
 1

Ada User Journal Volume 22, Number 1, March 2001

ConcertoFLA-based Multi-concern Assurance

for Space Systems

Zulqarnain Haider, Barbara Gallina

Mälardalen University, P.O. Box 883, SE- 721 23 Västerås, Sweden; zulqarnain.haider@mdh.se
barbara.gallina@mdh.se

Anna Carlsson

OHB Sweden, P.O. Box 1269, SE- 16429 Kista, Sweden; anna.carlsson@ohb-sweden.se

Silvia Mazzini, Stefano Puri

Intecs, Italy; silvia.mazzini@intecs.it stefano.puri@intecs.it

Abstract

Space systems often need to be engineered in
compliance with standards such as ECSS and need to
ensure a certain degree of dependability. Given the
multi-faceted nature of dependability (characterized by
a set of concerns), assuring dependability implies
multi-concern assurance, which requires the modelling
of various system characteristics and their co-
assessment and co-analysis, in order to enable the
management of trade-offs between them. CHESS is a
systems engineering methodology and an open source
toolset, which includes ConcertoFLA. ConcertoFLA
allows users (system architects and dependability
engineers) to decorate component-based architectural
models with dependability-related information,
execute Failure Logic Analysis (FLA) techniques, and
get the results back-propagated onto the original
model. In this paper, we present the customization of
the CHESS methodology and ConcertoFLA in the
context of the ECSS standards to enable architects and
dependability engineers to define a system and perform
dependability-centered co-analysis for assuring the
required non-functional properties of the system
according to ECSS requirements. The proposed
customization is then applied in the context of
spacecraft Attitude Control Systems engineering,
which is a part of satellite on-board software.

Keywords: Dependability analysis, Failure Logic
Analysis, Multi-concern, Dependability assurance,
ECSS standard series, CHESS toolset.

1 Introduction

Space systems such as satellites are often required to be

engineered according to the standards such as European

Cooperation for Space Standardization (ECSS) standards.

The ECSS standards address different aspects of space

project ranging from management, space system engineering

and qualification. Due to the critical nature of the space

systems, ECSS puts requirements on the assurance of the

product and its software systems. In particular, ECSS has

standards for software engineering ECSS-E-ST-40C [2], the

assurance of dependability of product ECSS-Q-ST-30C [4],

safety of product ECSS-Q-ST-40C [5], assurance of

software ECSS-Q-ST-80 [3] and assurance of security of

software ESSB-ST-E-008 [1]. To fulfil the requirements of

the standards and provide assurance of dependability, safety

and security, a systematic approach for co-assessment and

co-analysis could have advantages on manifold. For

example, modelling of various system characteristics and

their co-assessment and co-analysis leads to reduction in cost

as well enable the management of trade-offs between these

properties.

CHESS [13] is a methodology and an open source

supporting toolset based upon Papyrus UML [23]. CHESS

is the result of several R&D projects, starting from the

original CHESS (Composition with Guarantees for High

integrity Embedded Software Components Assembly)

ARTEMIS JU project [9] and continuing with CONCERTO

(Guaranteed Component Assembly with Round Trip

Analysis for Energy Efficient High Integrity Multicore

Systems) ARTEMIS JU project [9], to provide a model

based solution to address the challenges of developing

critical real time and embedded systems, by adopting a

component based approach, across several domains of

interest, including space.

The CHESS Modelling Language (CHESSML), part of the

CHESS documentation [9], is based upon UML [22], SysML

[19], MARTE [20] and includes also SafeConcert [14] as its

base for the dependability profile. This profile enables a

support of decorating the component based architectural

models with dependability related information.

ConcertoFLA [6], which is a part of CHESS toolset, utilizes

the decorated components and calculates the failure

behaviour of the composed system, representing the

assembly of these components. The CHESS design

modelling capabilities along with the analysis capabilities

are well supportive and compliant with the ECSS standards

addressing product and software engineering and assurance.

In this paper, we extend our previous work [21] and we

customize the CHESS and ConcertoFLA methodologies in

the context of ECSS. The approach, resulting from the

customization, enables the co-analysis of reliability, safety

and security concerns. Such co-analysis has the potential to

mailto:zulqarnain.haider@mdh.se
mailto:barbara.gallina@mdh.se
mailto:anna.carlsson@ohb-sweden.se
mailto:silvia.mazzini@intecs.it

2 Template for Ada User Journal

Volume 22, Number 1, March 2001 Ada User Journal

contribute in the reduction of cost, complexity and in the

management of trade-offs as well as compliance with the

standards for qualification purposes.

2 Background

In this section, we describe the background concepts. In

particular, Section 2.1 provides the details of ECSS

standards. Section 2.2 describes the ConcertoFLA analysis

process.

2.1 European Cooperation for Space
Standardization (ECSS) standards

ECSS standards cover all the aspects of a space system

project spanning to the management of the project,

engineering space system and its qualification. Assurance of

different properties is an essential part of system

engineering. ECSS provides standards for assurance of

dependability, safety of the system and the software product

as well as security of software. ECSS- E-ST-40C standard is

focused on software part of the space system. The standard

covers all the phases of the development of the software and

puts requirements and principles for software design. For the

assurance of software, the standard refers to the ECSS-Q-

ST-80C.

Following are the ECSS standards related to the system and

the software product assurance, in particular assurance of

dependability, safety and security.

 ECSS-Q-ST-30C, defines the dependability

requirements on space product assurance. In ECSS

scope, the notion of dependability embraces reliability,

maintainability and availability. Unlike, the academic

dependability literature [12], where dependability also

includes safety and security. The standard puts

requirements over dependability analysis and states

“dependability analysis shall be conducted on all levels

of the space system and be performed in respect of the

level that is being assessed i.e., System, Subsystem and

Equipment levels”.

 ECSS-Q-ST-40C, defines the requirements on space

product assurance focused on Safety. The standard

requires that hazard analysis shall be conducted to

identify the hazards. Also, it states that “The fault tree

analysis shall be used to establish the systematic link

between the system level hazard and the contributing

hazardous events and subsystems, equipment or piece

part failure”.

 ESSB-ST-E-008, defines the requirements for secure

engineering of the space software product. The standard

is focused on the security of software product and states

that “The supplier shall perform a cyber-security risk

assessment of the software products in order to

determine the security sensitivity of the individual

software components”.

 ECSS-Q-ST-80C, lists the requirements for software

product assurance with emphasise on dependability and

safety. The standard state “The supplier shall perform a

software dependability and safety analysis of the

software products, in accordance with the requirements

of ECSS-Q-ST-30 and ECSS-Q-ST-40 and using the

results of system level safety and dependability analysis,

in order to determine the criticality of the individual

software components”.

2.2 ConcertoFLA

ConcertoFLA is a tool-supported methodology for the

compositional calculation of the failure behaviour of

component-based systems, based on the failure behaviour of

individual components. The failure behaviour is specified

using an adaptation [8] in the CHESS context of Failure

Propagation Transform Calculus (FPTC) [7] rules. Each

FPTC rule defines the input/output behaviour of a specific

component using a combination of the port name and the

guide-word/failure mode. ConcertoFLA supports three types

of failure modes with two specializations for each – the

failure modes are value (coarse/subtle), timing (early, late),

provision (omission, commission). Using the FPTC rules,

four different behaviours of a component can be defined,

which are as following:

 Propagator, a component propagates the fault it received

on its input port to the output port without changing the

type of the fault.

 Transformer, component transform the fault received on

its input port into another type of the fault.

 Sink, component sinks the fault it receives on its input

port and produces no fault on its output port.

 Source, component is the source of the fault on its

output port and received no fault on its input port.

3 ECSS-compliant Multi-concern
assurance approach

As recalled in Section 2.1, ECSS standards require the

assurance and analysis of several non-functional properties

of the system. The CHESS methodology and ConcertoFLA,

recalled in Section 1, are customized for performing multi-

concern assurance, focusing on three concerns, i.e., safety,

security, and reliability. The overall approach, resulting from

the customization, consists of five activities, as the activity

diagrams, depicted in Figure 1, shows. These activities are:

1. System design- The system architecture is specified

using CHESSML. First, all the components in isolation

are specified and then assembled.

2. Individual component failure behavior specification

using FPTC rules. As stated in Section 2.2, the failure

modes used are of high abstraction. The advantage of

this abstraction is the support for the assembly of

heterogeneous components e.g., developed in different

domains with different specialized terminology. In this

paper, the above-mentioned abstraction facilitates the

interpretation of the failure modes for different

concerns.

3. Behaviour injection and ConcertoFLA execution to

calculate the failure behavior at system level. The

A N Author 3

Ada User Journal Volume 22, Number 1, March 2001

analysis generates failure propagation paths, which

consist of the sequences of the possible events leading

to the system level failures, as a consequence of the

injected behavior (including fault(s) injection, i.e.,

failure(s) of preceding systems feeding the system under

analysis as well as normal behaviour to potentially

detect components acting as sources).

4. Interpretation (conducted manually) of the analysis

results for multi-concern e.g., reliability, safety and

security concerns. Next, a trade-off is calculated

between these properties. Base on the interpretation for

multi-concern and trade off, dependability means are

introduced by refactoring the system design, if the

certain level of dependability is not achieved.

Figure 1 Multi -concern assurance approach

4 Application of Approach to Attitude
Control System Engineering

In this section, first we describe the space system used for

illustration purposes, then, we apply our approach to it.

4.1 Attitude Control System (ACS)

The ACS of a satellite is an on-board subsystem that controls

the orientation of the satellite, relative to a reference frame,

in space. For projects developed for European Space Agency

(ESA), an ACS is normally developed according to ECSS

standards, therefore its engineering is required to comply

with the ECSS standards and a certain level of dependability,

safety and security of software is assured. ACS engineering

includes activities spanning performance analysis, budgets,

procurement and dimensioning of sensors and actuators etc.,

along with the ACS development. ACS development refers

to the development of ACS application software and its

associated algorithms.

The ACS (application) software takes sensor data containing

information about the current state of the satellite and

computes the control torque to be applied to the satellite

body in order to achieve its target state. To do this, ACS has

three functions i.e., process unit data, state estimation and

computation of the control torques to minimize the

difference between current and target state. ACS has

different operational modes, which involves different

devices and reflects the mission requirements. For example,

in Sun Acquisition and Survival Mode (SASM) it is required

to control the orientation of the satellite relative to the Sun

to ensure sufficient solar power to the system. The SASM

normally takes inputs from sun sensors and a gyroscope to

compute a torque that is applied to the satellite body e.g.

using propulsion thrusters.

4.1 Application

We apply our approach to the ACS in SASM mode. We limit

the scope of functions of ACS to the control function, which

maintains the target state in response to the estimated state.

The functional requirements of control function in SASM

mode are as following.

The sun acquisition control function shall compute and

output a control torque based on PD controller, gyroscopic

torque compensation and deadband filter in order to point the

satellite (its reference direction) at the Sun.

To design the system with above-mentioned requirement, a

component based model is defined using CHESS modelling

environment. Figure 2 shows the assembly of the following

four components implementing the SASM control function

requirement.

 PDController, computes the proportional and derivative

torque to orient the satellite relative to the Sun.

 SteerController, computes the proportional torque using

different gains and control law.

 FeedforwController, compensates for the gyroscopic

coupling.

 TorqueSelector, selects the control torque based on the

current state of satellite via choosing between two

control strategy to enhance the performance and fast

convergence to the target orientation.

Figure 2 Component based design of ACS

4 Template for Ada User Journal

Volume 22, Number 1, March 2001 Ada User Journal

The next step, after system definition, is to model

dependability and perform ConcertoFLA analysis. In this

regard, we modelled the failure behaviour of components as

a propagator and injected the system with the failure of type

“value”. It has been assumed that the injected failure, is due

to the failure in state estimation unit of satellite and refers to

the “state estimator unit provides inaccurate value” failure.

Upon execution of ConcertoFLA analysis, the failure

propagation paths are generated providing the failure

behaviour at system level. To interpret the results for

reliability, a fault tree can be constructed manually following

the failure propagation paths. The system level failure,

which refers to the “ACS computing inaccurate torques” is

due to the value failure at “ctrlTorque” output port of ACS

system. A partial manually constructed fault tree is depicted

in Figure 3. To interpret the results for safety concern, the

top event of the fault tree refers to a hazardous event, which

is the combination of system level failure and the operational

situation e.g., “ACS computing inaccurate torques in SASM

mode” leads to a catastrophic consequences. To interpret the

results for the security, the top event of fault tree refers to a

security threat which is loss of one or more security

properties i.e., confidentiality, integrity and availability.

Figure 3 Manually constructed partial fault tree adapted

from [18]

5 Conclusion and Future work

In this paper, we presented the customization of the CHESS

methodology and ConcertoFLA in the context of the ECSS

standards to enable architects and dependability engineers to

define a system and perform dependability-centered co-

analysis for assuring the required non-functional properties

of the system according to ECSS requirements. Then, we

applied our customization in the context of the Attitude

Control Systems engineering.

From that application it emerged that CHESSML is

appropriate to design the ACS in compliance with the

requirements of ECSS-E-ST-40C. More precisely, the

CHESSML based design complies with Section 5.4.3 of that

standard, which is focused on the software architectural

design and requires the component based design. The

analysis part of CHESSML i.e., ConcertoFLA supported the

requirements focused on the assurance of software

reliability, safety and security. Moreover, the certifiable

evidences could be manually constructed to support the

qualification process.

We also observed that the employment of CHESS toolset

supports the end to end process, where the functional design,

annotated with non-functional properties and assurance

support, could shorten the feedback loop for mastering the

improved design as well as reduces the complexity.

In the future, we plan to provide tool support for the manual

interpretation and construction of evidences for multi

concerns. In this regard, our recent work [16] automatically

generates the fault tree for reliability from the ConcertoFLA

results.

Acknowledgements

This work is supported by the EU and VINNOVA via the E

CSEL project AMASS (No 692474) [17] [15].

References

[1] ESSB-ST-E-008 - Secure Software Engineering

Standard, 2016

[2] ECSS-E-ST-40C, Space engineering - Software,

06/03/2009.

[3] ECSS-Q-ST-80C, Space product assurance - Software

product assurance, 06/03/2009.

[4] ECSS-Q-ST-30C, Space product assurance -

Dependability, 06/03/2009.

[5] ECSS-Q-ST-40C, Space product assurance - Safety,

06/03/2009.

[6] Gallina B., Sefer E., Refsdal A. Towards Safety Risk

Assessment of Socio‐Technical Systems via Failure

Logic Analysis. IEEE International Symposium on

Software Reliability Engineering Workshops, Naples,

pp. 287‐292. 2014.

[7] Wallace M. Modular architectural representation and

analysis of fault propagation and transformation.

Electronic Notes in Theoretical Computer Science,

volume 141 n.3, pp. 53‐71, December, 2005.

[8] Gallina B., Javed M.A., UL Muram F., Punnekkat S. A.

Model‐Driven Dependability Analysis Method for

Component‐Based Architectures. 38th Euromicro

Conference on Software Engineering and Advanced

Applications (SEAA) Cesme, Izmir, pp. 233‐240. 2012.

[9] CHESSML https://www.polarsys.org/chess/start.html

[10] ARTEMIS-JU-100022 CHESS- Composition with

guarantees for High integrity Embedded Software

components assembly. http://www.chess-project.org

A N Author 5

Ada User Journal Volume 22, Number 1, March 2001

[11] ARTEMIS-JU CONCERTO - Guaranteed Component

Assembly with Round Trip Analysis for Energy

Efficient High-integrity Multi-core systems.

http://www.concerto-project.org

[12] A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr.

Basic concepts and taxonomy of dependable and secure

computing. In: IEEE Trans. Dependable Sec. Comput.

1(1): 11-33, 2004.

[13] Mazzini S., Favaro J., Puri S., Baracchi L. CHESS: an

open source methodology and toolset for the

development of critical systems. Third Workshop on

Open Source Software for Model Driven Engineering.

OSS4MDE. 2016.

[14] Montecchi L. and Gallina B. SafeConcert: a Metamodel

for a Concerted Safety Modeling of Socio-Technical

Systems. 5th International Symposium on Model-Based

Safety and Assessment (IMBSA), Trento, Italy,

September, 2017.

[15] Ruiz A., Gallina B., de la Vara J.L., Mazzini S.,

Espinoza H. Architecture‐driven, Multi‐concern and

Seamless Assurance and Certification of Cyber‐

Physical Systems. Computer Safety, Reliability, and

Security. SAFECOMP. LNCS, vol 9923. Springer.

2016.

[16] Haider Z., Gallina B. and Zornoza. E. M. “FLA2FT:

Automatic generation of fault tree from ConcertoFLA

results” 3rd International Conference on System

Reliability and Safety (ICSRS), Barcelona, 2018.

[17] AMASS, http://www.amass‐ ecsel.eu

[18] Gallina B., Haider Z. and Carlsson A. Towards

generating ECSScompliant fault tree analysis results via

ConcertoFLA, IOP Conference Series: Materials

Science and Engineering, 2018.

[19] SysML v1.4 Specification Release September 2015

http://www.omgsysml.org/specifications.htm

[20] MARTE www.omg.org/spec/MARTE/About-

MARTE/

[21] Gallina B., Haider Z., Carlsson A., Mazzini S., Puri S.

Multi-concern Dependability-centered Assurance for

Space Systems via ConcertoFLA. 23rd International

Conference on Reliable Software Technologies-

Industrial Presentation Track (Ada-Europe), Lisbon,

Portugal, June 18-22, 2018.

[22] UML, www.omg.org/spec/UML/2.5.1/

[23] Papyrus, www.eclipse.org/papyrus/

http://www.concerto-project.org/
http://www.omgsysml.org/specifications.htm
http://www.omg.org/spec/MARTE/About-MARTE/
http://www.omg.org/spec/MARTE/About-MARTE/
http://www.eclipse.org/papyrus/

