
O
m

a
r Ja

ra
d

a
t C

O
N

TR
A

C
TS-BA

SED
 M

A
IN

TEN
A

N
C

E O
F SA

FETY C
A

SES
2018

ISBN 978-91-7485-417-6
ISSN 1651-4238

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdh.se Web: www.mdh.se

Mälardalen University Doctoral Dissertation 280

Contracts-based Maintenance of
Safety Cases
Omar Jaradat

Mälardalen University Press Dissertations
No. 280

CONTRACTS-BASED MAINTENANCE OF SAFETY CASES

Omar Jaradat

2018

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 280

CONTRACTS-BASED MAINTENANCE OF SAFETY CASES

Omar Jaradat

2018

School of Innovation, Design and Engineering

1

Copyright © Omar Jaradat, 2018
ISBN 978-91-7485-417-6
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

Copyright © Omar Jaradat, 2018
ISBN 978-91-7485-417-6
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

2

Mälardalen University Press Dissertations
No. 280

CONTRACTS-BASED MAINTENANCE OF SAFETY CASES

Omar Jaradat

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen försvaras

måndagen den 3 december 2018, 09.30 i Kappa, Mälardalens högskola, Västerås.

Fakultetsopponent: Senior Lecturer Mark Nicholson, University of York

Akademin för innovation, design och teknik

Mälardalen University Press Dissertations
No. 280

CONTRACTS-BASED MAINTENANCE OF SAFETY CASES

Omar Jaradat

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen försvaras

måndagen den 3 december 2018, 09.30 i Kappa, Mälardalens högskola, Västerås.

Fakultetsopponent: Senior Lecturer Mark Nicholson, University of York

Akademin för innovation, design och teknik

3

Abstract
Safety critical systems are those systems whose failure could result in loss of life, significant property damage, or
damage to the environment. System safety is a major property that shall be adequately assured to avoid any
severe outcomes in safety critical systems. Safety assurance should provide justified confidence that all potential
risks due to system failures are either eliminated or acceptably mitigated. System developers in many domains
(e.g., automotive, avionics, railways) should provide convincing arguments regarding the safe performance of
their systems to a national or international regulatory authority and obtain approvals before putting the system
into service. Building 'Safety cases' is a proven technique to argue about and communicate systems' safety and it
has become a common practice in many safety critical system domains. System developers use safety cases to
articulate claims about how systems meet their safety requirements and objectives, collect and document items
of evidence, and construct a safety argument to show how the available items of evidence support the claims.

Safety critical systems are evolutionary and constantly subject to preventive, perfective, corrective or adaptive
changes during both the development and operational phases. Changes to any part of those systems can
undermine the confidence in safety since changes can refute articulated claims about safety or challenge the
supporting evidence on which this confidence relies. Hence, safety cases need to be built as living documents
that should always be maintained to justify the safety status of the associated system and evolve as these systems
evolve. However, building safety cases are costly since they require a significant amount of time and efforts to
define the safety objectives, generate the required evidence and conclude the underlying logic behind the safety
case arguments. Safety cases document highly dependent elements such as safety goals, assumptions and
evidence. Seemingly minor changes may have a major impact. Changes to a system or its environment can
necessitate a costly and painstaking impact analysis for systems and their safety cases. In addition, changes may
require system developers to generate completely new items of evidence by repeating the verification activities.
Therefore, changes can exacerbate the cost of producing and maintaining safety cases.

Safety contracts have been proposed as a means for helping to manage changes. There have been works that
discuss the usefulness of contracts for reusability and maintainability. However, there has been little attention
on how to derive them and how exactly they can be utilised for system or safety case maintenance.

The main goal of this thesis is to support the change impact analysis as a key factor to enhance the
maintainability of safety cases. We focus on utilising safety contracts to achieve this goal. To address this, we study
how safety contracts can support essential factors for any useful change management process, such as (1)
identifying the impacted elements and those that are not impacted, (2) minimising the number of impacted
safety case elements, and (3) reducing the work needed to make the impacted safety case elements valid
again. The preliminary finding of our study reveals that using safety contracts can be promising to develop
techniques and processes to facilitate safety case maintenance. The absence of safety case maintenance
guidelines from safety standards and the lack of systematic and methodical maintenance techniques have
motivated the work of this thesis. Our work is presented through a set of developed and assessed techniques,
where these techniques utilise safety contracts to achieve the overall goal by various contributions. We begin by a
framework for evaluation of the impact of change on safety critical systems and safety cases. Through this, we
identify and highlight the most sensitive system components to a particular change. We propose new ways to
associate system design elements with safety case arguments to enable traceability. How to identify and reduce the
propagation of change impact is addressed subsequently. Our research also uses safety contracts to enable
through-life safety assurance by monitoring and detecting any potential mismatch between the design safety
assumptions and the actual behaviour of the system during its operational phase. More specifically, we use safety
contracts to capture thresholds of selected safety requirements and compare them with the runtime related data
(i.e., operational data) to continuously assess and evolve the safety arguments.

In summary, our proposed techniques pave the way for cost-effective maintenance of safety cases upon
preventive, perfective, corrective or adaptive changes in safety critical systems thus helping better decision support
for change impact analysis.

ISBN 978-91-7485-417-6
ISSN 1651-4238

Abstract
Safety critical systems are those systems whose failure could result in loss of life, significant property damage, or
damage to the environment. System safety is a major property that shall be adequately assured to avoid any
severe outcomes in safety critical systems. Safety assurance should provide justified confidence that all potential
risks due to system failures are either eliminated or acceptably mitigated. System developers in many domains
(e.g., automotive, avionics, railways) should provide convincing arguments regarding the safe performance of
their systems to a national or international regulatory authority and obtain approvals before putting the system
into service. Building 'Safety cases' is a proven technique to argue about and communicate systems' safety and it
has become a common practice in many safety critical system domains. System developers use safety cases to
articulate claims about how systems meet their safety requirements and objectives, collect and document items
of evidence, and construct a safety argument to show how the available items of evidence support the claims.

Safety critical systems are evolutionary and constantly subject to preventive, perfective, corrective or adaptive
changes during both the development and operational phases. Changes to any part of those systems can
undermine the confidence in safety since changes can refute articulated claims about safety or challenge the
supporting evidence on which this confidence relies. Hence, safety cases need to be built as living documents
that should always be maintained to justify the safety status of the associated system and evolve as these systems
evolve. However, building safety cases are costly since they require a significant amount of time and efforts to
define the safety objectives, generate the required evidence and conclude the underlying logic behind the safety
case arguments. Safety cases document highly dependent elements such as safety goals, assumptions and
evidence. Seemingly minor changes may have a major impact. Changes to a system or its environment can
necessitate a costly and painstaking impact analysis for systems and their safety cases. In addition, changes may
require system developers to generate completely new items of evidence by repeating the verification activities.
Therefore, changes can exacerbate the cost of producing and maintaining safety cases.

Safety contracts have been proposed as a means for helping to manage changes. There have been works that
discuss the usefulness of contracts for reusability and maintainability. However, there has been little attention
on how to derive them and how exactly they can be utilised for system or safety case maintenance.

The main goal of this thesis is to support the change impact analysis as a key factor to enhance the
maintainability of safety cases. We focus on utilising safety contracts to achieve this goal. To address this, we study
how safety contracts can support essential factors for any useful change management process, such as (1)
identifying the impacted elements and those that are not impacted, (2) minimising the number of impacted
safety case elements, and (3) reducing the work needed to make the impacted safety case elements valid
again. The preliminary finding of our study reveals that using safety contracts can be promising to develop
techniques and processes to facilitate safety case maintenance. The absence of safety case maintenance
guidelines from safety standards and the lack of systematic and methodical maintenance techniques have
motivated the work of this thesis. Our work is presented through a set of developed and assessed techniques,
where these techniques utilise safety contracts to achieve the overall goal by various contributions. We begin by a
framework for evaluation of the impact of change on safety critical systems and safety cases. Through this, we
identify and highlight the most sensitive system components to a particular change. We propose new ways to
associate system design elements with safety case arguments to enable traceability. How to identify and reduce the
propagation of change impact is addressed subsequently. Our research also uses safety contracts to enable
through-life safety assurance by monitoring and detecting any potential mismatch between the design safety
assumptions and the actual behaviour of the system during its operational phase. More specifically, we use safety
contracts to capture thresholds of selected safety requirements and compare them with the runtime related data
(i.e., operational data) to continuously assess and evolve the safety arguments.

In summary, our proposed techniques pave the way for cost-effective maintenance of safety cases upon
preventive, perfective, corrective or adaptive changes in safety critical systems thus helping better decision support
for change impact analysis.

ISBN 978-91-7485-417-6
ISSN 1651-4238

4

Abstract

Safety critical systems are those systems whose failure could result in loss
of life, significant property damage, or damage to the environment. System
safety is a major property that shall be adequately assured to avoid any severe
outcomes in safety critical systems. Safety assurance should provide justified
confidence that all potential risks due to system failures are either eliminated or
acceptably mitigated. System developers in many domains (e.g., automotive,
avionics, railways) should provide convincing arguments regarding the safe
performance of their systems to a national or international regulatory authority
and obtain approvals before putting the system into service. Building ‘Safety
cases’ is a proven technique to argue about and communicate systems’ safety
and it has become a common practice in many safety critical system domains.
System developers use safety cases to articulate claims about how systems meet
their safety requirements and objectives, collect and document items of evid-
ence, and construct a safety argument to show how the available items of evid-
ence support the claims.

Safety critical systems are evolutionary and constantly subject to prevent-
ive, perfective, corrective or adaptive changes during both the development and
operational phases. Changes to any part of those systems can undermine the
confidence in safety since changes can refute articulated claims about safety
or challenge the supporting evidence on which this confidence relies. Hence,
safety cases need to be built as living documents that should always be main-
tained to justify the safety status of the associated system and evolve as these
systems evolve. However, building safety cases are costly since they require a
significant amount of time and efforts to define the safety objectives, generate
the required evidence and conclude the underlying logic behind the safety case
arguments. Safety cases document highly dependent elements such as safety
goals, assumptions and evidence. Seemingly minor changes may have a ma-
jor impact. Changes to a system or its environment can necessitate a costly

i

Abstract

Safety critical systems are those systems whose failure could result in loss
of life, significant property damage, or damage to the environment. System
safety is a major property that shall be adequately assured to avoid any severe
outcomes in safety critical systems. Safety assurance should provide justified
confidence that all potential risks due to system failures are either eliminated or
acceptably mitigated. System developers in many domains (e.g., automotive,
avionics, railways) should provide convincing arguments regarding the safe
performance of their systems to a national or international regulatory authority
and obtain approvals before putting the system into service. Building ‘Safety
cases’ is a proven technique to argue about and communicate systems’ safety
and it has become a common practice in many safety critical system domains.
System developers use safety cases to articulate claims about how systems meet
their safety requirements and objectives, collect and document items of evid-
ence, and construct a safety argument to show how the available items of evid-
ence support the claims.

Safety critical systems are evolutionary and constantly subject to prevent-
ive, perfective, corrective or adaptive changes during both the development and
operational phases. Changes to any part of those systems can undermine the
confidence in safety since changes can refute articulated claims about safety
or challenge the supporting evidence on which this confidence relies. Hence,
safety cases need to be built as living documents that should always be main-
tained to justify the safety status of the associated system and evolve as these
systems evolve. However, building safety cases are costly since they require a
significant amount of time and efforts to define the safety objectives, generate
the required evidence and conclude the underlying logic behind the safety case
arguments. Safety cases document highly dependent elements such as safety
goals, assumptions and evidence. Seemingly minor changes may have a ma-
jor impact. Changes to a system or its environment can necessitate a costly

i

5

ii

and painstaking impact analysis for systems and their safety cases. In addition,
changes may require system developers to generate completely new items of
evidence by repeating the verification activities. Therefore, changes can ex-
acerbate the cost of producing and maintaining safety cases.

Safety contracts have been proposed as a means for helping to manage
changes. There have been works that discuss the usefulness of contracts for
reusability and maintainability. However, there has been little attention on how
to derive them and how exactly they can be utilised for system or safety case
maintenance.

The main goal of this thesis is to support the change impact analysis as a
key factor to enhance the maintainability of safety cases. We focus on util-
ising safety contracts to achieve this goal. To address this, we study how safety
contracts can support essential factors for any useful change management pro-
cess, such as (1) identifying the impacted elements and those that are not im-
pacted, (2) minimising the number of impacted safety case elements, and (3)
reducing the work needed to make the impacted safety case elements valid
again. The preliminary finding of our study reveals that using safety contracts
can be promising to develop techniques and processes to facilitate safety case
maintenance. The absence of safety case maintenance guidelines from safety
standards and the lack of systematic and methodical maintenance techniques
have motivated the work of this thesis. Our work is presented through a set
of developed and assessed techniques, where these techniques utilise safety
contracts to achieve the overall goal by various contributions. We begin by a
framework for evaluation of the impact of change on safety critical systems
and safety cases. Through this, we identify and highlight the most sensitive
system components to a particular change. We propose new ways to associ-
ate system design elements with safety case arguments to enable traceability.
How to identify and reduce the propagation of change impact is addressed
subsequently. Our research also uses safety contracts to enable through-life
safety assurance by monitoring and detecting any potential mismatch between
the design safety assumptions and the actual behaviour of the system during
its operational phase. More specifically, we use safety contracts to capture
thresholds of selected safety requirements and compare them with the runtime
related data (i.e., operational data) to continuously assess and evolve the safety
arguments.

In summary, our proposed techniques pave the way for cost-effective main-
tenance of safety cases upon preventive, perfective, corrective or adaptive
changes in safety critical systems thus helping better decision support for
change impact analysis.

ii

and painstaking impact analysis for systems and their safety cases. In addition,
changes may require system developers to generate completely new items of
evidence by repeating the verification activities. Therefore, changes can ex-
acerbate the cost of producing and maintaining safety cases.

Safety contracts have been proposed as a means for helping to manage
changes. There have been works that discuss the usefulness of contracts for
reusability and maintainability. However, there has been little attention on how
to derive them and how exactly they can be utilised for system or safety case
maintenance.

The main goal of this thesis is to support the change impact analysis as a
key factor to enhance the maintainability of safety cases. We focus on util-
ising safety contracts to achieve this goal. To address this, we study how safety
contracts can support essential factors for any useful change management pro-
cess, such as (1) identifying the impacted elements and those that are not im-
pacted, (2) minimising the number of impacted safety case elements, and (3)
reducing the work needed to make the impacted safety case elements valid
again. The preliminary finding of our study reveals that using safety contracts
can be promising to develop techniques and processes to facilitate safety case
maintenance. The absence of safety case maintenance guidelines from safety
standards and the lack of systematic and methodical maintenance techniques
have motivated the work of this thesis. Our work is presented through a set
of developed and assessed techniques, where these techniques utilise safety
contracts to achieve the overall goal by various contributions. We begin by a
framework for evaluation of the impact of change on safety critical systems
and safety cases. Through this, we identify and highlight the most sensitive
system components to a particular change. We propose new ways to associ-
ate system design elements with safety case arguments to enable traceability.
How to identify and reduce the propagation of change impact is addressed
subsequently. Our research also uses safety contracts to enable through-life
safety assurance by monitoring and detecting any potential mismatch between
the design safety assumptions and the actual behaviour of the system during
its operational phase. More specifically, we use safety contracts to capture
thresholds of selected safety requirements and compare them with the runtime
related data (i.e., operational data) to continuously assess and evolve the safety
arguments.

In summary, our proposed techniques pave the way for cost-effective main-
tenance of safety cases upon preventive, perfective, corrective or adaptive
changes in safety critical systems thus helping better decision support for
change impact analysis.

6

Swedish Summary

Säkerhetskritiska system är system där fel kan resultera i förlust av
människoliv, betydande skada på egendom, eller skador på miljön. Sys-
temsäkerhet är en viktig egenskap som måste säkerställas för att minimera
riskerna för allvarliga fel i säkerhetskritiska system. Säkerställande av sys-
temsäkerheten bör resultera i väl underbyggda argument för att alla potentiella
risker som orsakas av systemfel eliminerats eller reducerats till en accepta-
bel nivå. Systemutvecklare inom många områden (t.ex. bilar, flyg, järnvägar)
behöver tillhandahålla information om systemens säkerhetsstatus till en na-
tionell eller internationell tillsynsmyndighet för att denna ska kunna bedöma
systemet kan sättas i drift eller inte. Mer specifikt bör systemutvecklare skapa
”säkerhetsfall” bestående av (1) krav som om de är uppfyllda leder till att syste-
men är tillräckligt säkra och (2) bevis för att dessa krav är uppfyllda, i form av
väl dokumenterade bevismaterial och säkerhetsargument som tydligt visar att
detta bevismaterial innebär att kraven är uppfyllda. Att på detta sätt konstruera
säkerhetsfall är en beprövad teknik för att argumentera för och kommunicera
systemens säkerhet och är praxis inom många säkerhetskritiska områden.

Många säkerhetskritiska system är under ständig utveckling och föremål
för förebyggande, förbättrande, och korrigerande förändringar under såväl
utvecklings- som driftsfasen. ändringar av någon del av dessa system kan un-
dergräva förtroendet för säkerheten, eftersom de kan ändra förutsättningarna
för påståenden om säkerhet eller utmana de stödjande bevis som detta
förtroende bygger på. Därför är säkerhetsfall byggda som levande dokument
som ständigt behöver hållas uppdaterade för att motivera säkerhetsstatus för
systemet. Konstruktion och underhåll av säkerhetsfall är dock kostsamt efter-
som det krävs betydande tid och ansträngningar för att definiera säkerhet-
skraven, generera de nödvändiga bevisen och utforma den underliggande lo-
giken bakom säkerhetsargumenten. Säkerhetsfall dokumenterar starkt ömsesi-
diga beroenden (t.ex. mellan säkerhetskrav, bevis och antaganden) och även

iii

Swedish Summary

Säkerhetskritiska system är system där fel kan resultera i förlust av
människoliv, betydande skada på egendom, eller skador på miljön. Sys-
temsäkerhet är en viktig egenskap som måste säkerställas för att minimera
riskerna för allvarliga fel i säkerhetskritiska system. Säkerställande av sys-
temsäkerheten bör resultera i väl underbyggda argument för att alla potentiella
risker som orsakas av systemfel eliminerats eller reducerats till en accepta-
bel nivå. Systemutvecklare inom många områden (t.ex. bilar, flyg, järnvägar)
behöver tillhandahålla information om systemens säkerhetsstatus till en na-
tionell eller internationell tillsynsmyndighet för att denna ska kunna bedöma
systemet kan sättas i drift eller inte. Mer specifikt bör systemutvecklare skapa
”säkerhetsfall” bestående av (1) krav som om de är uppfyllda leder till att syste-
men är tillräckligt säkra och (2) bevis för att dessa krav är uppfyllda, i form av
väl dokumenterade bevismaterial och säkerhetsargument som tydligt visar att
detta bevismaterial innebär att kraven är uppfyllda. Att på detta sätt konstruera
säkerhetsfall är en beprövad teknik för att argumentera för och kommunicera
systemens säkerhet och är praxis inom många säkerhetskritiska områden.

Många säkerhetskritiska system är under ständig utveckling och föremål
för förebyggande, förbättrande, och korrigerande förändringar under såväl
utvecklings- som driftsfasen. ändringar av någon del av dessa system kan un-
dergräva förtroendet för säkerheten, eftersom de kan ändra förutsättningarna
för påståenden om säkerhet eller utmana de stödjande bevis som detta
förtroende bygger på. Därför är säkerhetsfall byggda som levande dokument
som ständigt behöver hållas uppdaterade för att motivera säkerhetsstatus för
systemet. Konstruktion och underhåll av säkerhetsfall är dock kostsamt efter-
som det krävs betydande tid och ansträngningar för att definiera säkerhet-
skraven, generera de nödvändiga bevisen och utforma den underliggande lo-
giken bakom säkerhetsargumenten. Säkerhetsfall dokumenterar starkt ömsesi-
diga beroenden (t.ex. mellan säkerhetskrav, bevis och antaganden) och även

iii

7

iv

mindre förändringar kan ha stor inverkan. Förändringar i ett system eller dess
miljö kan kräva en dyr och noggrann säkerhetsanalys för system och dess
säkerhetsfall. Dessutom kan ändringar kräva att systemutvecklare genererar
helt nya bevismaterial. Därför kan förändringar väsentligt öka kostnaden för
att producera och bibehålla säkerhetsfall.

Säkerhetskontrakt har föreslagits som ett medel för att hjälpa till att hantera
förändringar. Det finns forskning som diskuterar användbarheten av kontrakt
för återanvändning och underhåll, men hur de ska härledas och exakt hur de
kan användas vid systemunderhåll har fått mindre uppmärksamhet.

Huvudsyftet med denna avhandling är att ge stöd för analys av de effek-
ter som systemförändringar har på systemsäkerheten. Vi använder säkerhet-
skontrakt för att uppnå detta mål. Specifikt studerar vi hur säkerhetskontrakt
kan stödja analys av väsentliga faktorer i förändringshanteringen, såsom (1)
identifiering av vilka delar som påverkas, respektive inte påverkas, (2) hur an-
talet påverkade delar kan minimeras och (3) hur det arbete som behövs för
att göra säkerhetsfallet giltiga igen kan minimeras. Våra resultat indikerar att
användandet av säkerhetskontrakt är en lovande metod för att utveckla tekniker
och processer som underlättar underhåll av säkerhetsfall. Frånvaron av stöd
och riktlinjer för detta i säkerhetsstandarder och brist på systematiska och met-
odiska underhållstekniker har motiverat denna avhandling. Vårt arbete presen-
teras i form av en uppsättning nyutvecklade och utvärderade metoder som
använder säkerhetskontrakt för att uppnå det övergripande målet.

Den första metoden utgörs av ett ramverk för utvärdering av förändringars
inverkan på säkerhetskritiska system och deras säkerhetsfall, vilket låter oss
identifierar de systemkomponenter som är mest känsliga för en viss förändring.
För att öka spårbarheten föreslår vi även nya sätt att associera systemkom-
ponenter till specifika delar av motsvarande säkerhetsfall. Vårt nästa bidrag
fokuserar på hur spridningen av effekterna av en förändring kan minskas. Vi
använder säkerhetskontrakt för att säkerställa säkerheten under systemets hela
livscykel. Genom övervakning kan vi upptäcka brister i överensstämmelsen
mellan säkerhetsantaganden och systemets faktiska beteende under drift. Mer
specifikt använder vi säkerhetskontrakt för att identifiera kritiska trösklar för
utvalda säkerhetskrav och jämför dessa med motsvarande data (dvs operativa
data) under drift för att kontinuerligt utvärdera och skapa förutsättningar för
utveckling av säkerhetsfallen.

Sammanfattningsvis visar våra föreslagna metoder på en väg mot kost-
nadseffektivt underhåll av säkerhetsfall vid förebyggande, korrigerande eller
adaptiv förändring i säkerhetskritiska system, vilket bidrar till bättre stöd för
beslut i förändringsarbetet.

iv

mindre förändringar kan ha stor inverkan. Förändringar i ett system eller dess
miljö kan kräva en dyr och noggrann säkerhetsanalys för system och dess
säkerhetsfall. Dessutom kan ändringar kräva att systemutvecklare genererar
helt nya bevismaterial. Därför kan förändringar väsentligt öka kostnaden för
att producera och bibehålla säkerhetsfall.

Säkerhetskontrakt har föreslagits som ett medel för att hjälpa till att hantera
förändringar. Det finns forskning som diskuterar användbarheten av kontrakt
för återanvändning och underhåll, men hur de ska härledas och exakt hur de
kan användas vid systemunderhåll har fått mindre uppmärksamhet.

Huvudsyftet med denna avhandling är att ge stöd för analys av de effek-
ter som systemförändringar har på systemsäkerheten. Vi använder säkerhet-
skontrakt för att uppnå detta mål. Specifikt studerar vi hur säkerhetskontrakt
kan stödja analys av väsentliga faktorer i förändringshanteringen, såsom (1)
identifiering av vilka delar som påverkas, respektive inte påverkas, (2) hur an-
talet påverkade delar kan minimeras och (3) hur det arbete som behövs för
att göra säkerhetsfallet giltiga igen kan minimeras. Våra resultat indikerar att
användandet av säkerhetskontrakt är en lovande metod för att utveckla tekniker
och processer som underlättar underhåll av säkerhetsfall. Frånvaron av stöd
och riktlinjer för detta i säkerhetsstandarder och brist på systematiska och met-
odiska underhållstekniker har motiverat denna avhandling. Vårt arbete presen-
teras i form av en uppsättning nyutvecklade och utvärderade metoder som
använder säkerhetskontrakt för att uppnå det övergripande målet.

Den första metoden utgörs av ett ramverk för utvärdering av förändringars
inverkan på säkerhetskritiska system och deras säkerhetsfall, vilket låter oss
identifierar de systemkomponenter som är mest känsliga för en viss förändring.
För att öka spårbarheten föreslår vi även nya sätt att associera systemkom-
ponenter till specifika delar av motsvarande säkerhetsfall. Vårt nästa bidrag
fokuserar på hur spridningen av effekterna av en förändring kan minskas. Vi
använder säkerhetskontrakt för att säkerställa säkerheten under systemets hela
livscykel. Genom övervakning kan vi upptäcka brister i överensstämmelsen
mellan säkerhetsantaganden och systemets faktiska beteende under drift. Mer
specifikt använder vi säkerhetskontrakt för att identifiera kritiska trösklar för
utvalda säkerhetskrav och jämför dessa med motsvarande data (dvs operativa
data) under drift för att kontinuerligt utvärdera och skapa förutsättningar för
utveckling av säkerhetsfallen.

Sammanfattningsvis visar våra föreslagna metoder på en väg mot kost-
nadseffektivt underhåll av säkerhetsfall vid förebyggande, korrigerande eller
adaptiv förändring i säkerhetskritiska system, vilket bidrar till bättre stöd för
beslut i förändringsarbetet.

8

“O’ Lord! Increase me in knowledge”
Holy Quran (20:114)

“O’ Lord! Increase me in knowledge”
Holy Quran (20:114)

9

Acknowledgments

First and foremost, I am deeply grateful to my supervisors, Sasikumar Pun-
nekkat, Iain Bate and Hans Hansson. Without your continuous help and sup-
port this thesis would not be possible. Sasikumar, you are a big source of hope
and talking to you is always a successful way for me to think positively and
make more educated decisions. Iain, you always help me to build a stronger
self confidence and never underestimate what I can do, I owe you a debt of grat-
itude for all you have done for me. I want to express my gratitude to Kristina
Lundqvist for her encouragement, recommendations and support during my
master and PhD studies. Next, I want to thank Patrick Graydon1, your pa-
tience, discussions and opinions are truly constructive and appreciated. Thank
you all for supporting me in taking this PhD and for believing in me.

This thesis is the culmination of a long journey which was just like climb-
ing a high peak step by step. This journey was accompanied with hardship,
stress and frustration, and without the endless love, support and continuous
encouragement of my parents, the peak was never reachable. Many thanks to
my strong father and to my wonderful mother, I love you and always will do.
Rawan, you are a great wife who is always, without hesitation, ready to mo-
tivate me whenever I am down, thanks for having my back! My sons Rayyan
and Ibrahim, you are the secret of my patience to keep moving forward. I am
sorry guys for ruining many of your weekends and school breaks. I promised
you before to try not to do it again and I failed but I am asking for one more
chance now. Special thanks to my lovely sister Arwa and my dear brothers
Mohammad, Ahmad, Abdallah and Ali you are always there when I need you.
I will probably be in trouble if I forget to thank my parents-in-law, thanks a lot
for your continuous support, encouragement and delicious food.

In the same day when I set off on my PhD journey, Irfan Šljivo was another

1Patrick was my advisor since I started my PhD studies in Sep 2012 until Nov 2014

vi

Acknowledgments

First and foremost, I am deeply grateful to my supervisors, Sasikumar Pun-
nekkat, Iain Bate and Hans Hansson. Without your continuous help and sup-
port this thesis would not be possible. Sasikumar, you are a big source of hope
and talking to you is always a successful way for me to think positively and
make more educated decisions. Iain, you always help me to build a stronger
self confidence and never underestimate what I can do, I owe you a debt of grat-
itude for all you have done for me. I want to express my gratitude to Kristina
Lundqvist for her encouragement, recommendations and support during my
master and PhD studies. Next, I want to thank Patrick Graydon1, your pa-
tience, discussions and opinions are truly constructive and appreciated. Thank
you all for supporting me in taking this PhD and for believing in me.

This thesis is the culmination of a long journey which was just like climb-
ing a high peak step by step. This journey was accompanied with hardship,
stress and frustration, and without the endless love, support and continuous
encouragement of my parents, the peak was never reachable. Many thanks to
my strong father and to my wonderful mother, I love you and always will do.
Rawan, you are a great wife who is always, without hesitation, ready to mo-
tivate me whenever I am down, thanks for having my back! My sons Rayyan
and Ibrahim, you are the secret of my patience to keep moving forward. I am
sorry guys for ruining many of your weekends and school breaks. I promised
you before to try not to do it again and I failed but I am asking for one more
chance now. Special thanks to my lovely sister Arwa and my dear brothers
Mohammad, Ahmad, Abdallah and Ali you are always there when I need you.
I will probably be in trouble if I forget to thank my parents-in-law, thanks a lot
for your continuous support, encouragement and delicious food.

In the same day when I set off on my PhD journey, Irfan Šljivo was another

1Patrick was my advisor since I started my PhD studies in Sep 2012 until Nov 2014

vi

10

vii

candidate who was setting off on his PhD journey at the same office. Since then
Irfan and I became journey companions, officemates, project mates and friends
or even brothers. We shared unforgettable good and tough times, stress, frus-
tration, project trips, conferences, etc. A tremendous thank you goes to you
Irfan for the memorable companionship. You have always been there to lend a
helping hand when I stumble (I hope I did the same for you). Of course, I can-
not forget one of my best friends Gabriel Campeanu who joined two journeys
with me, a colleague during our MSc studies and an officemate during the PhD
work. A very big thank you goes to you Gabriel, you never hesitate to help
your friends whenever they need you.

I further thank all my co-authors and colleagues with whom I had the
pleasure to work with during this time: Sasikumar Punnekkat, Iain Bate, Ir-
fan Šljivo, Ibrahim Habli, Richard Hawkins, Abdallah Salameh, Svetlana Girs,
Elena Lisova, Mohammad Ashjaei, Kester Clegg , Lorenzo Corneo, Vincenzo
Gulisano and Yiannis Nikolakopoulos.

Next, I would like to thank the head of our division Radu Dobrin for his
tips and support. I also want to thank the administrative staff, Malin Rosqv-
ist, Carola Ryttersson, Sofia Jäderén, Susanne Fronnå, et al., for facilitating all
paperworks and routines. I would like to thank all researchers at Mälardalen
University for the wonderful moments we have shared in lectures, meetings
and fika time (coffee breaks). I also owe a great debt of gratitude to my project
mates (members of SYNOPSIS, SafeCOP and FiC) for fruitful meetings, dis-
cussions, disputes and support. I cannot leave out my office mates and friends,
Husni Khanfar, Irfan Šljivo, Gabriel Campeanu, Filip Markovic and Julieth Pa-
tricia Castellanos Ardila. I want to thank the football gang who was warming
up the cold and lazy weekends. Special thank you goes to Radu Dobrin for
organising the games and for my brother-in-law Zaid Darwish for motivating
me every week to join.

The work in this thesis has been supported by the Swedish Foundation for
Strategic Research (SSF) via the projects SYNOPSIS2 and FIC3 as well as EU
and VINNOVA via SafeCOP4 project.

Omar T. Jaradat
October, 2018

Västerås, Sweden

2http://www.es.mdh.se/SYNOPSIS/
3http://www.es.mdh.se/fic
4http://www.safecop.eu/

vii

candidate who was setting off on his PhD journey at the same office. Since then
Irfan and I became journey companions, officemates, project mates and friends
or even brothers. We shared unforgettable good and tough times, stress, frus-
tration, project trips, conferences, etc. A tremendous thank you goes to you
Irfan for the memorable companionship. You have always been there to lend a
helping hand when I stumble (I hope I did the same for you). Of course, I can-
not forget one of my best friends Gabriel Campeanu who joined two journeys
with me, a colleague during our MSc studies and an officemate during the PhD
work. A very big thank you goes to you Gabriel, you never hesitate to help
your friends whenever they need you.

I further thank all my co-authors and colleagues with whom I had the
pleasure to work with during this time: Sasikumar Punnekkat, Iain Bate, Ir-
fan Šljivo, Ibrahim Habli, Richard Hawkins, Abdallah Salameh, Svetlana Girs,
Elena Lisova, Mohammad Ashjaei, Kester Clegg , Lorenzo Corneo, Vincenzo
Gulisano and Yiannis Nikolakopoulos.

Next, I would like to thank the head of our division Radu Dobrin for his
tips and support. I also want to thank the administrative staff, Malin Rosqv-
ist, Carola Ryttersson, Sofia Jäderén, Susanne Fronnå, et al., for facilitating all
paperworks and routines. I would like to thank all researchers at Mälardalen
University for the wonderful moments we have shared in lectures, meetings
and fika time (coffee breaks). I also owe a great debt of gratitude to my project
mates (members of SYNOPSIS, SafeCOP and FiC) for fruitful meetings, dis-
cussions, disputes and support. I cannot leave out my office mates and friends,
Husni Khanfar, Irfan Šljivo, Gabriel Campeanu, Filip Markovic and Julieth Pa-
tricia Castellanos Ardila. I want to thank the football gang who was warming
up the cold and lazy weekends. Special thank you goes to Radu Dobrin for
organising the games and for my brother-in-law Zaid Darwish for motivating
me every week to join.

The work in this thesis has been supported by the Swedish Foundation for
Strategic Research (SSF) via the projects SYNOPSIS2 and FIC3 as well as EU
and VINNOVA via SafeCOP4 project.

Omar T. Jaradat
October, 2018

Västerås, Sweden

2http://www.es.mdh.se/SYNOPSIS/
3http://www.es.mdh.se/fic
4http://www.safecop.eu/

11

List of Publications

Papers Included in the PhD Thesis

Paper A Using Sensitivity Analysis to Facilitate The Mainten-
ance of Safety Cases, Omar Jaradat, Iain Bate, Sasikumar
Punnekkat, In Proceedings of the 20th International Confer-
ence on Reliable Software Technologies (Ada-Europe), June
2015.

Paper B Deriving Hierarchical Safety Contracts, Omar Jaradat,
Iain Bate, In Proceedings of the 21st IEEE Pacific Rim In-
ternational Symposium on Dependable Computing (PRDC),
Nov 2015.

Paper C Using Safety Contracts to Guide the Maintenance of
Systems and Safety Cases, Omar Jaradat, Iain Bate, In Pro-
ceedings of the 13rd European Dependable Computing Con-
ference (EDCC), Sep 2017.

Paper D Using Safety Contracts to Verify Design Assumptions
During Runtime, Omar Jaradat, Sasikumar Punnekkat, In
Proceedings of the 23rd International Conference on Reli-
able Software Technologies (Ada-Europe), June 2018.

Paper E A Safety-Centric Change Management Framework by
Tailoring Agile and V-Model Processes, Abdallah Salameh
and Omar Jaradat, In Proceedings of the 36th International
System Safety Conference (ISSC), Aug 2018.

viii

List of Publications

Papers Included in the PhD Thesis

Paper A Using Sensitivity Analysis to Facilitate The Mainten-
ance of Safety Cases, Omar Jaradat, Iain Bate, Sasikumar
Punnekkat, In Proceedings of the 20th International Confer-
ence on Reliable Software Technologies (Ada-Europe), June
2015.

Paper B Deriving Hierarchical Safety Contracts, Omar Jaradat,
Iain Bate, In Proceedings of the 21st IEEE Pacific Rim In-
ternational Symposium on Dependable Computing (PRDC),
Nov 2015.

Paper C Using Safety Contracts to Guide the Maintenance of
Systems and Safety Cases, Omar Jaradat, Iain Bate, In Pro-
ceedings of the 13rd European Dependable Computing Con-
ference (EDCC), Sep 2017.

Paper D Using Safety Contracts to Verify Design Assumptions
During Runtime, Omar Jaradat, Sasikumar Punnekkat, In
Proceedings of the 23rd International Conference on Reli-
able Software Technologies (Ada-Europe), June 2018.

Paper E A Safety-Centric Change Management Framework by
Tailoring Agile and V-Model Processes, Abdallah Salameh
and Omar Jaradat, In Proceedings of the 36th International
System Safety Conference (ISSC), Aug 2018.

viii

12

ix

Related Papers Not Included in the PhD Thesis

1. Automated Verification of AADL-Specifications Using UP-
PAAL, Andreas Johnsen, Kristina Lundqvist, Paul Pet-
tersson, Omar Jaradat, In Proceedings of the 14th IEEE In-
ternational Symposium on High Assurance Systems Engin-
eering (HASE 2012).

2. Towards a Safety-oriented Process Line for Enabling Reuse
in Safety Critical Systems Development and Certification,
Barbara Gallina, Irfan Sljivo, Omar Jaradat, In Proceedings
of the 35th Annual IEEE Software Engineering Workshop
(FedCSIS Conference) (SEW-36 2012).

3. The Role of Architectural Model Checking in Conducting
Preliminary Safety Assessment, Omar Jaradat, Patrick Gray-
don, Iain Bate, In Proceedings of the 31st International Sys-
tem Safety Conference (ISSC 2013).

4. An Approach to Maintaining Safety Case Evidence After A
System Change, Omar Jaradat, Patrick Graydon, Iain Bate,
In Proceedings of the 10th European Dependable Computing
Conference (EDCC 2014)).

5. Deriving Safety Contracts to Support Architecture Design
of Safety Critical Systems, Irfan Sljivo, Omar Jaradat, Iain
Bate, Patrick Graydon, In Proceedings of the 16th IEEE In-
ternational Symposium on High Assurance Systems Engin-
eering (HASE 2015).

6. Facilitating the Maintenance of Safety Cases, Omar Jaradat,
Iain Bate, Sasikumar Punnekkat, In Proceedings of the 3rd
International Conference on Reliability, Safety and Hazard
- Advances in Reliability, Maintenance and Safety (ICRES-
ARMS 2015).

ix

Related Papers Not Included in the PhD Thesis

1. Automated Verification of AADL-Specifications Using UP-
PAAL, Andreas Johnsen, Kristina Lundqvist, Paul Pet-
tersson, Omar Jaradat, In Proceedings of the 14th IEEE In-
ternational Symposium on High Assurance Systems Engin-
eering (HASE 2012).

2. Towards a Safety-oriented Process Line for Enabling Reuse
in Safety Critical Systems Development and Certification,
Barbara Gallina, Irfan Sljivo, Omar Jaradat, In Proceedings
of the 35th Annual IEEE Software Engineering Workshop
(FedCSIS Conference) (SEW-36 2012).

3. The Role of Architectural Model Checking in Conducting
Preliminary Safety Assessment, Omar Jaradat, Patrick Gray-
don, Iain Bate, In Proceedings of the 31st International Sys-
tem Safety Conference (ISSC 2013).

4. An Approach to Maintaining Safety Case Evidence After A
System Change, Omar Jaradat, Patrick Graydon, Iain Bate,
In Proceedings of the 10th European Dependable Computing
Conference (EDCC 2014)).

5. Deriving Safety Contracts to Support Architecture Design
of Safety Critical Systems, Irfan Sljivo, Omar Jaradat, Iain
Bate, Patrick Graydon, In Proceedings of the 16th IEEE In-
ternational Symposium on High Assurance Systems Engin-
eering (HASE 2015).

6. Facilitating the Maintenance of Safety Cases, Omar Jaradat,
Iain Bate, Sasikumar Punnekkat, In Proceedings of the 3rd
International Conference on Reliability, Safety and Hazard
- Advances in Reliability, Maintenance and Safety (ICRES-
ARMS 2015).

13

x

7. Systematic Maintenance of Safety Cases to Reduce Risk,
Omar Jaradat, Iain Bate, In Proceedings of the 4th Interna-
tional Workshop on Assurance Cases for Software-intensive
Systems (ASSURE 2016).

8. Challenges of Safety Assurance for Industry 4.0,
Omar Jaradat, Irfan Sljivo, Ibrahim Habli, Richard Hawkins,
In Proceedings of the 13rd European Dependable Comput-
ing Conference (EDCC 2017).

9. Contract-Based Assurance for Wireless Cooperative Func-
tions of Vehicular Systems, Svetlana Girs, Irfan Sljivo,
Omar Jaradat, In Proceedings of the 43rd Annual Confer-
ence of the IEEE Industrial Electronics Society (IECON
2017).

10. Service Level Agreements for Safe and Configurable Pro-
duction Environments, Mohammad Ashjaei, Kester Clegg
, Lorenzo Corneo , Richard Hawkins , Omar Jaradat, Vin-
cenzo Gulisano , Yiannis Nikolakopoulos, In Proceedings of
the 23rd International Conference on Emerging Technolo-
gies and Factory Automation (ETFA 2018).

11. Using Safety Contracts to Guide the Maintenance of Systems
and Safety Cases: An Example, Omar Jaradat, Iain Bate,
MRTC technical report, Mälardalen University, April 2017.

x

7. Systematic Maintenance of Safety Cases to Reduce Risk,
Omar Jaradat, Iain Bate, In Proceedings of the 4th Interna-
tional Workshop on Assurance Cases for Software-intensive
Systems (ASSURE 2016).

8. Challenges of Safety Assurance for Industry 4.0,
Omar Jaradat, Irfan Sljivo, Ibrahim Habli, Richard Hawkins,
In Proceedings of the 13rd European Dependable Comput-
ing Conference (EDCC 2017).

9. Contract-Based Assurance for Wireless Cooperative Func-
tions of Vehicular Systems, Svetlana Girs, Irfan Sljivo,
Omar Jaradat, In Proceedings of the 43rd Annual Confer-
ence of the IEEE Industrial Electronics Society (IECON
2017).

10. Service Level Agreements for Safe and Configurable Pro-
duction Environments, Mohammad Ashjaei, Kester Clegg
, Lorenzo Corneo , Richard Hawkins , Omar Jaradat, Vin-
cenzo Gulisano , Yiannis Nikolakopoulos, In Proceedings of
the 23rd International Conference on Emerging Technolo-
gies and Factory Automation (ETFA 2018).

11. Using Safety Contracts to Guide the Maintenance of Systems
and Safety Cases: An Example, Omar Jaradat, Iain Bate,
MRTC technical report, Mälardalen University, April 2017.

14

Contents

I Thesis 1

1 Introduction 3
1.1 Thesis Outline 6

2 Background 11
2.1 Safety Critical Systems 11
2.2 Safety Analysis 14

2.2.1 Failure Mode and Effects Analysis (FMEA) 14
2.2.2 Fault Tree Analysis (FTA) 15
2.2.3 Probabilistic Safety Assessments (PSA) . 16
2.2.4 Sensitivity Analysis 18

2.3 Safety Assurance and Certification 19
2.3.1 Safety Case 20
2.3.2 Safety Case Definition 20
2.3.3 Safety Argument 22
2.3.4 The Goal Structuring Notation (GSN) . . 24
2.3.5 Confidence in Safety 26
2.3.6 Assured Safety Argument 28
2.3.7 Dynamic Safety Case (DSC) 30

2.4 Safety Contracts 31

3 Research Overview 33
3.1 Research Scope 33

xi

Contents

I Thesis 1

1 Introduction 3
1.1 Thesis Outline 6

2 Background 11
2.1 Safety Critical Systems 11
2.2 Safety Analysis 14

2.2.1 Failure Mode and Effects Analysis (FMEA) 14
2.2.2 Fault Tree Analysis (FTA) 15
2.2.3 Probabilistic Safety Assessments (PSA) . 16
2.2.4 Sensitivity Analysis 18

2.3 Safety Assurance and Certification 19
2.3.1 Safety Case 20
2.3.2 Safety Case Definition 20
2.3.3 Safety Argument 22
2.3.4 The Goal Structuring Notation (GSN) . . 24
2.3.5 Confidence in Safety 26
2.3.6 Assured Safety Argument 28
2.3.7 Dynamic Safety Case (DSC) 30

2.4 Safety Contracts 31

3 Research Overview 33
3.1 Research Scope 33

xi

15

xii Contents

3.2 Literature Review 36
3.2.1 Safety Case Maintenance 36
3.2.2 Change Management and Impact Analysis 40

3.3 Problem Description 42
3.4 Research Goal 44
3.5 Research Methodology 47

4 Research Contributions 51
4.1 Contributions of the Included Papers 51
4.2 Main Contributions 55

4.2.1 Evaluate the impact of change on safety
case . 55

4.2.2 Reduce the propagation of the change
impact among system components and
safety case elements 57

4.2.3 Highlight the most sensitive components
and make them visible for developers’ at-
tention 58

4.2.4 Associate system design elements with
the relevant safety case arguments 59

4.2.5 Manage software changes during system
development and detected anomalies dur-
ing system operational life in safety cases 59

5 Conclusions and Future Work 63
5.1 Conclusions . 63
5.2 Future Research Directions 66

Bibliography 69

xii Contents

3.2 Literature Review 36
3.2.1 Safety Case Maintenance 36
3.2.2 Change Management and Impact Analysis 40

3.3 Problem Description 42
3.4 Research Goal 44
3.5 Research Methodology 47

4 Research Contributions 51
4.1 Contributions of the Included Papers 51
4.2 Main Contributions 55

4.2.1 Evaluate the impact of change on safety
case . 55

4.2.2 Reduce the propagation of the change
impact among system components and
safety case elements 57

4.2.3 Highlight the most sensitive components
and make them visible for developers’ at-
tention 58

4.2.4 Associate system design elements with
the relevant safety case arguments 59

4.2.5 Manage software changes during system
development and detected anomalies dur-
ing system operational life in safety cases 59

5 Conclusions and Future Work 63
5.1 Conclusions . 63
5.2 Future Research Directions 66

Bibliography 69

16

Contents xiii

II Included Papers 79

6 Paper A:
Using Sensitivity Analysis to Facilitate The Mainten-
ance of Safety Cases 81
6.1 Introduction . 83
6.2 Background and Motivation 85

6.2.1 The Goal Structuring Notation (GSN) . . 85
6.2.2 The Concept of Safety Contracts 86
6.2.3 Safety Case Maintenance and Current

Practices 86
6.2.4 Sensitivity Analysis 87

6.3 Using Sensitivity Analysis To Facilitate The
Maintenance of A Safety Case 88

6.4 An Illustrative Example: The Wheel Braking
System (WBS) 92
6.4.1 Wheel Braking System (WBS): System

Description 93
6.4.2 Applying the Technique 93

6.5 Related Work 96
6.6 Conclusion and Future Work 98
Bibliography . 99

7 Paper B:
Deriving Hierarchical Safety Contracts 101
7.1 Introduction . 103
7.2 Background . 105

7.2.1 Sensitivity Analysis 105
7.2.2 Safety Contracts 106
7.2.3 Safety Argumentation and Goal Structur-

ing Notations (GSN) 107
7.2.4 Incremental Certification 108
7.2.5 Wheel Braking System (WBS): System

Description 108

Contents xiii

II Included Papers 79

6 Paper A:
Using Sensitivity Analysis to Facilitate The Mainten-
ance of Safety Cases 81
6.1 Introduction . 83
6.2 Background and Motivation 85

6.2.1 The Goal Structuring Notation (GSN) . . 85
6.2.2 The Concept of Safety Contracts 86
6.2.3 Safety Case Maintenance and Current

Practices 86
6.2.4 Sensitivity Analysis 87

6.3 Using Sensitivity Analysis To Facilitate The
Maintenance of A Safety Case 88

6.4 An Illustrative Example: The Wheel Braking
System (WBS) 92
6.4.1 Wheel Braking System (WBS): System

Description 93
6.4.2 Applying the Technique 93

6.5 Related Work 96
6.6 Conclusion and Future Work 98
Bibliography . 99

7 Paper B:
Deriving Hierarchical Safety Contracts 101
7.1 Introduction . 103
7.2 Background . 105

7.2.1 Sensitivity Analysis 105
7.2.2 Safety Contracts 106
7.2.3 Safety Argumentation and Goal Structur-

ing Notations (GSN) 107
7.2.4 Incremental Certification 108
7.2.5 Wheel Braking System (WBS): System

Description 108

17

xiv Contents

7.3 A Technique to Facilitate the Maintenance of
Safety Cases . 111
7.3.1 SANESAM Phase 111
7.3.2 SANESAM Limitations 113

7.4 SANESAM Extension 116
7.4.1 SANESAM+ Application: An Example . 118
7.4.2 SANESAM+ For Predicted Changes . . . 122
7.4.3 SANESAM+ For Predicted Changes: An

Example 124
7.5 Conclusions and Future Work 126
Bibliography . 127

8 Paper C:
Using Safety Contracts to Guide the Maintenance of
Systems and Safety Cases 131
8.1 Introduction . 133
8.2 Background and Motivation 135

8.2.1 Safety Case 135
8.2.2 Fault Tree Analysis (FTA) 136
8.2.3 Sensitivity Analysis 136
8.2.4 Safety Contracts 136

8.3 SANESAM and SANESAM+ 137
8.4 Safety Contracts Driven Maintenance 140
8.5 Illustrative Example 143

8.5.1 Wheel Braking System (WBS): System
Description 143

8.5.2 Safety Contracts Driven Maintenance:
An Example 144

8.6 Conclusion and future work 149
Bibliography . 151

9 Paper D:
Using Safety Contracts to Verify Design Assumptions

xiv Contents

7.3 A Technique to Facilitate the Maintenance of
Safety Cases . 111
7.3.1 SANESAM Phase 111
7.3.2 SANESAM Limitations 113

7.4 SANESAM Extension 116
7.4.1 SANESAM+ Application: An Example . 118
7.4.2 SANESAM+ For Predicted Changes . . . 122
7.4.3 SANESAM+ For Predicted Changes: An

Example 124
7.5 Conclusions and Future Work 126
Bibliography . 127

8 Paper C:
Using Safety Contracts to Guide the Maintenance of
Systems and Safety Cases 131
8.1 Introduction . 133
8.2 Background and Motivation 135

8.2.1 Safety Case 135
8.2.2 Fault Tree Analysis (FTA) 136
8.2.3 Sensitivity Analysis 136
8.2.4 Safety Contracts 136

8.3 SANESAM and SANESAM+ 137
8.4 Safety Contracts Driven Maintenance 140
8.5 Illustrative Example 143

8.5.1 Wheel Braking System (WBS): System
Description 143

8.5.2 Safety Contracts Driven Maintenance:
An Example 144

8.6 Conclusion and future work 149
Bibliography . 151

9 Paper D:
Using Safety Contracts to Verify Design Assumptions

18

Contents xv

During Runtime 155
9.1 Introduction . 157
9.2 Using Safety Contracts to Verify Design Assump-

tions During Runtime 159
9.2.1 Determine the PFD or the PFH in the FTA 160
9.2.2 Identify the Most Critical Components . 162
9.2.3 Refine the Identified Critical Parts 162
9.2.4 Perform Sensitivity Analysis 163
9.2.5 Derive Safety Contracts 164
9.2.6 Associate Safety Contracts with Safety

Arguments 164
9.2.7 Determine λD O Using the Data from Op-

eration and Compare it to the Guaranteed
λD Max in Safety Contracts 167

9.2.8 Update the Safety Contracts and Re-visit
the Safety Argument 169

9.3 Motivating Example: Automated Guided
Vehicles (AGVs) 169

9.4 A Through-life Safety Assurance Technique . . . 171
9.5 Discussion and Conclusion 173
Bibliography . 175

10 Paper E:
A Safety-Centric Change Management Framework by
Tailoring Agile and V-Model Processes 177
10.1 Introduction . 179
10.2 Background and Motivation 180

10.2.1 Safety cases and safety arguments 180
10.2.2 Maintenance of safety critical systems

and their safety cases 181
10.2.3 ISO 26262 safety standard 182
10.2.4 Safety contracts 182
10.2.5 Agile Software Development (ASD) . . . 183

Contents xv

During Runtime 155
9.1 Introduction . 157
9.2 Using Safety Contracts to Verify Design Assump-

tions During Runtime 159
9.2.1 Determine the PFD or the PFH in the FTA 160
9.2.2 Identify the Most Critical Components . 162
9.2.3 Refine the Identified Critical Parts 162
9.2.4 Perform Sensitivity Analysis 163
9.2.5 Derive Safety Contracts 164
9.2.6 Associate Safety Contracts with Safety

Arguments 164
9.2.7 Determine λD O Using the Data from Op-

eration and Compare it to the Guaranteed
λD Max in Safety Contracts 167

9.2.8 Update the Safety Contracts and Re-visit
the Safety Argument 169

9.3 Motivating Example: Automated Guided
Vehicles (AGVs) 169

9.4 A Through-life Safety Assurance Technique . . . 171
9.5 Discussion and Conclusion 173
Bibliography . 175

10 Paper E:
A Safety-Centric Change Management Framework by
Tailoring Agile and V-Model Processes 177
10.1 Introduction . 179
10.2 Background and Motivation 180

10.2.1 Safety cases and safety arguments 180
10.2.2 Maintenance of safety critical systems

and their safety cases 181
10.2.3 ISO 26262 safety standard 182
10.2.4 Safety contracts 182
10.2.5 Agile Software Development (ASD) . . . 183

19

xvi Contents

10.2.6 Agile tailoring 183
10.2.7 The Kanban method 184
10.2.8 The XP method 184

10.3 A maintenance framework to facilitate change
management . 185
10.3.1 The Preliminary Process 185
10.3.2 The Change Management Process 190

10.4 Discussion and conclusion 193
Bibliography . 195

xvi Contents

10.2.6 Agile tailoring 183
10.2.7 The Kanban method 184
10.2.8 The XP method 184

10.3 A maintenance framework to facilitate change
management . 185
10.3.1 The Preliminary Process 185
10.3.2 The Change Management Process 190

10.4 Discussion and conclusion 193
Bibliography . 195

20

I

Thesis

1

I

Thesis

1

21

22

Chapter 1

Introduction

Safety critical systems are those systems whose failure could result in loss of
life, significant property damage or damage to the environment [1]. Assur-
ing safety for such systems should provide justified confidence that all poten-
tial risks due to system failures are either eliminated or acceptably mitigated.
Hence, all failures which might expose the manufacturing processes to hazards
shall be analysed and controlled as part of pre-deployment safety assurance
and monitored and controlled as part of operational phase.

The size and complexity of safety critical systems are considerable.
Without adequate evidence to support the safe performance and clear demon-
stration of that performance, it is difficult for safety assessors or system de-
velopers themselves to build sufficient confidence in their safety critical sys-
tems. Therefore, developers of safety critical systems in several domains are re-
quired to demonstrate the safe performance of their systems through a reasoned
argument that justifies why the system in question is acceptably safe (or will
be so) [2], in the light of the available evidence. This argument is commu-
nicated via an artefact that is known as a safety case. Typically, a safety case
comprises both safety evidence (e.g. safety analyses, software and hardware
inspection reports, or functional test results) and a safety argument (i.e., reas-
oning) explaining that evidence. The safety argument shows how developers
use available evidence to support safety claims and how those claims, in turn,
support broader claims about system behaviour, hazards addressed, and, ulti-
mately, acceptable safety [3].

An organisation building a safety case should be accountable for the own-
ership of the risks to be controlled by adopting an appropriate safety manage-

3

Chapter 1

Introduction

Safety critical systems are those systems whose failure could result in loss of
life, significant property damage or damage to the environment [1]. Assur-
ing safety for such systems should provide justified confidence that all poten-
tial risks due to system failures are either eliminated or acceptably mitigated.
Hence, all failures which might expose the manufacturing processes to hazards
shall be analysed and controlled as part of pre-deployment safety assurance
and monitored and controlled as part of operational phase.

The size and complexity of safety critical systems are considerable.
Without adequate evidence to support the safe performance and clear demon-
stration of that performance, it is difficult for safety assessors or system de-
velopers themselves to build sufficient confidence in their safety critical sys-
tems. Therefore, developers of safety critical systems in several domains are re-
quired to demonstrate the safe performance of their systems through a reasoned
argument that justifies why the system in question is acceptably safe (or will
be so) [2], in the light of the available evidence. This argument is commu-
nicated via an artefact that is known as a safety case. Typically, a safety case
comprises both safety evidence (e.g. safety analyses, software and hardware
inspection reports, or functional test results) and a safety argument (i.e., reas-
oning) explaining that evidence. The safety argument shows how developers
use available evidence to support safety claims and how those claims, in turn,
support broader claims about system behaviour, hazards addressed, and, ulti-
mately, acceptable safety [3].

An organisation building a safety case should be accountable for the own-
ership of the risks to be controlled by adopting an appropriate safety manage-

3

23

4 Chapter 1. Introduction

ment system, performing a hazard assessment, selecting appropriate controls,
and implementing them [4]. In order to help building a sufficient and credible
(i.e., on a scientific basis) confidence in the safe performance of a system, its
safety case shall always communicate the safe performance of the system, and
shall always contain only acceptable items of evidence that the system meets
its safety requirements.

Moreover, safety critical systems can be evolutionary as they are subject
to changes due to perfective, corrective or adaptive maintenance or through
technology obsolescence [5]. An item of evidence is valid only in the opera-
tional and environmental context in which it is obtained or to which it applies.
Since changes to a system during or after its development may add, remove
or modify its operational or environmental assumptions, changes may under-
mine the collected items of evidence and thus defeat articulated safety claims.
Evidence might no longer support the developers’ claims because it reflects old
development artefacts or old assumptions about operation or the operating en-
vironment. After a change, original safety claims might be nonsense, no longer
reflect operational intent, or be contradicted by new data [3]. Eventually, the
real system will have diverged so far from that represented by the safety case
argument and the latter is no longer valid or useful [6]. Hence, it is almost
inevitable that the safety case will require updating throughout the operational
lifetime of the system. In addition, any change that might compromise system
safety involves repeating the certification process (i.e., re-certification) and re-
peating the certification process necessitates an updated and valid safety case
that considers the changes. For example, the UK Ministry of Defence Ship
Safety Management System Handbook JSP 430 requires that “the safety case
will be updated ... to reflect changes in the design and/or operational usage
which impact on safety, or to address newly identified hazards. The safety case
will be a management tool for controlling safety through life including design
and operation role changes” [7, 8]. Similarly, the UK Health and Safety Ex-
ecutive (HSE) — Railway safety case regulations 1994 — states in regulation
6(1) that “a safety case to be revised whenever, appropriate that is whenever
any of its contents would otherwise become inaccurate or incomplete” [9, 8].

Furthermore, change to a safety case may necessitate many other con-
sequential changes — creating a ripple effect [5]. Any improper maintenance
in a safety argument might cause unforeseen violations of the acceptable safety
limits, which will negatively impact the system safety performance conveyed
by the safety case. A step to assess the impact of this change on the safety
argument is crucial and highly needed prior to updating a safety argument after
a system change. Despite the significance of how to deal with changes to the

4 Chapter 1. Introduction

ment system, performing a hazard assessment, selecting appropriate controls,
and implementing them [4]. In order to help building a sufficient and credible
(i.e., on a scientific basis) confidence in the safe performance of a system, its
safety case shall always communicate the safe performance of the system, and
shall always contain only acceptable items of evidence that the system meets
its safety requirements.

Moreover, safety critical systems can be evolutionary as they are subject
to changes due to perfective, corrective or adaptive maintenance or through
technology obsolescence [5]. An item of evidence is valid only in the opera-
tional and environmental context in which it is obtained or to which it applies.
Since changes to a system during or after its development may add, remove
or modify its operational or environmental assumptions, changes may under-
mine the collected items of evidence and thus defeat articulated safety claims.
Evidence might no longer support the developers’ claims because it reflects old
development artefacts or old assumptions about operation or the operating en-
vironment. After a change, original safety claims might be nonsense, no longer
reflect operational intent, or be contradicted by new data [3]. Eventually, the
real system will have diverged so far from that represented by the safety case
argument and the latter is no longer valid or useful [6]. Hence, it is almost
inevitable that the safety case will require updating throughout the operational
lifetime of the system. In addition, any change that might compromise system
safety involves repeating the certification process (i.e., re-certification) and re-
peating the certification process necessitates an updated and valid safety case
that considers the changes. For example, the UK Ministry of Defence Ship
Safety Management System Handbook JSP 430 requires that “the safety case
will be updated ... to reflect changes in the design and/or operational usage
which impact on safety, or to address newly identified hazards. The safety case
will be a management tool for controlling safety through life including design
and operation role changes” [7, 8]. Similarly, the UK Health and Safety Ex-
ecutive (HSE) — Railway safety case regulations 1994 — states in regulation
6(1) that “a safety case to be revised whenever, appropriate that is whenever
any of its contents would otherwise become inaccurate or incomplete” [9, 8].

Furthermore, change to a safety case may necessitate many other con-
sequential changes — creating a ripple effect [5]. Any improper maintenance
in a safety argument might cause unforeseen violations of the acceptable safety
limits, which will negatively impact the system safety performance conveyed
by the safety case. A step to assess the impact of this change on the safety
argument is crucial and highly needed prior to updating a safety argument after
a system change. Despite the significance of how to deal with changes to the

24

5

system or its operational environment, as well as the clear recommendations
to adequately maintain and review safety cases by safety standards, existing
standards offer little advice on how such operations can be carried out [5].
More clearly, some safety standards provide generic guidance of the change
management and impact analysis on the system level, and briefly describe the
expected outputs.

Using contracts has been around for a few decades in the system devel-
opment domain [10]. Generally speaking, contracts are intended to describe
functional and behavioural properties for each design component in the form
of assumptions and guarantees. Contracts have been discussed as a means for
helping to manage system changes in the system domain or in its corresponding
safety case [11, 12, 13]. The cost of maintaining, reusing and changing soft-
ware components is lessened when using contracts as developers may rework
components with knowledge of the constraints placed upon them [14]. How-
ever, deriving safety contracts and their contents have received little support
yet [15]. Also, most of the works that discuss contracts for system mainten-
ance are limited to component-to-component contracts with not much focus
on the dependencies between a component and its operational environment,
related safety requirements and relevant safety argument.

In this thesis, we consider a safety case as a living document that should al-
ways be maintained to correctly portray the safety of a system [5], and evolves
as the system evolves. The overall goal of this thesis is to introduce new change
management techniques in order to facilitate the maintenance of safety cases
due to system or environment changes. Our work focuses on: (1) How and
where to derive safety contracts and their contents as a supportive means to our
suggested change management techniques, (2) using the derived contracts to
support the decision as to whether or not apply changes, (3) using the derived
contracts to guide developers to the parts in the safety case that might be af-
fected after applying a change, and (4) using the derived contracts to enable
through-life safety assurance.

The rationale of our suggested techniques is to determine, for each compon-
ent, the allowed range for a certain parameter within which a component may
change before it compromises a certain system property (e.g., safety, reliabil-
ity, etc.). We use sensitivity and importance analyses to define safety thresholds
(i.e., the maximum allowed change). Subsequently, we derive safety contract
where the guarantees represent these thresholds. We also include in each con-
tract whatever assumption that can violate a guaranteed threshold. We use the
derived safety contracts to facilitate the accommodation of system changes in
safety cases to ultimately support the maintainability of safety cases.

5

system or its operational environment, as well as the clear recommendations
to adequately maintain and review safety cases by safety standards, existing
standards offer little advice on how such operations can be carried out [5].
More clearly, some safety standards provide generic guidance of the change
management and impact analysis on the system level, and briefly describe the
expected outputs.

Using contracts has been around for a few decades in the system devel-
opment domain [10]. Generally speaking, contracts are intended to describe
functional and behavioural properties for each design component in the form
of assumptions and guarantees. Contracts have been discussed as a means for
helping to manage system changes in the system domain or in its corresponding
safety case [11, 12, 13]. The cost of maintaining, reusing and changing soft-
ware components is lessened when using contracts as developers may rework
components with knowledge of the constraints placed upon them [14]. How-
ever, deriving safety contracts and their contents have received little support
yet [15]. Also, most of the works that discuss contracts for system mainten-
ance are limited to component-to-component contracts with not much focus
on the dependencies between a component and its operational environment,
related safety requirements and relevant safety argument.

In this thesis, we consider a safety case as a living document that should al-
ways be maintained to correctly portray the safety of a system [5], and evolves
as the system evolves. The overall goal of this thesis is to introduce new change
management techniques in order to facilitate the maintenance of safety cases
due to system or environment changes. Our work focuses on: (1) How and
where to derive safety contracts and their contents as a supportive means to our
suggested change management techniques, (2) using the derived contracts to
support the decision as to whether or not apply changes, (3) using the derived
contracts to guide developers to the parts in the safety case that might be af-
fected after applying a change, and (4) using the derived contracts to enable
through-life safety assurance.

The rationale of our suggested techniques is to determine, for each compon-
ent, the allowed range for a certain parameter within which a component may
change before it compromises a certain system property (e.g., safety, reliabil-
ity, etc.). We use sensitivity and importance analyses to define safety thresholds
(i.e., the maximum allowed change). Subsequently, we derive safety contract
where the guarantees represent these thresholds. We also include in each con-
tract whatever assumption that can violate a guaranteed threshold. We use the
derived safety contracts to facilitate the accommodation of system changes in
safety cases to ultimately support the maintainability of safety cases.

25

6 Chapter 1. Introduction

1.1 Thesis Outline

The thesis report is organised into two main parts. Part I includes five
chapters. Chapter 1 provides an introduction to the thesis where an overview
of the research problem, motivation and the thesis contributions are presented.
In Chapter 2, we present background information and overview of the most
prominent terms that appear frequently in this thesis. In Chapter 3, we describe
the research scope, state-of-the-art, research problem, and derive the research
goal and research questions. We also describe the overall methodology that is
adopted to perform the research. In Chapter 4, we present the contributions of
the research and reflect how they address the research questions. In Chapter 5,
we draw the conclusion and describe possible directions for future work. Part
II contains the research papers included in the thesis.

Paper A (Chapter 6): Using Sensitivity Analysis to Facilitate The
Maintenance of Safety Cases, Omar Jaradat, Iain Bate, Sasikumar Pun-
nekkat.
Abstract: “A safety case contains safety arguments together with supporting
evidence that together should demonstrate that a system is acceptably safe.
System changes pose a challenge to the soundness and cogency of the safety
case argument. Maintaining safety arguments is a painstaking process be-
cause it requires performing a change impact analysis through interdependent
elements. Changes are often performed years after the deployment of a
system making it harder for safety case developers to know which parts of the
argument are affected. Contracts have been proposed as a means for helping
to manage changes. There has been significant work that discusses how to
represent and to use them but there has been little on how to derive them. In
this paper, we propose a sensitivity analysis approach to derive contracts from
Fault Tree Analyses and use them to trace changes in the safety argument, thus
facilitating easier maintenance of the safety argument.” [15]

Status: Published in Proceedings of the 20th International Conference
on Reliable Software Technologies, Ada-Europe 2015.

My contribution: I was the main contributor of the work under super-
vision of the co-authors. My contributions include combining the results
of sensitivity analysis together with the concept of contracts to identify the
sensitive parts of a system and highlight these parts to help the experts to make
an educated decision as to whether or not apply changes.

6 Chapter 1. Introduction

1.1 Thesis Outline

The thesis report is organised into two main parts. Part I includes five
chapters. Chapter 1 provides an introduction to the thesis where an overview
of the research problem, motivation and the thesis contributions are presented.
In Chapter 2, we present background information and overview of the most
prominent terms that appear frequently in this thesis. In Chapter 3, we describe
the research scope, state-of-the-art, research problem, and derive the research
goal and research questions. We also describe the overall methodology that is
adopted to perform the research. In Chapter 4, we present the contributions of
the research and reflect how they address the research questions. In Chapter 5,
we draw the conclusion and describe possible directions for future work. Part
II contains the research papers included in the thesis.

Paper A (Chapter 6): Using Sensitivity Analysis to Facilitate The
Maintenance of Safety Cases, Omar Jaradat, Iain Bate, Sasikumar Pun-
nekkat.
Abstract: “A safety case contains safety arguments together with supporting
evidence that together should demonstrate that a system is acceptably safe.
System changes pose a challenge to the soundness and cogency of the safety
case argument. Maintaining safety arguments is a painstaking process be-
cause it requires performing a change impact analysis through interdependent
elements. Changes are often performed years after the deployment of a
system making it harder for safety case developers to know which parts of the
argument are affected. Contracts have been proposed as a means for helping
to manage changes. There has been significant work that discusses how to
represent and to use them but there has been little on how to derive them. In
this paper, we propose a sensitivity analysis approach to derive contracts from
Fault Tree Analyses and use them to trace changes in the safety argument, thus
facilitating easier maintenance of the safety argument.” [15]

Status: Published in Proceedings of the 20th International Conference
on Reliable Software Technologies, Ada-Europe 2015.

My contribution: I was the main contributor of the work under super-
vision of the co-authors. My contributions include combining the results
of sensitivity analysis together with the concept of contracts to identify the
sensitive parts of a system and highlight these parts to help the experts to make
an educated decision as to whether or not apply changes.

26

1.1 Thesis Outline 7

Paper B (Chapter 7): Deriving Hierarchical Safety Contracts, Omar
Jaradat, Iain Bate, Sasikumar Punnekkat.
Abstract: “Safety cases are costly since they need significant amount of time
and efforts to produce. This cost can be dramatically increased (even for
already certified systems) due to system changes as they require maintaining
the safety case before it can be submitted for certification. Anticipating
potential changes is useful since it reveals traceable consequences that will
eventually reduce the maintenance efforts. However, considering a complete
list of anticipated changes is difficult. What can be easier though is to determ-
ine the flexibility of system components to changes. Using sensitivity analysis
is useful to measure the flexibility of the different system properties to changes.
Furthermore, contracts have been proposed as a means for facilitating the
change management process due to their ability to record the dependencies
among system’s components. In this paper, we extend a technique that uses
a sensitivity analysis to derive safety contracts from Fault Tree Analyses and
uses these contracts to trace changes in the safety argument. The extension
aims to enabling the derivation of hierarchical and correlated safety contracts.
We motivate the extension through an illustrative example within which we
identify limitations of the technique and discuss potential solutions to these
limitations.”

Status: Published in Proceedings of the 21st IEEE Pacific Rim Interna-
tional Symposium on Dependable Computing, PRDC 2015.

Main contribution: I was the main contributor of the work under Bate’s
supervision. My contribution comprises: (1) identifying possible limitations
for the proposed technique in Paper A and (2) suggesting an extension to the
technique to resolve the identified limitations.

Paper C (Chapter 8): Using Safety Contracts to Guide the Mainten-
ance of Systems and Safety Cases, Omar Jaradat and Iain Bate.
Abstract: “Changes to safety critical systems are inevitable and can impact
the safety confidence about a system as their effects can refute articulated
claims about safety or challenge the supporting evidence on which this
confidence relies. In order to maintain the safety confidence under changes,
system developers need to re-analyse and re-verify the system to generate
new valid items of evidence. Identifying the effects of a particular change
is a crucial step in any change management process as it enables system

1.1 Thesis Outline 7

Paper B (Chapter 7): Deriving Hierarchical Safety Contracts, Omar
Jaradat, Iain Bate, Sasikumar Punnekkat.
Abstract: “Safety cases are costly since they need significant amount of time
and efforts to produce. This cost can be dramatically increased (even for
already certified systems) due to system changes as they require maintaining
the safety case before it can be submitted for certification. Anticipating
potential changes is useful since it reveals traceable consequences that will
eventually reduce the maintenance efforts. However, considering a complete
list of anticipated changes is difficult. What can be easier though is to determ-
ine the flexibility of system components to changes. Using sensitivity analysis
is useful to measure the flexibility of the different system properties to changes.
Furthermore, contracts have been proposed as a means for facilitating the
change management process due to their ability to record the dependencies
among system’s components. In this paper, we extend a technique that uses
a sensitivity analysis to derive safety contracts from Fault Tree Analyses and
uses these contracts to trace changes in the safety argument. The extension
aims to enabling the derivation of hierarchical and correlated safety contracts.
We motivate the extension through an illustrative example within which we
identify limitations of the technique and discuss potential solutions to these
limitations.”

Status: Published in Proceedings of the 21st IEEE Pacific Rim Interna-
tional Symposium on Dependable Computing, PRDC 2015.

Main contribution: I was the main contributor of the work under Bate’s
supervision. My contribution comprises: (1) identifying possible limitations
for the proposed technique in Paper A and (2) suggesting an extension to the
technique to resolve the identified limitations.

Paper C (Chapter 8): Using Safety Contracts to Guide the Mainten-
ance of Systems and Safety Cases, Omar Jaradat and Iain Bate.
Abstract: “Changes to safety critical systems are inevitable and can impact
the safety confidence about a system as their effects can refute articulated
claims about safety or challenge the supporting evidence on which this
confidence relies. In order to maintain the safety confidence under changes,
system developers need to re-analyse and re-verify the system to generate
new valid items of evidence. Identifying the effects of a particular change
is a crucial step in any change management process as it enables system

27

8 Chapter 1. Introduction

developers to estimate the required maintenance effort and reduce the cost by
avoiding wider analyses and verification than strictly necessary. This paper
presents a sensitivity analysis-based technique which aims at measuring the
ability of a system to contain a change (i.e., robustness) without the need to
make a major re-design. The proposed technique exploits the safety margins in
the budgeted failure probabilities of events in a probabilistic fault-tree analysis
to compensate for unaccounted deficits or changes due to maintenance. The
technique utilises safety contracts to provide prescriptive data for what is
needed to be revisited and verified to maintain system safety when changes
happen. We demonstrate the technique on an aircraft wheel braking system.”

Status: Published In Proceedings of the 13rd IEEE European Depend-
able Computing Conference (EDCC), Geneva, Switzerland, December 2017.

Main contribution: I was the main contributor of the work under Bate’s
supervision. My contributions include introducing a new technique besides
SANESAM and SANESAM+, which focuses on containing (i.e., localising)
the potential changes in the smallest possible part of a system. More clearly,
the technique in this paper makes use of the margins in the failure probability
of some FTA events to backup the violated MAFP (Maximum Allowed Failure
Probability) of other affected events due to a change.

Paper D (Chapter 9): Using Safety Contracts to Verify Design As-
sumptions During Runtime, Omar Jaradat and Sasikumar Punnekkat.
Abstract: “A safety case comprises evidence and argument justifying how
each item of evidence supports claims about safety assurance. Supporting
claims by untrustworthy or inappropriate evidence can lead to a false
assurance regarding the safe performance of a system. Having sufficient
confidence in safety evidence is essential to avoid any unanticipated surprise
during operational phase. Sometimes, however, it is impractical to wait for
high quality evidence from a system’s operational life, where developers have
no choice but to rely on evidence with some uncertainty (e.g., using a generic
failure rate measure from a handbook to support a claim about the reliability
of a component). Runtime monitoring can reveal insightful information,
which can help to verify whether the preliminary confidence was over- or
underestimated. In this paper, we propose a technique which uses runtime
monitoring in a novel way to detect the divergence between the failure rates
(which were used in the safety analyses) and the observed failure rates in the
operational life. The technique utilises safety contracts to provide prescriptive

8 Chapter 1. Introduction

developers to estimate the required maintenance effort and reduce the cost by
avoiding wider analyses and verification than strictly necessary. This paper
presents a sensitivity analysis-based technique which aims at measuring the
ability of a system to contain a change (i.e., robustness) without the need to
make a major re-design. The proposed technique exploits the safety margins in
the budgeted failure probabilities of events in a probabilistic fault-tree analysis
to compensate for unaccounted deficits or changes due to maintenance. The
technique utilises safety contracts to provide prescriptive data for what is
needed to be revisited and verified to maintain system safety when changes
happen. We demonstrate the technique on an aircraft wheel braking system.”

Status: Published In Proceedings of the 13rd IEEE European Depend-
able Computing Conference (EDCC), Geneva, Switzerland, December 2017.

Main contribution: I was the main contributor of the work under Bate’s
supervision. My contributions include introducing a new technique besides
SANESAM and SANESAM+, which focuses on containing (i.e., localising)
the potential changes in the smallest possible part of a system. More clearly,
the technique in this paper makes use of the margins in the failure probability
of some FTA events to backup the violated MAFP (Maximum Allowed Failure
Probability) of other affected events due to a change.

Paper D (Chapter 9): Using Safety Contracts to Verify Design As-
sumptions During Runtime, Omar Jaradat and Sasikumar Punnekkat.
Abstract: “A safety case comprises evidence and argument justifying how
each item of evidence supports claims about safety assurance. Supporting
claims by untrustworthy or inappropriate evidence can lead to a false
assurance regarding the safe performance of a system. Having sufficient
confidence in safety evidence is essential to avoid any unanticipated surprise
during operational phase. Sometimes, however, it is impractical to wait for
high quality evidence from a system’s operational life, where developers have
no choice but to rely on evidence with some uncertainty (e.g., using a generic
failure rate measure from a handbook to support a claim about the reliability
of a component). Runtime monitoring can reveal insightful information,
which can help to verify whether the preliminary confidence was over- or
underestimated. In this paper, we propose a technique which uses runtime
monitoring in a novel way to detect the divergence between the failure rates
(which were used in the safety analyses) and the observed failure rates in the
operational life. The technique utilises safety contracts to provide prescriptive

28

1.1 Thesis Outline 9

data for what should be monitored, and what parts of the safety argument
should be revisited to maintain system safety when a divergence is detected.
We demonstrate the technique in the context of Automated Guided Vehicles
(AGVs).”

Status: Published In Proceedings of the 23rd International Conference
on Reliable Software Technologies (Ada-Europe), Lisbon, Portugal, June
2018.

Main contribution: I was the main contributor of the work under Pun-
nekkat’s supervision. My main contributions includes: (1) A novel technique
to continuously reassess the failure rates and use the results to suggest system
changes or maintenance, (2) a new way to derive safety contracts to facilitate
the traceability between the system design, safety analysis and the safety case,
(3) an example of how to argue more compelling over the failure rate in the
light of the derived evidence from the operational phase, and (4) an example
of how to carry out a through-life safety assurance.

Paper E (Chapter 10): A Safety-Centric Change Management Frame-
work by Tailoring Agile and V-Model Processes, Abdallah Salameh and
Omar Jaradat.
Abstract: “Safety critical systems are evolutionary and subject to preventive,
perfective, corrective or adaptive changes during their lifecycle. Changes to
any part of those systems can undermine the confidence in safety since changes
can refute articulated claims about safety or challenge the supporting evidence
on which this confidence relies. Changes to the software components are no
exception. In order to maintain the confidence in the safety performance,
developers must update their system and its safety case. Agile methodologies
are known to embrace changes to software where agilists strive to manage
changes, not to prevent them. In this paper, we introduce a novel framework
in which we tailor a hybrid process of agile software development and the
traditional V-model. The tailored process aims to facilitate the accommodation
of non-structural changes to the software parts of safety critical systems. We
illustrate our framework in the context of ISO 26262 safety standard.”

Status: Published In Proceedings of the 36th International System Safety
Conference (ISSC), Arizona, USA, August 2018.

Main contribution: Myself and Salameh were the main drivers. The

1.1 Thesis Outline 9

data for what should be monitored, and what parts of the safety argument
should be revisited to maintain system safety when a divergence is detected.
We demonstrate the technique in the context of Automated Guided Vehicles
(AGVs).”

Status: Published In Proceedings of the 23rd International Conference
on Reliable Software Technologies (Ada-Europe), Lisbon, Portugal, June
2018.

Main contribution: I was the main contributor of the work under Pun-
nekkat’s supervision. My main contributions includes: (1) A novel technique
to continuously reassess the failure rates and use the results to suggest system
changes or maintenance, (2) a new way to derive safety contracts to facilitate
the traceability between the system design, safety analysis and the safety case,
(3) an example of how to argue more compelling over the failure rate in the
light of the derived evidence from the operational phase, and (4) an example
of how to carry out a through-life safety assurance.

Paper E (Chapter 10): A Safety-Centric Change Management Frame-
work by Tailoring Agile and V-Model Processes, Abdallah Salameh and
Omar Jaradat.
Abstract: “Safety critical systems are evolutionary and subject to preventive,
perfective, corrective or adaptive changes during their lifecycle. Changes to
any part of those systems can undermine the confidence in safety since changes
can refute articulated claims about safety or challenge the supporting evidence
on which this confidence relies. Changes to the software components are no
exception. In order to maintain the confidence in the safety performance,
developers must update their system and its safety case. Agile methodologies
are known to embrace changes to software where agilists strive to manage
changes, not to prevent them. In this paper, we introduce a novel framework
in which we tailor a hybrid process of agile software development and the
traditional V-model. The tailored process aims to facilitate the accommodation
of non-structural changes to the software parts of safety critical systems. We
illustrate our framework in the context of ISO 26262 safety standard.”

Status: Published In Proceedings of the 36th International System Safety
Conference (ISSC), Arizona, USA, August 2018.

Main contribution: Myself and Salameh were the main drivers. The

29

10 Chapter 1. Introduction

main contribution in the paper is the introduction of XP-Kan-Safe as a novel
maintenance framework to facilitate the accommodation process of software
non-structural changes in safety critical systems by utilising the strengths of
agile methods and the V-model. My contribution focused on deriving safety
contracts from safety analyses and associate them with test cases and safety
cases to enable a tri-directional change management process.

10 Chapter 1. Introduction

main contribution in the paper is the introduction of XP-Kan-Safe as a novel
maintenance framework to facilitate the accommodation process of software
non-structural changes in safety critical systems by utilising the strengths of
agile methods and the V-model. My contribution focused on deriving safety
contracts from safety analyses and associate them with test cases and safety
cases to enable a tri-directional change management process.

30

Chapter 2

Background

In this chapter, we provide background and overview of the most prominent
terms that appear frequently in this thesis.

2.1 Safety Critical Systems

The word ‘safety’ means: “The condition of being protected from or unlikely
to cause danger, risk, or injury” [16]. Safety critical “is a term applied to
a condition, event, operation, process or item that is essential to safe system
operation or use, e.g., safety critical function, safety critical path, and safety
critical component” [17]. Safety critical systems are those systems whose fail-
ure might endanger human life, lead to substantial economic loss, or cause
extensive environmental damage [1]. The operation of safety critical systems
should be safe and, ideally, never cause severe consequences. However, devel-
oping an absolutely safe system is unattainable even if the project has an open
budget. This is because severe consequences are typically linked to system
faults and we cannot be 100% certain that a system is fault free. However, this
shall not discourage the efforts that aim at assuring systems’ safety.

The key to assuring safety is to eliminate hazards or to ensure that the con-
sequences of these hazards are minimal. The word hazard in English is defined
as: “a potential source of danger” [16]. In the context of safety critical sys-
tems, there are different suggestions to explain what the word hazard means.
Some definitions suggest that a hazard is simply a system state that could lead
to accidents. For example, Knight [18] indicates that the word hazard is an

11

Chapter 2

Background

In this chapter, we provide background and overview of the most prominent
terms that appear frequently in this thesis.

2.1 Safety Critical Systems

The word ‘safety’ means: “The condition of being protected from or unlikely
to cause danger, risk, or injury” [16]. Safety critical “is a term applied to
a condition, event, operation, process or item that is essential to safe system
operation or use, e.g., safety critical function, safety critical path, and safety
critical component” [17]. Safety critical systems are those systems whose fail-
ure might endanger human life, lead to substantial economic loss, or cause
extensive environmental damage [1]. The operation of safety critical systems
should be safe and, ideally, never cause severe consequences. However, devel-
oping an absolutely safe system is unattainable even if the project has an open
budget. This is because severe consequences are typically linked to system
faults and we cannot be 100% certain that a system is fault free. However, this
shall not discourage the efforts that aim at assuring systems’ safety.

The key to assuring safety is to eliminate hazards or to ensure that the con-
sequences of these hazards are minimal. The word hazard in English is defined
as: “a potential source of danger” [16]. In the context of safety critical sys-
tems, there are different suggestions to explain what the word hazard means.
Some definitions suggest that a hazard is simply a system state that could lead
to accidents. For example, Knight [18] indicates that the word hazard is an

11

31

12 Chapter 2. Background

abbreviation of hazard state and it means: “a system state that could lead to
an unplanned loss of life, loss of property, release of energy, or release of dan-
gerous materials”. Some other definitions suggest to consider the potential
environmental conditions in the definition to clarify the relationship between
hazards and accidents. For example, Leveson [19] define hazard as: “a state
or condition of a system that, combined with certain environmental conditions,
could lead to accidents”. Anyway, all definitions agree that a hazard is a sys-
tem state in which an accident might occur. An accident can be defined as:
“An unplanned event or sequence of events which results in human death or
injury, damage to property, or to the environment” [20]. The measure of the
probability that a system will cause an accident is referred to as risk. The
risk is assessed by considering the probability that someone/something will be
harmed if exposed to a hazard (also known as exposure) and the severity of
that hazard.

Hazards are caused by malfunctioning behaviours (i.e., failures) [21]. A
Failure is defined as: “an event that occurs when the delivered service deviates
from correct service” [22]. Failures are caused by errors. An error is defined
as: a part of the total state of the system that may lead to its subsequent service
failure [22]. Finally, errors are caused by faults. A fault is defined as: an
adjudged or hypothesized cause of an error [22].

Figure 2.1 illustrates some of the system safety concepts and how they
relate to each other. The figure uses a scenario from an adaptive cruise control
system1 to exemplify these concepts.

Any process or activity that aims at assuring or improving systems’ safety
should identify and eliminate potential hazards of those systems. If the elim-
ination is not possible then they should be mitigated to an acceptable level.
Preliminary Hazard Analysis (PHA) can be done with only a description of the
system’s concept and functions. That is, PHA is typically used in the early
stages of the system’s lifecycle where not enough design details are available.
PHA consists of four main tasks as follows [23]:

• Identify system hazards

• Translate system hazards into high-level system safety design constraints

• Assess hazards if required to do so

• Establish the hazard log

1Adaptive Cruise Control (ACC) system is an optional system for road vehicles that automat-
ically adjusts the vehicle speed to maintain a safe distance from vehicles ahead.

12 Chapter 2. Background

abbreviation of hazard state and it means: “a system state that could lead to
an unplanned loss of life, loss of property, release of energy, or release of dan-
gerous materials”. Some other definitions suggest to consider the potential
environmental conditions in the definition to clarify the relationship between
hazards and accidents. For example, Leveson [19] define hazard as: “a state
or condition of a system that, combined with certain environmental conditions,
could lead to accidents”. Anyway, all definitions agree that a hazard is a sys-
tem state in which an accident might occur. An accident can be defined as:
“An unplanned event or sequence of events which results in human death or
injury, damage to property, or to the environment” [20]. The measure of the
probability that a system will cause an accident is referred to as risk. The
risk is assessed by considering the probability that someone/something will be
harmed if exposed to a hazard (also known as exposure) and the severity of
that hazard.

Hazards are caused by malfunctioning behaviours (i.e., failures) [21]. A
Failure is defined as: “an event that occurs when the delivered service deviates
from correct service” [22]. Failures are caused by errors. An error is defined
as: a part of the total state of the system that may lead to its subsequent service
failure [22]. Finally, errors are caused by faults. A fault is defined as: an
adjudged or hypothesized cause of an error [22].

Figure 2.1 illustrates some of the system safety concepts and how they
relate to each other. The figure uses a scenario from an adaptive cruise control
system1 to exemplify these concepts.

Any process or activity that aims at assuring or improving systems’ safety
should identify and eliminate potential hazards of those systems. If the elim-
ination is not possible then they should be mitigated to an acceptable level.
Preliminary Hazard Analysis (PHA) can be done with only a description of the
system’s concept and functions. That is, PHA is typically used in the early
stages of the system’s lifecycle where not enough design details are available.
PHA consists of four main tasks as follows [23]:

• Identify system hazards

• Translate system hazards into high-level system safety design constraints

• Assess hazards if required to do so

• Establish the hazard log

1Adaptive Cruise Control (ACC) system is an optional system for road vehicles that automat-
ically adjusts the vehicle speed to maintain a safe distance from vehicles ahead.

32

2.1 Safety Critical Systems 13

System
Fault

e.g., The image sensor sends
faulty images.
Note: The image sensor should
capture images for the forward
vehicle.

System
Error

e.g., Subroutine SUB_DistCalc
calculates the inter-vehicle
distance based on faulty images
and returns erroneous distance

System
Failure

e.g., The ACC controller calls
SUB_DistCalc and suddenly
overestimates the distance
between the vehicle that uses
the ACC and the forward vehicle

Risk
e.g., A risk of collision at
high speed

Accident
e.g., Unfortunate injury(s)
or/and fatality(s)

Hazard

e . g . , i n a d v e r t e n t
sudden drop in speed

Exposure
(Certain Environmental

Conditions)

e.g., The following vehicle is
not maintaining a safe distance

Hazardous
event

Crash

Figure 2.1: Overview of basic system safety concepts

Safety functions (also know as safety barriers) shall be identified, imple-
mented and verified to achieve or maintain the safe state of a system (with
respect to the identified hazards). These functions can be safeguards, counter-
measures, or protection layers (e.g., car collision avoidance system, fire and
gas detection system, pressure relief system, emergency shutdown system).
The reliability of such functions are crucial to achieve safety. Reliability here

2.1 Safety Critical Systems 13

System
Fault

e.g., The image sensor sends
faulty images.
Note: The image sensor should
capture images for the forward
vehicle.

System
Error

e.g., Subroutine SUB_DistCalc
calculates the inter-vehicle
distance based on faulty images
and returns erroneous distance

System
Failure

e.g., The ACC controller calls
SUB_DistCalc and suddenly
overestimates the distance
between the vehicle that uses
the ACC and the forward vehicle

Risk
e.g., A risk of collision at
high speed

Accident
e.g., Unfortunate injury(s)
or/and fatality(s)

Hazard

e . g . , i n a d v e r t e n t
sudden drop in speed

Exposure
(Certain Environmental

Conditions)

e.g., The following vehicle is
not maintaining a safe distance

Hazardous
event

Crash

Figure 2.1: Overview of basic system safety concepts

Safety functions (also know as safety barriers) shall be identified, imple-
mented and verified to achieve or maintain the safe state of a system (with
respect to the identified hazards). These functions can be safeguards, counter-
measures, or protection layers (e.g., car collision avoidance system, fire and
gas detection system, pressure relief system, emergency shutdown system).
The reliability of such functions are crucial to achieve safety. Reliability here

33

14 Chapter 2. Background

means “the ability of the item to perform a required function, under given en-
vironmental and operational conditions and for a stated period of time” [24].
However, safety should not be confused with reliability. A reliable system can
be unsafe and vice versa. The software of a reliable system may still behave in
such a way that the resultant system behavior leads to an accident.

The Lufthansa flight 2904 accident can be an example of how a reliable
system may be unsafe. The plane was landing at Warsaw airport in Poland
when the computer-controlled braking system did not work. While landing,
the braking system did not recognise that the plane touched the ground and
assumed that the aircraft was still airborne. A safety feature on the aircraft
had stopped the deployment of the reverse thrust system, which slows down
the aircraft. The plane ran off the end of the runway, hit an earth bank, and
caught fire [20]. The investigations revealed that the braking system software
was reliable and had operated according to its specification, but this did not
lead to a safe system [20].

2.2 Safety Analysis
In order to assure that their systems perform as needed and provide acceptable
levels of safety, safety engineers need to find the causal dependencies between
system level hazards and failures of individual components. The automotive
safety standard ISO 26262, for instance, states that the objectives of safety ana-
lyses are to 1) examine the consequences of faults and failures on the functions,
behaviour and design of items and elements, and 2) provide information on
conditions and causes that could lead to the violation of a safety goal or safety
requirement [21]. Hence, all potential failures that can contribute to identified
hazards shall be identified, analysed and managed. To this end, a wide vari-
ety of safety analysis techniques with different methodologies, are available.
Moreover, there are different criteria used to distinguish these techniques (e.g.,
qualitative vs. quantitative, formal vs. informal, deductive vs. inductive). The
work in this thesis, employs, to a large extent, the fault tree analysis technique.
The work also employs the failure mode and effects analysis technique but to
a smaller extent.

2.2.1 Failure Mode and Effects Analysis (FMEA)

The first formal FMEAs were conducted in the aerospace industry in the mid-
1960s and were specifically focused on safety issues [25]. The goal with safety

14 Chapter 2. Background

means “the ability of the item to perform a required function, under given en-
vironmental and operational conditions and for a stated period of time” [24].
However, safety should not be confused with reliability. A reliable system can
be unsafe and vice versa. The software of a reliable system may still behave in
such a way that the resultant system behavior leads to an accident.

The Lufthansa flight 2904 accident can be an example of how a reliable
system may be unsafe. The plane was landing at Warsaw airport in Poland
when the computer-controlled braking system did not work. While landing,
the braking system did not recognise that the plane touched the ground and
assumed that the aircraft was still airborne. A safety feature on the aircraft
had stopped the deployment of the reverse thrust system, which slows down
the aircraft. The plane ran off the end of the runway, hit an earth bank, and
caught fire [20]. The investigations revealed that the braking system software
was reliable and had operated according to its specification, but this did not
lead to a safe system [20].

2.2 Safety Analysis
In order to assure that their systems perform as needed and provide acceptable
levels of safety, safety engineers need to find the causal dependencies between
system level hazards and failures of individual components. The automotive
safety standard ISO 26262, for instance, states that the objectives of safety ana-
lyses are to 1) examine the consequences of faults and failures on the functions,
behaviour and design of items and elements, and 2) provide information on
conditions and causes that could lead to the violation of a safety goal or safety
requirement [21]. Hence, all potential failures that can contribute to identified
hazards shall be identified, analysed and managed. To this end, a wide vari-
ety of safety analysis techniques with different methodologies, are available.
Moreover, there are different criteria used to distinguish these techniques (e.g.,
qualitative vs. quantitative, formal vs. informal, deductive vs. inductive). The
work in this thesis, employs, to a large extent, the fault tree analysis technique.
The work also employs the failure mode and effects analysis technique but to
a smaller extent.

2.2.1 Failure Mode and Effects Analysis (FMEA)

The first formal FMEAs were conducted in the aerospace industry in the mid-
1960s and were specifically focused on safety issues [25]. The goal with safety

34

2.2 Safety Analysis 15

FMEAs was, and remains today, to prevent safety accidents and incidents from
occurring [25]. FMEA is a bottom-up analytical technique, and it usually de-
pends on architectural system design or a functional block diagram to identify
failure modes for each function in a system. The effects of the identified failure
modes are described and, in some cases, assigned a probability based on the
failure rate and failure mode ratio of the function or component. It is worth
mentioning that performing FMEA is recommended by many safety standards
from different domains. However, FMEA is not the best technique to investig-
ate the effects of multiple failures. Hence, safety analysts usually combine it
with other techniques (e.g., FTA) to perform more complete safety analysis.

2.2.2 Fault Tree Analysis (FTA)
In 1962, Bell Telephone Laboratories introduced the fault tree technique as
a means to evaluate safety in the launching system of the intercontinental
Minuteman missile [26]. The Boeing Company improved the technique and
introduced computer programs for both qualitative and quantitative fault tree
analysis. Today FTA is the most commonly used technique for safety and reli-
ability studies.

FTA is a top-down failure analysis method which focuses on one particular
undesired event and provides a method for determining causes of this event
[27]. In other words, FTA is used to specify the occurrence of critical states
(from a safety or reliability standpoint). These states might be associated with
component hardware failures, human errors, software errors, or any other per-
tinent events. FTA helps safety engineers to identify plausible causes (i.e.,
faults) of undesired events [28].

A fault tree illustrates the logical interrelationships of the system’s com-
ponents (Basic Events) that lead to the undesired event or the system’s state
(Top Event) [28, 26]. These logical interrelationships are called Logical Gates.
Figure 2.2 shows the most commonly used FTA symbols.

Similar to FMEA, Performing FTA is recommended by many safety stand-
ards from different domains. FTA is also used as a method to achieve Prob-
abilistic Safety Analysis (PSA) 2.2.3. More specifically, it is used to quantify
system failure probability. Quantitative FT evaluation techniques produce three
types of results: (1) numerical probabilities, (2) quantitative importance, and
(3) sensitivity evaluations [27]. In this thesis, we exploit the results obtained
by sensitivity evaluations to measure how sensitive a system design is to a par-
ticular aspect of individual event. Section 2.2.4 provides more details about
sensitivity analysis.

2.2 Safety Analysis 15

FMEAs was, and remains today, to prevent safety accidents and incidents from
occurring [25]. FMEA is a bottom-up analytical technique, and it usually de-
pends on architectural system design or a functional block diagram to identify
failure modes for each function in a system. The effects of the identified failure
modes are described and, in some cases, assigned a probability based on the
failure rate and failure mode ratio of the function or component. It is worth
mentioning that performing FMEA is recommended by many safety standards
from different domains. However, FMEA is not the best technique to investig-
ate the effects of multiple failures. Hence, safety analysts usually combine it
with other techniques (e.g., FTA) to perform more complete safety analysis.

2.2.2 Fault Tree Analysis (FTA)
In 1962, Bell Telephone Laboratories introduced the fault tree technique as
a means to evaluate safety in the launching system of the intercontinental
Minuteman missile [26]. The Boeing Company improved the technique and
introduced computer programs for both qualitative and quantitative fault tree
analysis. Today FTA is the most commonly used technique for safety and reli-
ability studies.

FTA is a top-down failure analysis method which focuses on one particular
undesired event and provides a method for determining causes of this event
[27]. In other words, FTA is used to specify the occurrence of critical states
(from a safety or reliability standpoint). These states might be associated with
component hardware failures, human errors, software errors, or any other per-
tinent events. FTA helps safety engineers to identify plausible causes (i.e.,
faults) of undesired events [28].

A fault tree illustrates the logical interrelationships of the system’s com-
ponents (Basic Events) that lead to the undesired event or the system’s state
(Top Event) [28, 26]. These logical interrelationships are called Logical Gates.
Figure 2.2 shows the most commonly used FTA symbols.

Similar to FMEA, Performing FTA is recommended by many safety stand-
ards from different domains. FTA is also used as a method to achieve Prob-
abilistic Safety Analysis (PSA) 2.2.3. More specifically, it is used to quantify
system failure probability. Quantitative FT evaluation techniques produce three
types of results: (1) numerical probabilities, (2) quantitative importance, and
(3) sensitivity evaluations [27]. In this thesis, we exploit the results obtained
by sensitivity evaluations to measure how sensitive a system design is to a par-
ticular aspect of individual event. Section 2.2.4 provides more details about
sensitivity analysis.

35

16 Chapter 2. Background

A

E1 E2 E3

A

E1 E2 E3

The OR-gate indicates that the
output event A occurs if any of
the input event Ei occur

The AND-gate indicates that
the output event A occurs only
when all the input events Ei
occur in sequence

The Basic Event represents a basic
equipment failure that requires no
further development of failure
causes

The Undeveloped Event represents
an event that is not examined further
because information is unavailable
or because its consequences are
insignificant

OR-gate

AND-gate

NO CURRENT THROUGH
POWER DISTRIBUTION
CENTER

CONTROLLER FAILS
TO GIVE PERMISSION
TO START

POWER DISTRIBUTION
FAILURE

INSUFFICIENT POWER
FROM BATTERY
SOURCES

INSUFFICIENT
POWER OUTPUT
FROM BATTERY

CONTROLLER
FAILURE OFF

OXYGEN SENSOR
FAILS OFF

DONOR BATTERY
SOURCE UNAVAILABLE

Basic Event

Undeveloped Event

Transfer
The Transfer symbol indicates
a transfer to a sub tree or
continuation to another location

Figure 2.2: The principal FTA symbols and an instantiation [26, 29]

2.2.3 Probabilistic Safety Assessments (PSA)

PSA is a qualitative safety analysis to evaluate the probability that an accident
might occur. More clearly, PSA is a technique used to numerically quantify
risk measures by determining undesired scenarios as well as their likelihoods
and consequences. Safety engineers typically starts PSAs by identifying un-
desired risk or scenario as a top event and investigate the causes that may lead
to it. These causes include system failures that need to be identified and quan-
tified using some models like FTA. Failure rates are typically used to quantify
failures and they can be assigned to the basic events of the FTAs.

Failure rate is defined as: “The total number of failures within an item pop-
ulation, divided by the total number of life units expended by that population,
during a particular measurement period under stated conditions” [30].

λ (t) =
R(t)−R(t +∆t)

∆tR(t)
(2.1)

16 Chapter 2. Background

A

E1 E2 E3

A

E1 E2 E3

The OR-gate indicates that the
output event A occurs if any of
the input event Ei occur

The AND-gate indicates that
the output event A occurs only
when all the input events Ei
occur in sequence

The Basic Event represents a basic
equipment failure that requires no
further development of failure
causes

The Undeveloped Event represents
an event that is not examined further
because information is unavailable
or because its consequences are
insignificant

OR-gate

AND-gate

NO CURRENT THROUGH
POWER DISTRIBUTION
CENTER

CONTROLLER FAILS
TO GIVE PERMISSION
TO START

POWER DISTRIBUTION
FAILURE

INSUFFICIENT POWER
FROM BATTERY
SOURCES

INSUFFICIENT
POWER OUTPUT
FROM BATTERY

CONTROLLER
FAILURE OFF

OXYGEN SENSOR
FAILS OFF

DONOR BATTERY
SOURCE UNAVAILABLE

Basic Event

Undeveloped Event

Transfer
The Transfer symbol indicates
a transfer to a sub tree or
continuation to another location

Figure 2.2: The principal FTA symbols and an instantiation [26, 29]

2.2.3 Probabilistic Safety Assessments (PSA)

PSA is a qualitative safety analysis to evaluate the probability that an accident
might occur. More clearly, PSA is a technique used to numerically quantify
risk measures by determining undesired scenarios as well as their likelihoods
and consequences. Safety engineers typically starts PSAs by identifying un-
desired risk or scenario as a top event and investigate the causes that may lead
to it. These causes include system failures that need to be identified and quan-
tified using some models like FTA. Failure rates are typically used to quantify
failures and they can be assigned to the basic events of the FTAs.

Failure rate is defined as: “The total number of failures within an item pop-
ulation, divided by the total number of life units expended by that population,
during a particular measurement period under stated conditions” [30].

λ (t) =
R(t)−R(t +∆t)

∆tR(t)
(2.1)

36

2.2 Safety Analysis 17

where R(t) is the probability of a device not failing prior to some time t, t =
t1 and t2 = t + ∆t. FR is also the inverse of the Mean Time Between Failure
(MTBF = 1/λ) , which is generally measured as follows:

MT BF =
Cn ∗T

Fn
(2.2)

where Cn = number of components, T = time period, Fn = number of failures.

The assigned failure rates to the basic events propagate up through the FTA
logic to reach the failure rate of the top event.

The result of a PSA is important because it determines the minimum re-
quired levels of fault tolerance (e.g., redundancy). However, since the quality
of PSA’s results is dependent on the quality of the λ estimates, safety ana-
lysts should have clear confidence in the used λ s in PSAs. For example, the
IEC 61508 standard [31] requires failure rates with a 90% confidence level (λ
90%) in order to minimise the requirements for hardware fault tolerance. The
standard accepts failure rates with only a 70% confidence level (λ 70%) but a
fault tolerance mechanism should be considered.

It is not realistic to assume that all components’ failure rates used in a PSA
come from the operating experience of a specific system in a statistically mean-
ingful way [32]. Typically, λ s come from generic data sources (OREDA, SIN-
TEF, SERH), where a generic failure rate (λG) of a particular device might vary
from a source to another. The variation depends largely on the service, oper-
ating environment and maintenance practices [33]. Imprecise λ can contribute
to cognitive impairment of safety. Nevertheless, generic λ s are indispensable
in any PSA and they are used in practice but the degree in which they are used
varies from case to case [32]. More clearly, some PSAs are totally based on
λG estimates while others use generic estimates as preliminary data that should
be replaced later with more specialised data (system specific estimates). This
implies that the quality of λ estimates should be reconsidered for a specific
system in a specific environment.

Moreover, the failures of components in safety critical systems are typically
divided into four modes, namely, Safe Detected (SD), Safe Undetected (SU),
Dangerous Detected (DD), and Dangerous Undetected (DU) [34]. DD and
DU failures can cause a loss of a safety function while we believe that we are
protected and this might happen in fraction of diagnostic interval in case of
DD failures or during the unknown downtime in case of DU failures [35]. DU
failures are typically due to either random or systematic failures. However, we
are after dangerous failures DD and DU. For SD and SU, on the other hand, we

2.2 Safety Analysis 17

where R(t) is the probability of a device not failing prior to some time t, t =
t1 and t2 = t + ∆t. FR is also the inverse of the Mean Time Between Failure
(MTBF = 1/λ) , which is generally measured as follows:

MT BF =
Cn ∗T

Fn
(2.2)

where Cn = number of components, T = time period, Fn = number of failures.

The assigned failure rates to the basic events propagate up through the FTA
logic to reach the failure rate of the top event.

The result of a PSA is important because it determines the minimum re-
quired levels of fault tolerance (e.g., redundancy). However, since the quality
of PSA’s results is dependent on the quality of the λ estimates, safety ana-
lysts should have clear confidence in the used λ s in PSAs. For example, the
IEC 61508 standard [31] requires failure rates with a 90% confidence level (λ
90%) in order to minimise the requirements for hardware fault tolerance. The
standard accepts failure rates with only a 70% confidence level (λ 70%) but a
fault tolerance mechanism should be considered.

It is not realistic to assume that all components’ failure rates used in a PSA
come from the operating experience of a specific system in a statistically mean-
ingful way [32]. Typically, λ s come from generic data sources (OREDA, SIN-
TEF, SERH), where a generic failure rate (λG) of a particular device might vary
from a source to another. The variation depends largely on the service, oper-
ating environment and maintenance practices [33]. Imprecise λ can contribute
to cognitive impairment of safety. Nevertheless, generic λ s are indispensable
in any PSA and they are used in practice but the degree in which they are used
varies from case to case [32]. More clearly, some PSAs are totally based on
λG estimates while others use generic estimates as preliminary data that should
be replaced later with more specialised data (system specific estimates). This
implies that the quality of λ estimates should be reconsidered for a specific
system in a specific environment.

Moreover, the failures of components in safety critical systems are typically
divided into four modes, namely, Safe Detected (SD), Safe Undetected (SU),
Dangerous Detected (DD), and Dangerous Undetected (DU) [34]. DD and
DU failures can cause a loss of a safety function while we believe that we are
protected and this might happen in fraction of diagnostic interval in case of
DD failures or during the unknown downtime in case of DU failures [35]. DU
failures are typically due to either random or systematic failures. However, we
are after dangerous failures DD and DU. For SD and SU, on the other hand, we

37

18 Chapter 2. Background

will be aware that the safety function is unavailable to whatever reason (e.g.,
testing, repair, planned preventive maintenance) and we can take precautions
to avoid hazardous situations [35]. Whenever FTAs are constructed to evaluate
hazards, the basic event failure data must describe only failures that contribute
to that hazard and thus only dangerous failure rates (λD) should be included for
the basic events, where λD = λDD + λDU .

However, the reliability measure of any hazard that is being investigated
by a FTA is not determined by simply calculating its λD. In fact, the Average
Probability of Dangerous Failure on Demand (PFDAvg) is used to determine
the reliability measure of the top event (i.e., hazard). The PFDAvg is basically
a number from 0 to 1 which indicates the likelihood of a safety function to fail
to operate on demand, where λD is just a variable within the PFDAvg equation.
Typically, safety standards specify the minimum allowable PFDAvg of a safety
function in order to meet its safety requirement based on SIL, ASIL, DAL,
etc. More clearly, the failure measure is defined by PFDAvg of a safety function
and the result is compared to predefined target PFDAvg for determined SIL of
that function in safety standards. There are different formulae used to calculate
PFDAvg depending on different factors, such as system’s structure (K-out-of-N
structures), Common Cause Factor (CCF), operational maintenance, etc.

2.2.4 Sensitivity Analysis

Sensitivity analysis can be defined as: “The study of how uncertainty in the out-
put of a model (numerical or otherwise) can be apportioned to different sources
of uncertainty in the model input” [36]. The analysis helps to establish reas-
onably acceptable confidence in the model by studying the uncertainties that
are often associated with variables in models. Many variables in system ana-
lysis or design models represent quantities that are very difficult, or even im-
possible to measure to a great deal of accuracy. In practice, system, developers
are usually uncertain about variables in the different system models and they
estimate those variables. Sensitivity analysis allows system developers to de-
termine what level of accuracy is necessary for a parameter (variable) to make
the model sufficiently useful and valid [37].

There are different purposes for using sensitivity analysis. The analysis can
be used to provide insight into the robustness of model results when making
decisions [38]. Also, the analysis can be used to enhancing communication
from modelers to decision makers, for example, by making recommendations
more credible, understandable, compelling or persuasive [39]. In safety do-
mains, sensitivity analysis can be used in risk analysis models to determine the

18 Chapter 2. Background

will be aware that the safety function is unavailable to whatever reason (e.g.,
testing, repair, planned preventive maintenance) and we can take precautions
to avoid hazardous situations [35]. Whenever FTAs are constructed to evaluate
hazards, the basic event failure data must describe only failures that contribute
to that hazard and thus only dangerous failure rates (λD) should be included for
the basic events, where λD = λDD + λDU .

However, the reliability measure of any hazard that is being investigated
by a FTA is not determined by simply calculating its λD. In fact, the Average
Probability of Dangerous Failure on Demand (PFDAvg) is used to determine
the reliability measure of the top event (i.e., hazard). The PFDAvg is basically
a number from 0 to 1 which indicates the likelihood of a safety function to fail
to operate on demand, where λD is just a variable within the PFDAvg equation.
Typically, safety standards specify the minimum allowable PFDAvg of a safety
function in order to meet its safety requirement based on SIL, ASIL, DAL,
etc. More clearly, the failure measure is defined by PFDAvg of a safety function
and the result is compared to predefined target PFDAvg for determined SIL of
that function in safety standards. There are different formulae used to calculate
PFDAvg depending on different factors, such as system’s structure (K-out-of-N
structures), Common Cause Factor (CCF), operational maintenance, etc.

2.2.4 Sensitivity Analysis

Sensitivity analysis can be defined as: “The study of how uncertainty in the out-
put of a model (numerical or otherwise) can be apportioned to different sources
of uncertainty in the model input” [36]. The analysis helps to establish reas-
onably acceptable confidence in the model by studying the uncertainties that
are often associated with variables in models. Many variables in system ana-
lysis or design models represent quantities that are very difficult, or even im-
possible to measure to a great deal of accuracy. In practice, system, developers
are usually uncertain about variables in the different system models and they
estimate those variables. Sensitivity analysis allows system developers to de-
termine what level of accuracy is necessary for a parameter (variable) to make
the model sufficiently useful and valid [37].

There are different purposes for using sensitivity analysis. The analysis can
be used to provide insight into the robustness of model results when making
decisions [38]. Also, the analysis can be used to enhancing communication
from modelers to decision makers, for example, by making recommendations
more credible, understandable, compelling or persuasive [39]. In safety do-
mains, sensitivity analysis can be used in risk analysis models to determine the

38

2.3 Safety Assurance and Certification 19

most significant exposure or risk factors so to speak, and thus, it can support
the prioritisation of the risk mitigation. Sensitivity analysis methods can be
classified in different ways such as mathematical, graphical, statistical, etc. In
this paper we use the sensitivity analysis to identify the safety argument parts
(i.e., sensitive parts) that might require unneeded painstaking work to update
with respect to the benefit of a given change. The results of the analysis should
be presented in the safety argument so that it is always available up front to get
developers’ attention.

In this thesis, we apply the sensitivity analysis on FTAs to measure the
sensitivity of outcome A (e.g., a safety requirement being true) to a change
in a parameter B (e.g., the failure probability in a component). The sensitiv-
ity is defined as ∆B/B, where ∆B is the smallest change in B that changes A
(e.g., the smallest increase in failure probability that makes safety requirement
A false). The failure probability values that are attached to FTA’s events are
considered input parameters to the sensitivity analysis. A sensitive part of a
FTA is defined as one or multiple FTA events whose minimum changes (i.e.,
the smallest increase in its failure probability due to a system change) have
the maximal effect on the FTA, where effect means exceeding failure probab-
ilities (reliability targets) to inadmissible levels. A sensitive event is an event
whose failure probability value can significantly influence the validity of the
FTA once it increases. In this this, system components whose failure rates
correspond to FTA’s events whose likelihoods are sensitive are referred to as
sensitive components. Hence, changes to a sensitive component cause a great
impact to system design [15].

We use the sensitivity analysis as a method to determine the range of fail-
ure probability parameter for each event. Hence, our work assumes the ex-
istence of a probabilistic FTA where each event in the tree is specified by
an actual (i.e., current) failure probability FPActual|event(x). In addition, our
work assumes the existence of the required failure probability for the top event
FPRequired(Topevent), where the FTA is considered unreliable if:
FPActual(Topevent) > FPRequired(Topevent).

2.3 Safety Assurance and Certification

It is common to adopt a highly prescriptive approach to assure system safety,
where safety assurance is demonstrated by showing compliance with the re-
quirements set out as a prescribed process in a safety standard [40]. One
purpose of safety assurance is to ensure that a rigorous process has been fol-

2.3 Safety Assurance and Certification 19

most significant exposure or risk factors so to speak, and thus, it can support
the prioritisation of the risk mitigation. Sensitivity analysis methods can be
classified in different ways such as mathematical, graphical, statistical, etc. In
this paper we use the sensitivity analysis to identify the safety argument parts
(i.e., sensitive parts) that might require unneeded painstaking work to update
with respect to the benefit of a given change. The results of the analysis should
be presented in the safety argument so that it is always available up front to get
developers’ attention.

In this thesis, we apply the sensitivity analysis on FTAs to measure the
sensitivity of outcome A (e.g., a safety requirement being true) to a change
in a parameter B (e.g., the failure probability in a component). The sensitiv-
ity is defined as ∆B/B, where ∆B is the smallest change in B that changes A
(e.g., the smallest increase in failure probability that makes safety requirement
A false). The failure probability values that are attached to FTA’s events are
considered input parameters to the sensitivity analysis. A sensitive part of a
FTA is defined as one or multiple FTA events whose minimum changes (i.e.,
the smallest increase in its failure probability due to a system change) have
the maximal effect on the FTA, where effect means exceeding failure probab-
ilities (reliability targets) to inadmissible levels. A sensitive event is an event
whose failure probability value can significantly influence the validity of the
FTA once it increases. In this this, system components whose failure rates
correspond to FTA’s events whose likelihoods are sensitive are referred to as
sensitive components. Hence, changes to a sensitive component cause a great
impact to system design [15].

We use the sensitivity analysis as a method to determine the range of fail-
ure probability parameter for each event. Hence, our work assumes the ex-
istence of a probabilistic FTA where each event in the tree is specified by
an actual (i.e., current) failure probability FPActual|event(x). In addition, our
work assumes the existence of the required failure probability for the top event
FPRequired(Topevent), where the FTA is considered unreliable if:
FPActual(Topevent) > FPRequired(Topevent).

2.3 Safety Assurance and Certification

It is common to adopt a highly prescriptive approach to assure system safety,
where safety assurance is demonstrated by showing compliance with the re-
quirements set out as a prescribed process in a safety standard [40]. One
purpose of safety assurance is to ensure that a rigorous process has been fol-

39

20 Chapter 2. Background

lowed to build a system and an adequate evidence from the audit, inspection
and assessment activities, is available. Safety assurance should also continu-
ously assess the adequacy of the identified risk controls and identify additional
or modify existing controls to ensure the safety performance and, ultimately,
maintain the acceptable safety levels.

2.3.1 Safety Case
In 1965, section 14 of the UK Nuclear Installations Act states:

“Without prejudice to any other requirements of the conditions attached
to this license the licensee shall make and implement adequate arrangements
for the production and assessment of safety cases consisting of documentation
to justify safety during the design, construction, manufacture, commissioning,
operation and decommissioning phases of the installation.” [41]

Hence, the notion of building safety cases to justify safety is not new
and it has been around for almost fifty years. In 1989, the British chemical
industry requested from nuclear sites (according to the Control of the Industrial
Major Accident Hazards (CIMAH) regulations) to generate a written report
that should contain (1) facts about the site, and (2) reasoned arguments about
the hazards and risks from the site [42]. This report was also known as a safety
case. The objective of the report was to demonstrate to the UK Health and
Safety Executive (HSE) that the site is satisfactory by listing the major hazards
and risks and shows how they are adequately mitigated.

The development of the safety case as a means of demonstrating accept-
able risk began in the nuclear industry but the application of this means was
uncommon in other industries. For example, in the Clapham junction acci-
dent in Chapter 1, there was no safety case and although the transport system
was allegedly mature, regulated and safe, British Rail could not demonstrate
why their system was acceptably safe to operate [43]. From 1990s onwards
the development of safety cases spread across many other major safety critical
industries, such as the railways, offshore oil and gas facilities. [44].

2.3.2 Safety Case Definition
It is worth mentioning that in addition to the term ‘safety case’, there are dif-
ferent other terms such as ‘Assurance Case’ and ‘Safety Assurance Case’ that
are, sometimes, used interchangeably. An assurance case is defined as: “A

20 Chapter 2. Background

lowed to build a system and an adequate evidence from the audit, inspection
and assessment activities, is available. Safety assurance should also continu-
ously assess the adequacy of the identified risk controls and identify additional
or modify existing controls to ensure the safety performance and, ultimately,
maintain the acceptable safety levels.

2.3.1 Safety Case
In 1965, section 14 of the UK Nuclear Installations Act states:

“Without prejudice to any other requirements of the conditions attached
to this license the licensee shall make and implement adequate arrangements
for the production and assessment of safety cases consisting of documentation
to justify safety during the design, construction, manufacture, commissioning,
operation and decommissioning phases of the installation.” [41]

Hence, the notion of building safety cases to justify safety is not new
and it has been around for almost fifty years. In 1989, the British chemical
industry requested from nuclear sites (according to the Control of the Industrial
Major Accident Hazards (CIMAH) regulations) to generate a written report
that should contain (1) facts about the site, and (2) reasoned arguments about
the hazards and risks from the site [42]. This report was also known as a safety
case. The objective of the report was to demonstrate to the UK Health and
Safety Executive (HSE) that the site is satisfactory by listing the major hazards
and risks and shows how they are adequately mitigated.

The development of the safety case as a means of demonstrating accept-
able risk began in the nuclear industry but the application of this means was
uncommon in other industries. For example, in the Clapham junction acci-
dent in Chapter 1, there was no safety case and although the transport system
was allegedly mature, regulated and safe, British Rail could not demonstrate
why their system was acceptably safe to operate [43]. From 1990s onwards
the development of safety cases spread across many other major safety critical
industries, such as the railways, offshore oil and gas facilities. [44].

2.3.2 Safety Case Definition
It is worth mentioning that in addition to the term ‘safety case’, there are dif-
ferent other terms such as ‘Assurance Case’ and ‘Safety Assurance Case’ that
are, sometimes, used interchangeably. An assurance case is defined as: “A

40

2.3 Safety Assurance and Certification 21

reasoned and compelling argument, supported by a body of evidence, that a
system, service or organisation will operate as intended for a defined applica-
tion in a defined environment” [45]. It is also defined as: A collection of audit-
able claims, arguments, and evidence created to support the contention that
a defined system/service will satisfy the particular requirements [46]. As ob-
served from the former or latter definitions, the term ‘assurance case’ is generic
and does not necessarily indicate safety as the property to be assured. Hence,
the term ‘assurance case’ by its own has no particular focus, but if safety is
the intended property to be assured, then using terms such as ‘safety case’ or
‘safety assurance case’ is more precise where both can be thought of as an
instance of an assurance case.

Although the term ‘safety case’ has become popular today in many safety
critical system domains, but its precise meaning is dependent on the purpose
that the safety case is intended to satisfy [6]. This raises the question of: Why
do industries need a safety case? During this work, different purposes that
safety cases can satisfy are observed. A safety case is built as a tool:

• To manage residual risks [47]

• To record engineering practices [6]

• In a court of law to address and reduce legal liability [48, 6]

• For marketing

However, before any safety case is attempted, the rationale and purpose of
it must be clearly understood. This is vitally important, because if the specific
requirements for compiling a safety case are not clear, then the following safety
case will also be not clear [6].

There are different definitions of safety case [49, 6]. Most of the available
definitions indicate the consensus that a safety case is oriented to demonstrate
how a system reduces risk of specific losses to an acceptable level and thus
enable a regulator to assess whether the system is acceptably safe to operate.
It is worth pointing out that the definition of safety case by the UK Defence
Standard 00-56 [50] is the most common. The standard defines the safety case
as: “A structured argument, supported by evidence, intended to justify that
a system is acceptably safe for a specific application in a specific operating
environment”.

Safety Argument ∈ Safety Case

2.3 Safety Assurance and Certification 21

reasoned and compelling argument, supported by a body of evidence, that a
system, service or organisation will operate as intended for a defined applica-
tion in a defined environment” [45]. It is also defined as: A collection of audit-
able claims, arguments, and evidence created to support the contention that
a defined system/service will satisfy the particular requirements [46]. As ob-
served from the former or latter definitions, the term ‘assurance case’ is generic
and does not necessarily indicate safety as the property to be assured. Hence,
the term ‘assurance case’ by its own has no particular focus, but if safety is
the intended property to be assured, then using terms such as ‘safety case’ or
‘safety assurance case’ is more precise where both can be thought of as an
instance of an assurance case.

Although the term ‘safety case’ has become popular today in many safety
critical system domains, but its precise meaning is dependent on the purpose
that the safety case is intended to satisfy [6]. This raises the question of: Why
do industries need a safety case? During this work, different purposes that
safety cases can satisfy are observed. A safety case is built as a tool:

• To manage residual risks [47]

• To record engineering practices [6]

• In a court of law to address and reduce legal liability [48, 6]

• For marketing

However, before any safety case is attempted, the rationale and purpose of
it must be clearly understood. This is vitally important, because if the specific
requirements for compiling a safety case are not clear, then the following safety
case will also be not clear [6].

There are different definitions of safety case [49, 6]. Most of the available
definitions indicate the consensus that a safety case is oriented to demonstrate
how a system reduces risk of specific losses to an acceptable level and thus
enable a regulator to assess whether the system is acceptably safe to operate.
It is worth pointing out that the definition of safety case by the UK Defence
Standard 00-56 [50] is the most common. The standard defines the safety case
as: “A structured argument, supported by evidence, intended to justify that
a system is acceptably safe for a specific application in a specific operating
environment”.

Safety Argument ∈ Safety Case

41

22 Chapter 2. Background

The work presented in the two parts of this thesis assumes that the main
purpose of a safety case is to justify safety and it refers to the safety case
definition by the UK Defence Standard 00-56 wherever the term ‘safety case’
appears.
A safety case comprises elements as follows:

• Safety requirements or objectives that are mainly derived to eliminate or
mitigate hazards (also known as goals)

• Lifecycle artefacts (also know as work products) which are basically the
results of each development phase (e.g. safety analyses, software inspec-
tions, or functional tests)

• a Safety argument explaining how safety goals (in form of safety claims)
are supported by available artefacts (in form of safety evidence)

• Context and Assumptions about the operating environment and usage

Figure 2.3 shows an overview of the safety case elements and the relation-
ships between them.

2.3.3 Safety Argument
The main purpose of a safety case is to communicate an argument. The ar-
gument demonstrates how someone can reasonably conclude that a system is
acceptably safe from the evidence available [51]. In English, the word ‘argu-
ment’ is defined as: “A reason or set of reasons that somebody uses to show
that something is true or correct” [16]. A more technical definition for the
word ‘argument’ is: A body of information presented with the intention to
establish one or more claims through the presentation of related supporting
claims, evidence, and contextual information. [46]. An argument in the safety
case definition is called a ‘safety argument’ or ‘safety case argument’ and it
can be defined as a hierarchically connected series of claims supported by evid-
ence. Safety arguments are intended to demonstrate to the reader that a system
is acceptably safe as an overall claim. The claim is defined as: A proposition
being asserted by the author or utterer that is a true or false statement [46].
The evidence is defined as: Information or objective artifacts being offered in
support of one or more claims [46].

In order for safety cases to be developed, discussed, challenged, presen-
ted and reviewed amongst stakeholders, as well as maintained throughout the
product lifecycle, it is necessary for the (1) argument to be clearly structured

22 Chapter 2. Background

The work presented in the two parts of this thesis assumes that the main
purpose of a safety case is to justify safety and it refers to the safety case
definition by the UK Defence Standard 00-56 wherever the term ‘safety case’
appears.
A safety case comprises elements as follows:

• Safety requirements or objectives that are mainly derived to eliminate or
mitigate hazards (also known as goals)

• Lifecycle artefacts (also know as work products) which are basically the
results of each development phase (e.g. safety analyses, software inspec-
tions, or functional tests)

• a Safety argument explaining how safety goals (in form of safety claims)
are supported by available artefacts (in form of safety evidence)

• Context and Assumptions about the operating environment and usage

Figure 2.3 shows an overview of the safety case elements and the relation-
ships between them.

2.3.3 Safety Argument
The main purpose of a safety case is to communicate an argument. The ar-
gument demonstrates how someone can reasonably conclude that a system is
acceptably safe from the evidence available [51]. In English, the word ‘argu-
ment’ is defined as: “A reason or set of reasons that somebody uses to show
that something is true or correct” [16]. A more technical definition for the
word ‘argument’ is: A body of information presented with the intention to
establish one or more claims through the presentation of related supporting
claims, evidence, and contextual information. [46]. An argument in the safety
case definition is called a ‘safety argument’ or ‘safety case argument’ and it
can be defined as a hierarchically connected series of claims supported by evid-
ence. Safety arguments are intended to demonstrate to the reader that a system
is acceptably safe as an overall claim. The claim is defined as: A proposition
being asserted by the author or utterer that is a true or false statement [46].
The evidence is defined as: Information or objective artifacts being offered in
support of one or more claims [46].

In order for safety cases to be developed, discussed, challenged, presen-
ted and reviewed amongst stakeholders, as well as maintained throughout the
product lifecycle, it is necessary for the (1) argument to be clearly structured

42

2.3 Safety Assurance and Certification 23

e.g., safety analyses, software
inspections, or functional
tests, etc.

Evidenc
e
Report 1

Analysis
Report 1Model

Report 1Test
Report 1Test

Report 1

Lifecycle Artefacts

Safety Objectives

Claim x Claim y Claim z Claim n......

Evidence
x

......

Supported by

Evidence
y

Evidence
z

Evidence
n

Sa
fe

ty
 A

rg
um

en
t

Figure 2.3: Overview of a safety case and its elements

and (2) items of evidence to be clearly asserted to support the argument [45].
There are several ways to represent safety arguments. Safety arguments might
be represented by:

• Prose: Safety arguments are typically communicated in existing safety
cases through free text [51]. Perhaps this is the easiest way to repres-
ent safety arguments but not necessarily the most efficient. There are
several problems observed while reviewing real safety cases written in
prose. We describe some of them. Noticeably, not all engineers who
are involved in writing a safety case can write clear and well-structured
English [51]. An instance of this problem is, probably, the unconscious
use of the ellipsis process in natural languages when authors, uncon-
sciously, leave some non-described crucial details in some statements
because they assume that the readers are aware of the context of these
statements. For example, the following text describes an evidence item
used to support some claims about a bug tracking system of software
failures:

2.3 Safety Assurance and Certification 23

e.g., safety analyses, software
inspections, or functional
tests, etc.

Evidenc
e
Report 1

Analysis
Report 1Model

Report 1Test
Report 1Test

Report 1

Lifecycle Artefacts

Safety Objectives

Claim x Claim y Claim z Claim n......

Evidence
x

......

Supported by

Evidence
y

Evidence
z

Evidence
n

Sa
fe

ty
 A

rg
um

en
t

Figure 2.3: Overview of a safety case and its elements

and (2) items of evidence to be clearly asserted to support the argument [45].
There are several ways to represent safety arguments. Safety arguments might
be represented by:

• Prose: Safety arguments are typically communicated in existing safety
cases through free text [51]. Perhaps this is the easiest way to repres-
ent safety arguments but not necessarily the most efficient. There are
several problems observed while reviewing real safety cases written in
prose. We describe some of them. Noticeably, not all engineers who
are involved in writing a safety case can write clear and well-structured
English [51]. An instance of this problem is, probably, the unconscious
use of the ellipsis process in natural languages when authors, uncon-
sciously, leave some non-described crucial details in some statements
because they assume that the readers are aware of the context of these
statements. For example, the following text describes an evidence item
used to support some claims about a bug tracking system of software
failures:

43

24 Chapter 2. Background

“Here we provide evidence of bug tracking for the software. ‘XXXXX’ is
the database that is used to track all issues regarding this system. It has
full visibility and is extremely detailed.” What does ‘all issues’ mean?
Is it the safety, software or bug issues? How about ‘visibility’? Does
the writer mean the visibility of the software or the visibility of the bug
information? [6]

There are more problems in the description above but the idea is to give
an example of the text quality problem.

Another problem observed in safety cases written in prose is the cross-
references among texts. Multiple cross-references in texts can be awk-
ward and disrupt the flow of the main argument [51].

• Tabular notations: This way to demonstrate safety arguments is not
common. The idea, however, is to arrange an argument claim together
with its supportive items of evidence in rows and columns.

• Graphical notations: This way represents the individual elements of
safety arguments (e.g., safety goals, items of evidence and assumptions)
using graphical symbols (e.g., squares, circles, parallelograms, etc.). The
Goal Structuring Notation (GSN), as well as, the Claims Argument Evid-
ence (CAE) notation are two examples of this way.

Discussing the advantages and disadvantages of the three ways listed above
is not an objective of this thesis. We do not claim that a problem in one way
can not apply to other ways. However, we use the graphical notation since it
can clearly represent the elements of safety arguments and their relationships.
Moreover, almost all of the related works to this thesis use GSN thus adopting
GSN can make the discussions, comparisons and explanations of our work
more clear with respect to other works.

2.3.4 The Goal Structuring Notation (GSN)
GSN is a graphical argument notation which can be used to document expli-
citly the elements and structure of an argument and the argument’s relationship
to evidence [45]. GSN’s notations are used as a means for communicating
(1) safety argument elements, claims, argument logic, assumptions, context,
evidence and (2) the relationships between these elements [15].

A goal structure shows how goals are successively solved by sub-goals until
a point is reached where claims can be supported by direct reference to evid-
ence. Using GSN, it is also possible to clarify the argument strategies adopted

24 Chapter 2. Background

“Here we provide evidence of bug tracking for the software. ‘XXXXX’ is
the database that is used to track all issues regarding this system. It has
full visibility and is extremely detailed.” What does ‘all issues’ mean?
Is it the safety, software or bug issues? How about ‘visibility’? Does
the writer mean the visibility of the software or the visibility of the bug
information? [6]

There are more problems in the description above but the idea is to give
an example of the text quality problem.

Another problem observed in safety cases written in prose is the cross-
references among texts. Multiple cross-references in texts can be awk-
ward and disrupt the flow of the main argument [51].

• Tabular notations: This way to demonstrate safety arguments is not
common. The idea, however, is to arrange an argument claim together
with its supportive items of evidence in rows and columns.

• Graphical notations: This way represents the individual elements of
safety arguments (e.g., safety goals, items of evidence and assumptions)
using graphical symbols (e.g., squares, circles, parallelograms, etc.). The
Goal Structuring Notation (GSN), as well as, the Claims Argument Evid-
ence (CAE) notation are two examples of this way.

Discussing the advantages and disadvantages of the three ways listed above
is not an objective of this thesis. We do not claim that a problem in one way
can not apply to other ways. However, we use the graphical notation since it
can clearly represent the elements of safety arguments and their relationships.
Moreover, almost all of the related works to this thesis use GSN thus adopting
GSN can make the discussions, comparisons and explanations of our work
more clear with respect to other works.

2.3.4 The Goal Structuring Notation (GSN)
GSN is a graphical argument notation which can be used to document expli-
citly the elements and structure of an argument and the argument’s relationship
to evidence [45]. GSN’s notations are used as a means for communicating
(1) safety argument elements, claims, argument logic, assumptions, context,
evidence and (2) the relationships between these elements [15].

A goal structure shows how goals are successively solved by sub-goals until
a point is reached where claims can be supported by direct reference to evid-
ence. Using GSN, it is also possible to clarify the argument strategies adopted

44

2.3 Safety Assurance and Certification 25

(i.e., how the premises imply the conclusion), the rationale for the approach
(assumptions, justifications) and the context in which goals are stated [15].

Goal

Context

Assumption
A Strategy

InContextOf

SolvedBy

Away Goal

 <Module Name>

Requires further
development

Justification
J

Solution

ContractAway Goal

Module

Figure 2.4: Overview of the GSN principal elements

In GSN, rectangles are used to present the argument’s claims (Goals in
GSN). Parallelograms is used to present the argument’s logic (Strategies in
GSN). Circles are used to present items of evidence (Solutions in GSN). Ovals
with the letter ‘J’ at the bottom-right are used to present a statement of rationale
(Justifications in GSN). Ovals with the letter ‘A’ at the bottom-right are used to
present an intentionally unsubstantiated statement (Assumptions in GSN) [45].
Squashed rectangles are used to present a reference to contextual information
or a statement (Context in GSN). Hollow diamonds are applied to the centre of
an element (e.g., goal, assumptions, context, etc.) to indicate that a line of argu-
ment has not been developed (Undeveloped <element name> in GSN) [45].
SupportedBy is an evidential relationship which declares the link between a
goal and the evidence used to substantiate it [45]. Permitted supported by con-
nections are: goal-to-goal, goal-to-strategy, goal-to-solution, strategy-to-goal.
InContextOf is a link that declares a contextual relationship [45]. Permit-
ted connections are: goal-to-context, goal-to-assumption, goal-to-justification,
strategy-to-context, strategy-to-assumption and strategy-to-justification [45].

Figure 2.4 shows the principal GSN elements, and Figure 2.5 shows an
example of a safety argument represented by those elements.

GSN has been extended to enable modularity in a safety case (i.e., module-
based development of safety cases). Hence, modular GSN enables the parti-
tioning of a safety case into an interconnected set of modules [52].

2.3 Safety Assurance and Certification 25

(i.e., how the premises imply the conclusion), the rationale for the approach
(assumptions, justifications) and the context in which goals are stated [15].

Goal

Context

Assumption
A Strategy

InContextOf

SolvedBy

Away Goal

 <Module Name>

Requires further
development

Justification
J

Solution

ContractAway Goal

Module

Figure 2.4: Overview of the GSN principal elements

In GSN, rectangles are used to present the argument’s claims (Goals in
GSN). Parallelograms is used to present the argument’s logic (Strategies in
GSN). Circles are used to present items of evidence (Solutions in GSN). Ovals
with the letter ‘J’ at the bottom-right are used to present a statement of rationale
(Justifications in GSN). Ovals with the letter ‘A’ at the bottom-right are used to
present an intentionally unsubstantiated statement (Assumptions in GSN) [45].
Squashed rectangles are used to present a reference to contextual information
or a statement (Context in GSN). Hollow diamonds are applied to the centre of
an element (e.g., goal, assumptions, context, etc.) to indicate that a line of argu-
ment has not been developed (Undeveloped <element name> in GSN) [45].
SupportedBy is an evidential relationship which declares the link between a
goal and the evidence used to substantiate it [45]. Permitted supported by con-
nections are: goal-to-goal, goal-to-strategy, goal-to-solution, strategy-to-goal.
InContextOf is a link that declares a contextual relationship [45]. Permit-
ted connections are: goal-to-context, goal-to-assumption, goal-to-justification,
strategy-to-context, strategy-to-assumption and strategy-to-justification [45].

Figure 2.4 shows the principal GSN elements, and Figure 2.5 shows an
example of a safety argument represented by those elements.

GSN has been extended to enable modularity in a safety case (i.e., module-
based development of safety cases). Hence, modular GSN enables the parti-
tioning of a safety case into an interconnected set of modules [52].

45

26 Chapter 2. Background

MainSafe—
FLES is adequately safe to
operate in its intended
operating context

FLES—
Fuel Level
Estimation System

FLESAdequate—
FLES failure
probability ≤ 1.5E-3

AllHazardMitigated—
System hazards are
adequately mitigated

MitigateStrat—
Argument over
hazards mitigation

HazardAnalysis—
Hazard Analysis is
adequate

HzrdRep—
List of
hazards

AllHazardIdentified—
All hazards have been
identified

HzrAnaProcAdeq—
Hazard analysis process used
to identify hazards is adequate

 Hazard Analysis Process

...

Other non-SW
aspect of the
safety case

MitiRep—
Derived
Safety
Goals

MitigationHazard1—
Hazard 1 "Unannunciated
lack of fuel" mitigation is
specified and implemented

SG1.0ImplAssur—
Safety Goal 1.0 has been
implemented and assured

 SW Safety Requirements

SafetyGoalsAdeq—
Safety goals 1.0 and 2.0
adequately mitigate hazard 1

SG2.0ImplAssur—
Safety Goal 2.0 has been
implemented and assured

 SW Safety Requirements

SG1Trace—
Safety goals 1.0 is
derived to mitigate
Hazard 1

SG2Trace—
Safety goal 2.0 is
derived to mitigate
Hazard 1

Figure 2.5: A safety argument example represented by GSN [53]

Figure 2.4 presents the principal notations of GSN after the extension in
gray. An Away Goal with a bisecting line in the lower half of it the repeats a
claim presented in another argument module which is used to support the ar-
gument in the local module [45]. The Module Identifier provides a reference
to the module that presents the original claim. A Module reference presents a
reference to a module containing an argument. A Contract module reference
presents a reference to a contract module containing definition of the relation-
ships between two modules, defining how a claim in one supports the argument
in the other [45].

2.3.5 Confidence in Safety
The safety case (according to our adopted definition) should provide inform-
ation about what does it mean for a system to be safe and how the safety is
measured and assured. Reviewers (or assessors) of the safety case use that in-
formation to assess the safety of the whole system by looking into what the
system is made of and whether the failures of the different system components
are managed in a way that the safety requirements are still respected. Based on

26 Chapter 2. Background

MainSafe—
FLES is adequately safe to
operate in its intended
operating context

FLES—
Fuel Level
Estimation System

FLESAdequate—
FLES failure
probability ≤ 1.5E-3

AllHazardMitigated—
System hazards are
adequately mitigated

MitigateStrat—
Argument over
hazards mitigation

HazardAnalysis—
Hazard Analysis is
adequate

HzrdRep—
List of
hazards

AllHazardIdentified—
All hazards have been
identified

HzrAnaProcAdeq—
Hazard analysis process used
to identify hazards is adequate

 Hazard Analysis Process

...

Other non-SW
aspect of the
safety case

MitiRep—
Derived
Safety
Goals

MitigationHazard1—
Hazard 1 "Unannunciated
lack of fuel" mitigation is
specified and implemented

SG1.0ImplAssur—
Safety Goal 1.0 has been
implemented and assured

 SW Safety Requirements

SafetyGoalsAdeq—
Safety goals 1.0 and 2.0
adequately mitigate hazard 1

SG2.0ImplAssur—
Safety Goal 2.0 has been
implemented and assured

 SW Safety Requirements

SG1Trace—
Safety goals 1.0 is
derived to mitigate
Hazard 1

SG2Trace—
Safety goal 2.0 is
derived to mitigate
Hazard 1

Figure 2.5: A safety argument example represented by GSN [53]

Figure 2.4 presents the principal notations of GSN after the extension in
gray. An Away Goal with a bisecting line in the lower half of it the repeats a
claim presented in another argument module which is used to support the ar-
gument in the local module [45]. The Module Identifier provides a reference
to the module that presents the original claim. A Module reference presents a
reference to a module containing an argument. A Contract module reference
presents a reference to a contract module containing definition of the relation-
ships between two modules, defining how a claim in one supports the argument
in the other [45].

2.3.5 Confidence in Safety
The safety case (according to our adopted definition) should provide inform-
ation about what does it mean for a system to be safe and how the safety is
measured and assured. Reviewers (or assessors) of the safety case use that in-
formation to assess the safety of the whole system by looking into what the
system is made of and whether the failures of the different system components
are managed in a way that the safety requirements are still respected. Based on

46

2.3 Safety Assurance and Certification 27

the confidence in the adequacy of the articulated claims, in the soundness of
the structured argument, and in the trustworthiness, suitability and complete-
ness of the gathered evidence, the reviewers build an overall confidence in the
safety performance of a system. That is, the overall confidence in safety is a
superset that is composed of and influenced by different subset confidences.
The trustworthiness of evidence is one subset that affect the reviewers’ overall
confidence in safety. This raises two questions:

• What do we mean by evidence?

• What might affect the confidence in trustworthiness of an item of evid-
ence?

Although the common definition of the safety case by many safety stand-
ards in different domains requires the existence of a body of evidence to support
the safety argument, there is little agreement about what evidence is [54]. How-
ever, some standards explicitly explain what the evidence should look like or
the forms of evidence. For example, the UK defence standard 00-56 describes
that the generated item of evidence should consist of one or more forms of four
types, namely, direct, quantitative, process, and qualitative evidence [50].

To narrow down the focus of this thesis, we point out that we are par-
ticularly interested of any item of evidence that supports articulated claims
about the failure rates of hardware components. Hence, we define an item of
evidence, in our particular context, as any available body of fact or informa-
tion (source of knowledge) which indicates whether our belief in failure rate
measures of hardware components is true or false. Figure 2.6 shows potential
sources from which we can support a claimed failure rate.

As for the question: What might affect our confidence in trustworthiness of
the items of evidence? In fact, for evidence to be relied on as honest or truthful
depends on how complete and accurate is our knowledge about it. Judgment on
the trustworthiness of an item of evidence depends on our conception and epi-
stemology (e.g., what we know about the evidence, the context it was obtained
for, and the environment it was tested within, etc.). Claiming the complete-
ness of our epistemology is perfect but it is impossible to be proven. However,
we shall not make the perfect as the enemy of the good by asking either for
everything (including what is beyond our knowledge) or nothing. Alternat-
ively, we should accept practical epistemology by verifying that the evidence
exists and adequately supports the claim [54], given our knowledge. Even
claims that are supported by expert judgements, they should not be dealt with
as axioms but they should be subject to verification whenever possible.

2.3 Safety Assurance and Certification 27

the confidence in the adequacy of the articulated claims, in the soundness of
the structured argument, and in the trustworthiness, suitability and complete-
ness of the gathered evidence, the reviewers build an overall confidence in the
safety performance of a system. That is, the overall confidence in safety is a
superset that is composed of and influenced by different subset confidences.
The trustworthiness of evidence is one subset that affect the reviewers’ overall
confidence in safety. This raises two questions:

• What do we mean by evidence?

• What might affect the confidence in trustworthiness of an item of evid-
ence?

Although the common definition of the safety case by many safety stand-
ards in different domains requires the existence of a body of evidence to support
the safety argument, there is little agreement about what evidence is [54]. How-
ever, some standards explicitly explain what the evidence should look like or
the forms of evidence. For example, the UK defence standard 00-56 describes
that the generated item of evidence should consist of one or more forms of four
types, namely, direct, quantitative, process, and qualitative evidence [50].

To narrow down the focus of this thesis, we point out that we are par-
ticularly interested of any item of evidence that supports articulated claims
about the failure rates of hardware components. Hence, we define an item of
evidence, in our particular context, as any available body of fact or informa-
tion (source of knowledge) which indicates whether our belief in failure rate
measures of hardware components is true or false. Figure 2.6 shows potential
sources from which we can support a claimed failure rate.

As for the question: What might affect our confidence in trustworthiness of
the items of evidence? In fact, for evidence to be relied on as honest or truthful
depends on how complete and accurate is our knowledge about it. Judgment on
the trustworthiness of an item of evidence depends on our conception and epi-
stemology (e.g., what we know about the evidence, the context it was obtained
for, and the environment it was tested within, etc.). Claiming the complete-
ness of our epistemology is perfect but it is impossible to be proven. However,
we shall not make the perfect as the enemy of the good by asking either for
everything (including what is beyond our knowledge) or nothing. Alternat-
ively, we should accept practical epistemology by verifying that the evidence
exists and adequately supports the claim [54], given our knowledge. Even
claims that are supported by expert judgements, they should not be dealt with
as axioms but they should be subject to verification whenever possible.

47

28 Chapter 2. Background

FailureRateOfHW_X—
The likelihood of {hardware X} to fail during a {time} of operation is {failure_rate}

S1:
Handbook of
failure rate data

S2:
Failure rate by
the vendor

S4:

Test report

S3:
Expert
judgement

At least 1-of-4
ACP.S1

ACP.S2 ACP.S3
ACP.S4

Figure 2.6: Possible items of evidence to support failure rate measures

Since the realisation of the uncertainty and confidence in safety cases is
a key to assess their sufficiency and trustworthiness, it is important to clearly
identify, explicitly represent and qualitatively or quantitively assess the confid-
ence and the uncertainty. Some researchers suggested quantitative models to
assess the confidence in safety arguments (e.g., [55, 56, 57, 58]). However, ad-
opting the current proposed techniques to quantitatively assess the confidence
in safety cases is debatable. This is because quantitative confidence techniques
require further validation to prove their efficacy [4]. Other researchers sug-
gested to increase the clarity of the contained confidence in safety cases by
developing explicit and separate confidence argument [59]. Assessing the con-
fidence quantitively is beyond the scope of our thesis. However, we are partic-
ularly interested of developing explicit and separate confidence arguments and
then describe how obtaining information about the system behaviour from its
operational life might impact these arguments.

2.3.6 Assured Safety Argument
Hawkins et al., [59] introduced “An assured safety argument” as a structure for
arguing safety in which the safety argument is accompanied by a confidence
argument that documents the confidence in the structure and bases of the safety
argument. More specifically, the suggested structure explicitly separates the
safety case argument into two parts [59]:

1. A safety argument: the safety argument is constructed to argue over risk
reduction —anything related to the identification and mitigation of haz-
ards associated with a system— and should not cope with confidence.

2. An accompanying confidence argument: the confidence argument is

28 Chapter 2. Background

FailureRateOfHW_X—
The likelihood of {hardware X} to fail during a {time} of operation is {failure_rate}

S1:
Handbook of
failure rate data

S2:
Failure rate by
the vendor

S4:

Test report

S3:
Expert
judgement

At least 1-of-4
ACP.S1

ACP.S2 ACP.S3
ACP.S4

Figure 2.6: Possible items of evidence to support failure rate measures

Since the realisation of the uncertainty and confidence in safety cases is
a key to assess their sufficiency and trustworthiness, it is important to clearly
identify, explicitly represent and qualitatively or quantitively assess the confid-
ence and the uncertainty. Some researchers suggested quantitative models to
assess the confidence in safety arguments (e.g., [55, 56, 57, 58]). However, ad-
opting the current proposed techniques to quantitatively assess the confidence
in safety cases is debatable. This is because quantitative confidence techniques
require further validation to prove their efficacy [4]. Other researchers sug-
gested to increase the clarity of the contained confidence in safety cases by
developing explicit and separate confidence argument [59]. Assessing the con-
fidence quantitively is beyond the scope of our thesis. However, we are partic-
ularly interested of developing explicit and separate confidence arguments and
then describe how obtaining information about the system behaviour from its
operational life might impact these arguments.

2.3.6 Assured Safety Argument
Hawkins et al., [59] introduced “An assured safety argument” as a structure for
arguing safety in which the safety argument is accompanied by a confidence
argument that documents the confidence in the structure and bases of the safety
argument. More specifically, the suggested structure explicitly separates the
safety case argument into two parts [59]:

1. A safety argument: the safety argument is constructed to argue over risk
reduction —anything related to the identification and mitigation of haz-
ards associated with a system— and should not cope with confidence.

2. An accompanying confidence argument: the confidence argument is

48

2.3 Safety Assurance and Certification 29

structured according to the assertions of the safety argument and it is not
allowed to contain general ‘confidence raising’ arguments that cannot be
clearly related to the structures of the core safety argument.

Assertions in a safety argument relate to the sufficiency and appropriate-
ness of the inferences declared in the argument, the context and assumptions
used and the evidence cited [59]. For example, when an item of evidence is
used to support a claim, it is asserted that this evidence is sufficient to support
the claim. However, a simple ‘SolvedBy’ relation between the evidence and the
claim will not satisfy a reviewer’s concerns to reach a certain level of confid-
ence, such as, why the reviewer should believe that the evidence is appropriate
for the claim? Or whether or not it is trustworthy. Instead of decomposing
the arguments further to argue over the appropriateness and trustworthiness of
the supporting evidence, an Assurance Claim Points (ACP) can be created to
indicate an assertion in the safety argument. An ACP is indicated in GSN with
a named black rectangle on the relevant link and a confidence argument should
be developed for each ACP [59]. Three types of assertions were defined, where
an ACP can be created, as follows (Figure 9.3 instantiates an example of each
type):

1. Asserted inference: the ACP for an asserted inference is the link between
the parent claim and its strategy or sub-claims (e.g., ACP.I1).

2. Asserted context: the ACP for asserted context is the link to the contex-
tual element (e.g., ACP.C2).

3. Asserted solution: the ACP for asserted solutions is the link to the solu-
tion element (e.g., ACP.S3).

Other examples are found in Figure 2.6 where ACP.S1-S4 are examples of
asserted solutions.

Incomplete knowledge that can preclude a perfect confidence is referred
to as an Assurance Deficit (AD) [59]. Highlighting and managing the ADs in
safety cases are essential to build an overall all confidence in the safety case.
The main motivation of proposing the “assured safety argument” structure is
to identify and manage the ADs in safety cases through the ACPs and apart
from the safety argument. Having a separate confidence argument eliminates
or reduces the difficulties that can emerge when merging confidence and safety
arguments in one argument. Including unnecessary material, excluding neces-
sary material and increasing the size and complexity of safety arguments, are
examples of these difficulties [59].

2.3 Safety Assurance and Certification 29

structured according to the assertions of the safety argument and it is not
allowed to contain general ‘confidence raising’ arguments that cannot be
clearly related to the structures of the core safety argument.

Assertions in a safety argument relate to the sufficiency and appropriate-
ness of the inferences declared in the argument, the context and assumptions
used and the evidence cited [59]. For example, when an item of evidence is
used to support a claim, it is asserted that this evidence is sufficient to support
the claim. However, a simple ‘SolvedBy’ relation between the evidence and the
claim will not satisfy a reviewer’s concerns to reach a certain level of confid-
ence, such as, why the reviewer should believe that the evidence is appropriate
for the claim? Or whether or not it is trustworthy. Instead of decomposing
the arguments further to argue over the appropriateness and trustworthiness of
the supporting evidence, an Assurance Claim Points (ACP) can be created to
indicate an assertion in the safety argument. An ACP is indicated in GSN with
a named black rectangle on the relevant link and a confidence argument should
be developed for each ACP [59]. Three types of assertions were defined, where
an ACP can be created, as follows (Figure 9.3 instantiates an example of each
type):

1. Asserted inference: the ACP for an asserted inference is the link between
the parent claim and its strategy or sub-claims (e.g., ACP.I1).

2. Asserted context: the ACP for asserted context is the link to the contex-
tual element (e.g., ACP.C2).

3. Asserted solution: the ACP for asserted solutions is the link to the solu-
tion element (e.g., ACP.S3).

Other examples are found in Figure 2.6 where ACP.S1-S4 are examples of
asserted solutions.

Incomplete knowledge that can preclude a perfect confidence is referred
to as an Assurance Deficit (AD) [59]. Highlighting and managing the ADs in
safety cases are essential to build an overall all confidence in the safety case.
The main motivation of proposing the “assured safety argument” structure is
to identify and manage the ADs in safety cases through the ACPs and apart
from the safety argument. Having a separate confidence argument eliminates
or reduces the difficulties that can emerge when merging confidence and safety
arguments in one argument. Including unnecessary material, excluding neces-
sary material and increasing the size and complexity of safety arguments, are
examples of these difficulties [59].

49

30 Chapter 2. Background

Asserted
Context

Goal

Goal

Strategy

Solution

Context

ACP.S3

A
ss

er
te

d
In

fe
re

nc
e

ACP.C1

ACP.I1

A
ss

er
te

d
S

ol
ut

io
n

Figure 2.7: Types of ACPs with an example of each usage [59]

2.3.7 Dynamic Safety Case (DSC)

Denney et al., [60] introduced the term “Dynamic Safety Cases (DSCs)” as a
novel operationalisation of the concept of through-life safety assurance. The
main motivation for introducing DSCs is that the appreciable degree of cer-
tainty about the expected runtime behaviour of a system might not be precise
or it perhaps over- or underestimate the actual behaviour, which can create de-
ficiencies in the reasoning about the safety performance of that system. Hence,
there is a need for a new class of safety assurance techniques that exploit the
runtime related data (operational data) to continuously assess and evolve the
safety reasoning to, ultimately, provide through-life safety assurance [60].

The suggested lifecycle of DSCs comprises four main activities as fol-
lows [60]:

1. Identify the sources of uncertainty in a safety case (i.e., the ADs — as
described in Subsection 2.3.6).

2. Monitor the runtime operation of the related system to collect data about
system and environment variables, events, and the ADs in the safety
argument(s).

3. Analyse the collected operational data from the former activity to exam-
ine whether the threshold defined for ADs are met, and to update the
confidence in the associated claims

30 Chapter 2. Background

Asserted
Context

Goal

Goal

Strategy

Solution

Context

ACP.S3

A
ss

er
te

d
In

fe
re

nc
e

ACP.C1

ACP.I1

A
ss

er
te

d
S

ol
ut

io
n

Figure 2.7: Types of ACPs with an example of each usage [59]

2.3.7 Dynamic Safety Case (DSC)

Denney et al., [60] introduced the term “Dynamic Safety Cases (DSCs)” as a
novel operationalisation of the concept of through-life safety assurance. The
main motivation for introducing DSCs is that the appreciable degree of cer-
tainty about the expected runtime behaviour of a system might not be precise
or it perhaps over- or underestimate the actual behaviour, which can create de-
ficiencies in the reasoning about the safety performance of that system. Hence,
there is a need for a new class of safety assurance techniques that exploit the
runtime related data (operational data) to continuously assess and evolve the
safety reasoning to, ultimately, provide through-life safety assurance [60].

The suggested lifecycle of DSCs comprises four main activities as fol-
lows [60]:

1. Identify the sources of uncertainty in a safety case (i.e., the ADs — as
described in Subsection 2.3.6).

2. Monitor the runtime operation of the related system to collect data about
system and environment variables, events, and the ADs in the safety
argument(s).

3. Analyse the collected operational data from the former activity to exam-
ine whether the threshold defined for ADs are met, and to update the
confidence in the associated claims

50

2.4 Safety Contracts 31

4. Respond to operational events that affect safety assurance. Deciding on
the appropriate response depends on a combination of factors includ-
ing the impact of confidence in new data, the available response options
already planned, the level of automation provided, and the urgency with
which certain stakeholders have to be alerted.

Figure 2.8 shows the four activities of the DSCs’ lifecycle.

2. Monitor

1. Identify 3. Analyse

4. Respond

Figure 2.8: An overview of DSCs’s lifecycle [60]

2.4 Safety Contracts
The term ‘contract’ is defined in English as: “A written or spoken agreement,
especially one concerning employment, sales, or tenancy, that is intended to
be enforceable by law” [16]. A contract is intended to (1) establish a binding
relationship between one party’s offer and the acceptance of that offer by one
or more parties, and (2) set out the terms and conditions that constrain this rela-
tionship. Using the contracts is familiar in software development. For instance,
Design by Contract (DbC) was introduced by Meyer [61, 62] to constrain the
interactions that occur between objects. Moreover, contract-based design is an
approach where the design process is seen as a successive assembly of com-
ponents where a component behaviour is represented in terms of assumptions
about its environment and guarantees about its behavior [10].

In 1969, Hoare introduced the pre- and postcondition technique to describe
the connection (dependency) between the execution results (R) of a program
(Q) and the values taken by the variables (P) before that program is initiated
[63]. Hoare introduced a new notation to describe this connection, as follows:

P {Q} R.

This notation can be interpreted as: “If the assertion P is true before initiation
of a program Q, then the assertion R will be true on its completion” [63].

2.4 Safety Contracts 31

4. Respond to operational events that affect safety assurance. Deciding on
the appropriate response depends on a combination of factors includ-
ing the impact of confidence in new data, the available response options
already planned, the level of automation provided, and the urgency with
which certain stakeholders have to be alerted.

Figure 2.8 shows the four activities of the DSCs’ lifecycle.

2. Monitor

1. Identify 3. Analyse

4. Respond

Figure 2.8: An overview of DSCs’s lifecycle [60]

2.4 Safety Contracts
The term ‘contract’ is defined in English as: “A written or spoken agreement,
especially one concerning employment, sales, or tenancy, that is intended to
be enforceable by law” [16]. A contract is intended to (1) establish a binding
relationship between one party’s offer and the acceptance of that offer by one
or more parties, and (2) set out the terms and conditions that constrain this rela-
tionship. Using the contracts is familiar in software development. For instance,
Design by Contract (DbC) was introduced by Meyer [61, 62] to constrain the
interactions that occur between objects. Moreover, contract-based design is an
approach where the design process is seen as a successive assembly of com-
ponents where a component behaviour is represented in terms of assumptions
about its environment and guarantees about its behavior [10].

In 1969, Hoare introduced the pre- and postcondition technique to describe
the connection (dependency) between the execution results (R) of a program
(Q) and the values taken by the variables (P) before that program is initiated
[63]. Hoare introduced a new notation to describe this connection, as follows:

P {Q} R.

This notation can be interpreted as: “If the assertion P is true before initiation
of a program Q, then the assertion R will be true on its completion” [63].

51

32 Chapter 2. Background

In the context of contract-based design, a contract is conceived as an exten-
sion to the specification of software component interfaces that specifies precon-
ditions and postconditions to describe what properties a component can offer
once the surrounding environment satisfies one or more related assumption(s).

Safety and non-safety contracts might describe similar properties; the dis-
tinction is whether the guaranteed property is traceable to a hazard [13]. In
this thesis, a contract is said to be a safety contract if it guarantees a property
that is traceable to a hazard. There have been significant works that discuss
how to represent and to use contracts [64, 65, 66]. In the safety critical sys-
tems domain, researchers have used, for example, assume-guarantee contracts
to propose techniques to lower the cost of developing software for safety crit-
ical systems. Moreover, contracts have been exploited as a means for helping
to manage system changes in a system domain or in its corresponding safety
case [11, 12, 13].

The following is an example that depicts the most common used form of
contracts:

Guarantee: The WCET of task X is ≤ 10 milliseconds
Assumptions:
X is:

1. compiled using compiler [C],

2. executed on microcontroller [M] at 1000 MHz with caches dis-
abled, and

3. not interrupted

In this thesis, we distinguish between safety contracts within the system
domain and safety argument contracts in the safety case. The former type of
contracts captures the dependencies among the system’s components, whereas
a safety argument contract captures the dependencies among the safety case
modules. More specifically, a safety argument contract describes the connec-
tion between a consumer goal in one safety case module and a provider goal in
another module [45].

32 Chapter 2. Background

In the context of contract-based design, a contract is conceived as an exten-
sion to the specification of software component interfaces that specifies precon-
ditions and postconditions to describe what properties a component can offer
once the surrounding environment satisfies one or more related assumption(s).

Safety and non-safety contracts might describe similar properties; the dis-
tinction is whether the guaranteed property is traceable to a hazard [13]. In
this thesis, a contract is said to be a safety contract if it guarantees a property
that is traceable to a hazard. There have been significant works that discuss
how to represent and to use contracts [64, 65, 66]. In the safety critical sys-
tems domain, researchers have used, for example, assume-guarantee contracts
to propose techniques to lower the cost of developing software for safety crit-
ical systems. Moreover, contracts have been exploited as a means for helping
to manage system changes in a system domain or in its corresponding safety
case [11, 12, 13].

The following is an example that depicts the most common used form of
contracts:

Guarantee: The WCET of task X is ≤ 10 milliseconds
Assumptions:
X is:

1. compiled using compiler [C],

2. executed on microcontroller [M] at 1000 MHz with caches dis-
abled, and

3. not interrupted

In this thesis, we distinguish between safety contracts within the system
domain and safety argument contracts in the safety case. The former type of
contracts captures the dependencies among the system’s components, whereas
a safety argument contract captures the dependencies among the safety case
modules. More specifically, a safety argument contract describes the connec-
tion between a consumer goal in one safety case module and a provider goal in
another module [45].

52

Chapter 3

Research Overview

This chapter comprises five main sections. The first section describes the re-
search scope. The second section presents literature review of safety mainten-
ance and change management. The third section describes the problem context
and provides a motivation of our research goal. The fourth section introduces
the research goal and the derived research questions addressed by the thesis.
The last section explains the research methodology.

3.1 Research Scope

Safety critical systems are evolutionary and they are always exposed to both
predicted and unpredicted changes during the different stages in their lifecycle.
System changes are typically introduced to [67]:

1. correct discovered problems (i.e., corrective changes),

2. accommodate changes in the environment in which a system must oper-
ate (i.e., adaptive changes),

3. detect and correct latent faults in a system before they are manifested as
failures (i.e., perfective changes), or

4. detect and correct latent faults in a system before they become opera-
tional faults (i.e., preventive changes).

33

Chapter 3

Research Overview

This chapter comprises five main sections. The first section describes the re-
search scope. The second section presents literature review of safety mainten-
ance and change management. The third section describes the problem context
and provides a motivation of our research goal. The fourth section introduces
the research goal and the derived research questions addressed by the thesis.
The last section explains the research methodology.

3.1 Research Scope

Safety critical systems are evolutionary and they are always exposed to both
predicted and unpredicted changes during the different stages in their lifecycle.
System changes are typically introduced to [67]:

1. correct discovered problems (i.e., corrective changes),

2. accommodate changes in the environment in which a system must oper-
ate (i.e., adaptive changes),

3. detect and correct latent faults in a system before they are manifested as
failures (i.e., perfective changes), or

4. detect and correct latent faults in a system before they become opera-
tional faults (i.e., preventive changes).

33

53

34 Chapter 3. Research Overview

Changes to a system can negatively affect the gained confidence in the safe
performance because they have the potential to compromise the safety evid-
ence which has been already collected. In fact, operational or environmental
changes may invalidate a safety case argument for two main reasons [3]:

1. Evidence is valid only in the operational and environmental context in
which it is obtained, or to which it applies. During or after a system
change, evidence might no longer support the developers’ claims be-
cause it could reflect old development artefacts or old assumptions about
operation or the operating environment.

2. Safety claims, after introducing a change, might be nonsense, no longer
reflect operational intent, or be contradicted by new data. Changing
safety claims might change the argument structure.

In order to maintain the confidence in the safe performance of a system,
safety engineers must maintain the safety case so that it reflects the reality
of the current operating status. In practice, this requires (1) identifying, re-
analysing, and re-checking the impacted parts of the system, (2) reviewing the
safety case and the logic of its argument to evaluate the impacted elements,
and (3) correcting the logic of the argument and generating a new valid set of
evidence to support any refuted claims.

Maintenance (or maintainability) is not defined in terms of safety cases
by safety standards nor the literature. However, an understanding of the
term ‘safety case maintenance’ can be deduced by looking at the definition
of ‘Maintenance’ by relevant standards in computer systems and software
engineering domains, and also by considering the objectives of safety cases
by the safety standards. For instance, the systems and software engineering
standard ISO/IEC 25010 [68] defines the word ‘Maintainability’ as: “The
degree of effectiveness and efficiency with which a product or system can
be modified by the intended maintainers”. The standard adds a note to the
definition:

NOTE 1: Modifications can include corrections, improvements or ad-
aptation of the software to changes in environment, and in requirements
and functional specifications. Modifications include those carried out by
specialized support staff, and those carried out by business or operational staff,
or end users.

On the other hand, the safety standard ISO 26262 [21] states that:
“Throughout the operational life of any system, the corresponding safety case

34 Chapter 3. Research Overview

Changes to a system can negatively affect the gained confidence in the safe
performance because they have the potential to compromise the safety evid-
ence which has been already collected. In fact, operational or environmental
changes may invalidate a safety case argument for two main reasons [3]:

1. Evidence is valid only in the operational and environmental context in
which it is obtained, or to which it applies. During or after a system
change, evidence might no longer support the developers’ claims be-
cause it could reflect old development artefacts or old assumptions about
operation or the operating environment.

2. Safety claims, after introducing a change, might be nonsense, no longer
reflect operational intent, or be contradicted by new data. Changing
safety claims might change the argument structure.

In order to maintain the confidence in the safe performance of a system,
safety engineers must maintain the safety case so that it reflects the reality
of the current operating status. In practice, this requires (1) identifying, re-
analysing, and re-checking the impacted parts of the system, (2) reviewing the
safety case and the logic of its argument to evaluate the impacted elements,
and (3) correcting the logic of the argument and generating a new valid set of
evidence to support any refuted claims.

Maintenance (or maintainability) is not defined in terms of safety cases
by safety standards nor the literature. However, an understanding of the
term ‘safety case maintenance’ can be deduced by looking at the definition
of ‘Maintenance’ by relevant standards in computer systems and software
engineering domains, and also by considering the objectives of safety cases
by the safety standards. For instance, the systems and software engineering
standard ISO/IEC 25010 [68] defines the word ‘Maintainability’ as: “The
degree of effectiveness and efficiency with which a product or system can
be modified by the intended maintainers”. The standard adds a note to the
definition:

NOTE 1: Modifications can include corrections, improvements or ad-
aptation of the software to changes in environment, and in requirements
and functional specifications. Modifications include those carried out by
specialized support staff, and those carried out by business or operational staff,
or end users.

On the other hand, the safety standard ISO 26262 [21] states that:
“Throughout the operational life of any system, the corresponding safety case

54

3.1 Research Scope 35

might be challenged by additional safety evidence arising from operation,
changes and updates to a design, and a shifting regulatory context. In order to
maintain an accurate account of the safety of the system, such challenges are
assessed for their impact on the original safety argument”.

Moreover, the regulations of the offshore installations [69] by the Health
and Safety Executive (HSE) in the UK state that: “The safety case is intended
to be a living document that reflects the reality of the current operating status
on the installation. Changes are likely to occur in the environment, in the
activities carried out or in other factors that may affect risks to people. It is
therefore important that the safety case is reviewed in the light of any such
changes and revised as often as may be necessary to ensure it reflects reality”.
The same regulations also state that “ Safety cases are intended to be living
documents, kept up to date and revised as necessary during the operational
life of the installation”.

Also, the UK Ministry of Defence Ship Safety Management System Hand-
book JSP 430 [7] requires that “the safety case will be updated ... to reflect
changes in the design and/or operational usage which impact on safety, or to
address newly identified hazards. The safety case will be a management tool for
controlling safety through life including design and operation role changes”.

From the forgoing, one can deduce that the term ‘safety case maintenance’
indicates the act of updating a safety case to keep it as a living document that
always reflects the reality of the current status of the safe performance of the
corresponding system.

Moreover, the maintainability definition by ISO/IEC 25010 [68] can be ad-
apted to define the safety case maintainability so that it can be interpreted as the
degree of effectiveness and efficiency with which a safety case can be modified
by the intended maintainers. The modifications can include corrections in the
safety case to respond to system and environment changes, and improvements
to address new or higher quality evidence than exist.

Before changing (i.e., modifying) any part of a safety case, maintainers
should assess which areas and elements of the safety case are impacted (or
will be so) by the change. That is, any approach to maintain a safety case
should employ a change management strategy which includes an impact
analysis activity to make accurate estimates of the area of the safety case that
is affected by a change. The change management strategy should also control
the propagation of ripple effects. The accuracy of impact analysis results is
dependent on:

3.1 Research Scope 35

might be challenged by additional safety evidence arising from operation,
changes and updates to a design, and a shifting regulatory context. In order to
maintain an accurate account of the safety of the system, such challenges are
assessed for their impact on the original safety argument”.

Moreover, the regulations of the offshore installations [69] by the Health
and Safety Executive (HSE) in the UK state that: “The safety case is intended
to be a living document that reflects the reality of the current operating status
on the installation. Changes are likely to occur in the environment, in the
activities carried out or in other factors that may affect risks to people. It is
therefore important that the safety case is reviewed in the light of any such
changes and revised as often as may be necessary to ensure it reflects reality”.
The same regulations also state that “ Safety cases are intended to be living
documents, kept up to date and revised as necessary during the operational
life of the installation”.

Also, the UK Ministry of Defence Ship Safety Management System Hand-
book JSP 430 [7] requires that “the safety case will be updated ... to reflect
changes in the design and/or operational usage which impact on safety, or to
address newly identified hazards. The safety case will be a management tool for
controlling safety through life including design and operation role changes”.

From the forgoing, one can deduce that the term ‘safety case maintenance’
indicates the act of updating a safety case to keep it as a living document that
always reflects the reality of the current status of the safe performance of the
corresponding system.

Moreover, the maintainability definition by ISO/IEC 25010 [68] can be ad-
apted to define the safety case maintainability so that it can be interpreted as the
degree of effectiveness and efficiency with which a safety case can be modified
by the intended maintainers. The modifications can include corrections in the
safety case to respond to system and environment changes, and improvements
to address new or higher quality evidence than exist.

Before changing (i.e., modifying) any part of a safety case, maintainers
should assess which areas and elements of the safety case are impacted (or
will be so) by the change. That is, any approach to maintain a safety case
should employ a change management strategy which includes an impact
analysis activity to make accurate estimates of the area of the safety case that
is affected by a change. The change management strategy should also control
the propagation of ripple effects. The accuracy of impact analysis results is
dependent on:

55

36 Chapter 3. Research Overview

1. If the recorded dependencies among the parts of a safety case truly reflect
the actual dependencies among them.

2. If the recorded dependencies between the parts of a safety case and the
system design truly reflect their actual dependencies.

3. The reliance upon correspondence between safety argument and safety
case [5].

There are two techniques used to determine the dependencies in 1 and 2,
namely, traceability analysis and dependency analysis.

3.2 Literature Review
This section presents a literature review of safety case maintenance. However,
since change management and impact analysis are key principles to achieve
maintenance, the review also considers their related contributions from the
state-of-the-art and the state-of-the-practice. We divide this section into two
subsection. The first subsection discusses the related contributions to safety
case maintenance and the second discusses the related contributions to change
management.

3.2.1 Safety Case Maintenance

Kelly et al., [5] emphasise that safety engineers have difficulties with safety
case maintenance because they lack a systematic and methodical approach to
examine the impact of change on safety argument. The authors, therefore,
define and describe a tool-supported process to facilitate a systematic impact
assessment of safety cases. The process is couched in terms of a safety ar-
gument recorded as a goal structure and it comprises two phases, namely, the
Damage phase and the Recovery phase. In the damage phase, safety engineers
should assess the impact of change on the safety argument of the safety case.
This phase contains three steps as follows:

1. Recognise challenges to safety case

2. Expressing challenge in goal structure terms

3. Using the goal structure to identify impact of challenge

36 Chapter 3. Research Overview

1. If the recorded dependencies among the parts of a safety case truly reflect
the actual dependencies among them.

2. If the recorded dependencies between the parts of a safety case and the
system design truly reflect their actual dependencies.

3. The reliance upon correspondence between safety argument and safety
case [5].

There are two techniques used to determine the dependencies in 1 and 2,
namely, traceability analysis and dependency analysis.

3.2 Literature Review
This section presents a literature review of safety case maintenance. However,
since change management and impact analysis are key principles to achieve
maintenance, the review also considers their related contributions from the
state-of-the-art and the state-of-the-practice. We divide this section into two
subsection. The first subsection discusses the related contributions to safety
case maintenance and the second discusses the related contributions to change
management.

3.2.1 Safety Case Maintenance

Kelly et al., [5] emphasise that safety engineers have difficulties with safety
case maintenance because they lack a systematic and methodical approach to
examine the impact of change on safety argument. The authors, therefore,
define and describe a tool-supported process to facilitate a systematic impact
assessment of safety cases. The process is couched in terms of a safety ar-
gument recorded as a goal structure and it comprises two phases, namely, the
Damage phase and the Recovery phase. In the damage phase, safety engineers
should assess the impact of change on the safety argument of the safety case.
This phase contains three steps as follows:

1. Recognise challenges to safety case

2. Expressing challenge in goal structure terms

3. Using the goal structure to identify impact of challenge

56

3.2 Literature Review 37

In the recovery phase, the engineers should identify a recovery action and
check if the action has further impact in the argument (i.e., propagation). This
phase contains two steps as follows:

4. Deciding upon action to recover damaged argument

5. Recover identified damaged argument

The two phases are correlated since a decided action may cause further
damages in the safety case.

According to the authors, one limitation of the process is that its ability to
express accurately and fully the impact of changes on the safety case depends
on the degree to which the goal structured safety argument corresponds to the
documented safety case. Hence, preforming an impact analysis in case of a
poor match between what is contained in the safety case and what is presented
by the safety argument will most likely mislead the engineers’ attention. The
second limitation of the process is that it considers the dependencies among the
elements of the safety argument only and neglects any external dependencies.

Kelly in [70] suggests identifying preventative measures that can be taken
when constructing the safety case to limit or reduce the propagation of changes
through a safety case expressed in goal-structure terms. For instance, de-
velopers can use broad goals (goals that are expressed in terms of a safety
margin) so that these goals might act as barriers to the propagation of change as
they permit a range of possible solutions. A safety case therefore, interspersed
with such goals at strategic positions in the goal structure could effectively
contain “firewalls” to change. Some of these initial ideas concerning change
and maintenance of safety cases have been presented in [71]. However, no
work was provided to show how these thoughts can facilitate the maintenance
of safety cases.

A consortium of researchers and industrial practitioners called the Indus-
trial Avionics Working Group (IAWG) has proposed modular safety cases as
a means of containing the cost of change. IAWG’s Modular Software Safety
Case (MSSC) process [72] requires the development of a modular safety case,
where the safety case is composed of a set of independent modules within a
safety case architecture to form a coherent safety case for the system. The
MSSC process facilitates handling system changes as a series of relatively
small increments rather than occasional major updates as shown in Figure 3.1.
The process proposes to divide the system into a set of blocks [11]. Each
block may correspond to one or more software components but it is associ-
ated to exactly one dedicated safety case module. Engineers attempt to scope

3.2 Literature Review 37

In the recovery phase, the engineers should identify a recovery action and
check if the action has further impact in the argument (i.e., propagation). This
phase contains two steps as follows:

4. Deciding upon action to recover damaged argument

5. Recover identified damaged argument

The two phases are correlated since a decided action may cause further
damages in the safety case.

According to the authors, one limitation of the process is that its ability to
express accurately and fully the impact of changes on the safety case depends
on the degree to which the goal structured safety argument corresponds to the
documented safety case. Hence, preforming an impact analysis in case of a
poor match between what is contained in the safety case and what is presented
by the safety argument will most likely mislead the engineers’ attention. The
second limitation of the process is that it considers the dependencies among the
elements of the safety argument only and neglects any external dependencies.

Kelly in [70] suggests identifying preventative measures that can be taken
when constructing the safety case to limit or reduce the propagation of changes
through a safety case expressed in goal-structure terms. For instance, de-
velopers can use broad goals (goals that are expressed in terms of a safety
margin) so that these goals might act as barriers to the propagation of change as
they permit a range of possible solutions. A safety case therefore, interspersed
with such goals at strategic positions in the goal structure could effectively
contain “firewalls” to change. Some of these initial ideas concerning change
and maintenance of safety cases have been presented in [71]. However, no
work was provided to show how these thoughts can facilitate the maintenance
of safety cases.

A consortium of researchers and industrial practitioners called the Indus-
trial Avionics Working Group (IAWG) has proposed modular safety cases as
a means of containing the cost of change. IAWG’s Modular Software Safety
Case (MSSC) process [72] requires the development of a modular safety case,
where the safety case is composed of a set of independent modules within a
safety case architecture to form a coherent safety case for the system. The
MSSC process facilitates handling system changes as a series of relatively
small increments rather than occasional major updates as shown in Figure 3.1.
The process proposes to divide the system into a set of blocks [11]. Each
block may correspond to one or more software components but it is associ-
ated to exactly one dedicated safety case module. Engineers attempt to scope

57

38 Chapter 3. Research Overview

Figure 3.1: An incremental safety case updates [72]

blocks so that anticipated changes will be contained within argument module
boundaries. The process establishes component traceability between system
blocks and their safety argument modules using Dependency-Guarantee Rela-
tionships (DGRs) and Dependency-Guarantee Contracts (DGCs). DGRs and
DGCs serve as a means to record the dependencies among the system blocks
to allow efficient impact analysis.

Part of the MSSC process is to understand the impact of change so that this
can be used as part of producing an appropriate argument. The MSSC process,
however, does not give details of how to do this. Moreover, the MSSC process
is dependent on a list of predicted change scenarios and it is almost useless
for arbitrary changes. The lack of systematic ways to enable better changes
prediction might lead to a big limitation to the process.

Nicholson et al., [73] propose a maintenance approach which is limited to
Integrated Modular Systems (IMS). The underling logic of the approach is to
contain the impact of changes, initiated as necessary during the operational life
of the system, within a system’ partition without requiring partition boundaries
to be moved. More clearly, the presented approach assumes that IMS are built
to be extended and modified after they are released. This means that there are
safety margins (i.e., slack in the system resources) not used until a critical limit
is reached. Hence, as long as the impact of a change to a partition in the system
will not exceed the safety margin in the resources of this partition, the change
can be accommodated without further changes to the system. However, evid-
ence should be provided to prove that the safety margin is sufficient to cover

38 Chapter 3. Research Overview

Figure 3.1: An incremental safety case updates [72]

blocks so that anticipated changes will be contained within argument module
boundaries. The process establishes component traceability between system
blocks and their safety argument modules using Dependency-Guarantee Rela-
tionships (DGRs) and Dependency-Guarantee Contracts (DGCs). DGRs and
DGCs serve as a means to record the dependencies among the system blocks
to allow efficient impact analysis.

Part of the MSSC process is to understand the impact of change so that this
can be used as part of producing an appropriate argument. The MSSC process,
however, does not give details of how to do this. Moreover, the MSSC process
is dependent on a list of predicted change scenarios and it is almost useless
for arbitrary changes. The lack of systematic ways to enable better changes
prediction might lead to a big limitation to the process.

Nicholson et al., [73] propose a maintenance approach which is limited to
Integrated Modular Systems (IMS). The underling logic of the approach is to
contain the impact of changes, initiated as necessary during the operational life
of the system, within a system’ partition without requiring partition boundaries
to be moved. More clearly, the presented approach assumes that IMS are built
to be extended and modified after they are released. This means that there are
safety margins (i.e., slack in the system resources) not used until a critical limit
is reached. Hence, as long as the impact of a change to a partition in the system
will not exceed the safety margin in the resources of this partition, the change
can be accommodated without further changes to the system. However, evid-
ence should be provided to prove that the safety margin is sufficient to cover

58

3.2 Literature Review 39

the needs of the change. Also, the impact on the safety basis of the system can
then be assessed via an incremental certification process. The authors identify
eight potential categories of changes and explain that IMS can enable an incre-
mental maintenance so that some, or all, of identified categories of change can
be implemented without the need to re-certify the entire system.

Björnander et al., [74] use introduce the GSN and AADL (Architecture
Analysis and Design Language (AADL) Graph Evaluation (GAGE) method
which parses and maps safety argumentation structure against system architec-
ture. The underlying logic behind the method is that bridging the gap between
the safety case and the system architecture allows system developers to eval-
uate the safety assurance case against the properties of the components of
the system. Björnander motivates the method as a means for tracing poten-
tial changes in the system onto the safety argumentation. The method com-
prises three main steps: 1) organise the system architecture as a directed acyc-
lic graph, 2) organise the safety case as a directed acyclic graph, where each
formal argument is connected to a Boolean expression, and finally 3) for each
argument, identify the goals supporting the argument in the structure. One lim-
itation of GAGE is that it does not consider the traceability analysis between
the safety case and the model in order to detect the parts of the safety cases
affected by a change in a component property, and to detect the components
affected by a change in a safety case.

Kokaly et al., [75] propose a technique which uses a model-based approach
to perform impact assessment on GSN-based compliance argument with ISO
26262 safety standard due to system changes. Kokaly defines and describes an
impact assessment algorithm called GSN-IA (GSN Impact Assessment) and
a supporting model transformations. The objective of GSN-IA is to highlight
“mark” the safety case elements which are affected due to a change. GSN-
IA depends on a model slicer used to determine how change impact propag-
ates within a system model so that the slicer itself is a main input to GSN-IA.
Kokaly considers two ways that a change to the system can impact the elements
of a safety case: 1) Revise where the content of an element of a safety case may
have to be revised because it referred to a system element that has changed and
the semantics of the content may have changed. 2) Recheck where the state of
the element must be rechecked because it may have changed. If an element is
not impacted by a system change, it is marked as reuse. Hence, the output of
GSN-IA is design model in which the elements are marked for revise, recheck
or reuse.The technique addresses the effect of adding components in the sys-
tem on the existing parts of the safety case. However, it does not consider how
adding a component can require additions to the safety case. Also, it is unclear

3.2 Literature Review 39

the needs of the change. Also, the impact on the safety basis of the system can
then be assessed via an incremental certification process. The authors identify
eight potential categories of changes and explain that IMS can enable an incre-
mental maintenance so that some, or all, of identified categories of change can
be implemented without the need to re-certify the entire system.

Björnander et al., [74] use introduce the GSN and AADL (Architecture
Analysis and Design Language (AADL) Graph Evaluation (GAGE) method
which parses and maps safety argumentation structure against system architec-
ture. The underlying logic behind the method is that bridging the gap between
the safety case and the system architecture allows system developers to eval-
uate the safety assurance case against the properties of the components of
the system. Björnander motivates the method as a means for tracing poten-
tial changes in the system onto the safety argumentation. The method com-
prises three main steps: 1) organise the system architecture as a directed acyc-
lic graph, 2) organise the safety case as a directed acyclic graph, where each
formal argument is connected to a Boolean expression, and finally 3) for each
argument, identify the goals supporting the argument in the structure. One lim-
itation of GAGE is that it does not consider the traceability analysis between
the safety case and the model in order to detect the parts of the safety cases
affected by a change in a component property, and to detect the components
affected by a change in a safety case.

Kokaly et al., [75] propose a technique which uses a model-based approach
to perform impact assessment on GSN-based compliance argument with ISO
26262 safety standard due to system changes. Kokaly defines and describes an
impact assessment algorithm called GSN-IA (GSN Impact Assessment) and
a supporting model transformations. The objective of GSN-IA is to highlight
“mark” the safety case elements which are affected due to a change. GSN-
IA depends on a model slicer used to determine how change impact propag-
ates within a system model so that the slicer itself is a main input to GSN-IA.
Kokaly considers two ways that a change to the system can impact the elements
of a safety case: 1) Revise where the content of an element of a safety case may
have to be revised because it referred to a system element that has changed and
the semantics of the content may have changed. 2) Recheck where the state of
the element must be rechecked because it may have changed. If an element is
not impacted by a system change, it is marked as reuse. Hence, the output of
GSN-IA is design model in which the elements are marked for revise, recheck
or reuse.The technique addresses the effect of adding components in the sys-
tem on the existing parts of the safety case. However, it does not consider how
adding a component can require additions to the safety case. Also, it is unclear

59

40 Chapter 3. Research Overview

how the safety analyses are associated with the impact assessment process and
how they can get impacted by a change.

3.2.2 Change Management and Impact Analysis
Generally, the change management process in systems engineering is the pro-
cess of requesting, determining attainability, planning, implementing, and eval-
uating of changes to a system. Its main goals are to support the processing and
traceability of changes to an interconnected set of factors [76]. In computer
systems, a change to specific part of a system often impact other parts of the
same system. Change impact analysis should be performed prior to the change
implementation in oder to identify what might get impacted by the change and
also gives an estimate of the adaptation costs.

Many researchers proposed change management approaches and tech-
niques. For example, Dick [77] suggests a five steps change management
process to conduct changes in a system. Dick believes that the investment in
traceability is the key driver of the change management, therefore, his sugges-
ted change management process is dependent on building traceability matrices.
According to Dick, traceability is the activity of documenting the relationships
between layers of information — for instance between system requirements
and software design. The required steps to perform Dick’s change manage-
ment process is as follows:

1. Determine which artefacts a change affects most directly

2. Calculate the potential impact tree by processing the traceability rela-
tionships

3. Prune and elaborate the impact tree using engineering judgements,
where traceability rationale helps to determine the precise nature of
change propagation

4. Define change by traversing the impact tree, working out the precise
details of the changes at each point

5. Apply the change.

Other researchers propose investing in traceability to eventually enable
similar change impact analyses like the one proposed by Dick (e.g., [78, 79,
80, 81]).

Almost all the existing impact analysis techniques in the literature focus
on either identifying or enhancing the identification of the affected parts of

40 Chapter 3. Research Overview

how the safety analyses are associated with the impact assessment process and
how they can get impacted by a change.

3.2.2 Change Management and Impact Analysis
Generally, the change management process in systems engineering is the pro-
cess of requesting, determining attainability, planning, implementing, and eval-
uating of changes to a system. Its main goals are to support the processing and
traceability of changes to an interconnected set of factors [76]. In computer
systems, a change to specific part of a system often impact other parts of the
same system. Change impact analysis should be performed prior to the change
implementation in oder to identify what might get impacted by the change and
also gives an estimate of the adaptation costs.

Many researchers proposed change management approaches and tech-
niques. For example, Dick [77] suggests a five steps change management
process to conduct changes in a system. Dick believes that the investment in
traceability is the key driver of the change management, therefore, his sugges-
ted change management process is dependent on building traceability matrices.
According to Dick, traceability is the activity of documenting the relationships
between layers of information — for instance between system requirements
and software design. The required steps to perform Dick’s change manage-
ment process is as follows:

1. Determine which artefacts a change affects most directly

2. Calculate the potential impact tree by processing the traceability rela-
tionships

3. Prune and elaborate the impact tree using engineering judgements,
where traceability rationale helps to determine the precise nature of
change propagation

4. Define change by traversing the impact tree, working out the precise
details of the changes at each point

5. Apply the change.

Other researchers propose investing in traceability to eventually enable
similar change impact analyses like the one proposed by Dick (e.g., [78, 79,
80, 81]).

Almost all the existing impact analysis techniques in the literature focus
on either identifying or enhancing the identification of the affected parts of

60

3.2 Literature Review 41

the systems due to changes. The main downside of most of these techniques
is that they neglect the amount of potential suspect parts due to changes. In
fact, the inability of highlighting the impacted parts or highlighting a big set
of impacted parts are two different drawbacks that are equally important. The
unawareness of what might get impacted will push the developers to carry out
a conservative and wider verification than strictly necessary, whereas detecting
a big set of impacted parts will decrease the accuracy of the impact analysis
and also increases the re-verification efforts [82].

Bohner [83], however, suggests to calculate the accuracy of detecting the
affected parts of a system under a change within his proposed impact analysis
approach. Bohner suggests different types of sets while performing the change
impact analysis, as follows:

1. The Starting Impact Set (SIS): is an initial set of system elements that
are thought to be impacted by a change. The SIS is usually thought of
once the change specifications are available.

2. The Candidate Impact Set (CIS): is a set of system elements that are es-
timated to be affected. The CIS is produced while conducting the impact
analysis.

3. The Actual Impact Set (AIS): is a set of system elements actually modi-
fied which is obviously produced after modifying system elements.

4. The Discovered Impact Set (DIS): is a set represents an under-estimate of
impacts. The idea of producing this set is to identify other impacted sys-
tem elements that were never thought of before implementing a change.

5. The False-Positive Impact Set (FPIS): is a set represents the over-
estimate of impacts in the analysis.

The objective of the impact analysis, according to Bohner, is to conclude the
CIS produced from tracing potential impacts as close to the AIS as possible by:

AIS =CIS+DIS−FBIS (3.1)

Moreover, the accuracy is determined by:

Accuracy =
DIS+FPIS

CIS
(3.2)

Bohner suggests to including more semantic information in the impact ana-
lysis process to reduce the number of false positives. Semantic information is

3.2 Literature Review 41

the systems due to changes. The main downside of most of these techniques
is that they neglect the amount of potential suspect parts due to changes. In
fact, the inability of highlighting the impacted parts or highlighting a big set
of impacted parts are two different drawbacks that are equally important. The
unawareness of what might get impacted will push the developers to carry out
a conservative and wider verification than strictly necessary, whereas detecting
a big set of impacted parts will decrease the accuracy of the impact analysis
and also increases the re-verification efforts [82].

Bohner [83], however, suggests to calculate the accuracy of detecting the
affected parts of a system under a change within his proposed impact analysis
approach. Bohner suggests different types of sets while performing the change
impact analysis, as follows:

1. The Starting Impact Set (SIS): is an initial set of system elements that
are thought to be impacted by a change. The SIS is usually thought of
once the change specifications are available.

2. The Candidate Impact Set (CIS): is a set of system elements that are es-
timated to be affected. The CIS is produced while conducting the impact
analysis.

3. The Actual Impact Set (AIS): is a set of system elements actually modi-
fied which is obviously produced after modifying system elements.

4. The Discovered Impact Set (DIS): is a set represents an under-estimate of
impacts. The idea of producing this set is to identify other impacted sys-
tem elements that were never thought of before implementing a change.

5. The False-Positive Impact Set (FPIS): is a set represents the over-
estimate of impacts in the analysis.

The objective of the impact analysis, according to Bohner, is to conclude the
CIS produced from tracing potential impacts as close to the AIS as possible by:

AIS =CIS+DIS−FBIS (3.1)

Moreover, the accuracy is determined by:

Accuracy =
DIS+FPIS

CIS
(3.2)

Bohner suggests to including more semantic information in the impact ana-
lysis process to reduce the number of false positives. Semantic information is

61

42 Chapter 3. Research Overview

actually the type of relationship between Software Life-Cycle Objects (SLOs),
such as decomposition relationships among requirements. However, he does
not provide any clues as how to use this information [82].

Oertel [82] proposes an impact analysis technique which provides a linear
relation between the re-verification efforts and the size of the change by still
guaranteeing safety. The proposed technique supports decisions about how to
compensate a change by modifying a set of requirements instead of needing to
change an implementation. The technique is based on a formal safety model
using contracts to express fault containment properties and safety mechanisms.
Although the author claims that the confidence in the safety of the system after
the change is incorporated is identical or higher compared with the current
practiced approach, there is no reflection of this claim on the safety case.

As for the state-of-the-practice, Nair et al., in [84] conducted a survey to
determine practitioners’ perspectives and practices on safety evidence man-
agement. The survey consists of six questions, where one of the questions
is: How is evidence change managed? The aim of this question is to identify
industrial practices for managing evidence evolution and performing evidence
change impact analysis. A total of 52 practitioners from 15 countries and 11 ap-
plication domains responded. The authors further analyse practices for safety
evidence change management and give insights into the current challenges that
practitioners face in terms of safety evidence provision. When asked about how
they analyse the effect of the change of a piece of evidence on other pieces,
46% of the respondents noted manual checks according to some predefined
process. Approximately the same percentage of respondents replied that the
effect is checked manually without following any predefined process. The sur-
vey suggests that evidence change management is mainly performed manually
and highlights the need for further analyses.

3.3 Problem Description

Safety assurance and certification are amongst the most expensive and time-
consuming tasks in the development of safety-critical embedded systems [85].
Changes to those systems may require safety engineers to review and main-
tain the safe performance of their systems and repeat the certification process.
Thereby, the cost of system changes including the cost of the activities that
will follow them, such as regression testing, exacerbate the problems of cost
and time for safety certification.

Safety case maintenance is more complicated task than it might first appear.

42 Chapter 3. Research Overview

actually the type of relationship between Software Life-Cycle Objects (SLOs),
such as decomposition relationships among requirements. However, he does
not provide any clues as how to use this information [82].

Oertel [82] proposes an impact analysis technique which provides a linear
relation between the re-verification efforts and the size of the change by still
guaranteeing safety. The proposed technique supports decisions about how to
compensate a change by modifying a set of requirements instead of needing to
change an implementation. The technique is based on a formal safety model
using contracts to express fault containment properties and safety mechanisms.
Although the author claims that the confidence in the safety of the system after
the change is incorporated is identical or higher compared with the current
practiced approach, there is no reflection of this claim on the safety case.

As for the state-of-the-practice, Nair et al., in [84] conducted a survey to
determine practitioners’ perspectives and practices on safety evidence man-
agement. The survey consists of six questions, where one of the questions
is: How is evidence change managed? The aim of this question is to identify
industrial practices for managing evidence evolution and performing evidence
change impact analysis. A total of 52 practitioners from 15 countries and 11 ap-
plication domains responded. The authors further analyse practices for safety
evidence change management and give insights into the current challenges that
practitioners face in terms of safety evidence provision. When asked about how
they analyse the effect of the change of a piece of evidence on other pieces,
46% of the respondents noted manual checks according to some predefined
process. Approximately the same percentage of respondents replied that the
effect is checked manually without following any predefined process. The sur-
vey suggests that evidence change management is mainly performed manually
and highlights the need for further analyses.

3.3 Problem Description

Safety assurance and certification are amongst the most expensive and time-
consuming tasks in the development of safety-critical embedded systems [85].
Changes to those systems may require safety engineers to review and main-
tain the safe performance of their systems and repeat the certification process.
Thereby, the cost of system changes including the cost of the activities that
will follow them, such as regression testing, exacerbate the problems of cost
and time for safety certification.

Safety case maintenance is more complicated task than it might first appear.

62

3.3 Problem Description 43

This is because change requests should be assessed before decision makers de-
cide whether or not to accept them. The assessment should reveal if the change
can cause unreasonable risks, and the required cost to implement the change.
Hence, system developers should understand the change and the potential risks
that it might carry before they identify the impacted parts. For example, a
change might turn some implicit assumptions about the context in which a sys-
tem should operate to be wrong. Misunderstanding the change might lead to
skip those parts of the system which are dependent on that assumptions. Also,
the developers need to understand the dependencies between the system parts
to identify the affected parts correctly. For example, the effect of a change
can propagate to other parts of the system — creating a ripple effect — and
cause unforeseen violations of the acceptable safety limits. If the impact of
change is not clear, developers might be conservative and do wider analyses
and verification (i.e., check more elements than strictly necessary), and this
will exacerbate the cost problem of safety cases. It is also necessary for the
developers to describe how the change affects the system parts — that are lis-
ted as affected — in order to correctly estimate the cost of the response to that
change. Otherwise, the response to a change might generate unplanned further
changes to which the system must again respond [86], and this requires more
cost than originally calculated.

One of the biggest challenges that affects safety case maintenance is that
safety cases feature highly dependent elements. That is, safety goals, evidence,
argument, and assumptions about operating context are highly interdependent.
Hence, seemingly minor changes may have a major impact on the contents and
structure of the safety argument. The lack of documentation of dependencies
among the contents of safety cases is deemed as a challenge for safety case
maintenance.

Moreover, the lack of traceability between a system and its safety case is
another challenge that can impede safety case maintenance. More specific-
ally, system developers need both top-down and bottom-up impact analysis
approaches to maintain safety cases. A top-down approach is dedicated for
analysing the impacted artefacts from the system domain down to the safety
argument. In contrast, a bottom-up approach is dedicated for analysing im-
pacted elements from the argument to the corresponding artefacts such as a
safety analysis report, test results or requirements specification, etc. The lack
of systematic and methodical approaches to analysing impact of change is a key
reason behind the maintenance difficulties. However, conducting any style of
impact analysis requires a traceability mechanism between the system domain
and its safety case.

3.3 Problem Description 43

This is because change requests should be assessed before decision makers de-
cide whether or not to accept them. The assessment should reveal if the change
can cause unreasonable risks, and the required cost to implement the change.
Hence, system developers should understand the change and the potential risks
that it might carry before they identify the impacted parts. For example, a
change might turn some implicit assumptions about the context in which a sys-
tem should operate to be wrong. Misunderstanding the change might lead to
skip those parts of the system which are dependent on that assumptions. Also,
the developers need to understand the dependencies between the system parts
to identify the affected parts correctly. For example, the effect of a change
can propagate to other parts of the system — creating a ripple effect — and
cause unforeseen violations of the acceptable safety limits. If the impact of
change is not clear, developers might be conservative and do wider analyses
and verification (i.e., check more elements than strictly necessary), and this
will exacerbate the cost problem of safety cases. It is also necessary for the
developers to describe how the change affects the system parts — that are lis-
ted as affected — in order to correctly estimate the cost of the response to that
change. Otherwise, the response to a change might generate unplanned further
changes to which the system must again respond [86], and this requires more
cost than originally calculated.

One of the biggest challenges that affects safety case maintenance is that
safety cases feature highly dependent elements. That is, safety goals, evidence,
argument, and assumptions about operating context are highly interdependent.
Hence, seemingly minor changes may have a major impact on the contents and
structure of the safety argument. The lack of documentation of dependencies
among the contents of safety cases is deemed as a challenge for safety case
maintenance.

Moreover, the lack of traceability between a system and its safety case is
another challenge that can impede safety case maintenance. More specific-
ally, system developers need both top-down and bottom-up impact analysis
approaches to maintain safety cases. A top-down approach is dedicated for
analysing the impacted artefacts from the system domain down to the safety
argument. In contrast, a bottom-up approach is dedicated for analysing im-
pacted elements from the argument to the corresponding artefacts such as a
safety analysis report, test results or requirements specification, etc. The lack
of systematic and methodical approaches to analysing impact of change is a key
reason behind the maintenance difficulties. However, conducting any style of
impact analysis requires a traceability mechanism between the system domain
and its safety case.

63

44 Chapter 3. Research Overview

Safety case maintenance is inevitable task for many safety critical systems.
The result of this task can communicate false status of the actual safe per-
formance of a system if it is done incorrectly (intentionally or unintentionally).
This false status, in the worst case, might not be detected by safety assessors,
which can lead to certifying unsafe system. Many safety engineers are exper-
iencing difficulties with safety case maintenance [5]. One reason for that is
because they lack a systematic and methodical approach to identify the impact
of change on safety cases.

Furthermore, using safety standards is one of the ways to control the risks
in safety critical systems. Nowadays, safety standards heavily guide the de-
velopment of these systems and form the basis for their approval and certifica-
tion [60]. Despite clear recommendations to adequately maintain the systems
and their safety cases by safety standards, existing standards offer little or no
advice on how such operations can be carried out [5].

Hence, there is an increasing need for globally acceptable systematic and
methodical approaches to facilitate the safety case maintenance without incur-
ring disproportionate cost compared to the size of the change.

3.4 Research Goal

In this section, we derive the research questions that should address the
identified problems as described in Section 3.3. We first identify the goal of
our research and further break it down to pertinent research questions.

Based on the lack of standardised methods and techniques to enable
change accommodation in safety critical systems and safety cases, the overall
research goal of this thesis is to:

Design new techniques to facilitate the maintainability of safety cases
due to system changes.

We refer to changes as modifications in the system due to anomalies,
removals, additions, enhancements of components or subsystems.

We also use the adapted definition in Section 3.1 (i.e., the degree of ef-
fectiveness and efficiency with which a safety case can be modified by the
intended maintainers) to refer to maintainability of safety cases. The main-
tainability degree is said to be high whenever the following three activities are

44 Chapter 3. Research Overview

Safety case maintenance is inevitable task for many safety critical systems.
The result of this task can communicate false status of the actual safe per-
formance of a system if it is done incorrectly (intentionally or unintentionally).
This false status, in the worst case, might not be detected by safety assessors,
which can lead to certifying unsafe system. Many safety engineers are exper-
iencing difficulties with safety case maintenance [5]. One reason for that is
because they lack a systematic and methodical approach to identify the impact
of change on safety cases.

Furthermore, using safety standards is one of the ways to control the risks
in safety critical systems. Nowadays, safety standards heavily guide the de-
velopment of these systems and form the basis for their approval and certifica-
tion [60]. Despite clear recommendations to adequately maintain the systems
and their safety cases by safety standards, existing standards offer little or no
advice on how such operations can be carried out [5].

Hence, there is an increasing need for globally acceptable systematic and
methodical approaches to facilitate the safety case maintenance without incur-
ring disproportionate cost compared to the size of the change.

3.4 Research Goal

In this section, we derive the research questions that should address the
identified problems as described in Section 3.3. We first identify the goal of
our research and further break it down to pertinent research questions.

Based on the lack of standardised methods and techniques to enable
change accommodation in safety critical systems and safety cases, the overall
research goal of this thesis is to:

Design new techniques to facilitate the maintainability of safety cases
due to system changes.

We refer to changes as modifications in the system due to anomalies,
removals, additions, enhancements of components or subsystems.

We also use the adapted definition in Section 3.1 (i.e., the degree of ef-
fectiveness and efficiency with which a safety case can be modified by the
intended maintainers) to refer to maintainability of safety cases. The main-
tainability degree is said to be high whenever the following three activities are

64

3.4 Research Goal 45

done efficiently and effectively:

1. Identifying the impacted elements and those that are not impacted.

2. Minimising the number of impacted safety case elements.

3. Reducing the work needed to make the impacted safety case elements
valid again.

The work in this thesis does not aim to measure the efficiency of achiev-
ing the three activities, but rather it strives to enable them and improve on them.

We refine our broad research goal by breaking it into four research questions
(RQs), as follows:

RQ1: How can safety contracts be used to enable maintainability of
safety cases?

A component contract is a pair of properties, called the assumption, which
must be satisfied by the component environment, and the guarantee, which
must be satisfied by the component implementation when the assumption
holds [87]. It is claimed that the cost of maintaining, reusing and changing
software components is lessened while using contracts as developers may
rework software components with knowledge of the constraints placed upon
them [14]. Contract-based maintenance (or contract-based change manage-
ment) can be a promising approach for safety critical systems [11, 12, 13]. In
the literature, however, there is no consensus on what role the contracts should
play in the overall change management process, how and where they should
be derived, what they should contain, and how they should be presented. Also,
there are different suggestions regarding the association of the contracts with
the different properties of safety critical systems.

RQ2: How can the number of the impacted safety case elements be
minimised so that the re-verification effort needed to make the impacted
elements valid again be reduced?

Changes to a system or its environment often necessitate tremendous re-
verification activities. To reduce the re-verification efforts, the change propaga-
tion (aka ripple effect [88] or snowball effect [89]) should be as low as prac-
ticably possible. Hence, it is important for any proposal aims at facilitating
system changes to contain (i.e., localise) the impact of changes. More clearly,
to alleviate the cost of updating both a system and its safety case due to a

3.4 Research Goal 45

done efficiently and effectively:

1. Identifying the impacted elements and those that are not impacted.

2. Minimising the number of impacted safety case elements.

3. Reducing the work needed to make the impacted safety case elements
valid again.

The work in this thesis does not aim to measure the efficiency of achiev-
ing the three activities, but rather it strives to enable them and improve on them.

We refine our broad research goal by breaking it into four research questions
(RQs), as follows:

RQ1: How can safety contracts be used to enable maintainability of
safety cases?

A component contract is a pair of properties, called the assumption, which
must be satisfied by the component environment, and the guarantee, which
must be satisfied by the component implementation when the assumption
holds [87]. It is claimed that the cost of maintaining, reusing and changing
software components is lessened while using contracts as developers may
rework software components with knowledge of the constraints placed upon
them [14]. Contract-based maintenance (or contract-based change manage-
ment) can be a promising approach for safety critical systems [11, 12, 13]. In
the literature, however, there is no consensus on what role the contracts should
play in the overall change management process, how and where they should
be derived, what they should contain, and how they should be presented. Also,
there are different suggestions regarding the association of the contracts with
the different properties of safety critical systems.

RQ2: How can the number of the impacted safety case elements be
minimised so that the re-verification effort needed to make the impacted
elements valid again be reduced?

Changes to a system or its environment often necessitate tremendous re-
verification activities. To reduce the re-verification efforts, the change propaga-
tion (aka ripple effect [88] or snowball effect [89]) should be as low as prac-
ticably possible. Hence, it is important for any proposal aims at facilitating
system changes to contain (i.e., localise) the impact of changes. More clearly,
to alleviate the cost of updating both a system and its safety case due to a

65

46 Chapter 3. Research Overview

change, it is crucial to minimise the effects of that change and prevent these ef-
fects from propagating into other parts of the system as long as it is practically
possible.

Fricke et al. [90] claim, according to their case studies, that accommodat-
ing changes can take 30% of the development efforts. If systems’ developers
do not understand the impact of change, then they have to be conservative
and do wider verification (i.e., check more elements than strictly necessary).
This wider verification can include massive re-engineering efforts, which will
increase the maintenance cost. Any effective change management process
should help systems’ developers to understand how the change affects a
particular element (i.e., component, claim, work product) so that they know
what is needed to make it valid again.

RQ3: How can traceability between a system design and its safety
case be established to highlight the impacted parts upon changes?

Any approach intends to maintain safety cases due to system changes
should investigate 1) how a given change impacts system components and 2)
how the impacted system components are presented in the safety case. Hence,
performing safety impact analysis is a significant step to understand the impact
of changes, the underlying reason for change or root cause, and the proposed
solution in terms of the existing system and its constraints and requirements.

We refer to the ability to relate safety argument fragments to system
design components as component traceability (through a safety argument).
We refer to evidence across a system’s artefacts as evidence traceability.
Enabling component and evidence traceability is very useful to analyse the
impact of change on a safety argument, and eventually, facilitates the overall
maintenance of the safety case. Current standards and analysis techniques
assume a top-down development approach to system design. The structure of
safety arguments does not necessarily follow the same structure of the system
design. Hence, it is unreasonable to assume a structured mapping between
the elements of a system design and the elements of the safety argument
related to that design. GSN can assist system developers to mechanically
propagate the change through the goal structure and scope areas affected by a
particular change. Using GSN makes capturing the underlying rationale of the
argument easier since it clearly demonstrates the argument elements and their
relationships. However, GSN is not enough since it does not tell if the suspect
elements of an argument are still valid and expert judgements are still needed.

46 Chapter 3. Research Overview

change, it is crucial to minimise the effects of that change and prevent these ef-
fects from propagating into other parts of the system as long as it is practically
possible.

Fricke et al. [90] claim, according to their case studies, that accommodat-
ing changes can take 30% of the development efforts. If systems’ developers
do not understand the impact of change, then they have to be conservative
and do wider verification (i.e., check more elements than strictly necessary).
This wider verification can include massive re-engineering efforts, which will
increase the maintenance cost. Any effective change management process
should help systems’ developers to understand how the change affects a
particular element (i.e., component, claim, work product) so that they know
what is needed to make it valid again.

RQ3: How can traceability between a system design and its safety
case be established to highlight the impacted parts upon changes?

Any approach intends to maintain safety cases due to system changes
should investigate 1) how a given change impacts system components and 2)
how the impacted system components are presented in the safety case. Hence,
performing safety impact analysis is a significant step to understand the impact
of changes, the underlying reason for change or root cause, and the proposed
solution in terms of the existing system and its constraints and requirements.

We refer to the ability to relate safety argument fragments to system
design components as component traceability (through a safety argument).
We refer to evidence across a system’s artefacts as evidence traceability.
Enabling component and evidence traceability is very useful to analyse the
impact of change on a safety argument, and eventually, facilitates the overall
maintenance of the safety case. Current standards and analysis techniques
assume a top-down development approach to system design. The structure of
safety arguments does not necessarily follow the same structure of the system
design. Hence, it is unreasonable to assume a structured mapping between
the elements of a system design and the elements of the safety argument
related to that design. GSN can assist system developers to mechanically
propagate the change through the goal structure and scope areas affected by a
particular change. Using GSN makes capturing the underlying rationale of the
argument easier since it clearly demonstrates the argument elements and their
relationships. However, GSN is not enough since it does not tell if the suspect
elements of an argument are still valid and expert judgements are still needed.

66

3.5 Research Methodology 47

RQ4: How to incorporate safety case maintenance and through-life
assurance into development and operational processes?

Safety cases can be more readily maintained when using process models
that encourage evolutionary development of the safety case in parallel with sys-
tem development, and through explicitly recording applied engineering judg-
ment and experience [71]. To increase the degree of effectiveness and effi-
ciency with which a safety case can be modified, system development pro-
cesses should consider and support safety case maintenance during the life-
cycle of safety critical systems. For instance, some software corrective changes
(e.g., bug fixes) can change several items of evidence (i.e., work products) that
support safety claims in the safety case. If the development process does not
mandate adequate activities to establish and maintain the integrity of the im-
pacted evidence and update the safety case, there will be a gap between the
documented safety reasoning in the safety case and the actual safety of the sys-
tem. However, safety case is provided not only during initial development and
deployment, but also at runtime based on operational data [60]. Hence, the
operational processes should also mandate activities to continuously assessing
and evolving the safety case according to the collected operational data. Such
activities can reinforce a safety case for through-life safety assurance.

3.5 Research Methodology

Research is an investigation to find solutions to scientific and social problems
through objective and systematic analysis. Research methods are basically
all the methods (e.g., theoretical procedures, experimental studies, numerical
schemes, statistical approaches) that are used by a researcher during a research
study [91]. In this section, we demonstrate the process of our research and the
followed research method. Figure 3.2 describes the process step by step.

Our research work started with an initial literature review, where we looked
into both the state-of-the-art and the state-of-the-practice regarding the main-
tainability of safety critical systems and safety cases under system changes.
Our literature review revealed that the maintenance of safety cases is signific-
ant and required by many safety standards but it has received no or little support
yet. This lead us to formulate the problem statement, which we used later to
derive a generic research goal (i.e., maintain safety cases after introducing a
system change). Since more clarity of ideas, assumptions and practices can
be acquired through study of literature, we started digging deeper and chas-
ing the challenges of safety cases maintenance. After many iterations of the

3.5 Research Methodology 47

RQ4: How to incorporate safety case maintenance and through-life
assurance into development and operational processes?

Safety cases can be more readily maintained when using process models
that encourage evolutionary development of the safety case in parallel with sys-
tem development, and through explicitly recording applied engineering judg-
ment and experience [71]. To increase the degree of effectiveness and effi-
ciency with which a safety case can be modified, system development pro-
cesses should consider and support safety case maintenance during the life-
cycle of safety critical systems. For instance, some software corrective changes
(e.g., bug fixes) can change several items of evidence (i.e., work products) that
support safety claims in the safety case. If the development process does not
mandate adequate activities to establish and maintain the integrity of the im-
pacted evidence and update the safety case, there will be a gap between the
documented safety reasoning in the safety case and the actual safety of the sys-
tem. However, safety case is provided not only during initial development and
deployment, but also at runtime based on operational data [60]. Hence, the
operational processes should also mandate activities to continuously assessing
and evolving the safety case according to the collected operational data. Such
activities can reinforce a safety case for through-life safety assurance.

3.5 Research Methodology

Research is an investigation to find solutions to scientific and social problems
through objective and systematic analysis. Research methods are basically
all the methods (e.g., theoretical procedures, experimental studies, numerical
schemes, statistical approaches) that are used by a researcher during a research
study [91]. In this section, we demonstrate the process of our research and the
followed research method. Figure 3.2 describes the process step by step.

Our research work started with an initial literature review, where we looked
into both the state-of-the-art and the state-of-the-practice regarding the main-
tainability of safety critical systems and safety cases under system changes.
Our literature review revealed that the maintenance of safety cases is signific-
ant and required by many safety standards but it has received no or little support
yet. This lead us to formulate the problem statement, which we used later to
derive a generic research goal (i.e., maintain safety cases after introducing a
system change). Since more clarity of ideas, assumptions and practices can
be acquired through study of literature, we started digging deeper and chas-
ing the challenges of safety cases maintenance. After many iterations of the

67

48 Chapter 3. Research Overview

Formulate
problems

Literature
review

St
at

e-
of

-th
e-

Pr
ac

tic
e

State-of-the-Art

Derive
research

goals

Propose
solution

Implement
solution

Initial
thoughts

Validate
solution

 Define
research
questions
(RQ1-5)

Real-
world

problems

Publish
papers

Iterate for each
proposed solution

Figure 3.2: Overview of our research process

literature survey and problem formulation, we derived the main research goal,
which is “Design new change management techniques in order to facilitate the
maintainability of safety cases due to system changes”.

Since changes to safety critical systems are of different kinds and they can
cause different effects, there is no one technique or methodology that can re-
spond to all kinds of changes. However, we focused on the tools and mech-
anisms that can facilitate any change management process. To this end, we
refined our overall research goal by defining five research questions, which in-
vestigated how safety contracts can be exploited to facilitate the maintenance
of safety cases. To the best of our knowledge neither the state-of-the-art nor
the state-of-the-practice contain supporting processes or methods that provide
detailed steps of how to analyse the impact of change on safety cases using
safety contracts and sensitivity analysis.

For our research questions, we used the iterative process presented in the
grey dotted box in Figure 3.2. We started every iteration by proposing a solu-
tion that might answer one or multiple research questions. We implemented
each solution by providing a motivation of the solution as well as a detailed
description, which usually takes the form of a technique, method or algorithm.
Each solution was assessed and validated by a case study, where we listed the
limitations and the possible improvements. We evaluated the limitations, after
each proposed solution, with respect to the research questions and proposed a

48 Chapter 3. Research Overview

Formulate
problems

Literature
review

St
at

e-
of

-th
e-

Pr
ac

tic
e

State-of-the-Art

Derive
research

goals

Propose
solution

Implement
solution

Initial
thoughts

Validate
solution

 Define
research
questions
(RQ1-5)

Real-
world

problems

Publish
papers

Iterate for each
proposed solution

Figure 3.2: Overview of our research process

literature survey and problem formulation, we derived the main research goal,
which is “Design new change management techniques in order to facilitate the
maintainability of safety cases due to system changes”.

Since changes to safety critical systems are of different kinds and they can
cause different effects, there is no one technique or methodology that can re-
spond to all kinds of changes. However, we focused on the tools and mech-
anisms that can facilitate any change management process. To this end, we
refined our overall research goal by defining five research questions, which in-
vestigated how safety contracts can be exploited to facilitate the maintenance
of safety cases. To the best of our knowledge neither the state-of-the-art nor
the state-of-the-practice contain supporting processes or methods that provide
detailed steps of how to analyse the impact of change on safety cases using
safety contracts and sensitivity analysis.

For our research questions, we used the iterative process presented in the
grey dotted box in Figure 3.2. We started every iteration by proposing a solu-
tion that might answer one or multiple research questions. We implemented
each solution by providing a motivation of the solution as well as a detailed
description, which usually takes the form of a technique, method or algorithm.
Each solution was assessed and validated by a case study, where we listed the
limitations and the possible improvements. We evaluated the limitations, after
each proposed solution, with respect to the research questions and proposed a

68

3.5 Research Methodology 49

new solution that should address these limitations. The new proposed solution
is not designed to address the limitations of the previous solutions only, but it
can also answer different research questions.

The direct result of our proposed approaches and techniques is a series of
published research papers that communicate our contributions to the research
community.

3.5 Research Methodology 49

new solution that should address these limitations. The new proposed solution
is not designed to address the limitations of the previous solutions only, but it
can also answer different research questions.

The direct result of our proposed approaches and techniques is a series of
published research papers that communicate our contributions to the research
community.

69

70

Chapter 4

Research Contributions

This chapter provides an overview of the contributions included in this thesis.
First, an overview is provided to describe the different contributions by each
paper (included Part II). Second, we group the technical contributions presen-
ted in this thesis into five main contributions. Figure 4.1 shows how the main
contributions answer the research questions (in Section 3.4), and ultimately,
achieve the research goal.

4.1 Contributions of the Included Papers
• Paper A: Using Sensitivity Analysis to Facilitate The Maintenance of

Safety Cases

One contribution of the paper is to introduce a maintenance technique
named Sensitivity ANalysis for Enabling Safety Argument Maintenance
(SANESAM), which derives safety contracts from FTA using sensitivity
analysis. SANESAM combines sensitivity analysis together with safety
contracts to identify the sensitive parts of a system and highlight these
parts to help the experts to make an educated decision as to whether or
not apply changes. Also, since considering a complete list of anticipated
changes is difficult, the paper shows how to determine the flexibility (or
compliance) of each component to changes. This means that regardless
of the type of changes, the change will be seen as a factor to increase or
decrease a certain parameter value. Thus system developers can focus
more on predicting those changes that might make the parameter value

51

Chapter 4

Research Contributions

This chapter provides an overview of the contributions included in this thesis.
First, an overview is provided to describe the different contributions by each
paper (included Part II). Second, we group the technical contributions presen-
ted in this thesis into five main contributions. Figure 4.1 shows how the main
contributions answer the research questions (in Section 3.4), and ultimately,
achieve the research goal.

4.1 Contributions of the Included Papers
• Paper A: Using Sensitivity Analysis to Facilitate The Maintenance of

Safety Cases

One contribution of the paper is to introduce a maintenance technique
named Sensitivity ANalysis for Enabling Safety Argument Maintenance
(SANESAM), which derives safety contracts from FTA using sensitivity
analysis. SANESAM combines sensitivity analysis together with safety
contracts to identify the sensitive parts of a system and highlight these
parts to help the experts to make an educated decision as to whether or
not apply changes. Also, since considering a complete list of anticipated
changes is difficult, the paper shows how to determine the flexibility (or
compliance) of each component to changes. This means that regardless
of the type of changes, the change will be seen as a factor to increase or
decrease a certain parameter value. Thus system developers can focus
more on predicting those changes that might make the parameter value

51

71

52 Chapter 4. Research Contributions

Paper A
Ada-Europe

2015

Paper B
PRDC
2015

Paper C
EDCC
2017

Paper D
Ada-Europe

2018

Paper E
ISSC
2018

RQ2. How can the number of the
impacted safety case elements be
minimised so that the re-verification
effort needed to make the impacted
elements valid again be reduced?

RQ4. How to incorporate safety
case maintenance and through life
assurance into development and
operational processes?

C1(4.2.1): Evaluate the impact of
change on safety case

C2 (4.2.2): Reduce the
propagation of the change impact
among system components and
safety case elements

C3 (4.2.3): Highlight the most
sensitive components and make
them visible for developers’
attention

C4 (4.2.4): Associate system
design elements with the relevant
safety case arguments

C5 (4.2.5): Manage software
changes during system
development and detected
anomalies during system
operational life in safety cases

SANESAM

SANESAM+ & SANESAM
for predicted changes

Safety contracts driven
maintenance technique
to localise the impact

Change management framework by
tailoring Agile and V-Model processes

Detect anomalies in design
assumption and manage
them in safety arguments

RQ1. How can safety contracts be
used to enable maintainability of
safety cases?

RQ3. How can traceability between
a system design and its safety case
be established to highlight the
impacted parts upon changes?

(All papers make this contribution)

(All papers make this contribution)

(All contributions provide answers
to this question)

Figure 4.1: The connections between the published papers, research questions
and contributions

inadmissible. Another contribution by the paper is introducing a trace-
ability mechanism between a structural design of a system and its safety
case to improve the change impact analysis on the safety case. More
clearly, the paper provides a set of steps which guides system developers
to associate the derived contracts with particular elements of the safety
case argument. The association includes a versioning management ap-
proach, which stores additional information (e.g., artefact version num-
ber) into the safety contracts that are associated with the safety argument.

• Paper B: Deriving Hierarchical Safety Contracts

The main contribution of the paper is to identify some limitations to
SANESAM technique (Paper A), and suggest two options as extensions
to resolve these limitations. The first option is SANESAM+, which is
useful in the case of arbitrary changes because it calculates the Fail-
ure Probability (FP) for all events in the FTA regardless of any change

52 Chapter 4. Research Contributions

Paper A
Ada-Europe

2015

Paper B
PRDC
2015

Paper C
EDCC
2017

Paper D
Ada-Europe

2018

Paper E
ISSC
2018

RQ2. How can the number of the
impacted safety case elements be
minimised so that the re-verification
effort needed to make the impacted
elements valid again be reduced?

RQ4. How to incorporate safety
case maintenance and through life
assurance into development and
operational processes?

C1(4.2.1): Evaluate the impact of
change on safety case

C2 (4.2.2): Reduce the
propagation of the change impact
among system components and
safety case elements

C3 (4.2.3): Highlight the most
sensitive components and make
them visible for developers’
attention

C4 (4.2.4): Associate system
design elements with the relevant
safety case arguments

C5 (4.2.5): Manage software
changes during system
development and detected
anomalies during system
operational life in safety cases

SANESAM

SANESAM+ & SANESAM
for predicted changes

Safety contracts driven
maintenance technique
to localise the impact

Change management framework by
tailoring Agile and V-Model processes

Detect anomalies in design
assumption and manage
them in safety arguments

RQ1. How can safety contracts be
used to enable maintainability of
safety cases?

RQ3. How can traceability between
a system design and its safety case
be established to highlight the
impacted parts upon changes?

(All papers make this contribution)

(All papers make this contribution)

(All contributions provide answers
to this question)

Figure 4.1: The connections between the published papers, research questions
and contributions

inadmissible. Another contribution by the paper is introducing a trace-
ability mechanism between a structural design of a system and its safety
case to improve the change impact analysis on the safety case. More
clearly, the paper provides a set of steps which guides system developers
to associate the derived contracts with particular elements of the safety
case argument. The association includes a versioning management ap-
proach, which stores additional information (e.g., artefact version num-
ber) into the safety contracts that are associated with the safety argument.

• Paper B: Deriving Hierarchical Safety Contracts

The main contribution of the paper is to identify some limitations to
SANESAM technique (Paper A), and suggest two options as extensions
to resolve these limitations. The first option is SANESAM+, which is
useful in the case of arbitrary changes because it calculates the Fail-
ure Probability (FP) for all events in the FTA regardless of any change

72

4.1 Contributions of the Included Papers 53

scenario. SANESAM+ assumes that all events in FTA may change at
a time. Hence, the technique requires measuring the sensitivity of all
events in the FTA, which means that the Maximum Allowed Failure
Probability (MAFP) should be calculated for each event. The second
option is SANESAM+ For Predicted Changes, this option excludes the
events that are unlikely to change and it increases the FP for only the
events that are associated to a predicted change. A derived safety con-
tract by SANESAM+ by Predicted Changes can guarantee higher FP
than the guaranteed FP (for the same event and using the same set of as-
sumptions) in a derived safety contract by SANESAM+. Hence, the de-
rived safety contracts by SANESAM+ For Predicted Changes are more
tolerant and robust than those derived by SANESAM+ but it requires
in-advance prediction of changes.

• Paper C: Using Safety Contracts to Guide the Maintenance of Systems
and Safety Cases

The main contribution of the paper is to introduce a new technique that
can save huge efforts in re-verification or re-certification due to some
design changes. The technique uses the key principle of SANESAM and
SANESAM+ in Paper A and B, respectively, to contain (i.e., localise) the
potential changes in the smallest (in terms of number of parts affected)
possible segment in the system architecture and its safety case. More
clearly, the new technique compares the calculated MAFP of the events
with new estimated failure probability of those events due to a change.
If a new estimate failure probability of an event is ≤ MAFP, then the
change will not, necessarily, require a considerable system modification.
However, if the estimate of the new failure probability is > MAFP, then
the technique investigates whether or not the deficits in the failure prob-
ability is containable by the budgeted failure rates of events in higher
levels in the fault tree. The ripple effects of the change will stop at the
event which will have enough margin in its failure probability to contain
the deficit (i.e., change). The technique can serve as a first impact ana-
lysis layer that helps system’s developers to estimate the required effort
to accommodate a design change. It also guides the developers to avoid
massive re-engineering efforts when it is not really needed.

• Paper D: Using Safety Contracts to Verify Design Assumptions During
Runtime

The main contribution of this paper is to introduce a novel runtime mon-

4.1 Contributions of the Included Papers 53

scenario. SANESAM+ assumes that all events in FTA may change at
a time. Hence, the technique requires measuring the sensitivity of all
events in the FTA, which means that the Maximum Allowed Failure
Probability (MAFP) should be calculated for each event. The second
option is SANESAM+ For Predicted Changes, this option excludes the
events that are unlikely to change and it increases the FP for only the
events that are associated to a predicted change. A derived safety con-
tract by SANESAM+ by Predicted Changes can guarantee higher FP
than the guaranteed FP (for the same event and using the same set of as-
sumptions) in a derived safety contract by SANESAM+. Hence, the de-
rived safety contracts by SANESAM+ For Predicted Changes are more
tolerant and robust than those derived by SANESAM+ but it requires
in-advance prediction of changes.

• Paper C: Using Safety Contracts to Guide the Maintenance of Systems
and Safety Cases

The main contribution of the paper is to introduce a new technique that
can save huge efforts in re-verification or re-certification due to some
design changes. The technique uses the key principle of SANESAM and
SANESAM+ in Paper A and B, respectively, to contain (i.e., localise) the
potential changes in the smallest (in terms of number of parts affected)
possible segment in the system architecture and its safety case. More
clearly, the new technique compares the calculated MAFP of the events
with new estimated failure probability of those events due to a change.
If a new estimate failure probability of an event is ≤ MAFP, then the
change will not, necessarily, require a considerable system modification.
However, if the estimate of the new failure probability is > MAFP, then
the technique investigates whether or not the deficits in the failure prob-
ability is containable by the budgeted failure rates of events in higher
levels in the fault tree. The ripple effects of the change will stop at the
event which will have enough margin in its failure probability to contain
the deficit (i.e., change). The technique can serve as a first impact ana-
lysis layer that helps system’s developers to estimate the required effort
to accommodate a design change. It also guides the developers to avoid
massive re-engineering efforts when it is not really needed.

• Paper D: Using Safety Contracts to Verify Design Assumptions During
Runtime

The main contribution of this paper is to introduce a novel runtime mon-

73

54 Chapter 4. Research Contributions

itoring technique to detect the discrepancies between the failure rates of
system’s components during their operational life and their generic fail-
ure rates used for analysis and assurance during the design time. Since
it is infeasible to monitor the failure rates of all components of a system,
the technique utilises importance and sensitivity analyses to evaluate the
criticality of the system components, and selects the most critical ones
for monitoring. The technique derives safety contracts for the selected
components and associate them with the relevant events in the FTA and
the relevant parts in the safety case. If a discrepancy is detected between
an observed failure rate (λO) and a generic failure rate (λG) of the same
component, where λO > λG, then the relevant contract should be flagged
and the referred parts of both the FTA and the safety case should be revis-
ited. Detecting more precise measure of failure rates than the predicted
ones will 1) improve the efficacy of the system design to reduce the risk
(mitigate by design), 2) define stronger evidence (e.g., refine or rectify
the test results) and 3) highlight the required preventive, corrective, per-
fective or adaptive maintenance for safer operation

The second contribution of the paper is to provide GSN argument pat-
terns to help system’s developers to argue more compelling over the fail-
ure rates of the monitored components in the light of the derived evid-
ence from the operational phase (confidence from use). The suggested
patterns take into consideration the association of the derived contracts
from the FTA and recommend to associate these contracts with the in-
cluded ACPs.

As a support for the concept of “Through-Life Safety Assurance”, the pa-
per shows how to utilise safety contracts to provide prescriptive data for
what should be monitored, and what parts of the safety argument should
be revisited to maintain system safety whenever a divergence between
the design assumptions of system and its actual operation, is detected.

• Paper E: A Safety-Centric Change Management Framework by Tailor-
ing Agile and V-Model Processes

Following the V-model to accommodate system changes might be very
strict, which might be justifiable for structural system changes since
many parts get impacted and no accurate estimation for the size of work
needed to maintain the system. For software non-structural changes, this
might not be justifiable. The main contribution of this paper is to propose
XP-Kan-Safe as a novel maintenance framework to facilitate the accom-

54 Chapter 4. Research Contributions

itoring technique to detect the discrepancies between the failure rates of
system’s components during their operational life and their generic fail-
ure rates used for analysis and assurance during the design time. Since
it is infeasible to monitor the failure rates of all components of a system,
the technique utilises importance and sensitivity analyses to evaluate the
criticality of the system components, and selects the most critical ones
for monitoring. The technique derives safety contracts for the selected
components and associate them with the relevant events in the FTA and
the relevant parts in the safety case. If a discrepancy is detected between
an observed failure rate (λO) and a generic failure rate (λG) of the same
component, where λO > λG, then the relevant contract should be flagged
and the referred parts of both the FTA and the safety case should be revis-
ited. Detecting more precise measure of failure rates than the predicted
ones will 1) improve the efficacy of the system design to reduce the risk
(mitigate by design), 2) define stronger evidence (e.g., refine or rectify
the test results) and 3) highlight the required preventive, corrective, per-
fective or adaptive maintenance for safer operation

The second contribution of the paper is to provide GSN argument pat-
terns to help system’s developers to argue more compelling over the fail-
ure rates of the monitored components in the light of the derived evid-
ence from the operational phase (confidence from use). The suggested
patterns take into consideration the association of the derived contracts
from the FTA and recommend to associate these contracts with the in-
cluded ACPs.

As a support for the concept of “Through-Life Safety Assurance”, the pa-
per shows how to utilise safety contracts to provide prescriptive data for
what should be monitored, and what parts of the safety argument should
be revisited to maintain system safety whenever a divergence between
the design assumptions of system and its actual operation, is detected.

• Paper E: A Safety-Centric Change Management Framework by Tailor-
ing Agile and V-Model Processes

Following the V-model to accommodate system changes might be very
strict, which might be justifiable for structural system changes since
many parts get impacted and no accurate estimation for the size of work
needed to maintain the system. For software non-structural changes, this
might not be justifiable. The main contribution of this paper is to propose
XP-Kan-Safe as a novel maintenance framework to facilitate the accom-

74

4.2 Main Contributions 55

modation process of software changes in safety critical systems by util-
ising the strengths of agile methods and the V-model. More clearly, we
reconcile the known effective validation and verification process of the
V-model to the known effective practices and the TDD process of agile
methods. XP-Kan-Safe comprises two main processes. The first pro-
cess is called the preliminary process and its main objective is to derive
safety contracts and enrich them with additional information to enhance
the traceability between the safety requirements (i.e., guarantees) and
different related artefacts (i.e., test suites). The preliminary process is
applicable to any development process that decomposes safety require-
ments from the very high level the lowest possible level. The second
process is called the change management and it contains ten activities to
guide system developers to accommodate software changes by using the
derived safety contracts during the preliminary process.

4.2 Main Contributions
The contributions presented in this thesis can be grouped into five main contri-
butions.

4.2.1 Evaluate the impact of change on safety case

Changes to safety critical systems can require a tremendous effort to accom-
modate. The size of a change’s effect varies based on the nature of the change.
Ideally, the amount of work needed to accommodate a change should com-
mensurate with the size of this change. Impact analysts shall determine the
robustness of their system against a give change request. They should provide
the decision makers sufficient information about the size of impact in order to
decide wether or not accept the change request.

We propose different techniques which serve as a first impact analysis layer
that helps system’s developers to estimate the size of effort needed to accom-
modate a design change. In Paper A, we introduce a Sensitivity ANalysis for
Enabling Safety Argument Maintenance technique (SANESAM) that supports
system engineers to accommodate changes to the reliability figures of system
components. We also propose SANESAM+ and SANESAM+ for Predicted
Changes in paper B as a modified version of SANESAM that covers wider vari-
ety of changes. The main objective of the techniques is to help the experts to
make an educated decision as to whether or not apply changes. This decision is

4.2 Main Contributions 55

modation process of software changes in safety critical systems by util-
ising the strengths of agile methods and the V-model. More clearly, we
reconcile the known effective validation and verification process of the
V-model to the known effective practices and the TDD process of agile
methods. XP-Kan-Safe comprises two main processes. The first pro-
cess is called the preliminary process and its main objective is to derive
safety contracts and enrich them with additional information to enhance
the traceability between the safety requirements (i.e., guarantees) and
different related artefacts (i.e., test suites). The preliminary process is
applicable to any development process that decomposes safety require-
ments from the very high level the lowest possible level. The second
process is called the change management and it contains ten activities to
guide system developers to accommodate software changes by using the
derived safety contracts during the preliminary process.

4.2 Main Contributions
The contributions presented in this thesis can be grouped into five main contri-
butions.

4.2.1 Evaluate the impact of change on safety case

Changes to safety critical systems can require a tremendous effort to accom-
modate. The size of a change’s effect varies based on the nature of the change.
Ideally, the amount of work needed to accommodate a change should com-
mensurate with the size of this change. Impact analysts shall determine the
robustness of their system against a give change request. They should provide
the decision makers sufficient information about the size of impact in order to
decide wether or not accept the change request.

We propose different techniques which serve as a first impact analysis layer
that helps system’s developers to estimate the size of effort needed to accom-
modate a design change. In Paper A, we introduce a Sensitivity ANalysis for
Enabling Safety Argument Maintenance technique (SANESAM) that supports
system engineers to accommodate changes to the reliability figures of system
components. We also propose SANESAM+ and SANESAM+ for Predicted
Changes in paper B as a modified version of SANESAM that covers wider vari-
ety of changes. The main objective of the techniques is to help the experts to
make an educated decision as to whether or not apply changes. This decision is

75

56 Chapter 4. Research Contributions

in light of beforehand knowledge of the impact of these changes on the system
and its safety case. Using the techniques helps to bring to developers’ attention
the most sensitive parts of a system for a particular change.

The key principle of SANESAM, SANESAM+ and SANESAM+ for Pre-
dicted Changes is to determine the flexibility (or robustness) of a system to
changes using sensitivity analysis. The techniques determine, for each com-
ponent, the allowed range (i.e., thresholds) for a certain parameter within
which a component may change before it compromises a certain system prop-
erty (e.g., safety, reliability, etc.). Sensitivity analysis is utilised as a means
to determine the range of failure probability parameter for each component.
Hence, the techniques assume the existence of a probabilistic FTA where each
event in the tree is specified by an actual (i.e., current) failure probability
FPActual|event(x). In addition, the techniques assume the existence of the re-
quired failure probability for the top event FPRequired(Topevent), where the FTA
is considered unacceptable if: FPActual(Topevent) > FPRequired(Topevent).

As part of SANESAM, SANESAM+ and SANESAM+ for Predicted
Changes, safety contracts are derived to 1) highlight the sensitive events to
make them visible up front for developers attention and 2) to record the depend-
encies between the sensitive events and the other events in the FTA. Hence, if
any contracted event has received a change that necessitates increasing its fail-
ure probability where the increment is still within the defined threshold in the
contract, then it can be said that the contract(s) in question still holds (intact)
and the change is containable with no further maintenance.

One difference between the three techniques is based on the number of
changes addressed by each one. For example, SANESAM calculates the
MAFP for all events in FTA but it does not allow multiple changes at a time,
SANESAM+ calculates the MAFP for all events in FTA but it allows multiple
changes at a time. Finally, SANESAM+ for Predicted Changes calculates the
MAFP for particular events based on a predicted change and it allows multiple
changes at a time but only to those events.

In paper C, we propose another technique which relies on SANESAM and
SANESAM+ but the objective of the technique is not limited to determine
the robustness of a system against the potential changes (see Section 4.2.2).
Moreover, the proposed technique in paper D also utilises SANESAM to de-
termine the robustness of system models against changes (see Section 4.2.5).

In paper E, we propose a new technique, different from the sensitivity-
based techniques discussed above, to evaluate the impact of potential software
changes in a system. The main objective of this technique is to enable tri-
directional impact analysis process between safety requirements (i.e., guaran-

56 Chapter 4. Research Contributions

in light of beforehand knowledge of the impact of these changes on the system
and its safety case. Using the techniques helps to bring to developers’ attention
the most sensitive parts of a system for a particular change.

The key principle of SANESAM, SANESAM+ and SANESAM+ for Pre-
dicted Changes is to determine the flexibility (or robustness) of a system to
changes using sensitivity analysis. The techniques determine, for each com-
ponent, the allowed range (i.e., thresholds) for a certain parameter within
which a component may change before it compromises a certain system prop-
erty (e.g., safety, reliability, etc.). Sensitivity analysis is utilised as a means
to determine the range of failure probability parameter for each component.
Hence, the techniques assume the existence of a probabilistic FTA where each
event in the tree is specified by an actual (i.e., current) failure probability
FPActual|event(x). In addition, the techniques assume the existence of the re-
quired failure probability for the top event FPRequired(Topevent), where the FTA
is considered unacceptable if: FPActual(Topevent) > FPRequired(Topevent).

As part of SANESAM, SANESAM+ and SANESAM+ for Predicted
Changes, safety contracts are derived to 1) highlight the sensitive events to
make them visible up front for developers attention and 2) to record the depend-
encies between the sensitive events and the other events in the FTA. Hence, if
any contracted event has received a change that necessitates increasing its fail-
ure probability where the increment is still within the defined threshold in the
contract, then it can be said that the contract(s) in question still holds (intact)
and the change is containable with no further maintenance.

One difference between the three techniques is based on the number of
changes addressed by each one. For example, SANESAM calculates the
MAFP for all events in FTA but it does not allow multiple changes at a time,
SANESAM+ calculates the MAFP for all events in FTA but it allows multiple
changes at a time. Finally, SANESAM+ for Predicted Changes calculates the
MAFP for particular events based on a predicted change and it allows multiple
changes at a time but only to those events.

In paper C, we propose another technique which relies on SANESAM and
SANESAM+ but the objective of the technique is not limited to determine
the robustness of a system against the potential changes (see Section 4.2.2).
Moreover, the proposed technique in paper D also utilises SANESAM to de-
termine the robustness of system models against changes (see Section 4.2.5).

In paper E, we propose a new technique, different from the sensitivity-
based techniques discussed above, to evaluate the impact of potential software
changes in a system. The main objective of this technique is to enable tri-
directional impact analysis process between safety requirements (i.e., guaran-

76

4.2 Main Contributions 57

tees), system design elements and the related test suites. The technique derives
safety contracts to capture the dependencies among the safety requirements,
and enriches the derived contracts with additional traceability information to
map the guaranteed requirements with the related system design elements, test
cases and safety case elements. Using this additional information helps im-
pact analysts to evaluate the impact of changes on the system design once they
know the entry points of the changes in safety requirements or test cases and
vice versa.

4.2.2 Reduce the propagation of the change impact among
system components and safety case elements

If system developers underestimate the actual impact of a change, there will
be a considerable probability to overlook arising failures which can comprom-
ise system safety. If system’s developers, on the other hand, overestimate the
impact of change, there maybe no impact on safety but the cost will be higher
than required.

SANESAM, SANESAM+ and SANESAM+ for Predicted Changes can
identify the propagation of the change impact through the guaranteed
thresholds in the derived safety contracts. However, if a contract is broken
due to a greater impact than what is actually assumed by this contract, these
techniques do not investigate how to brace this contract to make it more robust.

After approving a change request, a big amount of time is spent to ensure
that the system is still safe and all potential work products, i.e., items of evid-
ence which are impacted, are maintained. Minimising the impact of change
to the smallest possible part within a system will reduce the work required to
verify the system and speed up the change management process. In paper C,
we propose another technique to contain (i.e., localise) the potential changes
in the smallest possible part of a system. This technique utilises the same rules
by which SANESAM+ and SANESAM+ calculate the sensitivities and associ-
ate them with a safety argument via safety contracts. However, the technique
adds additional steps to enable effective usage of the safety margins in a prob-
abilistic FTA. More clearly, the technique compares the calculated MAFP of
the events with new estimated FP after introducing a change. If the change’s
effect (i.e., difference between the new estimated FP and the MAFP) is not con-
tainable in the safety contract of the impacted event, then the safety contract
of the ancestor event should be investigated as whether or not it can contain
it. If the change’s effect still cannot be contained by the ancestor, safety con-
tracts in one more level up should be investigated and so on and so forth until

4.2 Main Contributions 57

tees), system design elements and the related test suites. The technique derives
safety contracts to capture the dependencies among the safety requirements,
and enriches the derived contracts with additional traceability information to
map the guaranteed requirements with the related system design elements, test
cases and safety case elements. Using this additional information helps im-
pact analysts to evaluate the impact of changes on the system design once they
know the entry points of the changes in safety requirements or test cases and
vice versa.

4.2.2 Reduce the propagation of the change impact among
system components and safety case elements

If system developers underestimate the actual impact of a change, there will
be a considerable probability to overlook arising failures which can comprom-
ise system safety. If system’s developers, on the other hand, overestimate the
impact of change, there maybe no impact on safety but the cost will be higher
than required.

SANESAM, SANESAM+ and SANESAM+ for Predicted Changes can
identify the propagation of the change impact through the guaranteed
thresholds in the derived safety contracts. However, if a contract is broken
due to a greater impact than what is actually assumed by this contract, these
techniques do not investigate how to brace this contract to make it more robust.

After approving a change request, a big amount of time is spent to ensure
that the system is still safe and all potential work products, i.e., items of evid-
ence which are impacted, are maintained. Minimising the impact of change
to the smallest possible part within a system will reduce the work required to
verify the system and speed up the change management process. In paper C,
we propose another technique to contain (i.e., localise) the potential changes
in the smallest possible part of a system. This technique utilises the same rules
by which SANESAM+ and SANESAM+ calculate the sensitivities and associ-
ate them with a safety argument via safety contracts. However, the technique
adds additional steps to enable effective usage of the safety margins in a prob-
abilistic FTA. More clearly, the technique compares the calculated MAFP of
the events with new estimated FP after introducing a change. If the change’s
effect (i.e., difference between the new estimated FP and the MAFP) is not con-
tainable in the safety contract of the impacted event, then the safety contract
of the ancestor event should be investigated as whether or not it can contain
it. If the change’s effect still cannot be contained by the ancestor, safety con-
tracts in one more level up should be investigated and so on and so forth until

77

58 Chapter 4. Research Contributions

<<ContractID>>

Figure 4.2: Safety contract notation

a safety contract contains it. Once the contract which contains the change’s
effect is identified, all associated claims with this contract together with their
supporting arguments and evidence should be highlighted as suspect.

4.2.3 Highlight the most sensitive components and make
them visible for developers’ attention

Changes are often only performed years after the initial design of the system
making it hard for system’s developers performing the changes to know which
parts of the system or the safety case are affected. We propose using safety
contract to document (i.e., highlight) the most critical and sensitive components
to changes to make them visible up front for developers’ attention. In other
words, we use safety contracts to highlight prescriptive data for what is needed
to be revisited and verified to maintain system safety when changes happen. In
papers A, B and C we propose to derive safety contracts from FTA to highlight
the most sensitive FTA events to changes. To this end, we introduce a contract
notation to annotate the contracted events in FTA, where every derived contract
should have a unique identifier as shown in Figure 4.2.

In paper D, we propose to derive safety contracts from FTA to highlight the
most important components to make them visible up front for developers’ at-
tention. Furthermore, the derived contracts is also used to record the thresholds
of λD(i) to continuously compare them with the monitoring results (λD O).
Hence, if λD O of component i exceeds the guaranteed λD Max(i) in the contract
of that component, then we can infer that the contract in question is broken and
the related FTA should be re-assessed in the light of the λD O.

in Paper E, we propose to derive safety contracts from FTA and FMEA to
highlight the generated safety requirements. These safety contracts should also
highlight additional traceability information and make visible up front for de-
velopers’ attention. Figure 4.3 presents an example of a derived safety contract
and the suggested traceability information.

58 Chapter 4. Research Contributions

<<ContractID>>

Figure 4.2: Safety contract notation

a safety contract contains it. Once the contract which contains the change’s
effect is identified, all associated claims with this contract together with their
supporting arguments and evidence should be highlighted as suspect.

4.2.3 Highlight the most sensitive components and make
them visible for developers’ attention

Changes are often only performed years after the initial design of the system
making it hard for system’s developers performing the changes to know which
parts of the system or the safety case are affected. We propose using safety
contract to document (i.e., highlight) the most critical and sensitive components
to changes to make them visible up front for developers’ attention. In other
words, we use safety contracts to highlight prescriptive data for what is needed
to be revisited and verified to maintain system safety when changes happen. In
papers A, B and C we propose to derive safety contracts from FTA to highlight
the most sensitive FTA events to changes. To this end, we introduce a contract
notation to annotate the contracted events in FTA, where every derived contract
should have a unique identifier as shown in Figure 4.2.

In paper D, we propose to derive safety contracts from FTA to highlight the
most important components to make them visible up front for developers’ at-
tention. Furthermore, the derived contracts is also used to record the thresholds
of λD(i) to continuously compare them with the monitoring results (λD O).
Hence, if λD O of component i exceeds the guaranteed λD Max(i) in the contract
of that component, then we can infer that the contract in question is broken and
the related FTA should be re-assessed in the light of the λD O.

in Paper E, we propose to derive safety contracts from FTA and FMEA to
highlight the generated safety requirements. These safety contracts should also
highlight additional traceability information and make visible up front for de-
velopers’ attention. Figure 4.3 presents an example of a derived safety contract
and the suggested traceability information.

78

4.2 Main Contributions 59

SG_Contract: CID:SSG_1
Guarantee
Vehicle’s driver shall be constantly aware of the
actual remaining fuel in the tank whenever the
engine is ON and the Parking Brake is NOT applied
Assumptions
1. FSR F17 (CID: FSR F17)
2. FSR F22 (CID: FSR F22)

Traceability
System Design V2.2: element (E101, E105)
Test case suite: (System test suite STS 12)
GSN element: SSG_1_ImplAssur

Figure 4.3: Traceability information in a safety contract [92]

4.2.4 Associate system design elements with the relevant
safety case arguments

A traceability between the system domain and its safety case should be es-
tablished to highlight the impacted parts in one side whenever the other side
changes. To this end, we use the same contract notation, which we suggested
to use in FTAs (in Figures 4.2 and 4.3), to associate the system elements with
the relevant elements in the safety case arguments. Figure 4.4 show an example
of how the related FTA events to a specific system components are associated
with the relevant safety case argument. The mapping between safety contracts
from the system domain (e.g., safety contracts in FTAs) with the related safety
contracts in the safety case enables a bi-directional safety impact analysis. This
means that once the entry point of a change is pinpointed in the safety case, the
logic of the safety case argument can be used to evaluate the impact of this
change in the system model and vice versa. It is worth noting that the safety
contract notation shall not affect the way GSN is being produced but it brings
additional information for developers’ attention.

4.2.5 Manage software changes during system development
and detected anomalies during system operational life
in safety cases

Observing anomalies in design assumptions during testing or runtime is
deemed as a change that might need to be considered based on its criticality.

4.2 Main Contributions 59

SG_Contract: CID:SSG_1
Guarantee
Vehicle’s driver shall be constantly aware of the
actual remaining fuel in the tank whenever the
engine is ON and the Parking Brake is NOT applied
Assumptions
1. FSR F17 (CID: FSR F17)
2. FSR F22 (CID: FSR F22)

Traceability
System Design V2.2: element (E101, E105)
Test case suite: (System test suite STS 12)
GSN element: SSG_1_ImplAssur

Figure 4.3: Traceability information in a safety contract [92]

4.2.4 Associate system design elements with the relevant
safety case arguments

A traceability between the system domain and its safety case should be es-
tablished to highlight the impacted parts in one side whenever the other side
changes. To this end, we use the same contract notation, which we suggested
to use in FTAs (in Figures 4.2 and 4.3), to associate the system elements with
the relevant elements in the safety case arguments. Figure 4.4 show an example
of how the related FTA events to a specific system components are associated
with the relevant safety case argument. The mapping between safety contracts
from the system domain (e.g., safety contracts in FTAs) with the related safety
contracts in the safety case enables a bi-directional safety impact analysis. This
means that once the entry point of a change is pinpointed in the safety case, the
logic of the safety case argument can be used to evaluate the impact of this
change in the system model and vice versa. It is worth noting that the safety
contract notation shall not affect the way GSN is being produced but it brings
additional information for developers’ attention.

4.2.5 Manage software changes during system development
and detected anomalies during system operational life
in safety cases

Observing anomalies in design assumptions during testing or runtime is
deemed as a change that might need to be considered based on its criticality.

79

60 Chapter 4. Research Contributions

BSCU System 1 and 2
Do Not Operate
BSS1&2DNO

Loss of BSCU
System 1
LOOBS1

Loss of BSCU
System 2

LOOBS2

BSCU System 1
Electronics Failure

BSS1EF

BSCU System 2
Electronics Failure

BSS2EF

Contr_BSS1EF Contr_BSS2EF

4.71E-08

2.17E-04

1.50E-04 1.50E-04

2.17E-04

...

ContractID: Contr_BSS2EF
G1: The Failure probability for the top event BSFCLOBC is ≤
1.13E-02
A1: Only event BSS2EF increases its failure rate
A2: BSS2EF failure rate increases by ≤ 7.364E-01
A3: The failure of BSS2EF remains independent of any other event
A4: The logic in fault tree WBS1_FTA remains the same

S18AircraftWheelBrakingSafe —
S18 WBS is acceptably safe to operate
in its intended operating context

CxtOperational context—
During aircraft landing or RTO
[Ref: system description]

CxtAcceptablysafe —
Acceptably safe means that the
failure probability of the wheel
braking systems is < 5E-7 per
flight hour

CxtWBSS18—
[Ref: S18 wheel
Braking system
(WBS) description]

ArgAllWCont—
Argument over all
identified contributions

SWContIdent—
The ways in which WBS
contributes to H1 are completely
and correctly identified
 Safety Analysis ...BSCUAllFailures— BSCU Faults cause Loss

of Braking Commands are sufficiently managed

ArgAllCaus—
Argument over BSCU contributions
to loss of braking commands

BSS1&2DNO—
BSCU System 1 and
2 operate when they
are required

BSCUContIdent—
The ways in which BSCU contributes
to Loss of Braking Commands are
completely and correctly identified
 Safety Analysis

ContractID:
Contr_BSVMIRFCSTAContractID:

Contr_BSVMIRFCSTAContractID:
Contr_BSVMIRFCSTAContractID:

Contr_BSVMIRFCSTAContractID:
Contr_BSVMIRFCSTA

LOOBS1—
BSCU System 1 operates
when it is required

LOOBS2—
BSCU System 2 operate
when it is required

CxtDefReq—
BSCU is required to operate upon
the arrival of braking commands

BSS2PSF—
System 2 Power Supply
failures are managed

BSS2EF—
System 2 Electronics
failure are managed

BSS1PSF—
System 1 Power Supply
failures are managed

BSS1EF—
System 1 Electronics
failures are amanged

Argument

...

...

...

FTA

GSN Argument

Contract

Figure 4.4: An example of an association of an FTA event with a safety case
argument

As the system evolves after deployment, there could be a mismatch between
our communicated understanding of the system safety by the safety case and
the safety performance of the system in actual operation, which might inval-
idate many of the prior assumptions made, undermine the collected items of
evidence and thus defeat safety claims [60]. In paper E, we propose a novel
technique to detect the discrepancies between the failure rates of system’s com-
ponents during their operational life and their generic failure rates used for ana-
lysis and assurance during the design time. Since it is infeasible to monitor the
failure rates of all components of a system, the technique utilises probabilistic
FTA to evaluate the criticality of the system components, and selects the most
critical ones for monitoring. The technique derives safety contracts for the se-
lected components and associate them with the relevant events in the FTA and
the relevant parts in the safety case. If a discrepancy is detected between an ob-
served failure rate (λO) and a generic failure rate (λG) of the same component,
where λO > λG, then the relevant contract should be flagged and the referred
parts of both the FTA and the safety case should be revisited. The technique

60 Chapter 4. Research Contributions

BSCU System 1 and 2
Do Not Operate
BSS1&2DNO

Loss of BSCU
System 1
LOOBS1

Loss of BSCU
System 2

LOOBS2

BSCU System 1
Electronics Failure

BSS1EF

BSCU System 2
Electronics Failure

BSS2EF

Contr_BSS1EF Contr_BSS2EF

4.71E-08

2.17E-04

1.50E-04 1.50E-04

2.17E-04

...

ContractID: Contr_BSS2EF
G1: The Failure probability for the top event BSFCLOBC is ≤
1.13E-02
A1: Only event BSS2EF increases its failure rate
A2: BSS2EF failure rate increases by ≤ 7.364E-01
A3: The failure of BSS2EF remains independent of any other event
A4: The logic in fault tree WBS1_FTA remains the same

S18AircraftWheelBrakingSafe —
S18 WBS is acceptably safe to operate
in its intended operating context

CxtOperational context—
During aircraft landing or RTO
[Ref: system description]

CxtAcceptablysafe —
Acceptably safe means that the
failure probability of the wheel
braking systems is < 5E-7 per
flight hour

CxtWBSS18—
[Ref: S18 wheel
Braking system
(WBS) description]

ArgAllWCont—
Argument over all
identified contributions

SWContIdent—
The ways in which WBS
contributes to H1 are completely
and correctly identified
 Safety Analysis ...BSCUAllFailures— BSCU Faults cause Loss

of Braking Commands are sufficiently managed

ArgAllCaus—
Argument over BSCU contributions
to loss of braking commands

BSS1&2DNO—
BSCU System 1 and
2 operate when they
are required

BSCUContIdent—
The ways in which BSCU contributes
to Loss of Braking Commands are
completely and correctly identified
 Safety Analysis

ContractID:
Contr_BSVMIRFCSTAContractID:

Contr_BSVMIRFCSTAContractID:
Contr_BSVMIRFCSTAContractID:

Contr_BSVMIRFCSTAContractID:
Contr_BSVMIRFCSTA

LOOBS1—
BSCU System 1 operates
when it is required

LOOBS2—
BSCU System 2 operate
when it is required

CxtDefReq—
BSCU is required to operate upon
the arrival of braking commands

BSS2PSF—
System 2 Power Supply
failures are managed

BSS2EF—
System 2 Electronics
failure are managed

BSS1PSF—
System 1 Power Supply
failures are managed

BSS1EF—
System 1 Electronics
failures are amanged

Argument

...

...

...

FTA

GSN Argument

Contract

Figure 4.4: An example of an association of an FTA event with a safety case
argument

As the system evolves after deployment, there could be a mismatch between
our communicated understanding of the system safety by the safety case and
the safety performance of the system in actual operation, which might inval-
idate many of the prior assumptions made, undermine the collected items of
evidence and thus defeat safety claims [60]. In paper E, we propose a novel
technique to detect the discrepancies between the failure rates of system’s com-
ponents during their operational life and their generic failure rates used for ana-
lysis and assurance during the design time. Since it is infeasible to monitor the
failure rates of all components of a system, the technique utilises probabilistic
FTA to evaluate the criticality of the system components, and selects the most
critical ones for monitoring. The technique derives safety contracts for the se-
lected components and associate them with the relevant events in the FTA and
the relevant parts in the safety case. If a discrepancy is detected between an ob-
served failure rate (λO) and a generic failure rate (λG) of the same component,
where λO > λG, then the relevant contract should be flagged and the referred
parts of both the FTA and the safety case should be revisited. The technique

80

4.2 Main Contributions 61

also checks wether the changes to the assumed failure rates during runtime is
containable without the need to make further changes.

In paper E, we propose and describe XP-Kan-Safe as a safety-centric
change management framework. The main idea of XP-Kan-Safe is to incor-
porate an agile based change management in the development process of safety
critical systems to systematically assess and implement software changes. XP-
Kan-Safe utilises safety contracts as (1) stitches that connect the V-model,
Extreme Programming (XP) and Kanban into our tailored process, and (2)
means to enable a tri-directional impact analysis process. More specifically,
the framework derives safety contracts from safety analyses (FTA and FMEA)
to capture different levels of safety requirements decompositions. A guaran-
teed requirement at one level (e.g., functional safety requirement) is realised
by assumptions that represent lower level requirements (e.g., technical safety
requirements). The derived safety contracts record the dependencies among
safety requirements. Additionally, the contracts comprise traceability related
information which associates the safety requirements with the relevant design
elements, safety argument elements and test suites. Hence, the safety con-
tracts can efficiently support the impact analysis upon changes to safety re-
quirements, safety argument or test suites (i.e., code level).

4.2 Main Contributions 61

also checks wether the changes to the assumed failure rates during runtime is
containable without the need to make further changes.

In paper E, we propose and describe XP-Kan-Safe as a safety-centric
change management framework. The main idea of XP-Kan-Safe is to incor-
porate an agile based change management in the development process of safety
critical systems to systematically assess and implement software changes. XP-
Kan-Safe utilises safety contracts as (1) stitches that connect the V-model,
Extreme Programming (XP) and Kanban into our tailored process, and (2)
means to enable a tri-directional impact analysis process. More specifically,
the framework derives safety contracts from safety analyses (FTA and FMEA)
to capture different levels of safety requirements decompositions. A guaran-
teed requirement at one level (e.g., functional safety requirement) is realised
by assumptions that represent lower level requirements (e.g., technical safety
requirements). The derived safety contracts record the dependencies among
safety requirements. Additionally, the contracts comprise traceability related
information which associates the safety requirements with the relevant design
elements, safety argument elements and test suites. Hence, the safety con-
tracts can efficiently support the impact analysis upon changes to safety re-
quirements, safety argument or test suites (i.e., code level).

81

82

Chapter 5

Conclusions and Future
Work

5.1 Conclusions

The main objectives of safety cases are to justify and communicate that a sys-
tem is acceptably safe to operate in a specific context. The validity of a safety
case relies on assumptions about the safe performance of a system as well as
the assumptions made about the context in which that system should oper-
ate. Changes to these assumptions will lead to a mismatch between the real
safe performance of a system and the communicated safe performance in its
safety case. Thus, safety case should be maintained as a living document that
should always justify and communicate the real safe performance of the sys-
tem. Moreover, changes to safety critical systems lead to a re-certification pro-
cess in which system developers review an existing safety case and maintain
it by identifying its impacted parts, checking the validity of the safety argu-
ments and generating a new set of evidence. If system developers are unable
to identify the actual impacted parts in the safety case, they might re-execute
more verification and validation activities than strictly necessary.

Safety case maintenance is not an easy task since changes are often per-
formed years after the initial design of the system making it hard for system
developers to know which parts of the safety case are affected. Also, system
developers need to understand the dependencies between the different elements
of safety case and identify the affected parts correctly. Hence, there is a press-

63

Chapter 5

Conclusions and Future
Work

5.1 Conclusions

The main objectives of safety cases are to justify and communicate that a sys-
tem is acceptably safe to operate in a specific context. The validity of a safety
case relies on assumptions about the safe performance of a system as well as
the assumptions made about the context in which that system should oper-
ate. Changes to these assumptions will lead to a mismatch between the real
safe performance of a system and the communicated safe performance in its
safety case. Thus, safety case should be maintained as a living document that
should always justify and communicate the real safe performance of the sys-
tem. Moreover, changes to safety critical systems lead to a re-certification pro-
cess in which system developers review an existing safety case and maintain
it by identifying its impacted parts, checking the validity of the safety argu-
ments and generating a new set of evidence. If system developers are unable
to identify the actual impacted parts in the safety case, they might re-execute
more verification and validation activities than strictly necessary.

Safety case maintenance is not an easy task since changes are often per-
formed years after the initial design of the system making it hard for system
developers to know which parts of the safety case are affected. Also, system
developers need to understand the dependencies between the different elements
of safety case and identify the affected parts correctly. Hence, there is a press-

63

83

64 Chapter 5. Conclusions and Future Work

ing need for effective methods and techniques to enable efficient safety case
maintenance without incurring disproportionate cost compared to the size of
the change.

In this thesis we have designed new techniques to facilitate the maintainab-
ility of safety cases due to system changes. These techniques utilise safety con-
tracts to provide feasible solutions to safety case maintenance such as helping
to understand the indirect impact of a change on the safety case and providing a
means to sufficiently record the dependencies between safety case contents and

GResearchGoal—
The research goal “Design new
techniques to facilitate the maintainability
of safety cases due to system changes”
has been adequately achieved

SolPaperA
Paper A
Ada-Europe
2015

SolPaperB
Paper B
PRDC 2015

SolPaperC
Paper C
EDCC 2017

SolPaperD
Paper D
Ada-Europe
2018

SolPaperE
Paper E
ISSC 2018

SResearchMethodology—
Argument by solving the
Research Questions (RQ)
through the contributions

JustRQs—
Research goal is realised by
pertinent research questions

J

CxSCMaintainability—
Maintainability of safety cases is
the degree of effectiveness and
efficiency with which a safety
case can be modified by the
intended maintainers

CxSystemChanges—
System changes are
modifications in a system
due to anomalies, removals,
additions, enhancements of
components or subsystems

CxFacilitate—
Facilitate the maintainability
is subject to the work of
identifying and reducing the
impacted elements, and
reducing the work needed
to make them valid again

GRQ1—
RQ1 “How can safety
contracts be used to enable
maintainability of safety
cases?” has been sufficiently
answered by the contributions

GRQ2—
RQ2 “How can the number of
the impacted safety case
elements be minimised so that
the re-verification effort needed
to make the impacted elements
valid again be reduced?” has
been sufficiently answered by
contributions C2 and C3

GRQ3—
RQ3 “How can traceability
between a system design
and its safety case be
established to highlight the
impacted parts upon
changes?” has been
sufficiently answered by
contributions C1 and C4

GRQ4—
RQ4 “How to incorporate
safety case maintenance and
through life assurance into
development and operational
processes?” has been
sufficiently answered by
contribution C5

GC1(4.2.1)—
Contribution 1 “Evaluate
the impact of change on
safety case” has been
adequately described and
implemented

GC2(4.2.2)—
Contribution 2 “Reduce the
propagation of the change
impact among system
components and safety
case elements” has been
adequately described and
implemented

GC3(4.2.3)—
Contribution 3 “Highlight
the most sensitive
components and make
them visible for developers’
attention” has been
adequately described and
implemented

GC4(4.2.4)—
Contribution 4 ”Associate
system design elements
with the relevant safety
case arguments” has been
adequately described and
implemented

GC5(4.2.5)—
Contribution 5 “Manage
software changes during
system development and
detected anomalies during
system operational life in safety
cases” has been adequately
described and implemented

Figure 5.1: The logic of achieving the research goal

64 Chapter 5. Conclusions and Future Work

ing need for effective methods and techniques to enable efficient safety case
maintenance without incurring disproportionate cost compared to the size of
the change.

In this thesis we have designed new techniques to facilitate the maintainab-
ility of safety cases due to system changes. These techniques utilise safety con-
tracts to provide feasible solutions to safety case maintenance such as helping
to understand the indirect impact of a change on the safety case and providing a
means to sufficiently record the dependencies between safety case contents and

GResearchGoal—
The research goal “Design new
techniques to facilitate the maintainability
of safety cases due to system changes”
has been adequately achieved

SolPaperA
Paper A
Ada-Europe
2015

SolPaperB
Paper B
PRDC 2015

SolPaperC
Paper C
EDCC 2017

SolPaperD
Paper D
Ada-Europe
2018

SolPaperE
Paper E
ISSC 2018

SResearchMethodology—
Argument by solving the
Research Questions (RQ)
through the contributions

JustRQs—
Research goal is realised by
pertinent research questions

J

CxSCMaintainability—
Maintainability of safety cases is
the degree of effectiveness and
efficiency with which a safety
case can be modified by the
intended maintainers

CxSystemChanges—
System changes are
modifications in a system
due to anomalies, removals,
additions, enhancements of
components or subsystems

CxFacilitate—
Facilitate the maintainability
is subject to the work of
identifying and reducing the
impacted elements, and
reducing the work needed
to make them valid again

GRQ1—
RQ1 “How can safety
contracts be used to enable
maintainability of safety
cases?” has been sufficiently
answered by the contributions

GRQ2—
RQ2 “How can the number of
the impacted safety case
elements be minimised so that
the re-verification effort needed
to make the impacted elements
valid again be reduced?” has
been sufficiently answered by
contributions C2 and C3

GRQ3—
RQ3 “How can traceability
between a system design
and its safety case be
established to highlight the
impacted parts upon
changes?” has been
sufficiently answered by
contributions C1 and C4

GRQ4—
RQ4 “How to incorporate
safety case maintenance and
through life assurance into
development and operational
processes?” has been
sufficiently answered by
contribution C5

GC1(4.2.1)—
Contribution 1 “Evaluate
the impact of change on
safety case” has been
adequately described and
implemented

GC2(4.2.2)—
Contribution 2 “Reduce the
propagation of the change
impact among system
components and safety
case elements” has been
adequately described and
implemented

GC3(4.2.3)—
Contribution 3 “Highlight
the most sensitive
components and make
them visible for developers’
attention” has been
adequately described and
implemented

GC4(4.2.4)—
Contribution 4 ”Associate
system design elements
with the relevant safety
case arguments” has been
adequately described and
implemented

GC5(4.2.5)—
Contribution 5 “Manage
software changes during
system development and
detected anomalies during
system operational life in safety
cases” has been adequately
described and implemented

Figure 5.1: The logic of achieving the research goal

84

5.1 Conclusions 65

system elements. Additionally, the techniques offer new concepts of detecting
change propagation, establish bidirectional traceability between a system and
its safety case, and highlight the most sensitive system parts to changes. Fig-
ure 5.1 presents a GSN argument which explains how the research goal of the
thesis is achieved.

SANESAM was designed to determine, for each component, the allowed
range for a certain parameter within which a component may change before
it compromises a certain system property (e.g., safety, reliability, etc.). The
allowed ranges for different components result in safety contracts and if a con-
tract is not violated by a change introduced to the system, the change can be
easily contained. The contracts are mapped to a safety case argument and
used in justification of the safe performance of the system. SANESAM+
and SANESAM for predicted changes are extensions to SANESAM and they
provide more freedom by considering multiple events at a time and more ro-
bustness against predicted changes, respectively. We also designed a safety
contracts driven maintenance technique to contain change impact in the smal-
lest possible set of components to ultimately prevent (or minimise) the ripple
of these effects from propagation. A Wheel Braking System (WBS) was used
as a case study to evaluate the feasibility of the application of the described
techniques so far. The techniques under discussion contributed to evaluate the
impact of change on safety case, reduce the propagation of the change impact
among system components and safety case elements, and highlight the most
sensitive components and make them visible for developers‘ attention.

We designed another technique which also utilises safety contracts to con-
tinuously reassess the failure rates of the most critical components to safety and
use the results to suggest system changes or maintenance. The main objective
of the technique is to monitor the runtime of a system and detect the diver-
gence between the failure rates (which were used in the safety analyses) and
the observed failure rates in the operational life. The technique uses sensitivity
analysis to define the maximum allowed deviation in the failure rate of a crit-
ical component before it compromises the safety requirements. Subsequently,
a safety contract is derived to guarantee the maximum allowed deviation in the
failure rate, and a monitoring algorithm continuously checks if the failure rate
exceeds its acceptable threshold (i.e., the guaranteed failure rate). Any violated
safety contract will indicate the affected part in the safety case. This technique
enables through-life safety assurance by providing prescriptive data for what
should be monitored, and what parts of the safety case arguments should be
updated to maintain system safety when a divergence (i.e., anomaly) is detec-
ted in safety cases and during system operational life. We used an Automated

5.1 Conclusions 65

system elements. Additionally, the techniques offer new concepts of detecting
change propagation, establish bidirectional traceability between a system and
its safety case, and highlight the most sensitive system parts to changes. Fig-
ure 5.1 presents a GSN argument which explains how the research goal of the
thesis is achieved.

SANESAM was designed to determine, for each component, the allowed
range for a certain parameter within which a component may change before
it compromises a certain system property (e.g., safety, reliability, etc.). The
allowed ranges for different components result in safety contracts and if a con-
tract is not violated by a change introduced to the system, the change can be
easily contained. The contracts are mapped to a safety case argument and
used in justification of the safe performance of the system. SANESAM+
and SANESAM for predicted changes are extensions to SANESAM and they
provide more freedom by considering multiple events at a time and more ro-
bustness against predicted changes, respectively. We also designed a safety
contracts driven maintenance technique to contain change impact in the smal-
lest possible set of components to ultimately prevent (or minimise) the ripple
of these effects from propagation. A Wheel Braking System (WBS) was used
as a case study to evaluate the feasibility of the application of the described
techniques so far. The techniques under discussion contributed to evaluate the
impact of change on safety case, reduce the propagation of the change impact
among system components and safety case elements, and highlight the most
sensitive components and make them visible for developers‘ attention.

We designed another technique which also utilises safety contracts to con-
tinuously reassess the failure rates of the most critical components to safety and
use the results to suggest system changes or maintenance. The main objective
of the technique is to monitor the runtime of a system and detect the diver-
gence between the failure rates (which were used in the safety analyses) and
the observed failure rates in the operational life. The technique uses sensitivity
analysis to define the maximum allowed deviation in the failure rate of a crit-
ical component before it compromises the safety requirements. Subsequently,
a safety contract is derived to guarantee the maximum allowed deviation in the
failure rate, and a monitoring algorithm continuously checks if the failure rate
exceeds its acceptable threshold (i.e., the guaranteed failure rate). Any violated
safety contract will indicate the affected part in the safety case. This technique
enables through-life safety assurance by providing prescriptive data for what
should be monitored, and what parts of the safety case arguments should be
updated to maintain system safety when a divergence (i.e., anomaly) is detec-
ted in safety cases and during system operational life. We used an Automated

85

66 Chapter 5. Conclusions and Future Work

Guided Vehicle (AGV) system as a case study to evaluate the feasibility of the
technique.

Finally, we designed a safety-centric change management framework
called XP-Kan-Safe by tailoring agile and V-model processes. XP-Kan-Safe
is a novel maintenance framework to facilitate the software change manage-
ment process in safety critical systems. More clearly, we reconciled the known
effective validation & verification process of the V-model to the known effect-
ive practices and the TDD process of agile methods. We used safety contracts
as 1) stitches that connect the V-model, Extreme Programming (XP) and Kan-
ban into our tailored process, and 2) means to enable a tri-directional impact
analysis process (i.e., traceability between safety requirements, test suites and
safety case). XP-Kan-Safe incorporates safety case maintenance into the soft-
ware development process to manage software changes during system devel-
opment in safety cases.

As a summary, the work in this thesis showed how safety contracts can
be utilised to support the maintainability of safety cases. The work showed
how the contracts can be derived, how they can be presented, what they might
contain, and where to place them.

5.2 Future Research Directions
The designed techniques in this thesis provided different solutions to facilitate
the accommodation of changes to system reliability as well as changes to the
software of safety critical systems. However, several research directions re-
main for the future work. We envision three categories of research directions
in the future, namely, validation, automation and extension:

• Validation: One direction for the future work is to carry out an industrial
validation for the designed techniques. Such a validation should focus
on measuring the feasibility and efficacy of using safety contracts for
safety case maintenance as described in SANESAM and SANESAM+.
Also, since failure rates are not constant across different applications,
where conservative developers might assume less reliable failure rates
than what is really reported, the future work should also validate the
efficacy of our monitoring technique for reassessing more precise failure
rates.
An industrial validation of XP-Kan-Safe is also a direction for the future
work. The designed framework can be validated in the context of AUTO-
SAR (AUTomotive Open System ARchitecture) based systems [93].

66 Chapter 5. Conclusions and Future Work

Guided Vehicle (AGV) system as a case study to evaluate the feasibility of the
technique.

Finally, we designed a safety-centric change management framework
called XP-Kan-Safe by tailoring agile and V-model processes. XP-Kan-Safe
is a novel maintenance framework to facilitate the software change manage-
ment process in safety critical systems. More clearly, we reconciled the known
effective validation & verification process of the V-model to the known effect-
ive practices and the TDD process of agile methods. We used safety contracts
as 1) stitches that connect the V-model, Extreme Programming (XP) and Kan-
ban into our tailored process, and 2) means to enable a tri-directional impact
analysis process (i.e., traceability between safety requirements, test suites and
safety case). XP-Kan-Safe incorporates safety case maintenance into the soft-
ware development process to manage software changes during system devel-
opment in safety cases.

As a summary, the work in this thesis showed how safety contracts can
be utilised to support the maintainability of safety cases. The work showed
how the contracts can be derived, how they can be presented, what they might
contain, and where to place them.

5.2 Future Research Directions
The designed techniques in this thesis provided different solutions to facilitate
the accommodation of changes to system reliability as well as changes to the
software of safety critical systems. However, several research directions re-
main for the future work. We envision three categories of research directions
in the future, namely, validation, automation and extension:

• Validation: One direction for the future work is to carry out an industrial
validation for the designed techniques. Such a validation should focus
on measuring the feasibility and efficacy of using safety contracts for
safety case maintenance as described in SANESAM and SANESAM+.
Also, since failure rates are not constant across different applications,
where conservative developers might assume less reliable failure rates
than what is really reported, the future work should also validate the
efficacy of our monitoring technique for reassessing more precise failure
rates.
An industrial validation of XP-Kan-Safe is also a direction for the future
work. The designed framework can be validated in the context of AUTO-
SAR (AUTomotive Open System ARchitecture) based systems [93].

86

5.2 Future Research Directions 67

One of the purposes of AUTOSAR is to satisfy the need for modularity
of the architectural components and their implementations, which facilit-
ates the exchange of these components between different parties. Choos-
ing to develop automotive systems based on the AUTOSAR standard
requires continuous adoption of new AUTOSAR releases in the devel-
opment projects in order to enable new innovative solutions in cars [94].
This means that there is a need for performing change impact analysis on
AUTOSAR systems after each release of AUTOSAR standard and main-
tain safety cases to consider the new changes. XP-Kan-Safe can help to
document the dependencies among AUTOSAR components in different
layers (i.e., Basic Software, Runtime Environment and Software Applic-
ations), establish bidirectional traceability between safety requirements,
system model, validation and verification artefacts, and the safety case
arguments.

• Automation: Another direction for the future work is to automate the
application of the techniques. The techniques can be implemented within
a software tool to automatically identify the sensitive components of a
system, derive the safety contracts and create traceable links between
system elements, safety analyses and safety case arguments. Obviously,
formalising the safety contracts is not only useful to support effective
automation of the techniques but it also makes the safety contracts more
checkable for completeness, consistency and correctness.

• Extension: Another direction for the future work is to extend the tech-
niques to other properties. To this point, only failure rates are considered
by SANESAM and SANESAM+. This can be less useful while dealing
with software changes as it is recognised as being difficult to quantify the
reliability (e.g., failure probabilities) of software components. Another
future work can be stemmed from this limitation, which is extending the
techniques to cover wider variety of changes. In other words, the under-
lying logic of the techniques can be utilised to consider software prop-
erties to ultimately facilitate the maintainability of safety cases upon the
changes to these properties. For instance, SANESAM and SANESAM+
can address the problem of the Worst Case Execution Time (WCET) as a
property where sensitivity is judged in terms of its impact on the ability
to meet the system’s timing requirements and the required level of con-
fidence. For example, sensitivity analysis can be used to derive safety
contracts that guarantee the reliability R of Task T to meet its deadline
assuming that the WCET of T is within τ (time unit). Such contracts

5.2 Future Research Directions 67

One of the purposes of AUTOSAR is to satisfy the need for modularity
of the architectural components and their implementations, which facilit-
ates the exchange of these components between different parties. Choos-
ing to develop automotive systems based on the AUTOSAR standard
requires continuous adoption of new AUTOSAR releases in the devel-
opment projects in order to enable new innovative solutions in cars [94].
This means that there is a need for performing change impact analysis on
AUTOSAR systems after each release of AUTOSAR standard and main-
tain safety cases to consider the new changes. XP-Kan-Safe can help to
document the dependencies among AUTOSAR components in different
layers (i.e., Basic Software, Runtime Environment and Software Applic-
ations), establish bidirectional traceability between safety requirements,
system model, validation and verification artefacts, and the safety case
arguments.

• Automation: Another direction for the future work is to automate the
application of the techniques. The techniques can be implemented within
a software tool to automatically identify the sensitive components of a
system, derive the safety contracts and create traceable links between
system elements, safety analyses and safety case arguments. Obviously,
formalising the safety contracts is not only useful to support effective
automation of the techniques but it also makes the safety contracts more
checkable for completeness, consistency and correctness.

• Extension: Another direction for the future work is to extend the tech-
niques to other properties. To this point, only failure rates are considered
by SANESAM and SANESAM+. This can be less useful while dealing
with software changes as it is recognised as being difficult to quantify the
reliability (e.g., failure probabilities) of software components. Another
future work can be stemmed from this limitation, which is extending the
techniques to cover wider variety of changes. In other words, the under-
lying logic of the techniques can be utilised to consider software prop-
erties to ultimately facilitate the maintainability of safety cases upon the
changes to these properties. For instance, SANESAM and SANESAM+
can address the problem of the Worst Case Execution Time (WCET) as a
property where sensitivity is judged in terms of its impact on the ability
to meet the system’s timing requirements and the required level of con-
fidence. For example, sensitivity analysis can be used to derive safety
contracts that guarantee the reliability R of Task T to meet its deadline
assuming that the WCET of T is within τ (time unit). Such contracts

87

68 Chapter 5. Conclusions and Future Work

can be associated with the parts of the safety case arguments to support
the impact analysis in case if changes to the timing behaviour are either
planned or detected.

Likewise, our designed monitoring technique can be extended to monitor
other critical properties during the runtime to continuously maintain the
documented confidence in safety cases [95]. Software temporal proper-
ties are good candidates for the technique (e.g., WCET), however some
communication properties are also interesting to consider for monitor-
ing. In [96], for example, we propose a methodology for assuring wire-
less cooperative functions of vehicular systems, where we suggest to
identify and monitor all system parameters that may increase the com-
munication failures (i.e., packet loss rate). This suggestion might be
impracticable since it is costly and infeasible to monitor almost all para-
meters in cooperative functions. Applying importance and sensitivity
analyses helps to identify a reasonable set of parameters for monitoring.
Moreover, almost all proposed techniques for monitoring communica-
tion failures in the literature do not show how safety cases should be
maintained according to the newly detected behaviours. Extending our
monitoring technique and its algorithm to 1) monitor packet loss rate
during runtime, 2) derive level of confidence, and 3) support a through-
life safety assurance, is a reasonable direction for the future work.

68 Chapter 5. Conclusions and Future Work

can be associated with the parts of the safety case arguments to support
the impact analysis in case if changes to the timing behaviour are either
planned or detected.

Likewise, our designed monitoring technique can be extended to monitor
other critical properties during the runtime to continuously maintain the
documented confidence in safety cases [95]. Software temporal proper-
ties are good candidates for the technique (e.g., WCET), however some
communication properties are also interesting to consider for monitor-
ing. In [96], for example, we propose a methodology for assuring wire-
less cooperative functions of vehicular systems, where we suggest to
identify and monitor all system parameters that may increase the com-
munication failures (i.e., packet loss rate). This suggestion might be
impracticable since it is costly and infeasible to monitor almost all para-
meters in cooperative functions. Applying importance and sensitivity
analyses helps to identify a reasonable set of parameters for monitoring.
Moreover, almost all proposed techniques for monitoring communica-
tion failures in the literature do not show how safety cases should be
maintained according to the newly detected behaviours. Extending our
monitoring technique and its algorithm to 1) monitor packet loss rate
during runtime, 2) derive level of confidence, and 3) support a through-
life safety assurance, is a reasonable direction for the future work.

88

Bibliography

[1] J.C. Knight. Safety critical systems: Challenges and directions. In Pro-
ceedings of the 24rd International Conference on Software Engineering
(ICSE)., pages 547–550, May 2002.

[2] O. Jaradat. Enhancing the maintainability of safety cases us-
ing safety contracts, Mälardalen University, Västerås, Sweden.
http://www.es.mdh.se/publications/4082-, November 2015.

[3] O. Jaradat, P. Graydon and I. Bate. An approach to maintaining safety
case evidence after a system change. In Proceedings of the 10th European
Dependable Computing Conference (EDCC), UK, 2014.

[4] P. J. Graydon and C. M. Holloway. An investigation of proposed tech-
niques for quantifying confidence in assurance arguments. Safety Science,
92(Supplement C):53 – 65, 2017.

[5] T. Kelly and J. McDermid. A systematic approach to safety case main-
tenance. In Proceedings of the Computer Safety, Reliability and Secur-
ity, volume 1698 of Lecture Notes in Computer Science, pages 13–26.
Springer Berlin Heidelberg, 1999.

[6] R. Maguire. Safety Cases and Safety Reports: Meaning, Motivation and
Management. Ashgate Publishing, Ltd., 2012.

[7] U.K. Ministry of Defence, “JSP 430 - Ship Safety Management System
Handbook”, Ministry of Defence January 1996.

[8] T. Kelly. Arguing Safety – A Systematic Approach to Managing Safety
Cases. PhD thesis, Department of Computer Science, University of York,
1998.

69

Bibliography

[1] J.C. Knight. Safety critical systems: Challenges and directions. In Pro-
ceedings of the 24rd International Conference on Software Engineering
(ICSE)., pages 547–550, May 2002.

[2] O. Jaradat. Enhancing the maintainability of safety cases us-
ing safety contracts, Mälardalen University, Västerås, Sweden.
http://www.es.mdh.se/publications/4082-, November 2015.

[3] O. Jaradat, P. Graydon and I. Bate. An approach to maintaining safety
case evidence after a system change. In Proceedings of the 10th European
Dependable Computing Conference (EDCC), UK, 2014.

[4] P. J. Graydon and C. M. Holloway. An investigation of proposed tech-
niques for quantifying confidence in assurance arguments. Safety Science,
92(Supplement C):53 – 65, 2017.

[5] T. Kelly and J. McDermid. A systematic approach to safety case main-
tenance. In Proceedings of the Computer Safety, Reliability and Secur-
ity, volume 1698 of Lecture Notes in Computer Science, pages 13–26.
Springer Berlin Heidelberg, 1999.

[6] R. Maguire. Safety Cases and Safety Reports: Meaning, Motivation and
Management. Ashgate Publishing, Ltd., 2012.

[7] U.K. Ministry of Defence, “JSP 430 - Ship Safety Management System
Handbook”, Ministry of Defence January 1996.

[8] T. Kelly. Arguing Safety – A Systematic Approach to Managing Safety
Cases. PhD thesis, Department of Computer Science, University of York,
1998.

69

89

70 Bibliography

[9] Health and Safety Executive (HSE). Railway Safety Cases - Railway
(Safety Case) Regulations - Guidance on Regulations, 1994.

[10] L. Benvenuti, A. Ferrari, E. Mazzi, and A. L. Vincentelli. Contract-based
design for computation and verification of a closed-loop hybrid system.
In Proceedings of the 11th International Workshop on Hybrid Systems:
Computation and Control, HSCC ’08, pages 58–71, Berlin, Heidelberg,
2008. Springer-Verlag.

[11] J. L. Fenn, R. Hawkins, P. J. Williams, T. Kelly, M. G. Banner, Y. Oak-
shott. The who, where, how, why and when of modular and incremental
certification. In Proceedings of the 2nd IET International Conference on
System Safety, pages 135–140. IET, 2007.

[12] P. Conmy, J. Carlson, R. Land, S. Björnander, O. Bridal, I. Bate. Ex-
tension of techniques for modular safety arguments. Deliverable d2.3.1,
technical report, Safety certification of software-intensive systems with
reusable components (SafeCer), 2012.

[13] P. Graydon and I. Bate. The nature and content of safety contracts: Chal-
lenges and suggestions for a way forward. In Proceedings of the 20th
IEEE Pacific Rim International Symposium on Dependable Computing
(PRDC), November 2014.

[14] S. Bates, I. Bate, R. Hawkins, T. Kelly, J. McDermid, and R. Fletcher.
Safety case architectures to complement a contract-based approach to
designing safe systems. In Proceedings of the 21st International System
Safety Conference (ISSC), 2003.

[15] O. Jaradat, I. Bate, and S. Punnekkat. Using sensitivity analysis to fa-
cilitate the maintenance of safety cases. In Proceedings of the 20th In-
ternational Conference on Reliable Software Technologies (Ada-Europe),
pages 162–176, June 2015.

[16] Oxford Dictionary of English (3 ed.). Oxford University Press, 2010.

[17] Industrial Avionics Working Group (IAWG). Modular Software Safety
Case (MSSC): Glossary, November 2012.

[18] J. Knight. Fundamentals of Dependable Computing for Software Engin-
eers. Chapman & Hall/CRC, 1st edition, 2012.

70 Bibliography

[9] Health and Safety Executive (HSE). Railway Safety Cases - Railway
(Safety Case) Regulations - Guidance on Regulations, 1994.

[10] L. Benvenuti, A. Ferrari, E. Mazzi, and A. L. Vincentelli. Contract-based
design for computation and verification of a closed-loop hybrid system.
In Proceedings of the 11th International Workshop on Hybrid Systems:
Computation and Control, HSCC ’08, pages 58–71, Berlin, Heidelberg,
2008. Springer-Verlag.

[11] J. L. Fenn, R. Hawkins, P. J. Williams, T. Kelly, M. G. Banner, Y. Oak-
shott. The who, where, how, why and when of modular and incremental
certification. In Proceedings of the 2nd IET International Conference on
System Safety, pages 135–140. IET, 2007.

[12] P. Conmy, J. Carlson, R. Land, S. Björnander, O. Bridal, I. Bate. Ex-
tension of techniques for modular safety arguments. Deliverable d2.3.1,
technical report, Safety certification of software-intensive systems with
reusable components (SafeCer), 2012.

[13] P. Graydon and I. Bate. The nature and content of safety contracts: Chal-
lenges and suggestions for a way forward. In Proceedings of the 20th
IEEE Pacific Rim International Symposium on Dependable Computing
(PRDC), November 2014.

[14] S. Bates, I. Bate, R. Hawkins, T. Kelly, J. McDermid, and R. Fletcher.
Safety case architectures to complement a contract-based approach to
designing safe systems. In Proceedings of the 21st International System
Safety Conference (ISSC), 2003.

[15] O. Jaradat, I. Bate, and S. Punnekkat. Using sensitivity analysis to fa-
cilitate the maintenance of safety cases. In Proceedings of the 20th In-
ternational Conference on Reliable Software Technologies (Ada-Europe),
pages 162–176, June 2015.

[16] Oxford Dictionary of English (3 ed.). Oxford University Press, 2010.

[17] Industrial Avionics Working Group (IAWG). Modular Software Safety
Case (MSSC): Glossary, November 2012.

[18] J. Knight. Fundamentals of Dependable Computing for Software Engin-
eers. Chapman & Hall/CRC, 1st edition, 2012.

90

Bibliography 71

[19] M. Dorfman and C. Anderson. Aerospace software engineering: a col-
lection of concepts. American Institute of Aeronautics and Astronautics,
Washington, DC, 1991.

[20] I. Sommerville. Software Engineering. Addison-Wesley, Harlow, Eng-
land, 9 edition, 2010.

[21] ISO 26262:2011. Road Vehicles — Functional Safety, Part 1-9. Interna-
tional Organization for Standardization, Nov 2011.

[22] A. Aviẑienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33, Jan 2004.

[23] N. Leveson. Software system safety, Lecture Notes, Massachusetts Insti-
tute of Technology (MIT), Aero/Astro Department, 2002.

[24] M. Rausand. Reliability of Safety-Critical Systems: Theory and Applica-
tions. John Wiley and Sons, Inc., Hoboken, New Jersey, 2013.

[25] R.J. Mikulak, R. McDermott, and M. Beauregard. The Basics of FMEA,
2nd Edition. CRC Press, 2008.

[26] M. Rausand and A. Høyland. System Reliability Theory: Models, Statist-
ical Methods and Applications. Wiley-Interscience, NJ, 2004.

[27] SAE ARP4761 Guidelines and Methods for Conducting the Safety As-
sessment Process on Civil Airborne Systems and Equipment, December
1996.

[28] M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J Minarick, and J. Rails-
back. Fault Tree Handbook with Aerospace Applications. Handbook,
National Aeronautics and Space Administration, 2002.

[29] H. E. Lambert. Use of fault tree analysis for automotive reliability and
safety analysis. SAE technical paper, Lawrence Livermore National Lab.,
2004.

[30] US Department of Defense. Military Handbook: Electronic Reliability
Design Handbook (MIL-HDBK-338B), October 1998.

[31] IEC 61508:2010. Functional Safety of Elec-
trical/Electronic/Programmable Electronic Safety-Related Systems,
Part 1-7, International Electrotechnical Commission, 2010.

Bibliography 71

[19] M. Dorfman and C. Anderson. Aerospace software engineering: a col-
lection of concepts. American Institute of Aeronautics and Astronautics,
Washington, DC, 1991.

[20] I. Sommerville. Software Engineering. Addison-Wesley, Harlow, Eng-
land, 9 edition, 2010.

[21] ISO 26262:2011. Road Vehicles — Functional Safety, Part 1-9. Interna-
tional Organization for Standardization, Nov 2011.

[22] A. Aviẑienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33, Jan 2004.

[23] N. Leveson. Software system safety, Lecture Notes, Massachusetts Insti-
tute of Technology (MIT), Aero/Astro Department, 2002.

[24] M. Rausand. Reliability of Safety-Critical Systems: Theory and Applica-
tions. John Wiley and Sons, Inc., Hoboken, New Jersey, 2013.

[25] R.J. Mikulak, R. McDermott, and M. Beauregard. The Basics of FMEA,
2nd Edition. CRC Press, 2008.

[26] M. Rausand and A. Høyland. System Reliability Theory: Models, Statist-
ical Methods and Applications. Wiley-Interscience, NJ, 2004.

[27] SAE ARP4761 Guidelines and Methods for Conducting the Safety As-
sessment Process on Civil Airborne Systems and Equipment, December
1996.

[28] M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J Minarick, and J. Rails-
back. Fault Tree Handbook with Aerospace Applications. Handbook,
National Aeronautics and Space Administration, 2002.

[29] H. E. Lambert. Use of fault tree analysis for automotive reliability and
safety analysis. SAE technical paper, Lawrence Livermore National Lab.,
2004.

[30] US Department of Defense. Military Handbook: Electronic Reliability
Design Handbook (MIL-HDBK-338B), October 1998.

[31] IEC 61508:2010. Functional Safety of Elec-
trical/Electronic/Programmable Electronic Safety-Related Systems,
Part 1-7, International Electrotechnical Commission, 2010.

91

72 Bibliography

[32] Component Reliability Data for Use in Probabilistic Safety Assessment
(IAEA-TECDOC-478). International Atomic Energy Agency, Vienna,
1988.

[33] M. Generowicz and A. Hertel. Reassessing failure rates. Technical report,
I&E Systems Pty Ltd, 2017.

[34] International Society of Automation. ISA-TR84.02-2002: Safety Instru-
mented Functions — Safety Integrity Level Evaluation Techniques, North
Carolina, 2002.

[35] M. Rausand. Reliability of safety-critical systems: theory and applica-
tions. John Wiley & Sons, 2014.

[36] A. Saltelli. Global sensitivity analysis: the primer. John Wiley, 2008.

[37] L. Breierova and M. Choudhari. An introduction to sensitivity analysis.
Technical report, Massachusetts Institute of Technology (MIT), 1996.

[38] A.C. Cullen and H.C. Frey. Probabilistic techniques in Exposure assess-
ment. Plenum Press, New York, 1999.

[39] D. J. Pannell. Sensitivity analysis of normative economic models: the-
oretical framework and practical strategies. Agricultural Economics,
16(2):139 – 152, 1997.

[40] R. D. Hawkins and T. P. Kelly. Software safety assurance - what is suf-
ficient? In 4th IET International Conference on Systems Safety 2009.
Incorporating the SaRS Annual Conference, pages 1–6, Oct 2009.

[41] Nuclear Installations Act 1965, section 14. Her Majesty’s Stationary Of-
fice, London, UK, 1965 (reprinted 1993).

[42] K. Cassidy. CIMAH Safety Cases — the HSE Approach. IChemE Sym-
posium series no. 110, 1988.

[43] Anthony Hidden (QC). Investigation into the Clapham Junction Railway
Accident. HMSO, 1989.

[44] R B. Whittingham. Preventing corporate accidents : An Ethical Ap-
proach. Elsevier Ltd, 2008.

[45] Goal Structuring Notation working group. GSN Community Standard
Version 1. Origin Consulting Limited, York, UK, November 2011.

72 Bibliography

[32] Component Reliability Data for Use in Probabilistic Safety Assessment
(IAEA-TECDOC-478). International Atomic Energy Agency, Vienna,
1988.

[33] M. Generowicz and A. Hertel. Reassessing failure rates. Technical report,
I&E Systems Pty Ltd, 2017.

[34] International Society of Automation. ISA-TR84.02-2002: Safety Instru-
mented Functions — Safety Integrity Level Evaluation Techniques, North
Carolina, 2002.

[35] M. Rausand. Reliability of safety-critical systems: theory and applica-
tions. John Wiley & Sons, 2014.

[36] A. Saltelli. Global sensitivity analysis: the primer. John Wiley, 2008.

[37] L. Breierova and M. Choudhari. An introduction to sensitivity analysis.
Technical report, Massachusetts Institute of Technology (MIT), 1996.

[38] A.C. Cullen and H.C. Frey. Probabilistic techniques in Exposure assess-
ment. Plenum Press, New York, 1999.

[39] D. J. Pannell. Sensitivity analysis of normative economic models: the-
oretical framework and practical strategies. Agricultural Economics,
16(2):139 – 152, 1997.

[40] R. D. Hawkins and T. P. Kelly. Software safety assurance - what is suf-
ficient? In 4th IET International Conference on Systems Safety 2009.
Incorporating the SaRS Annual Conference, pages 1–6, Oct 2009.

[41] Nuclear Installations Act 1965, section 14. Her Majesty’s Stationary Of-
fice, London, UK, 1965 (reprinted 1993).

[42] K. Cassidy. CIMAH Safety Cases — the HSE Approach. IChemE Sym-
posium series no. 110, 1988.

[43] Anthony Hidden (QC). Investigation into the Clapham Junction Railway
Accident. HMSO, 1989.

[44] R B. Whittingham. Preventing corporate accidents : An Ethical Ap-
proach. Elsevier Ltd, 2008.

[45] Goal Structuring Notation working group. GSN Community Standard
Version 1. Origin Consulting Limited, York, UK, November 2011.

92

Bibliography 73

[46] Object Management Group (OMG). Structured Assurance Case
Metamodel (SACM), Technical report, Version 1.0, 2013. [Online]. Avail-
able: http://www.omg.org/spec/SACM/1.0/PDF/.

[47] P. Graydon. (personal communication), August 2015.

[48] Jacobs Sverdrup Australia Pty, Ltd. The development of safety cases
for complex safety critical systems. lecture notes. April 2005. [online].
avaialble: https://msquair.files.wordpress.com/2012/
06/md12_safety_cases_r5.pdf.

[49] T. Kelly. Introduction to safety cases, lecture notes, 2007. [online]. avail-
able: http://www.omg.org/news/meetings/workshops/
SWA_2007_Presentations/00-T3_Kelly.pdf.

[50] U.K. Ministry of Defence. 00-56 Defence Standard — Issue 6, 2015.
Safety Management Requirements for Defence Systems — Part 1: Re-
quirements and Guidance. (UK) Ministry of Defence, June 2015.

[51] T. Kelly. A systematic approach to safety case management. In Proceed-
ings of SAE 2004 World Congress, Detroit. The Society for Automotive
Engineers, March 2004.

[52] O. Jaradat, I. Bate and S. Punnekkat. Facilitating the maintenance of
safety cases. In Proceedings of the 3rd International Conference on Re-
liability, Safety and Hazard - Advances in Reliability, Maintenance and
Safety (ICRESH-ARMS), Luleå, Sweden, June 2015.

[53] O. Jaradat, P. Graydon and I. Bate. The role of architectural model check-
ing in conducting preliminary safety assessment. In Proceedings of the
31st International System Safety Conference (ISSC), Boston, USA, Au-
gust 2013.

[54] P. J. Graydon and C. M. Holloway. “Evidence” under a magnifying glass:
Thoughts on safety argument epistemology. In 10th IET System Safety
and Cyber-Security Conference 2015, pages 1–6, Oct 2015.

[55] J. Guiochet, Q. A. D. Hoang and M. Kaaniche. A model for safety case
confidence assessment. In Proceedings of the 34th International Confer-
ence on Computer Safety, Reliability, and Security - Volume 9337, SAFE-
COMP 2015, pages 313–327. Springer-Verlag New York, Inc., 2015.

Bibliography 73

[46] Object Management Group (OMG). Structured Assurance Case
Metamodel (SACM), Technical report, Version 1.0, 2013. [Online]. Avail-
able: http://www.omg.org/spec/SACM/1.0/PDF/.

[47] P. Graydon. (personal communication), August 2015.

[48] Jacobs Sverdrup Australia Pty, Ltd. The development of safety cases
for complex safety critical systems. lecture notes. April 2005. [online].
avaialble: https://msquair.files.wordpress.com/2012/
06/md12_safety_cases_r5.pdf.

[49] T. Kelly. Introduction to safety cases, lecture notes, 2007. [online]. avail-
able: http://www.omg.org/news/meetings/workshops/
SWA_2007_Presentations/00-T3_Kelly.pdf.

[50] U.K. Ministry of Defence. 00-56 Defence Standard — Issue 6, 2015.
Safety Management Requirements for Defence Systems — Part 1: Re-
quirements and Guidance. (UK) Ministry of Defence, June 2015.

[51] T. Kelly. A systematic approach to safety case management. In Proceed-
ings of SAE 2004 World Congress, Detroit. The Society for Automotive
Engineers, March 2004.

[52] O. Jaradat, I. Bate and S. Punnekkat. Facilitating the maintenance of
safety cases. In Proceedings of the 3rd International Conference on Re-
liability, Safety and Hazard - Advances in Reliability, Maintenance and
Safety (ICRESH-ARMS), Luleå, Sweden, June 2015.

[53] O. Jaradat, P. Graydon and I. Bate. The role of architectural model check-
ing in conducting preliminary safety assessment. In Proceedings of the
31st International System Safety Conference (ISSC), Boston, USA, Au-
gust 2013.

[54] P. J. Graydon and C. M. Holloway. “Evidence” under a magnifying glass:
Thoughts on safety argument epistemology. In 10th IET System Safety
and Cyber-Security Conference 2015, pages 1–6, Oct 2015.

[55] J. Guiochet, Q. A. D. Hoang and M. Kaaniche. A model for safety case
confidence assessment. In Proceedings of the 34th International Confer-
ence on Computer Safety, Reliability, and Security - Volume 9337, SAFE-
COMP 2015, pages 313–327. Springer-Verlag New York, Inc., 2015.

93

74 Bibliography

[56] B. Littlewood and D. Wright. The use of multilegged arguments to in-
crease confidence in safety claims for software-based systems: A study
based on a bbn analysis of an idealized example. IEEE Transactions on
Software Engineering, 33(5):347–365, May 2007.

[57] X. Zhao, D. Zhang, M. Lu and F. Zeng. A New Approach to Assessment
of Confidence in Assurance Cases, pages 79–91. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2012.

[58] E. Denney, G. Pai, and I. Habli. Towards measurement of confidence in
safety cases. In 2011 International Symposium on Empirical Software
Engineering and Measurement, pages 380–383, Sept 2011.

[59] R. Hawkins, T. Kelly, J. Knight and P. J. Graydon. A New Approach
to creating Clear Safety Arguments, pages 3–23. Springer London, UK,
2011.

[60] E. Denney, G. Pai, and I. Habli. Dynamic safety cases for through-life
safety assurance. In 2015 IEEE/ACM 37th IEEE International Confer-
ence on Software Engineering, volume 2, pages 587–590, May 2015.

[61] B. Meyer. Design by contract. Technical Report TR-EI-12/CO, Interact-
ive Software Engineering Inc., 1986.

[62] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1st edition, 1988.

[63] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, October 1969.

[64] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis. Multiple viewpoint contract-based specification and design.
In Proceedings of the 6th International Symposium, FMCO, pages 200–
225, Amsterdam, The Netherlands, October 2007. Springer.

[65] W. Damm, H. Hungar, J. Bernhard, T. Peikenkamp, and I. Stierand. Us-
ing contract-based component specifications for virtual integration testing
and architecture design. In Proceedings of the Design, Automation & Test
in Europe Conference & Exhibition, pages 1–6, 2011.

[66] S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Nyman, and
A. Wasowski. Moving from specifications to contracts in component-
based design. In Proceedings of the 15th International Conference on

74 Bibliography

[56] B. Littlewood and D. Wright. The use of multilegged arguments to in-
crease confidence in safety claims for software-based systems: A study
based on a bbn analysis of an idealized example. IEEE Transactions on
Software Engineering, 33(5):347–365, May 2007.

[57] X. Zhao, D. Zhang, M. Lu and F. Zeng. A New Approach to Assessment
of Confidence in Assurance Cases, pages 79–91. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2012.

[58] E. Denney, G. Pai, and I. Habli. Towards measurement of confidence in
safety cases. In 2011 International Symposium on Empirical Software
Engineering and Measurement, pages 380–383, Sept 2011.

[59] R. Hawkins, T. Kelly, J. Knight and P. J. Graydon. A New Approach
to creating Clear Safety Arguments, pages 3–23. Springer London, UK,
2011.

[60] E. Denney, G. Pai, and I. Habli. Dynamic safety cases for through-life
safety assurance. In 2015 IEEE/ACM 37th IEEE International Confer-
ence on Software Engineering, volume 2, pages 587–590, May 2015.

[61] B. Meyer. Design by contract. Technical Report TR-EI-12/CO, Interact-
ive Software Engineering Inc., 1986.

[62] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1st edition, 1988.

[63] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, October 1969.

[64] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis. Multiple viewpoint contract-based specification and design.
In Proceedings of the 6th International Symposium, FMCO, pages 200–
225, Amsterdam, The Netherlands, October 2007. Springer.

[65] W. Damm, H. Hungar, J. Bernhard, T. Peikenkamp, and I. Stierand. Us-
ing contract-based component specifications for virtual integration testing
and architecture design. In Proceedings of the Design, Automation & Test
in Europe Conference & Exhibition, pages 1–6, 2011.

[66] S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Nyman, and
A. Wasowski. Moving from specifications to contracts in component-
based design. In Proceedings of the 15th International Conference on

94

Bibliography 75

Fundamental Approaches to Software Engineering, FASE’12, pages 43–
58, Berlin, Heidelberg, 2012. Springer-Verlag.

[67] ISO/IEC/IEEE International Standard for Software Engineering - Soft-
ware Life Cycle Processes - Maintenance, Sept 2006.

[68] ISO/IEC 25010:2011 - Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models, 2011.

[69] The Offshore Installations (Offshore Safety Directive)(Safety Case etc)
Regulations. Health and Safety Executive (HSE), UK, 2015.

[70] T. Kelly. Literature survey for work on evolvable safety cases. Depart-
ment of Computer Sceince, University of York, 1st Year Qualifying Dis-
sertation, 1995.

[71] S. Wilson, T. Kelly, and J. McDermid. Safety case development: Cur-
rent practice, future prospects. In Proceedings of the 12th Annual CSR
Workshop - Software Bases Systems. Springer-Verlag, 1997.

[72] Industrial Avionics Working Group (IAWG). Modular Software Safety
Case (MSSC): Process Overview, November 2012.

[73] M. Nicholson, I. Bate and J. Mcdermid. Generating and maintaining a
safety argument for integrated modular systems. In Preceedings of the 5th
Australian Workshop on Safety Critical Systems and Software, Adelard
for the Health and Safety Executive, HSE Books, ISBN 0-7176-2010-7,
and Contract Research, pages 0–7176. Institution of Engineers Australia,
2000.

[74] S. Björnander, R. Land, P. Graydon, K. Lundqvist, and P. Conmy. A
method to formally evaluate safety case evidences against a system ar-
chitecture model. In Preceedings of the 23rd IEEE International Sym-
posium on Software Reliability Engineering Workshops, pages 337–342,
Nov 2012.

[75] S. Kokaly, R. Salay, M. Chechik, M. Lawford and T. Maibaum. Safety
case impact assessment in automotive software systems: An improved
model-based approach. In Preceedings of the 36th Computer Safety, Re-
liability, and Security (SAFECOMP), pages 69–85. Springer International
Publishing, 2017.

Bibliography 75

Fundamental Approaches to Software Engineering, FASE’12, pages 43–
58, Berlin, Heidelberg, 2012. Springer-Verlag.

[67] ISO/IEC/IEEE International Standard for Software Engineering - Soft-
ware Life Cycle Processes - Maintenance, Sept 2006.

[68] ISO/IEC 25010:2011 - Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models, 2011.

[69] The Offshore Installations (Offshore Safety Directive)(Safety Case etc)
Regulations. Health and Safety Executive (HSE), UK, 2015.

[70] T. Kelly. Literature survey for work on evolvable safety cases. Depart-
ment of Computer Sceince, University of York, 1st Year Qualifying Dis-
sertation, 1995.

[71] S. Wilson, T. Kelly, and J. McDermid. Safety case development: Cur-
rent practice, future prospects. In Proceedings of the 12th Annual CSR
Workshop - Software Bases Systems. Springer-Verlag, 1997.

[72] Industrial Avionics Working Group (IAWG). Modular Software Safety
Case (MSSC): Process Overview, November 2012.

[73] M. Nicholson, I. Bate and J. Mcdermid. Generating and maintaining a
safety argument for integrated modular systems. In Preceedings of the 5th
Australian Workshop on Safety Critical Systems and Software, Adelard
for the Health and Safety Executive, HSE Books, ISBN 0-7176-2010-7,
and Contract Research, pages 0–7176. Institution of Engineers Australia,
2000.

[74] S. Björnander, R. Land, P. Graydon, K. Lundqvist, and P. Conmy. A
method to formally evaluate safety case evidences against a system ar-
chitecture model. In Preceedings of the 23rd IEEE International Sym-
posium on Software Reliability Engineering Workshops, pages 337–342,
Nov 2012.

[75] S. Kokaly, R. Salay, M. Chechik, M. Lawford and T. Maibaum. Safety
case impact assessment in automotive software systems: An improved
model-based approach. In Preceedings of the 36th Computer Safety, Re-
liability, and Security (SAFECOMP), pages 69–85. Springer International
Publishing, 2017.

95

76 Bibliography

[76] I. Crnkovic, U. Asklund and A P. Dahlqvist. Implementing and Integrat-
ing Product Data Management and Software Configuration Management.
Artech House, Inc., Norwood, MA, USA, 2003.

[77] J. Dick. Design traceability. IEEE Software, 22(6):14–16, November
2005.

[78] I. Sommerville and P. Sawyer. Requirements Engineering: A Good Prac-
tice Guide. John Wiley & Sons, Inc., New York, NY, USA, 1st edition,
1997.

[79] S. Robertson and J. Robertson. Mastering the Requirements Process (2Nd
Edition). Addison-Wesley Professional, 2006.

[80] S A. Bohner and R S. Arnold. Software change impact analysis. Los
Alamitos, Calif. : IEEE Computer Society Press, 1996. Includes biblio-
graphical references (p. 361-374).

[81] A. De Lucia, F. Fasano, and R. Oliveto. Traceability management for im-
pact analysis. In Preceedings of the 24th IEEE International Conference
on Software Maintenance, pages 21–30, Beijing, China, 2008.

[82] M. Oertel. A linear scaling change impact analysis based on a formal
safety model for automotive embedded systems. PhD thesis, University of
Oldenburg, 2016.

[83] S. A. Bohner. Software change impacts: an evolving perspective. In Pre-
ceedings of the 18th International Conference on Software Maintenance,
pages 263–272. IEEE Computer Society, Canada, 2002.

[84] S. Nair, J. Luis de la Vara, M. Sabetzadeh and D. Falessi. Evidence man-
agement for compliance of critical systems with safety standards: A sur-
vey on the state of practice. Information and Software Technology, 60:1
– 15, 2015.

[85] H. Espinoza, A. Ruiz, M. Sabetzadeh, and P. Panaroni. Challenges for an
open and evolutionary approach to safety assurance and certification of
safety-critical systems. In Proceedings of the 1st International Workshop
on Software Certification (WoSoCER), pages 1–6, Nov 2011.

[86] N. Tracey, A. Stephenson, J. Clark and J. McDermid. A safe change
oriented process for safety-critical systems. In Proceedings of the Inter-
national Workshop on Software Change Evolution, 1999.

76 Bibliography

[76] I. Crnkovic, U. Asklund and A P. Dahlqvist. Implementing and Integrat-
ing Product Data Management and Software Configuration Management.
Artech House, Inc., Norwood, MA, USA, 2003.

[77] J. Dick. Design traceability. IEEE Software, 22(6):14–16, November
2005.

[78] I. Sommerville and P. Sawyer. Requirements Engineering: A Good Prac-
tice Guide. John Wiley & Sons, Inc., New York, NY, USA, 1st edition,
1997.

[79] S. Robertson and J. Robertson. Mastering the Requirements Process (2Nd
Edition). Addison-Wesley Professional, 2006.

[80] S A. Bohner and R S. Arnold. Software change impact analysis. Los
Alamitos, Calif. : IEEE Computer Society Press, 1996. Includes biblio-
graphical references (p. 361-374).

[81] A. De Lucia, F. Fasano, and R. Oliveto. Traceability management for im-
pact analysis. In Preceedings of the 24th IEEE International Conference
on Software Maintenance, pages 21–30, Beijing, China, 2008.

[82] M. Oertel. A linear scaling change impact analysis based on a formal
safety model for automotive embedded systems. PhD thesis, University of
Oldenburg, 2016.

[83] S. A. Bohner. Software change impacts: an evolving perspective. In Pre-
ceedings of the 18th International Conference on Software Maintenance,
pages 263–272. IEEE Computer Society, Canada, 2002.

[84] S. Nair, J. Luis de la Vara, M. Sabetzadeh and D. Falessi. Evidence man-
agement for compliance of critical systems with safety standards: A sur-
vey on the state of practice. Information and Software Technology, 60:1
– 15, 2015.

[85] H. Espinoza, A. Ruiz, M. Sabetzadeh, and P. Panaroni. Challenges for an
open and evolutionary approach to safety assurance and certification of
safety-critical systems. In Proceedings of the 1st International Workshop
on Software Certification (WoSoCER), pages 1–6, Nov 2011.

[86] N. Tracey, A. Stephenson, J. Clark and J. McDermid. A safe change
oriented process for safety-critical systems. In Proceedings of the Inter-
national Workshop on Software Change Evolution, 1999.

96

[87] M. Bozzano, A. Cimatti, C. Mattarei and S. Tonetta. Formal safety as-
sessment via contract-based design. In Franck Cassez and Jean-François
Raskin, editors, Automated Technology for Verification and Analysis,
pages 81–97. Springer International Publishing, 2014.

[88] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design.
IBM Syst. J., 13(2):115–139, June 1974.

[89] C. Terwiesch and C H. Loch. Managing the process of engineering
change orders: the case of the climate control system in automobile de-
velopment. Journal of Product Innovation Management, 16(2):160 – 172,
1999.

[90] E. Fricke, B. Gebhard, H. Negele and E. Igenbergs. Coping with changes:
Causes, findings, and strategies. Systems Engineering, 3(4):169–179,
2000.

[91] S. Rajasekar, P. Philominathan, V. Chinnathambi. Re-
search methodology. October 2013. [Online]. Available:
http://arxiv.org/pdf/physics/0601009v3.pdf [Lastchecked]: October
2015.

[92] A. Salameh and O. Jaradat. A safety-centric change management frame-
work by tailoring agile and V-model processes. In Proceedings of the
36th International System Safety Conference (ISSC), Arizona, USA, Au-
gust 2018.

[93] AUTomotive Open System ARchitecture (AUTOSAR).
www.autosar.org/ [Last checked] November 2018.

[94] D. Durisic, M. Staron and M. Tichy. ARCA – Automated Analysis of
AUTOSAR Meta-model Changes. In Preceedings of the 7th International
Workshop on Modeling in Software Engineering, pages 30–35, May 2015.

[95] O. Jaradat, I. Sljivo, I. Habli and R. Hawkins. Challenges of safety assur-
ance for industry 4.0. In European Dependable Computing Conference
(EDCC). IEEE Computer Society, September 2017.

[96] S. Girs, I. Sljivo, and O. Jaradat. Contract-based assurance for wireless
cooperative functions of vehicular systems. In Preceedings of the 43rd
Annual Conference of the IEEE Industrial Electronics Society IECON,
pages 8391–8396, Oct 2017.

[87] M. Bozzano, A. Cimatti, C. Mattarei and S. Tonetta. Formal safety as-
sessment via contract-based design. In Franck Cassez and Jean-François
Raskin, editors, Automated Technology for Verification and Analysis,
pages 81–97. Springer International Publishing, 2014.

[88] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design.
IBM Syst. J., 13(2):115–139, June 1974.

[89] C. Terwiesch and C H. Loch. Managing the process of engineering
change orders: the case of the climate control system in automobile de-
velopment. Journal of Product Innovation Management, 16(2):160 – 172,
1999.

[90] E. Fricke, B. Gebhard, H. Negele and E. Igenbergs. Coping with changes:
Causes, findings, and strategies. Systems Engineering, 3(4):169–179,
2000.

[91] S. Rajasekar, P. Philominathan, V. Chinnathambi. Re-
search methodology. October 2013. [Online]. Available:
http://arxiv.org/pdf/physics/0601009v3.pdf [Lastchecked]: October
2015.

[92] A. Salameh and O. Jaradat. A safety-centric change management frame-
work by tailoring agile and V-model processes. In Proceedings of the
36th International System Safety Conference (ISSC), Arizona, USA, Au-
gust 2018.

[93] AUTomotive Open System ARchitecture (AUTOSAR).
www.autosar.org/ [Last checked] November 2018.

[94] D. Durisic, M. Staron and M. Tichy. ARCA – Automated Analysis of
AUTOSAR Meta-model Changes. In Preceedings of the 7th International
Workshop on Modeling in Software Engineering, pages 30–35, May 2015.

[95] O. Jaradat, I. Sljivo, I. Habli and R. Hawkins. Challenges of safety assur-
ance for industry 4.0. In European Dependable Computing Conference
(EDCC). IEEE Computer Society, September 2017.

[96] S. Girs, I. Sljivo, and O. Jaradat. Contract-based assurance for wireless
cooperative functions of vehicular systems. In Preceedings of the 43rd
Annual Conference of the IEEE Industrial Electronics Society IECON,
pages 8391–8396, Oct 2017.

97

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262
 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 20.9764
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262
 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 20.9764
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262
 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 20.9764
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 541.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262

 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 541.9843
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryList_V1
 qi2base

