Bounded Invariance Checking of Simulink Models

Predrag Filipovikj
Mälardalen University
Västerås, Sweden
predrag.filipovikj@mdh.se

Guillermo Rodriguez-Navas
Mälardalen University
Västerås, Sweden
guillermo.rodriguez-navas@mdh.se

Cristina Seceleanu
Mälardalen University
Västerås, Sweden
christina.seceleanu@mdh.se

ABSTRACT

Currently, Simulink models can be verified rigorously against design errors or statistical properties.

In this paper, we show how Simulink models can be formally analyzed for invariance properties using bounded model-checking reduced to satisfiability modulo theories solving. In its basic form, the technique provides means for rigorous verification of an underlying model over bounded traces, however, in general the procedure is incomplete. We identify common Simulink block types and compositions by analyzing selected industrial models, and we show that for some of them the set of non-repeating states (reachability diameter) can be visited with a finite set of paths of finite length, yielding the verification complete. We complement our approach with a tool, called SyMC that automates the following: i) calculation of the reachability diameter size for some of the designs, ii) generation of finite (bounded) paths of the underlying Simulink model and their encoding into SMT-LIB format, and iii) checking invariance properties using the Z3 SMT solver. To show the applicability of our approach, we formally analyze the Simulink model of a prototype industrial system, namely the Brake-by-Wire system from Volvo Group Trucks Technology, Sweden.

CCS CONCEPTS

• Applied computing • Software and its engineering → Software notations and tools: Formal software verification

KEYWORDS

Simulink, Formal verification, Bounded invariance checking

ACKNOWLEDGEMENTS

This work has been funded by the Swedish Governmental Agency for Innovation Systems (VINNOVA) under the VeriSpec project 2013-01299.

1 INTRODUCTION

Simulink is a graphical development environment that supports system-level design, simulation, continuous verification and automatic code generation for embedded systems. Due to all these features, it is used as the de-facto standard model-based development tool in many domains such as the automotive and avionics ones. To assure the quality of the Simulink models, industry has become interested in adopting formal verification techniques, which bear the advantage of being systematic and sometimes exhaustive. One of the commonly-used tools is the Simulink Design Verifier, a formal verification suite provided by Mathworks based on the Prover plug-in [22]. The tool is suitable for finding design errors such as buffer overflows, division by zero, array access violations, etc., but not for proving complex invariance properties or properties that involve timing constraints [20]. Model checking [8] is a suitable candidate for verification of industrial designs with respect to the aforementioned properties, however, despite the drastic improvements in the memory efficiency, it still falls short of verifying complex models mainly due to their large state space. To cope with this challenge, there are solutions that resort to statistical model checking (SMC) [15, 19] for analyzing properties of industrial-size examples of Simulink models. Despite the fact that the method is not exhaustive, the SMC approach is rigorous and scalable. On the down side, the verification result comes as a probability estimation accompanied by a confidence interval that a given property is satisfied, which does not provide usable feedback to the designers for the purpose of refining the model.

One way forward is to resort to a different type of model checking called bounded model checking (BMC) [4]. BMC is a specialized model checking technique, tailored for checking system properties over bounded executions of the model, up to some predefined bound k. This characteristic makes it similar to SMC and suitable for checking industrial designs with large state spaces, while still being able to generate counter-example execution traces in case an invariance property is violated. Additionally, the set of reachable states of an underlying model in BMC is encoded as a set of propositional formulas, which means that the model checking is then reduced to a satisfiability problem. This way of exploring the state space has been shown to scale well when applied on industrial embedded software [26].

In this paper, we propose an approach for bounded invariance checking of Simulink models based on the principles of BMC. The main idea behind our approach is that instead of using state-of-the-art model-checking tools, we automatically generate a bounded reachable state space of a given Simulink model and directly encode it as a set of satisfiability modulo theory (SMT) constraints. Additionally, we investigate whether there are commonly used designs of Simulink models for which the complete set of reachable non-repeating states also known as the reachability diameter [4] can be visited using paths of finite length. We base our method on the execution semantics of Simulink blocks and models proposed previously in the literature [14]. Assuming the former defined, we automatically generate the set of bounded execution paths for a given Simulink model and encode them as a set of SMT assertions. For the analysis of such models with respect to invariance properties we use the Z3 SMT solver [9]. In order to determine the completeness of the bounded invariance-checking procedure we perform the following: i) we isolate commonly used Simulink designs (compositions of blocks) from two industrial Simulink models, namely Brake-by-Wire (BBW) and Adjustable Speed Limiter (ASL) systems, both from Volvo Group Trucks Technology (VGTT), and ii) we create different configurations by instantiating different block types...
2 PRELIMINARIES

In this section, we briefly overview Simulink and its formal semantics, satisfiability modulo theories and bounded model checking.

2.1 Simulink

Simulink is an integrated environment for model-based development of multi-domain dynamic systems. It provides a graphical user interface with modeling functionalities, extensions for simulation and verification of the underlying models and automatic code-generation, making it appealing to industrial practitioners.

A Simulink model represents a hierarchical diagram composed out of various types of blocks interconnected with signals that model the control and data flow inside the model. In this paper, we use the terms signal and variable interchangeably. An illustrative example is given in Figure 1a, where the blocks are denoted using squares and triangles, signals via directed lines, and input and output ports as ovals.

The fundamental building units of a Simulink model are the atomic blocks that model either a basic input-output relation (ex: Gain, Subtract in Figure 1a) or generate signal values (ex: Constant in Figure 1b). A hierarchical Simulink model of an arbitrary depth is created using composite blocks (SubSystems) (ex: SubSystem1 in Figure 1a).

Unlike atomic blocks that have a predefined input-output mapping function, the input-output function of the composite blocks is realized through a set of atomic blocks. Consequently, any hierarchical Simulink model can be flattened by removing the composite blocks without altering its behavior [14]. Each signal in a Simulink model has at most one source block and one or more destination blocks. The source block has write access over the signal, and controls its value, whereas the destination blocks have read access only.

A Simulink simulation represents a sequential valuation of the signals in the model for a finite amount of time, denoted as T_{sim}. The sequential order at which the atomic blocks are executed during simulation is called sorted order or slist. Each block has a unique execution order number (s_n). The notion of time of a Simulink simulation is modeled via two simulation steps: major (T_{maj}) and minor (T_{min}) simulation steps. T_{maj} represents an integer fraction of the T_{maj} and is used to improve the accuracy of the numerical computation for the signals’ values. Continuous-time blocks perform computation at each T_{min}, whereas the discrete-time blocks compute their outputs at specific time points. The distance between two executions of a discrete-time block is an integer number of T_{maj}, called sample time. Additionally, Simulink allows delaying the first execution of some discrete-time blocks through a feature called offset, expressed as an integer number of T_{maj}. Any block in a given Simulink model can operate in discrete-time manner if a sample time is specified.

2.2 Formal Semantics of Simulink

In this section, we present the formal definitions for the atomic Simulink block and Simulink model, respectively, introduced in our previous work on formal analysis of Simulink models using statistical model checking [14].

The syntax of an atomic Simulink block (B) is given as the following tuple:

$$B = (s_n, V_{in}, V_{out}, \Delta, init, blockRoutine)$$

where:

(i) $s_n \in \mathbb{Z}^+$ is the execution order number;
(ii) V_{in} represents the finite (possibly empty) set of real-valued input variables;
(iii) V_{out} represents the finite (possibly empty) set of real-valued data variables;
(iv) V_{out} represents the finite non-empty set of real-valued output variables;
(v) $\Delta = \{\Delta_0, \Delta_1, \ldots, \Delta_k\}$ represents the totally ordered set of time points at which an output value is produced. For discrete-time Simulink blocks, the value of each time point Δ_j is calculated as $\Delta_j = offset + j \cdot t_s$, where: t_s, offset $\in \mathbb{R}_{\geq 0}$ are the sample time and the offset of the atomic Simulink block, respectively, and $0 \leq j \leq k \in \mathbb{N}$ is the index of time point. For continuous blocks, $\Delta_j = j \cdot t_{min}$.
(vi) $init()$ is the initialization procedure that initializes the internal state variables of the block to the configuration parameters.
(vii) blockRoutine() : $V_{in} \times V_D \rightarrow V_{out}; V_{in} \times V_D \rightarrow V_D$ is sequential update first of the outputs followed by the update of the internal state variables.

We assume that all the time points in Δ from Formula (1) can be expressed as an integer multiple of Simulink simulation steps, which represents the basic quanta of time in the system as follows: $\Delta_j = j \ast (m \ast \delta) + (r \ast \delta)$, n, m and $r \in \mathbb{N}$ (here δ corresponds to T_{min} simulation step). Also we assume that $x \in V_{in}, u \in V_D$ and $y \in V_{out}$ represent input, internal state (data) and output variables, respectively.

The operational semantics of a Simulink block can be interpreted over a timed transition system T, defined as follows:

$$T = (\Sigma, \Sigma_0, L, \rightarrow)$$

where: Σ is the set of states, where each state $\sigma = (x_i, u_i, y_i)$ is given by the values y_i of all output variables y at a given time instance $t \in \mathbb{R}_{\geq 0}$, for given input at time t, that is, x_i, and data at time t, that is, $u_i, \Sigma_0 \subseteq \Sigma$ is the set of initial states, $L = L_i \cup L_t$ represents the set of labels, where $L_i = \{init, blockRoutine\}$ is the set of action labels and $L_t = \{m \ast \delta, r \ast \delta\}$ is a set of time labels, and $\rightarrow \subseteq \Sigma \times L_a \times L_t \times \Sigma$ is the transition relation that consists of the following types of transitions:

$$\sigma_0 \xrightarrow{\text{init}, r \ast \delta} \sigma \iff
\begin{cases}
\text{if } V_D \neq \emptyset \text{ then } t = t_0 + (r \ast \delta), \text{ and} \\
\text{init}() : u = u_0, y_0 = u \\
\text{else } t = t_0 \text{ and init}() : \text{void}
\end{cases}$$

\begin{equation}
\sigma \xrightarrow{\text{blockRoutine}, m \ast \delta} \sigma' \iff t' = t + m \ast \delta, \text{ and} \\
u' = f(x', u), y' = f(x', u')
\end{equation}

The first transition type called init is executed once at the beginning of the blocks’ execution only for those which have an internal state, whereas the second type of transitions called blockRoutine perform update of the internal state (if any) and the output variables for given inputs at particular time points denoted as $t + m \ast \delta$. If in the definition of Δ we instantiate $r = m = 1$ we obtain the continuous-time behavior of a blocks that execute the blockRoutine infinitely often, that is at every simulation step δ.

From the above definition, an infinite run ρ of a Simulink block can be defined as the following sequences of states:

$$\sigma_0 \xrightarrow{\text{init}, r \ast \delta} \sigma_1 \xrightarrow{\text{blockRoutine}, m \ast \delta} \ldots \xrightarrow{\text{blockRoutine}, m \ast \delta} \sigma_n \xrightarrow{\text{init}, r \ast \delta} \sigma_1 \xrightarrow{\text{blockRoutine}, m \ast \delta} \ldots$$

A Simulink model (S) is defined as a sequential composition of atomic Simulink blocks, as follows:

$$S = B_1 \otimes B_2 \otimes B_3 \ldots \otimes B_n$$

where: $s_{ns} = \bigcup_{i=1}^{n} s_{ni}$ is an ordered list of execution with $\forall(i,j),$ $i < j \Rightarrow s_i \subset s_j$, $V_{inS} = \bigcup_{i=1}^{n} V_{inS_i}$, $V_{outS} = \bigcup_{i=1}^{n} V_{outS_i}$, $V_{DS} = \bigcup_{i=1}^{n} V_{D_{si}}$, the being the sets of input, output and internal state variables, $\Delta_S = \bigcup_{i=1}^{n} \Delta_i$ represents the set of time points at which the variables are updated, $(init)_S \triangleq (init1)|_{r \ast \delta \ast \delta}, (init2)|_{r \ast \delta \ast \delta}$; $\ldots ; (init_n)|_{r \ast \delta \ast \delta}$ is an ordered list of block initialization functions, and $(blockRoutine)_S \triangleq (blockRoutine1)|_{\Delta_1 \ast \Delta_2 \ast \Delta}; (blockRoutine2)|_{\Delta_2 \ast \Delta_3 \ast \Delta}; \ldots ; (blockRoutine_n)|_{\Delta_n \ast \Delta}$ is an ordered list of block input-output relations executed atomically at given times Δ_i. The blocks in the sequential composition communicate via shared variables.

2.3 Satisfiability Modulo Theories and Z3

The problem of determining whether a Boolean formula can be made true by assigning true/false values to the constituent Boolean variables is called the Boolean satisfiability problem (SAT). If a given Boolean formula is satisfiable, the boolean decision procedure generates a valuation of the variables such that the formula is true. In the opposite case, there exists no valuation for the constituent variables that will make the formula true. Satisfiability Modulo Theories (SMT) represent an extension of SAT, where some of the symbols are interpreted by a background theory [10]. For instance, the proposition might contain a variable of type integer over which arithmetic operations are applied.

In our work we use the Z3 tool [9] from Microsoft Research, which is a state-of-the-art SMT solver and theorem prover. The input to the tool is a script specified in the SMT-LIB language [2]. The satisfiability of the formulas given in the input script is checked via the check-sat command. If the set of formulas is satisfiable Z3 returns SAT. In the opposite case Z3 returns UNSAT. There are additional commands that provide more information for SAT and UNSAT cases, respectively. The get-model command returns an interpretation that makes the set of input formulas true. On the other hand, the unsat-core command returns the minimal inconsistent set of formulas.

2.4 Bounded Model Checking

Bounded model checking (BMC) [4] is a specialized model checking technique for verification of system properties over executions of finite length. The length of the paths is called bound and is usually denoted as k. Initially proposed as an efficient refutation technique, it has been shown that BMC can also be used for full verification of underlying designs [11].

Let M be the system model with set of states $S, I \subseteq S$ be the set of initial states and a state transition relation T, which is a binary relation on S. We write $T(s, s')$ to indicate that the state s is related to state s' via the transition relation T. Based on this, we define a path in M as follows:

$$path(s_{[0,\ldots,i]} : \bigwedge_{i \leq i \leq n} T(s_i, s_{i+1}), \forall i : 0 \leq i < n$$

Consequently, any sequence of states that satisfies Formula (7) is a valid path in M. The size of a path is determined by the number of transitions taken. An invariance property (P) is a property that holds in every reachable state in model M, or formally expressed:

$$\forall s_0, \ldots, s_n, \forall i : 0 \leq i \leq n \cdot (I(s_0) \wedge path(s_{[0,\ldots,i]})) \Rightarrow P(s_i).$$

Where $P(s_i)$ is a predicate denoting that a given state s_i satisfies property P. Using this definition, one starts from the set of initial states $I(s_0)$ and repeatedly applies the transition relation T, and each new state satisfies P. This is called forward reachability. The same property can be checked using backward reachability, where the idea is to start from a non-initial state in which P does not hold,
and then show that it is not possible to reach an initial state by applying the inverse transition relation. The backward reachability is formulated as follows:

$$\forall s_0, \ldots, s_n, \forall i \cdot 0 \leq i \leq n \cdot \neg (P(s_i) \land \text{path}(s_0, \ldots, i)) \implies R(s_0)$$ \hspace{1cm} (9)

In any case, one can prove that the model M satisfies an invariance property P by proving the following conjunction:

$$\forall s_0, \ldots, s_n, \forall i \cdot 0 \leq i \leq n \cdot \neg (\neg (P(s_i) \land \text{path}(s_0, \ldots, i))) \land \neg (P(s_i))$$ \hspace{1cm} (10)

where n denotes the length of the longest path of non-repeating states, defined as follows:

$$\max\{i\mid \exists s_0, \ldots, s_i \cdot I(s_0) \land \bigwedge_{j=0}^{i-1} T(s_j, s_{j+1}) \land \bigwedge_{j=0}^{i-1} \bigwedge_{m=j+1}^{i} s_j \neq s_m\}$$ \hspace{1cm} (11)

Provided that the transition relation $T(s, s')$ can be expressed as a predicate, it is clear how the reachability problem can be reduced to a satisfiability problem. In cases when the transition relation T is constrained by a background theory, SMT is applied. This representation of the transition relation and the reachability procedure gives advantage to BMC over the BDD-based symbolic model checking, as follows: i) it alleviates the infamous state-space explosion of model checking, and ii) it is very efficient for fast detection of errors in bounded traces up to 100 transitions [4].

The BMC procedure terminates when one of the following two conditions is fulfilled: i) Formula (10) cannot be satisfied, or ii) a predefined number of transitions (denoted as k) of the transition relation has been reached. The termination in the first case is due to the fact that a state that does not satisfy property P is detected, in which case a counter-example is generated. In the second case, all of the states along the generated path satisfy property P. When the procedure terminates according to the second case, the property is proven to hold until the bound, but not beyond that. This yields the procedure incomplete, as there is no information whether the states reachable beyond k satisfy the property or not. However, there are some designs in which the paths might be infinite, yet the set of non-repeating states is finite and all of them are reachable within k. Such designs usually contain a back loop in the transition relation, meaning that $T(s_j, s_j)$ represents a transition from some current state s_j to a state s_j that has been previously visited. The minimal path that contains the complete set of non-repeating states is called the reachable diameter, and its size is called completeness threshold (CT). The existence of the reachability diameter of finite size allows one to perform complete verification of invariance properties in general, as well as a restricted class of liveness properties [18] over models with infinite state space.

In our work, we use Formula (10) to check invariance properties over bounded executions of Simulink models.

3 INDUSTRIAL USE CASES

In this section we present the industrial systems, namely ASL and BBW both from VGTT, whose Simulink models we analyze here.

Adjustable Speed Limiter. ASL is an operational software function integrated into the modern heavy load vehicles produced by Volvo GTT. The intended functionality of the system is to control the servomechanism of the vehicle in order to limit the vehicle speed such that it does not exceed the predefined threshold defined by the driver. ASL is an ASIL-A safety critical system [1]. Its specification consists of more than 300 requirements at the system level, which cover the correct functioning of the system with respect to: i) variability, modes of operation, vehicle and engine speed; ii) road conditions, maintaining smooth driving experience in various road conditions such as flat or up/downhill roads, and iii) driver’s requests that are passed to the function via the provided human machine interface, etc.

The complete ASL system consists of 22 modules, each of them realized in a separate Simulink model file. The total number of Simulink blocks inside the ASL system exceeds 4000. For this paper, we have used only two of the modules, called the Engine Manager and the Road Speed Limit Manager.

Brake-by-Wire. BBW is a prototype implementation of a software function that controls the breaking system of a vehicle equipped with an anti-lock breaking system. It is realized completely in electronics, thus eliminating all mechanical connections between the braking pedal (the sensor) and the four brake actuators on the wheels. The breaking sensor installed in the car cabin reads the position of the brake and sends it to the main computational module, which then computes the brake torque to be applied on the wheels. The rotational speed of the wheels is monitored by sensors installed on all wheels. The ABS functionality is applied if the velocity of the vehicle exceeds some predefined threshold, which prevents the wheels from locking and skidding.

The BBW function is implemented as a Simulink model composed of 320 blocks. The system specification of the BBW that describes the intended functionality consists of 13 functional, and 4 timing requirements.

4 COMMON BLOCKS AND COMPOSITIONS

In this section, we first describe the commonly-occurring Simulink block types and compositions that we identify by studying the Simulink models of ASL and BBW, and give formal definitions to the latter. Next, we investigate whether there exists a finite bound k which represents the CT for the identified compositions.

4.1 Identified Block Types

The atomic Simulink blocks used in the industrial use cases (see Section 3) belong to the following types: feedthrough, delay, and SFunction. In the following, we discuss in more details the specific block types and their characteristics relevant for this work. Additionally, we assume that all signals in the model are scalars.

Feedthrough (FT) blocks. FT represents a category of basic Simulink blocks characterized by the absence of an internal state and by the immediate execution of the block routine when the input(s) change(s). Some examples of feedthrough blocks include: relational, logic and arithmetic operators, etc. The type of the block is determined by the type of the transfer function ($f()$) in Formula (4). For simplicity, in our work, we assume that the number of arguments in the transfer function can be arbitrary, but it always has only one output that is scalar. Having more than one output of the transfer function does not influence the formalization or the implementation, as long as they are scalars.
Based on the possible transitions for atomic Simulink blocks given by Formulas (3) and (4), the execution trace of a feedthrough block \(B_{ft} \), with \(V_{inB_{ft}} \) the set of input variables, \(V_{outB_{ft}} \) the set of output variables, and the value of any variable \(y_{B_{ft}} \in V_{outB_{ft}} \) in any state \(\sigma_{B_{ft}} \) of Formula (5) (denoted as \(y_{iB_{ft}} \)), is always defined as follows:

\[
y_{iB_{ft}} = f_{B_{ft}}(x_{iB_{ft}}),
\]

where \(x_{iB_{ft}} \) and \(y_{iB_{ft}} \) are the valuations of the \(x_{B_{ft}} \in V_{inB_{ft}} \) and \(y_{B_{ft}} \in V_{outB_{ft}} \) in a given state \(\sigma_{B_{ft}} \), respectively.

Delay blocks. The blocks of this category delay the input value for a certain period of time. There are various block types in this category. In the industrial use cases considered in this paper, only the UnitDelay and RateTransition types of delay blocks are used. RateTransition blocks are in fact a generalization of UnitDelay with many modes of operation, for instance: ZOH (Zero-order-hold), 1/2 (UnitDelay), Buf (semaphore-controlled copying of the input to the output), NoOp (does nothing), etc. In the considered industrial models, all of the RateTransition blocks operate as UnitDelay in a discrete-time manner \((ts > 0)\). The offset of the delay blocks is always 0.

The execution semantics of a UnitDelay block \(B_D \) is given as follows: before the first computation, the \(\text{init}() \) transition is executed, setting \(u_{B_D} \in V_{DB_D} \) to the initial value \((\text{init}V)\) as specified in the block’s configuration. After the first block starts, the block executes its blockRoutine(). If we assume that \(t \) denotes the time that has elapsed along the execution of the block (Formula (5)), the blockRoutine() is executed whenever \(t \mod ts = 0 \). Consequently, the values of the output variable \(y_{B_D} \) of a UnitDelay block are defined as follows:

\[
\begin{cases}
 u_{iB_D} = \text{init}V, \text{ executed before the execution starts} \\
 y_{B_D} = u_{iB_D}, \text{ if} \ t \mod ts = 0
\end{cases}
\]

SFunctions. In Simulink one can extend the set of predefined block types via the concept of SFunction. In order to define a custom block, one first needs to implement the block routine in either Matlab, C, or Fortran. Once the transfer function is implemented, the block is then wrapped with a mask that makes it look like any other block. The purpose of defining a mask is to encapsulate the block routine, and to provide an I/O interface representing the input(s) and the output(s) of the computation, respectively. In our use cases, the SFunctions are either stateless or the internal state is constant, that is, it does not change during execution. Due to this, all the SFunction blocks are treated as feedthrough ones.

4.2 Identified Compositions

The structural analysis of the industrial use cases shows that in principle there are two major designs of blocks compositions: linear and feedback-loop ones. The term composition is used to denote a subset of atomic blocks of a Simulink model, which in isolation can be treated as a Simulink model. Consequently, the syntax and semantics definitions for Simulink models apply to compositions as well. In this section, we provide definitions for the identified compositions.

Linear composition. This is the most common composition of Simulink blocks. An illustrative example of a linear composition is given in Figure 2, and it consists of four blocks \((B_1, B_2, B_3, B_4)\) and six signals \((\text{input}_1, \text{input}_2, \text{y}_1, \text{y}_2, \text{y}_3, \text{y}_4)\). The main characteristic of the linear compositions is that the signals propagate in one direction, meaning that the current value of any output signal depends on the current value of the input signal(s) and internal state variables only. For instance, let us consider the signal \(\text{y}_4 \) from Figure 2. The value of the signal can be computed using a function obtained as a sequential (forward) composition of transfer functions of the predecessor blocks \(y_{B_4} = f_3(f_2(\text{input}_2), f_1(\text{input}_1)) \), where \(f_1, f_2 \) and \(f_3 \) are the transfer functions of \(B_1, B_2 \) and \(B_3 \), respectively and \(\text{input}_1 \) and \(\text{input}_2 \) are the inputs. Based on this, we define a linear composition as follows:

Definition 2. Let \(B_1, B_2, \ldots, B_n \) be a set of \(n \in \mathbb{N} \) atomic Simulink blocks with their sets of input and output variables \(V_{inB_m}, V_{outB_m} \), for any \(m \in \{0, n\} \) and execution traces \(\rho_{B_m} = \sigma_{B_m0}, \sigma_{B_m1}, \ldots, \sigma_{B_m} \), \(m \leq n \), respectively. Let \(u_{B_m} \in V_{inB_m} \) be the output signal variable of \(B_m \), and \(y_{B_m} \in V_{outB_m} \) be its valuation in a given state \(\sigma_{B_m} \). We say that composition \(C \) is linear if \(\forall m \cdot 0 \leq m < n \cdot \forall y_{B_m}, \forall y_{B_m} \cdot 0 \leq j < k_{B_m} \cdot \forall y_{B_m} \cdot \forall y_{B_m} \cdot 0 < z < n \cdot (y_{B_m} \neq f_{B_m}(y_{B_m}) \land y_{B_m} \neq f_{B_m}(f_{B_m}(...(f_{B_m}(y_{B_m})))) \land \exists \text{input}_j \in V_{inB_m}) \).

Feedback-Loop composition. The second design pattern identified in the industrial use cases is the feedback-loop composition.
In contrast to the linear composition, in the feedback-loop composition there exists at least one output signal for which the current value is computed based on some of its previous values. Formally, we define a feedback-loop composition as follows:

Definition 3. Let \(C = B_1 \otimes B_2 \otimes \cdots \otimes B_n \) be a composition of atomic Simulink blocks \(B_1, B_2, \ldots, B_n \) defined as in **Definition 2.** The composition \(C \) is feedback-loop if \(\exists y_{B_1}, v_{B_1}, 0 < j \leq k_{B_1}, 3 \exists r : j < r \leq k_{B_1}, 3m \neq i, 0 < m < n \cdot (y_{B_1} = f_{B_1}(v_{B_1}) \lor y_{B_1} = f_{B_1}(f_{B_2}(\cdots(f_{B_n}(y_{B_1}))))) \).

This broad definition for the feedback-loop composition incorporates both direct and indirect feedback loops. A direct feedback-loop assumes that the feedback signal is input to the current block \(B \) \((y_B = f(y_B))\), whereas an indirect one assumes that the feedback signal is used as an input signal to some of the predecessors of \(B \), and it eventually becomes an input of the current block \((y_{B_n} = f_{B_n}(\cdots f_{B_2}(y_{B_1})))\). An illustrative example of an indirect feedback-loop composition is given in Figure 3, which is composed of three blocks \((B_1, B_2, B_3)\) and four signals \((input, y_{B_1}, y_{B_2}, y_{B_3})\), with \(y_{B_3} \) being the feedback signal. In our work we assume that the feedback-loops cannot be algebraic\(^5\) since the Simulink models that contain them cannot be used for code generation. This means that in the feedback-loop compositions, the feedback signal must be delayed using some type of a delay block. Such requirement introduces a new signal \((y_{B_1} \text{ in Figure 3})\) into the composition. Consequently, the signal \(y_{B_1} \) holds either the initial value of the delay block or some previous value of \(y_{B_3} \).

Another important observation is that in the general case the type of a given composition cannot be implied from its graphical representation. An example of graphically linear composition that in fact is a feedback-loop is a composition where at least one of the blocks is a continuous-time block (ex: Integrator, Derivative, etc.).

4.3 Completeness of Bounded Invariance Checking for Identified Compositions

In this section, we investigate whether there exists a CT for the linear and feedback-loop compositions, such that the bounded invariance-checking procedure is complete, under the following assumptions: i) each block in the composition has an execution order id which is monotonically increasing \((s_{n_1}, s_{n_2}, \cdots s_{n_3})\), and ii) the invariance properties are always specified over the output signal of the last block in the composition. Recalling Formula (10) that is used for checking invariance properties, as well as the definition of CT (Section 2.4), a given composition of Simulink blocks has a CT iff all the possible values of an output signal \(y \) constrained by the invariance property are reachable within paths of finite lengths.

Linear Composition. According to the formal definition for linear composition (Formula (2)), the value of each output signal in the model is computed based on the current values of the input and the internal state variables of the constituent blocks. In the following, we look at two possible configurations: i) linear compositions of feedthrough blocks only, and ii) linear compositions of feedthrough and delay blocks.

--

\(^5\)an algebraic loop occurs when a signal loop exists with only direct feedthrough blocks within the loop. Direct feedthrough means that the block output depends on the value of its input; the value of the input directly controls the value of the output.

In the first configuration (Figure 2), there is no internal state in the composition. Assuming that \(input_1 \) and \(input_2 \) are the inputs of \(B_1 \) and \(B_2 \), respectively, the value of the signal \(y_{B_3} \) is always calculated by the sequential application of the transfer functions \(f_{B_1}, f_{B_2}, f_{B_3} \) corresponding to blocks \(B_1, B_2, B_3 \), respectively, over the input signals, in that specific order. Consequently, the value of the output signal \(y_{B_4} \) in all states of execution \(P = \sigma_{B_1}, \sigma_{B_2}, \cdots, \sigma_{B_4} \) is always calculated by the following expression:

\[
\forall i \cdot 0 \leq i < k, y_{iB_4} = f_{B_1}(f_{B_2}(f_{B_3}(input_2), f_{B_3}(input_1)))
\]

Theorem 2. Let \(C = B_1 \otimes B_2 \otimes \cdots \otimes B_n \), \(n \in \mathbb{N} \) be a linear composition of feedthrough and delay Simulink blocks with \(V_{out_{B_1}}, V_{out_{B_2}}, \cdots, V_{out_{B_n}} \) set of output variables, and \(t_{s_1}, t_{s_2}, \cdots, t_{s_n} \) sample times, respectively. Then for all such compositions there exists \(k_i \) for each signal \(y \in V_{out_{B_i}}, 0 < i \leq n \), which is the completeness threshold (CT) for the signal \(y \). The value of \(k_i \) for
each \(y \in V_{\text{out}B_i} \), \(0 < i \leq n \) is computed as follows:
\[
\begin{align*}
 k_i &= \max(k_j), B_j \in \text{predecessors}(B_i), \text{if } B_i \text{ is a feedthrough block,} \\
 k_i &= m \times ts_i, m = \max(\text{ceil}(\frac{CT_i}{ts_i})), B_j \in \text{predecessors}(B_i), \text{if } B_i \text{ is a} \\
 k_i &= (m + 1) \times ts_i, \text{if } B_i \text{ is a delay block}
\end{align*}
\]

Proof. Part I: Correctness of computation of \(k \).

Recalling Theorem 1, the CT for feedthrough blocks is 0. Consequently, if such a block is placed inside a composition where there are sampled blocks, it will not have any effect on computing the entire composition’s \(k \).

In the second case, that is, if a feedthrough block \(B_j \in S \) is sampled (\(ts > 0 \)), there are two possibilities: i) if \(ts_i = \max(k_j) \cdot B_j \in \text{predecessors}(B_i) \), then \(\frac{\max(k_j)}{ts_i} = 1 \), and \(k_i \) equals to the largest CT of its predecessor blocks, and ii) when \(ts_i \neq \max(k_j) \cdot B_j \in \text{predecessors}(B_i) \), the sampled feedthrough block’s \(k \) is the first execution of the block after the maximal \(k \) of its predecessors, which is assured by the ceiling (\(\text{ceil}() \)) function when calculating \(m \).

Finally, for the delay block, the calculation of CT is similar to the one of sampled feedthrough block, except that it needs one additional execution. This is because of its execution semantics (see Formula (13)), according to which the input read at a given sample time will become an output during the next execution, hence \(m + 1 \).

Part II: \(k_i \) is indeed the CT for the specified signal. Proof by contradiction.

Let us assume that \(B_i \) is a sampled feedthrough block with \(y \in V_{\text{out}B_i} \) output variable, and \(k \) as in Theorem 2 is not the CT of \(y \).

This means that there is a state along the execution path at position \(r \in \mathbb{N} \) such that \(k < r \), at which \(B_i \) produces a new value. From the calculation of \(k \), we know that there exists \(\exists m \in \mathbb{N} \) such that \(m \leq r \) at which all the inputs of \(B_i \) have reached their respective CT. Starting from position \(k \) the value of \(y \) in all subsequent states \(r \geq k \) is calculated using the following expression:

\[
 y_r = f_1(x_{r-1}, \cdots, x_{r-B_i}),
\]

where \(f_1 \) is the transfer function of \(B_i \), and \(x_{B_i}, \cdots, x_{2B_i} \in V_{\text{in}B_i} \) are the input signals. Consequently, it is not possible to reach a new value for \(y \) after step \(k \), thus the assumption that \(k \neq CT \) is false.

Finally, let us assume that \(B_i \) is a delay block with output variable \(y_{B_i} \in V_{\text{out}B_i} \), and that \(\exists r \) such that \(k < r \) is the CT of \(y_{B_i} \). Given the way in which we compute \(k \), we know that \(\exists m \in \mathbb{N} \) such that \(m \leq k \), at which all the inputs of the \(B_i \) have reached their respective CT. Starting from position \(k \) the value of \(y \) in all subsequent states \(r \geq k \) \(y_{B_i} \) is always assigned as follows:

\[
 y_{B_i} = x_{r-(r-B_i)}, \text{where } x_{B_i} \in V_{\text{out}B_i} \text{, and } ts \text{ is the sample time of } B_i \text{ expressed in number of transitions. From the calculation of } k \text{ it is clear that } r - ts > k_j, \text{where } k_j \text{ is the CT of the input signal, thus the initial assumption does not hold.}
\]

Feedback-Loop Composition. The main characteristic of the feedback-loop compositions is that the value of some signal depends on one or more previous values of the same signal. The previous value of the feedback signal must be delayed using a delay block before returning into the main sequence of computation (see Section 4.2). Due to the dependency of previous values, in order to compute the value of the output signal in the current state, one must compute all the previous values of the signal. To be able to show the completeness of BMC for the composition, we must demonstrate that there exists a state after which no new values of the output signal can be produced.

Theorem 3. Let \(C = B_1 \otimes B_2 \otimes \cdots \otimes B_n \) be a feedback loop composition of blocks. For such compositions, there exists \(CT \) if the value ranges of the inputs of the composition and feedback signal are constrained by closed and enumerable intervals, and the output signal \(y \in V_{\text{out}B_n} \), over which the invariance property is specified, is strictly monotonic.

Proof. Let us assume that in the above composition \(C, y_{B_i} \in V_{\text{out}B_i} \) is the output signal of the last block of the composition over which the invariance property is specified, and that \(y_{B_n} = f_n(x_{n-1} \cdots f_{n-m}(x_{1B_n}, x_{2B_n}, x_{3B_n}, \cdots x_{B_n})), m \in \mathbb{N} \cdot 1 \leq m < n, x_{1B_n}, x_{2B_n}, \cdots, x_{B_n} \in V_{\text{in}B_n} \) is the function that assigns values to output variable \(y_{B_n} \). We assume that one of the inputs \((x_{1B_n}, x_{2B_n}, \cdots, x_{B_n})\) is the feedback signal and that the value range of each of the signals is constrained by enumerable closed intervals \([x_{1B_n}, x_{1B_n}],[x_{2B_n}, x_{2B_n}], \cdots, [x_{B_n}, x_{B_n}]\), respectively.

1) Let us assume that \(f_n(x_{n-1} \cdots f_{n-m}(x_{1B_n}, x_{2B_n}, x_{3B_n}, \cdots, x_{B_n})) \) is a strictly monotonically increasing function. Given that one of the inputs is the feedback signal, with each new computation, \(y_{B_n} \) takes a new value that is larger than the previous one. Consequently, there exists a minimal difference between the current and previous values of the \(y_{B_n} \) signal. Using the minimal increment of \(y_{B_n} \) and the enumerable values of the inputs, it is possible to calculate the maximal number of steps \(k \) of the transition relation, at which \(y_{B_n} \) reaches its maximal value, hence \(k = CT \).

2) Let us now assume that \(f_n(x_{n-1} \cdots f_{n-m}(x_{1B_n}, x_{2B_n}, x_{3B_n}, \cdots, x_{B_n})) \) is a strictly monotonically decreasing function under the same setup as in 1). Analogously, each new value for \(y_{B_n} \) is smaller than the previous one with some minimal difference. We can compute the maximal number of steps \(k \) at which \(y_{B_n} \) reaches its minimal value, hence \(k = CT \). \(\Box \)

5 SMT-BASED BOUNDED INVARIANCE CHECKING: METHOD AND TOOL

In this section, we present our SMT-based bounded invariance-checking method and the SyMC tool that automates it.

Method. The proposed bounded invariance-checking approach for Simulink models is illustrated in Figure 4. It consists of the following steps: Step 1) automatic generation of finite execution paths of the Simulink model according to the formal semantics presented in Section 2.2, Step 2) automatic encoding of the generated executions as an SMT-LIB script suitable for analysis using Z3, and Step 3) the analysis of the generated SMT-LIB script. The boxes denote the processing steps, whereas circles denote the artifacts. In the rest of this section we describe each of the steps in detail.

The proposed methodology starts with Step 1, during which all finite paths (as defined by Formula (7)) with a predefined bound \(k \) are generated. As inputs, the path generation procedure assumes a Simulink model (model) and a sorted order execution list (slist) that contains the execution order number of each atomic block in
The module that automates Step 1 of the proposed methodology is available on github [13]. The implementation of the tool is divided into different modules. The first module that implements Step 1 analyzes the state-space, that is, the paths of the model. For instance, if the model is purely discrete time, T_{min} is not used, since all sample times of the model can be expressed as an integer number of T_{maj}. Additional optimization includes the introduction of the fundamental sample time (T_f) that represents the least common divisor of all different sample times used in the model. In the worst case, $T_f = T_{\text{maj}}$, but usually it is larger, thus resulting in paths of less transitions that describe the same set of reachable states. As an additional optimization, the procedure assigns the sample time of the non-sampled feedthrough blocks based on the rate of change of their input(s).

As the paths are already encoded symbolically during Step 1, during the second step the generated paths are transformed into SMT assertions that can be analyzed using any tool that accepts input specified in SMT-LIB format. The encoding is based on a predefined set of templates, each corresponding to a specific block type. Finally, in Step 3, the analysis model, which is an SMT script is simplified Simulink file, containing 177 atomic Simulink blocks and 246 connections. The model is flattened (composite blocks removed) according to our flattening procedure introduced in our earlier work [14]. All of the blocks in the model are either discrete-time (delay or feedthrough) or feedthrough blocks with no sample time. Eventually, these blocks are also transformed into discrete-time blocks during the model optimization (see Section 5). The set of sample times in the model includes the following values: 5, 10 and 20, each given in milliseconds (ms). Consequently, the fundamental sample time for the model is 5 ms, meaning that blocks are sampled at each 1st, 2nd or 4th fundamental time steps.

Depending on the type of the model, a different strategy is employed for generating the state-space, that is, the paths of the model. For instance, if the model is purely discrete time, T_{min} is not used, since all sample times of the model can be expressed as an integer number of T_{maj}. Additional optimization includes the introduction of the fundamental sample time (T_f) that represents the least common divisor of all different sample times used in the model. In the worst case, $T_f = T_{\text{maj}}$, but usually it is larger, thus resulting in paths of less transitions that describe the same set of reachable states. As an additional optimization, the procedure assigns the sample time of the non-sampled feedthrough blocks based on the rate of change of their input(s).

As the paths are already encoded symbolically during Step 1, during the second step the generated paths are transformed into SMT assertions that can be analyzed using any tool that accepts input specified in SMT-LIB format. The encoding is based on a predefined set of templates, each corresponding to a specific block type. Finally, in Step 3, the analysis model, which is an SMT script is analyzed using an SMT-solver. The presented methodology does not provide means for the correct encoding of the invariance properties such that they can be checked over the generated path. In the current version, their existence is assumed as an artifact (P in Figure 4), expressed to correspond to Formula (10).

SyMC Tool. We use an initial prototype of our SyMC tool to automatically execute Steps 1-3 of the proposed methodology of Figure 4. The tool is implemented in Python, and the source code is available on github [13].

The implementation of the tool is divided into different modules. The module that automates Step 1 of the proposed methodology provides complete automation for the following features: i) determining the fundamental sample time for the discrete-time and hybrid Simulink models, ii) the generation of the path that describes the evolution of signals until the predefined bound k specified in the configuration file, and iii) calculation of the size of reachability diameter (CT) for linear compositions. In the current version of the SyMC tool, we assume a simplified Simulink model created based on the real one, which contains the same information as the original one, however, the information is structured in JavaScript Object Notation (JSON) format, such that the model can be parsed with minimal effort. The second module that implements Step 2 determines the block type automatically, and instantiates the corresponding blockRoutine(). As output, it creates an SMT-LIB script that represents the analysis model. The current implementation supports all the types of the BBW model. The third module that implements Step 3 analyzes the SMT-LIB script by calling the Z3 solver engine via the provided Python API (Z3Py).

For more details on the proposed methodology and the SyMC tool, we refer the reader to our technical report [16].

6 APPLICATION

In this section, we present in detail the application of the SyMC tool on the BBW industrial prototype. First we show details of transforming the Simulink model into an SMT-LIB script (Section 6.1), and then we show the verification results (Section 6.2).

6.1 Transformation of BBW

We use our SyMC tool to analyze the BBW model based on the simplified Simulink file, containing 177 atomic Simulink blocks and 246 connections. The model is flattened (composite blocks removed) according to our flattening procedure introduced in our earlier work [14]. All of the blocks in the model are either discrete-time (delay or feedthrough) or feedthrough blocks with no sample time. Eventually, these blocks are also transformed into discrete-time blocks during the model optimization (see Section 5). The set of sample times in the model includes the following values: 5, 10 and 20, each given in milliseconds (ms). Consequently, the fundamental sample time for the model is 5 ms, meaning that blocks are sampled at each 1st, 2nd or 4th fundamental time steps.

The atomic Simulink blocks are predominately of the following categories: arithmetic operators (Add, Subtract, Divide, Multiply, Gain), logical operators (\(<\), \(\leq\), \(=\), \(\geq\), if-then-else), Constant, Delay, Saturation, etc. These types of blocks belong to the library of standard Simulink blocks and as such are supported by our tool. Additionally, the model contains blocks for which the automatic transformation is not supported at the moment, hence manual intervention is required. Of these types, we have the following blocks: LookUp Table and State-flow diagrams.

The internal structure of the BBW contains both linear and feedback-loop compositions. The complex structure, combined with the number of missing features of the tool, such as the one for the automatic computation of the CT for the feedback loop compositions, prevent us to precisely determine whether BBW’s bounded invariance checking is complete or not for all requirements. For properties which are specified over the portion of the model that contains a feedback loop, we perform invariance checking over bounded paths of length 40 execution steps, that is, a duration of 200 ms expressed in absolute time.
6.2 Application results

All possible bounded execution paths of 40 steps have been generated in approximately 2 seconds on a standard Macbook Pro laptop machine running OS X 10.10.5, with the following hardware characteristics: 2.6 GHz Intel Core i5 CPU and 8 GB of RAM. The bound of 40 steps was used because it was the maximum size for which the SMT analysis terminates on the specified machine. The analysis model, that is, the SMT-LIB script is composed of 15319 assertions, out of which exactly 8000 represent variable declarations and 7278 represent constraints over the set of variables.

The generated model is verified against the following two safety requirements, encoded as invariance properties:

P1 The value of the brake pedal position shall not exceed its maximal value of 100.

P2 If the slip rate exceeds 0.2, then the applied braking torque shall be set to 0.

The compositions of Simulink blocks that contribute to property P1 are of type linear composition of feedthrough blocks only. From earlier, we know that CT of such compositions is k = 0, meaning that the analysis of the generated path is complete, and the result is a full guarantee that P1 holds. The composition of blocks that contributes to property P2 on the other hand, contains a feedback loop, consequently for analyzing the model against P2, we apply the incomplete bounded invariance checking procedure.

The verification of properties P1 and P2 over the generated path took approximately 8.5 and 9.7 seconds, respectively. The results deem that P1 is indeed an invariance property of the BBW Simulink model. Similarly, P2 is proven correct over the bounded path of k = 40 execution steps, with no information about its correctness beyond this limit (due to our theoretical results).

To demonstrate a case of finding a violation, we modified P1 to create P1' as follows: "The value of the brake pedal position shall not exceed its maximal value of 10". When the property is checked against the same model, a violation is detected and a model is synthesized within 25 seconds.

7 RELATED WORK

There is an increasing body of work on the formal verification of Simulink models. We compare our work to other approaches based on BMC, as well as to other related types of formal analysis techniques. We focus primarily on formal verification of Simulink models at design time.

Schrammel et al. [26] show that BMC has a great potential for verification on industrial systems. Their approach, which is based on incremental BMC, yields encouraging results when validated on industrial use-cases. The difference compared to our work is that they focused on code verification, while our approach targets the verification of design-time models. Chaves et al. [6] propose the DSVerifier tool for verification of digital systems with respect to overflow, limit cycle, stability, etc. As an input, the tool accepts a digital system design specified in MATLAB from which an ANSI-C code is generated and passed into a highly efficient BMC tool. Herde et al. [17] propose an analysis method for dynamic behavior of safety-critical system based on HySAT. They translate the behavioral system into a hybrid model, which is analyzed using bounded reachability. The approach guarantees absence of errors until some predefined bound k (which is not necessarily a CT), but not beyond that. In comparison to this, we also discuss different compositions of Simulink blocks and completeness of bounded invariance checking for the same. Similarly, Minopoli and Frehse [23] translate Simulink models into an intermediate SL2SX model using the SpaceEx translator. The SL2SX model can then be translated into number of formal notations based on hybrid automata, such as for example HyDI model that can be checked using the HYCOMP tool [7]. The SL2SX translation is limited to the block of discrete-time type and is missing support for commonly used blocks industrial models such as Mux, DeMux, etc. Additionally, the approach has been applied on a Simulink models of relatively moderate size, thus the scope of the applicability remains an open question. In comparison, in our approach we: i) avoid the intermediate encoding as we generate the paths directly from the Simulink model, ii) successfully deal with structural elements (Mux, DeMux, etc.) and iii) we retain the possibility to use various analysis tools as the paths are encoded in SMT-LIB format, which is suitable as input to most of the modern SMT solvers. Bauch et al. [3] propose a hybrid approach that is a combination of explicit model checking with SAT-based representation of the variables, based on a set of possible evaluations. To model the valuations of the variables in the system, they rely on the theory of bit vectors. In contrast to this, in our approach we deem the system safe by showing that refutation of the invariance properties is not possible for all possible inputs and executions, according to the principle idea of BMC. Approaches based on statistical model checking are being proposed as a compromise between the exhaustive verification using symbolic model checking and simulation [19] [14]. Such approaches are useful for establishing probabilistic estimation for the correctness of the underlying model, but any information beyond that is not available. Compared to these approaches, our work shows the following advantages: i) the ability to verify certain invariance properties (such as P2 from Section 6) over a complete reachable state-space or over bounded one and ii) ability to generate a counter-example in cases the property is violated (P1' in Section 6). On the other hand, our approach is applicable to invariance properties, which represents a subset of all the possible properties that can be verified using any of the above model-checking-based verification techniques.

Reicherdt and Glesner [25] propose a theorem-proving approach for check model invariants. Despite being completely automated, the approach is restricted to Simulink models composed of discrete-time feedthrough blocks only, which substantially limits its range of applicability. Liu et al. [21] combine statistical debugging and model slicing in order to improve fault localization in Simulink models, opening an interesting direction for searching the state space more efficiently, which might be compatible with our approach.

8 CONCLUSIONS

In this paper, we have presented an approach for invariance checking of Simulink models based on the principles of BMC using satisfiability modulo theories. Our contributions are on two main fronts: first, we show that we can automatically generate finite execution paths based directly on the Simulink model, and second, we show that there are certain Simulink designs for which the bounded invariance procedure is complete.
For determining the completeness of the bounded invariance checking for certain classes of Simulink models, we have first analyzed the structure of two industrial systems, namely ASL and BBW from Volvo GTT, Sweden, from which we have identified the commonly used block types and compositions of blocks. As a result, we have identified three broad categories of Simulink blocks: feedthrough, delay and SFunction and two common compositions: linear and feedback-loop compositions. Based on the identified compositions and blocks, we first prove the completeness of the bounded invariance checking procedure for the linear compositions. For the feedback-loop compositions, a CT does not exist in the general case, however, there exists a special subclass of feedback-loop compositions for which a CT does exist. To automate the proposed approach, we introduce the following: i) an automated procedure (implemented in the SyMC tool) for generating execution paths of finite length based on the Simulink model and an execution order of the blocks, ii) a template-based encoding of the execution paths into the SMT-LIB format suitable for analysis using the Z3 SMT solver. For validation, we have applied our SyMC tool on the BBW Simulink model, which we prove to be correct with respect to two safety properties.

There are several directions for future work. First, we need to improve the SyMC tool in order to be able to: i) use the original Simulink model as an input into the tool, and ii) optimize the generated paths such that the same information is encoded in smaller state space. For the latter, we will consider symbolic execution [5] for removing unfeasible paths, and model slicing [24] for removing non-relevant parts with respect to certain properties. The proposed improvements could potentially enable further testing of the boundaries of the applicability of our approach. Additionally, we also aim to implement the automation of the CT calculation for the feedback-loop compositions, and tackle the problem of incompleteness of the invariance checking procedure for the feedback-loop designs by complementing the proposed approach with statically analyzing the model [12]. Finally, we aim to investigate whether we can extend the approach for the verification of invariance properties with timing information.

REFERENCES

