperative CPSs,
this challenge gets even more complex because the system’s
decisions rely on time-sensitive information coming from other
systems via wireless communication links.

Considering how costly security solutions can be for ESs,
there is a number of risk assessment techniques allowing to
find a balance between the possible possessed risk and the
solution to mitigate or prevent it. Similar to the As Low As
Reasonable Practicable (ALARP) [32] from the safety domain,
an appropriate level of system security is defined when the

resources required to be invested in breaching the security
are compared to the value of the system assets. Many time-
critical and cooperative CPSs are safety-critical meaning that
the expenses threshold for the design phase of the system is
high due to the criticality level.

B. Security as a Prerequisite for Time Predictability
Time predictability is built upon assumptions about the

system and its environment. One of the common assumptions
in ESs is integrity of systems’ inputs, i.e., the inputs are not
modified, forged, injected or deleted by a malicious adversary.
However, the possible physical access to the system by an
adversary is not covered by the classical assumptions of time
predictability in ESs. Hence, there is an implicit dependence
of time predictability on the security of input data. Shifting
from ESs to CPSs, the assumption regarding security becomes
even a bigger concern, as the system becomes less isolated
and more complex. In cooperative CPSs, securing the data
integrity becomes more challenging due to increased con-
nectivity in these systems, which brings new attack surfaces
and vulnerabilities if security is not addressed at the design
time. For example, the time predictability of the autonomous
haulers in the running example can be analyzed and guaranteed
under a set of assumptions, including the assumption that
the integrity of the sensor data is intact. An autonomous
hauler gets command information about its movement from
the control center. We also assume that the hauler has some
local intelligence allowing it to sustain any temporary loss of
control information, e.g., due to a failure in the communication
channel [33]. For making its own decisions regarding its
current actions, a hauler needs to have an updated map of
the quarry and approximated location of the other vehicles.
If an adversary is able to forge the command information
containing the speed, direction and acceleration, the time
predictability of the system that is already verified at the
design time will not hold any more. Another possible scenario
can be seen if a failure occurs in the communication channel
due to degradation of communication quality or jamming, the
time predictability of the system can be jeopardized, e.g., due
to forged map or sensor information. Thus, to support time
predictability in time-critical cooperative CPSs, the systems’
security must also be supported.

V. POSITION

A. Position Regarding Time Predictability
In order to support the development of time-critical CPSs,

the questions posed in Section I are refined as follows.
1) Are the existing models, languages and frameworks for

the development of CPSs expressive enough to specify
timing requirements not only on the computation and
communication times but also on the ready times and ready
order of the inputs acquired from the physical processes?

2) Are there any existing methods and techniques that can
formally verify the specified timing requirements at the
design time to support pre-runtime verification of CPSs?

3) Are there any existing techniques to support predictable
run-time environment for CPSs, which can provide
bounded delays with regards to the computation, commu-
nication, ready times and ready order of the sensor inputs?



To answer the first question we explore the existing develop-
ment models, languages and frameworks for CPSs. The exist-
ing works in the computation and communication parts support
the specification of timing requirements, which are sufficient
to support the corresponding part of time-critical CPSs. For ex-
ample, consider the automotive domain, where the AUTOSAR
standard includes a comprehensive timing model that is able
to specify 21 different timing constraints. Similarly, the EAST-
ADL modeling language and several other component models
including RCM are expressive enough to model and specify
the timing requirements. Another example can be seen in the
avionics domain, where the existing frameworks support the
specification of timing requirements [34], [35].

However, the support for specifying the timing requirements
with respect to the input ready times and the input ready
order is still missing. There are a few works that discuss these
terms [22]; however, the formal semantics of the requirements
and corresponding ready times and order are still missing.
This, in turn, hampers the specification of holistic timing re-
quirements in time-critical CPSs, i.e., the timing requirements
that constrain the delivery time of the output of an actuator
corresponding to the time when a new input is generated from
a sensor that is deployed in the physical process.

We believe, the existing Order Constraint used in the
computations, which is included in the AUTOSAR standard
and several other modeling languages such as EAST-ADL,
TADL2 and RCM can be extended to support the input
ready order timing requirement in CPSs. The Order Constraint
constrains an order among the occurrences of events [18], [19].
If this definition is adapted to constrain the arrival order of the
sensor values from the physical process then this constraint
can be applied to constrain the input ready order in CPSs. On
the other hand, the semantics of the input ready times and
corresponding requirement need to be defined and included in
the existing frameworks for the development of CPSs.

The second question can be answered by exploring the
existing schedulability techniques [15], [20], [36]. The sup-
port to verify time predictability at the design time in the
computation and communication parts seem to be mature. If
the Order Constraint is extended to support the specification
of timing requirement on the inputs arrival order in CPSs,
the corresponding timing analysis can be used to verify this
requirement at the design time [18]. To the best of our knowl-
edge, the timing analysis to verify the timing requirement on
the input ready times is missing from the state of the art.

The answer to the third question is similar to that of the
second one. The existing execution frameworks and tools sup-
port predictable runtime environments in the computation and
communication parts as discussed in Section III-A. However,
these techniques need to be extended to provide upper bounds
on the input ready times and to enforce the inputs ready order.

B. Position Regarding Security
The observed tendency is that there exist several techniques,

analyses and frameworks for addressing security in time-
critical CPSs. However, the systematic way of incorporating
security in the system development at the design time and
its run-time assessment during operational phase, which is
especially of importance for cooperative CPSs, is not mature.

The solutions considered in this paper for time predictability
hold only if the data integrity, authentication and authoriza-
tion are supported. Due to the strong binding between time
predictability and security, this paper renders security as a
prerequisite for time predictability in time-critical CPSs.

One of the core challenges in developing secure CPSs is that
a particular solution (e.g., a hash-function to check integrity
of messages) does not provide by itself any guarantees, as
one has to pay attention to its implementation and security
policies to be able to verify if this solution actually covers
the required security objective. Thus, we advocate the top-
down approach for addressing security at the system level
and building a security assurance case to systematize the way
security is provided and supported. An assurance case can be
defined as “an enabling mechanism to show that the system
meets its prioritized requirements” [37]. It aims at reasoning
about the system’s trustworthiness. The assurance case can be
built for a system property such as safety [38], security [30]
or ethics [39]. We envision the security assurance case as a
way to collect and structure arguments over the system being
acceptably secure. Security is dynamic by nature and requires
run-time updates and refinements. It is not feasible to develop a
security case from the scratch whenever there is an update. The
challenge of handling the updates in an efficient way within a
security case is an open challenge.

Now we answer the questions (posed in Section ??) in
relation to the current state of the art in security for time-
critical CPSs. First, there are several existing methods for
requirements elicitation of security [40], [41] as well as of
joint safety and security [42], [43]. Second, there are many
existing techniques and tools for the formal verification of
these requirements [44], [45]. However, there is a lack of
support for run-time frameworks that can provide secure run-
time environment for the systems, which is crucial considering
how often updates and patches can be required.

VI. SUMMARY AND FUTURE WORK

Cooperative CPSs require a tight combination of and coordi-
nation between computational and physical processes. These
systems resulted in the recent years from the confluence of
technologies in ESs, distributed systems, dependable systems,
and often real-time systems with advances in networking,
microcontrollers, sensors, actuators and even artificial intel-
ligence. CPSs must operate safely, securely, efficiently and in
real-time, and therefore predictability with regards to timing
and security requirements is critical for their development. In
order to identify the key issues involved in the development
of time-critical and secure cooperative CPSs, in this paper, we
first draw a parallel between ESs and CPSs. We then explore
the research and look into a number of existing frameworks
and techniques devoted to developing time predictable and
secure ESs. We conclude that the state of the art work from the
ESs community is inadequate for the more complex and open
CPSs, as the boundaries of a CPS extend beyond the system
network interfaces. Moreover, time predictability in ESs is
built upon assumptions about the system and its environment.
Shifting from ESs to CPSs, this assumption does not hold
anymore, as even if a time-critical CPS is proven to be time
predictable at the design time, the predictability of the system



may be jeopardized at run-time due to security threats on the
data entering the system via its sensors, networks or even other
CPSs. The existing methods and techniques for building time
predictable CPSs hold only if the data integrity, authentication
and authorization are supported. Therefore, we argue that there
is a gap and future work should be devoted to developing
frameworks that render security as a prerequisite for time-
critical CPSs. We have illustrated our ideas on one cooperative
time-critical CPS of autonomous quarry.

ACKNOWLEDGEMENT

The work in this paper is supported by the Swedish Knowl-
edge Foundation (KKS), the Swedish Foundation for Strategic
Research (SSF), and the Swedish Governmental Agency for
Innovation Systems (VINNOVA) through the projects DPAC
and HERO, Serendipity, and DESTINE respectively.

REFERENCES

[1] E. A. Lee and S. A. Seshia, Introduction to embedded systems: A cyber-
physical systems approach. Mit Press, 2016.

[2] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), May 2008, pp. 363–369.

[3] Q. Li and C. Yao, Real-Time Concepts for Embedded Systems, 1st ed.
Boca Raton, FL, USA: CRC Press, Inc., 2003.

[4] M. Barr, “Embedded Systems Glossary.” http://www.netrino.com/
Embedded-Systems/Glossary.

[5] M. Barr and A. Massa, Programming Embedded Systems. O’Reilly
Media, Inc., 2006.

[6] J. A. Stankovic and K. Ramamritham, “What is predictability for real-
time systems?” Real-Time Sys., vol. 2, no. 4, pp. 247–254, Nov 1990.

[7] L. Thiele and R. Wilhelm, “Design for timing predictability,” Real-Time
Sys., vol. 28, no. 2, pp. 157–177, Nov 2004.

[8] R. Kirner and P. Puschner, “Time-predictable computing,” in Software
Technologies for Embedded and Ubiquitous Systems. Springer Berlin
Heidelberg, 2010, pp. 23–34.

[9] D. Grund, J. Reineke, and R. Wilhelm, “A Template for Predictability
Definitions with Supporting Evidence,” in Bringing Theory to Practice:
Predictability and Performance in Embedded Systems, ser. OpenAccess
Series in Informatics, vol. 18, Dagstuhl, Germany, 2011, pp. 22–31.

[10] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security in
embedded systems: Design challenges,” ACM Trans. Embed. Comput.
Syst., vol. 3, no. 3, pp. 461–491, Aug. 2004.

[11] D. N. Serpanos and A. G. Voyiatzis, “Security challenges in embedded
systems,” ACM Trans. Embed. Comput. Syst., vol. 12, no. 1s, pp. 66:1–
66:10, Mar. 2013.

[12] J. Jurjens, “Developing secure embedded systems: Pitfalls and how to
avoid them,” in Companion to the Proceedings of the 29th International
Conference on Software Engineering, ser. ICSE COMPANION ’07,
2007, pp. 182–183.

[13] R. Kissel, Glossary of key information security terms. U.S. Dept. of
Commerce, National Institute of Standards and Technology, 2006.

[14] M. G. Doyle, How Volvo CE is engineering a quarry run by electric
loaders and haulers for big cuts to costs and emissions, 2016, https:
//www.equipmentworld.com, accessed on September 15, 2018.

[15] L. Sha, T. Abdelzaher, K.-E. A. rzén, A. Cervin, T. P. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K. Mok, “Real
Time Scheduling Theory: A Historical Perspective,” Real-Time Systems,
vol. 28, no. 2/3, pp. 101–155, 2004.

[16] Timing Augmented Description Language (TADL2) syntax, semantics,
metamodel Ver. 2, Deliverable 11, Aug. 2012.

[17] “EAST-ADL Domain Model Specification, V2.1.12,,” http://www.east-
adl.info/Specification/V2.1.12/EAST-ADL-Specification V2.1.12.pdf.

[18] S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck, and K.-L. Lundbäck,
“Supporting timing analysis of vehicular embedded systems through the
refinement of timing constraints,” Software & Systems Modeling, 2017.

[19] “AUTOSAR Techincal Overview, Release 4.1, Rev. 2, Ver. 1.1.0., The
AUTOSAR Consortium, Oct., 2013,” http://autosar.org.

[20] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A Compositional
Framework for End-to-End Path Delay Calculation of Automotive
Systems under Different Path Semantics,” in CRTS Workshop, dec. 2008.

[21] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” Computer Science and Information
Systems, vol. 10, no. 1, 2013.

[22] B. Sun, X. Li, B. Wan, C. Wang, X. Zhou, and X. Chen, “Definitions
of predictability for cyber physical systems,” Journal of Systems Archi-
tecture, vol. 63, pp. 48 – 60, 2016.

[23] S. Mubeen, P. Nikolaidis, A. Didic, H. Pei-Breivold, K. Sandstrm,
and M. Behnam, “Delay mitigation in offloaded cloud controllers in
industrial iot,” IEEE Access, vol. 5, pp. 4418–4430, 2017.

[24] M. S. Rohmad, H. Hashim, and A. Saparon, “Lightweight cryptography
on programmable system on chip: Standalone software implementation,”
in 2015 IEEE Symposium on Computer Applications Industrial Electron-
ics (ISCAIE), April 2015, pp. 151–154.

[25] G. Bansod, N. Raval, and N. Pisharoty, “Implementation of a new
lightweight encryption design for embedded security,” IEEE Trans. on
Information Forensics and Security, vol. 10, no. 1, pp. 142–151, 2015.

[26] I. Hiroaki, M. Edahiro, and J. Sakai, “Towards scalable and secure
execution platform for embedded systems,” in 2007 Asia and South
Pacific Design Automation Conference, Jan 2007, pp. 350–354.

[27] S. Konrad and B. H. C. Cheng, “Real-time specification patterns,” in
Proceedings of the 27th International Conference on Software Engineer-
ing, ser. ICSE ’05. New York, NY, USA: ACM, 2005, pp. 372–381.

[28] A. Kornecki and J. Zalewski, “Safety assurance for safety-critical em-
bedded systems: Qualification of tools for complex electronic hardware,”
in 1st International Conference on Information Technology, 2008.

[29] International Organization for Standardization (ISO), ISO 26262: Road
Vehicles - Functional Safety, ISO Std., 2011.

[30] C. B. Weinstock, H. F. Lipson, and J. Goodenough, “Arguing security
creating security assurance cases,” 2014.

[31] P. Johnson, D. Gorton, R. Lagerström, and M. Ekstedt, “Time between
vulnerability disclosures: A measure of software product vulnerability,”
Computers & Security, 2016.

[32] R. Melchers, “On the ALARP Approach to Risk Management,” Relia-
bility Engineering and Sys. Safety, vol. 71, no. 2, pp. 201 – 208, 2001.

[33] S. Girs, I. Šljivo, and O. Jaradat, “Contract-based assurance for wireless
cooperative functions of vehicular systems,” in 43rd Annual Conference
of the IEEE Industrial Electronics Society (IECON), Oct. 2017.

[34] M. Paulitsch, H. Ruess, and M. Sorea, “Non-functional avionics require-
ments,” in Leveraging Applications of Formal Methods, Verification and
Validation. Springer Berlin Heidelberg, 2008, pp. 369–384.

[35] A. Löfwenmark, Timing Predictability in Future Multi-Core Avionics
Systems, Licentiate Thesis, Department of Computer Science and Infor-
mation Systems, Linköping University, 2017, ISBN: 978-91-7685-564-5.

[36] T. Feld, A. Biondi, R. I. Davis, G. Buttazzo, and F. Slomka, “A survey
of schedulability analysis techniques for rate-dependent tasks,” Journal
of Systems and Software, vol. 138, pp. 100 – 107, 2018.

[37] North Atlantic Treaty Organization, “Engineering for system assurance
nato in programmes,” 2010.

[38] R. Weaver, J. Fenn, and T. Kelly, “A pragmatic approach to reasoning
about the assurance of safety arguments,” in 8th Australian Workshop
on Safety Critical Systems and Software, 2003.

[39] I. Šljivo, E. Lisova, and S. Afshar, “Agent-centred approach for assuring
ethics in dependable service systems,” in 13th IEEE World Congress on
Services, Jun. 2017.

[40] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security requirements
engineering: A framework for representation and analysis,” IEEE Trans-
actions on Software Engineering, vol. 34, no. 1, pp. 133–153, Jan 2008.

[41] J. McDermott and C. Fox, “Using abuse case models for security
requirements analysis,” in Proceedings 15th Annual Computer Security
Applications Conference (ACSAC’99), Dec 1999, pp. 55–64.

[42] C. Raspotnig, P. Karpati, and V. Katta, “A combined process for elici-
tation and analysis of safety and security requirements,” in Enterprise,
Business-Process and Information Sys. Modeling, 2012, pp. 347–361.

[43] T. Gu, M. Lu, and L. Li, “Extracting interdependent requirements and
resolving conflicted requirements of safety and security for industrial
control systems,” in 1st International Conference on Reliability Systems
Engineering (ICRSE), 2015, pp. 1–8.

[44] G. Howard, M. Butler, J. Colley, and V. Sassone, “Formal Analysis
of Safety and Security Requirements of Critical Systems Supported by
an Extended STPA Methodology,” in IEEE European Symposium on
Security and Privacy Workshops (EuroS PW), 2017, pp. 174–180.

[45] A. Iliasov, A. Romanovsky, L. Laibinis, E. Troubitsyna, and T. Latvala,
“Augmenting event-b modelling with real-time verification,” in 1st
International Workshop on Formal Methods in Software Engineering:
Rigorous and Agile Approaches (FormSERA), June 2012, pp. 51–57.


