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ABSTRACT
Safety cases are used to argue that safety-critical systems satisfy the

requirements that are determined to mitigate the potential hazards

in the systems operating environment. Although typically a manual

task, safety cases have been successfully created for systems with-

out many configuration options. However, in highly configurable

systems, typically developed as a Product Line (PL), arguing about

each possible configuration, and ensuring the completeness of the

safety case are still open research problems. This paper presents

a novel and general approach, based on Contract-Based Specifica-
tion (CBS), for the construction of a safety case for an arbitrary PL.

Starting from a general CBS framework, we present a PL exten-

sions that allows expressing configurable systems and preserves

the properties of the original CBS framework. Then, we define

the transformation from arbitrary PL models, created using ex-

tended CBS framework, to a safety case argumentation-structure,

expressed using the Goal Structuring Notation. Finally, the approach
is exemplified on a simplified, but real, and currently produced

system by Scania CV AB.
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Software safety;
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1 INTRODUCTION
Many software-intensive systems of systems are also safety critical.

Failures of systems from domains like automotive, aerospace, or

medical, can cause harm to property or humans. Consequently,

these domains are regulated with domain-independent functional

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00

https://doi.org/10.1145/3297280.3297479

safety standards such as IEC 61508 [8], or with domain-specific

standards such as ISO 26262 [15] in automotive, or DO 178C [14]

in aerospace. The standards emphasize structured and traceable

requirements engineering as the backbone of the development pro-

cess, and require the creation of a safety case [34] as a proof of

compliance with the standard. A safety case is a structured argu-

ment, supported by a body of evidence, which should argue about

two claims. Firstly that the defined safety requirements are com-
plete with respect to the potential hazards in the intended operating

environment, and secondly that the system satisfies the defined

safety requirements. The phrase structured refers to the breakdown

of more abstract arguments, e.g. "the system is safe", into more de-

tailed sub-arguments about the system properties, thus forming an

argumentation structure.
Because safety cases are large and complex artifacts, their con-

struction and maintenance are notoriously difficult activities, which

are typically performed manually [22, 27, 30]. For any reasonably

sized system, just listing all potential evidence, e.g. safety analyses,

or testing results, leads to a huge amount of information. Moreover,

because a variety of methods with different semantics are used to

specify, design, implement, and verify different parts of a system,

it is especially difficult to create a complete argumentation struc-

ture. In other words, ensuring that each argument is true if the

supporting sub-arguments are true is challenging because typically

a holistic model of a system against which all arguments can be

evaluated does not exist.

Despite the difficulties, safety cases have been created success-

fully in some domains, e.g. aerospace, but in other domains, e.g.

automotive, their creation is still a research problem. The caveat

separating these domains is the number of possible product con-

figurations. Highly configurable systems are typically developed

using the Product Line Engineering (PLE) paradigm [1, 29], which

puts emphasis on high levels of reuse and quick creation of new

product configurations. From the point of safety case construction,

if the number of product configurations is low, like in the aerospace

domain, then it is feasible to create a safety case for each product

configuration. On the contrary, when the number of product config-

urations reaches hundreds of thousands [6], like in the automotive

domain [42], this is not feasible because of two reasons. Firstly,

it is impossible to produce verification evidence for each product

configuration, and secondly the amount of manual work required

to construct the argumentation structure for each safety case is

overwhelming [26].

In this paper we propose a general and novel approach for the

construction of a safety case for a complete Product Line (PL), in-
stead of constructing a safety case per product configuration. The
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safety case construction is based on the Contract-Based Specifica-
tion (CBS) [5, 7, 40] model of a PL, where the CBS model captures

the technical architecture, and the corresponding safety require-

ments, of each product configuration. In order to support such

modeling of PLs, the first contribution is an extension of a general

assume-guarantee CBS framework with PL concept of presence con-
ditions [38]. Then, as a second contribution, the paper defines a set

of transformation rules that convert an arbitrary CBS model of a

PL, into a PL safety case expressed in a well-established safety-case

notation, the Goal Structuring Notation (GSN) [28].

There are several reasons for relying on the CBS framework.

From the methodological view, CBS frameworks match well with

the requirement engineering approach emphasized by functional

safety standards [5, 40], and thus stand a realistic chance for in-

dustrial adoption. Furthermore, CBS frameworks are formal and
general-purpose, i.e. they can be used to rigorously and holistically

model arbitrary systems at arbitrary abstraction levels thus remov-

ing the need to use a variety of methods and languages. Finally, CBS

frameworks support sound compositional reasoning, i.e. properties
of the modeled systems follow from the properties of their con-

stituent components. In the PL context this means that the effort of

verifying the behavior of all product configurations is reduced to

verifying the behavior of the components that comprise them.

Several previous approaches aim at constructing a safety case

for highly configurable system [10, 25, 35, 37]. The approach in the

present paper differs in two main aspects. Firstly, because the CBS

framework defines sufficient conditions for a system property to

hold, e.g. a safety property, and because the safety case is based on

a CBS model of a PL, the argumentation structure obtained from a

CBS model is complete-by-construction, i.e. it is ensured that each

argument holds if the supporting sub-arguments hold. Previous

approaches typically start from a safety case pattern [11] and try to

populate the pattern with system-specific information. However,

they do not offer a method to reason about the completeness of the

obtained argumentation structure. Secondly, we leverage the sound
compositional reasoning of the CBS framework in order to construct

an argumentation structure that directly argues about the safety of

all product configurations of a PL, but only requires verifying the

behavior of the components comprising the product configurations.

In contrast, previous approaches construct argumentation struc-

tures on a per-configuration basis, and typically require physical

creation and verification of each product configuration behavior.

As discussed earlier, this is not feasible when the number of product

configurations is high. A detailed discussion about related work,

can be found in Section 6.

Paper Structure. Section 2 summarizes the basics of PLE and CBS.

Section 3 presents the proposed PL extension of the general CBS

framework. Section 4 defines the overall safety case argumentation-

structure and defines the CBS toGSN transformation rules. Section 5

presents a real example which is modeled using CBS and for which

a safety case is constructed. Section 6 discusses the related work

while Section 7 concludes the paper.

2 BACKGROUND
This section summarizes the basic concepts of the PLE paradigm

and CBS frameworks from existing literature.

2.1 Product Line Engineering
Product line engineering [1, 29], facilitates the development of a

family of systems that are jointly referred to as a product line. The
central idea of PLE is to declare all functional and non-functional

characteristics of each system in the PL, commonly referred to as

features, and express these, together with any mutual dependencies,

in a model where the most commonly used model is a feature model.

Definition 2.1 (Feature model). A feature model is a pair V =

(F ,C)where F = { f1, . . . , fn } is a set of Boolean and Real variables,

called features, andC is a set of Boolean constraints over the features
in F . �

An example of a constraint is f1 ∧ f2 > 100 → f3. A value

assignment to each of the features in F is referred to as a product

configuration.

Definition 2.2 (Product configuration). Given a feature model

V , a product configuration γ is a set feature-value assignments

γ = { fi = valuek }ni=1. A product configuration for which each

constraint in C evaluates to true is valid. �

From hereon, terms product configuration and configuration will

be used interchangeably and only valid configurations will be con-

sidered. For some intuition, real-world PLs often contain feature

models with thousands of features and consequently define hun-

dreds of thousands of valid configurations [6, 42].

Given a feature model, development artifacts are labeled with

formulas expressed in terms of features and these formulas are

known as presence conditions, denoted φ. They are written using the

standard logical operators ∧,∨,¬, arithmetic relations >, <,=, ≤, ≥,

and their combinations. The purpose of presence conditions is to

define the configurations to which a development artifact applies.

By selecting a particular configuration, the artifacts that describe

or implement the selected configuration are those whose presence

conditions evaluate to true for the given feature value-assignment.

In this way, a real-world product of a particular configuration can

be derived automatically by selecting a product configuration.

2.2 Basic CBS framework
In order to support rigorous design of complex and heterogeneous

systems, several lines of research have presented CBS frameworks [4,

5, 7, 40, 41]. As noted in [4], the main strength of CBS is that it for-

mally captures two central systems engineering principles: vertical

design refinement during the development process, and horizontal

composition of logical or physical components at a given abstraction

level. This section summarizes the CBS concepts from [5, 39], but

with a slightly different notation, and with an emphasis on the use

of CBS for requirements engineering.

The CBS concepts will be illustrated on a fragment from the Fuel
Level Display (FLD) system (cf. Section 5), which is a part of each

Scania CV AB vehicle and which is later used as the application

example. The overall FLD system safety-requirement is to ensure

that the fuel volume indicated on the vehicle’s instrumentation
cluster, with some tolerances, corresponds to the actual fuel volume

in the fuel tank. This is a safety requirement because indicating

higher fuel volume that the actual can lead to running out of fuel

in traffic. This in turn leads to engine stop and the loss of servo-

steering which is essential for heavy vehicles due to heavy loads.
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2.2.1 CBS concepts. Basic concepts of a CBS framework are:

i) component C ,
ii) specification S ,
iii) component implements a specification, denoted as C � S
iv) specification Si fulfills specification Sj , denoted full(Si , Sj ),
v) n-ary component composition that results in new compo-

nents, denoted as C ′ = C1 ⊗ · · · ⊗ Cn .

A specification corresponds to a requirement and it defines the

intended behavior of a component which represents any logical

or physical component. While here we refer to requirements as

"specifications", other approaches refer to them as "assertions". The
notion implements is similar across the majority of CBS frameworks

and it corresponds to the expectation that the implementation of

a component will exhibit the behavior defined in a specification.

The notion of fulfillment between Si and Sj represents the inten-
tion that the property expressed in Si logically entails the property
expressed in Sj . From this it follows that if a C component imple-

ments specification Si then it will also implement specification Sj ,
i.e. ∀C .C � Si → C � Sj . In [3], the term refinement is used to

describe the same concept. Finally, composition correspond to the

process of integrating existing components into new components.

Given the above concepts, we introduce the following definitions.

Definition 2.3 (Contract). A contract K is an ordered pair of spec-

ifications, denoted (A,G), where A is called an assumption andG is

called a guarantee. �

Definition 2.4 (Satisfy Contract). Component C satisfies a con-

tract (A,G), denoted asC�(A,G), if ∀Ce .Ce �A → Ce ⊗C�G . �

The main idea behind contracts is separating responsibilities.

Given a contract (A,G), a component C can be developed indepen-

dently of other components, with respect to the contract. Whenever

C is composed with a component Ce , often referred as the environ-
ment of C , which implements A, then the composition of C and Ce
implementsG . In order to ease the following exposition, we assume

that each contract is intended to be satisfied by a single component.

This intention is expressed by saying that a contract Ki is allocated
to a component Cj , denoted allTo(Ki ,Cj ).

In order to enable that independently developed components

can be composed in any order, we assume that the composition

operator is commutative and associative.

Assumption 1. The ⊗ operator is commutative and associative. �

We refer to components that are not composed of other compo-

nents as atomic components and we refer to components composed

of other components as composite components and say that a com-

posite component has subcomponents. Atomic components usually

represent low-level implementation such as SW, HW, or mechanical

components, but depending on the considered level of abstraction,

a SW module can be an atomic component while in other cases

a single SW function can be an atomic component. On the other

hand, composite components can represent everything from a high

level system’s functionality, down to a composition of two SW

functions. From hereon, we introduce the shorthandC ′ =
⊗n

i=1Ci
that replaces C ′ = C1 ⊗ · · · ⊗ Cn notation.

Figure 1 graphically illustrates the CBS concepts introduced

so far. Components are represented as rectangles, e.g. compos-

ite component CFLD has subcomponents CCOO and CBMS that

CFLD

CB-CAN

CB-ESTA5 G5
A6

A11G10

G9A10

A9G8

CBMS

CCOO

( )*

A′ G′

( )**

( )**

( )**

Figure 1: Graphical representation of CBS concepts.

has further subcomponents CB−EST and CB−CAN . Contracts are

depicted as white oval-like shapes and if a contract is overlaid

over a component, that corresponds to the allocated to relation, e.g.
allTo((A′,G ′),CFLD). Each fulfills relation is represented by a line

ending with an arrow, while the lines ending with a filled circle rep-

resent the assumption of relation which is intrinsic in each contract.

Finally, the same specification can belong to multiple contracts, e.g.

guarantee G5 in contracts (A5,G5) and (A6,G5).

2.3 Specification structure
The assumptions and guarantees connected with fulfill and assump-
tionOf relations in Figure 1 form a graph that will be referred to as

a specification structure. We will also say that a set of contracts and

a set of components form a specification structure. The intuition

behind the specification structure is to capture the idea that assump-

tions can be fulfilled only by guarantees of sibling components or

assumptions of parent components while guarantees can only be

fulfilled by guarantees of subcomponents.

Definition 2.5 (Specification structure). Let C be a possibly empty

set of components organized into a rooted tree with the root compo-

nentC ′ ∈ C such thatC ′ =
⊗

k Ck whereCk ∈ C\{C ′}. LetK be a

possibly empty set of contracts such that each contract (Ai ,G j ) ∈ K

is allocated to a single component from C. Then, a specification
structure D for C and K is a directed graph, i.e. D = (N , E), if

i) each node n ∈ N is a specification Ai or G j ,

ii) each edge e ∈ E corresponds to a single fulfill or assump-
tionOf relation between two specifications, and is denoted

as ⟨Si , Sj ⟩f or ⟨Si , Sj ⟩a , respectively,
iii) for each ⟨Si , Sj ⟩a and ⟨Si , Sj ⟩f it holds that Si , Sj ,
iv) for each edge ⟨Si , Sj ⟩a it holds that the Si and Sj form a

contract (Si , Sj ) ∈ K ,

v) for each edge ⟨Si ,Aj ⟩f it holds that

a) if Si is an assumption then it holds that allTo((Si ,Gl ),Cm ),

allTo((Aj , Su ),Cp ) and Cp is a subcomponent of Cm ,

b) if Si is a guarantee then it holds that allTo((Al , Si ),Cm ),

allTo((Aj , Su ),Cp ), and there exists a componentCx whose

subcomponents are Cm and Cp .
vi) for each edge ⟨Si ,G j ⟩f it holds that Si is a guarantee such

that allTo((Al , Si ),Cm ), allTo((Au ,G j ),Cp ), and Cm is a

subcomponent of Cp . �

Def. 2.5 corresponds to contract structure [40] and it provides

an intuitive way to visualize how the property in the form of a
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guarantee G ′
allocated to the component representing the system

C ′
, is partitioned across the subcomponents of C ′

. Moreover, the

specification structure matches well with the ideas in functional

safety standards, such as ISO 26262, which require the decompo-

sition of higher level requirements into lower level requirements

with explicitly managed traceability links. The example in Figure 1

is not a specification structure because relation full(G10,A6) vi-

olates condition (v)-b of Def. 2.5, i.e. CCOO and CB−CAN are not

subcomponents of the same composite component. In a real system,

this correspond to the scenario where the specification of SW com-

ponent CB−EST defines that CB−EST and CCOO can communicate

directly, thus circumventing the interface of CBMS .

The following conditions are necessary to ensure that satisfying

the contract allocated to the system is a consequence of satisfying

the contracts allocated to the atomic components.

Definition 2.6 (Proper specification structure). A specification

structure D is proper if
i) for each Ai of a contract Kl such that allTo(Kl ,Cm ), there

exists a specification Sk and an edge ⟨Sk ,Ai ⟩f , where Sk
is either an assumption such that allTo((Sk ,G j ),Cp ) and
Cm is a subcomponent of Cp or Sk is a guarantee such that

allTo((Aj , Sk ),Cp ) and there exists a component Cx whose

subcomponents are Cm and Cp ,
ii) for each guaranteeGi of a contractKl such that allTo(Kl ,Cm ),

there exits a guarantee Gk and an edge ⟨Gk ,Gi ⟩f , where

allTo((Au ,Gk ),Cj ) and Cj is a subcomponent of Cm ,

iii) D is acyclic. �

Going back to the example in Figure 1, even if the relation

full(G10,A6) would be removed, the example would still not be a

proper specification structure because of all the relations labeled

(∗∗). Relation full(G5,A9) introduces cycles, which violates condi-

tion (iii) of Def. 2.6, while the absence of fulfill relation to guarantees

A5 and G
′
violates conditions (i) and (ii), respectively.

Assuming that the component composition is monotonic [41],

the following theorem shows the key idea of CBS, i.e. the sound
compositional reasoning about system properties and it corresponds

to the dominance relation defined in [21].

Theorem 2.7. Given a set of componentsCi ∈ C, a set of contracts
Ki ∈ K allocated to components from C where KA ⊆ K is the set of
contracts allocated to atomic components Ci , a contract K ′ ∈ K such
that allTo(K ′,C ′) where C ′ is the root component, if

i) ∀Ki ∈ KA .∃Ci ∈ C.Ci � Ki ,
ii) contracts inK and components in C form a proper specification

structure,
iii) ∀full(Si , Sj ).Si |= Sj ,

then it holds that: C ′ � K ′. �

The theory presented so far does not support specifying systems,

i.e. composite components, that are configurable. In the next section,

the presented theory is extended with PLE constructs.

3 CBS EXTENSION FOR PLE
This section presents the first contribution, which is a PL-oriented

extension of the theory presented in Section 2.2 and Section 2.3.

Before the formal definitions we provide some intuition.

Consider using the CBS theory presented in the previous section

for the development of a system with multiple configurations. This

implies that each configuration would have to be specified as a spec-

ification structureD, as indicated by the upper part of Figure 2, and

the reasoning if each configuration satisfies the allocated contract

would be per-configuration. In order to avoid this, specification

structures of individual system configurations can be merged into

a common PL specification structure and then the reasoning about

all system configurations can be performed simultaneously.

The CBS model in the lower part of Figure 2 is obtained by merg-

ing the two configurations from the upper part of the figure where

the dashed component borders indicate that such components be-

long only to some configurations ofCFLD . As indicated in Figure 2,

presence conditions φi define the set of configurations to which a

particular component or a specification belongs to.

CFLD

φ
1

φ
2

CB-CAN

CB-EST

φ
11 A5 G5

φ
12

A6

φ
13

A11G10

G9A10

A9G8

CBMS

CCOO

A′ G′
( )**

( )**

φ
26

φ
18

φ
19

φ
20

φ
21

φ
23

φ
22

φ
36

φ
37

φ
29

φ
28

Figure 2: Example of a CBS model representing several con-
figurations of the CFLD system.

In order to ensure that each configuration represented by the

merged CBS model conforms to Def. 2.5 and Def. 2.6, different mis-

matches between presence conditions, and consequently between

the corresponding artifacts, must be prevented. For example, in

Figure 2, guarantee G8 fulfills assumption A6, and because compo-

nent CBMS is intended to satisfy the contract (A9,G8), presence

conditions φ18,φ19,φ29 and φ13 must simultaneously evaluate to

true or false for each configuration.

In the following two subsections, we formally define the PL spec-

ification structure and we define the constraints to which presence

conditions must conform.

3.1 CBS model of a configurable system
Assume that a feature model of a PL defines n configurations

γ1, ...,γn . In order to avoid creating n different specification struc-

tures, we introduce the PL specification structure D̂, which repre-

sents each of the n configurations.

Definition 3.1 (PL Specification Structure). Let C be a possibly

empty set of components organized into a rooted tree with the root

component C ′ ∈ C such that C ′ =
⊗

k Ck where Ck ∈ C \ {C ′}.
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Let K be a possibly empty set of contracts such that each contract

(Ai ,G j ) ∈ K is allocated to a single component from C. Then,

a specification structure D for C and K is a directed graph, i.e.

D = (N , E), if

i) conditions (i)-(vi) of Def 2.5 hold,

ii) a labeling function P labels each assumption Ai , guarantee
G j , and component Ck with a presence condition φi , φ j , φk ,
respectively. �

Similarly to the basic CBS framework, we define a proper PL
specification structure.

Definition 3.2 (Proper PL specification structure). A PL specifi-

cation structure D̂ is proper if conditions (i) and (ii) of Def. 2.6

hold. �

Because a proper PL specification structure is a superimposition

of several configuration-specific specification structures, in the

general case, it is possible that the graph of D̂ contains cycles and

therefore the condition (iii) from Def. 2.6 does not apply to Def. 3.2.

However, because allowing circularity in proper PL specification

structures does not bring conceptual benefits, but increases the

complexity of the following exposition, we introduce the following

assumption.

Assumption 2. A proper PL specification structure D̂ is acyclic. �

Before the constraints on presence conditions are defined, we

introduce additional notation. P(S) and P(C) will be used to denote

the presence condition of specification S or a component C while

the notation Pγ (S) will be used to denote the true or false value of
the presence condition of S or C for a configuration γ .

3.2 Constraints on presence conditions
As outlined in Section 2.1, artifacts are labeled with presence condi-

tions in order to be able to determine the set of artifacts that apply

to a certain configuration γ by evaluating each presence condition

and selecting the ones whose presence conditions evaluate to true.
We say that a PL specification structure D̂ is instantiated for

a configuration γ , if each A, G, and C whose presence condition

evaluate to false for a given γ , is removed from D̂. Moreover, if the

assumption or a guarantee of a contract K is removed, then the con-

tract K is also removed. The result of instantiation, denoted asDγ is

a directed graph which is not necessarily a specification structure

according to Def. 2.5 because of the previously described presence

condition mismatches. In order to ensure that instantiation results

in a specification structure, we introduce the following definitions

and we refer to them as invariance with respect to configurations,
hereinafter only invariant. In the following definitions, the symbol

|=C represents logical entailment with respect to the set of con-

straints in the set C of a feature model V . More formally, fi |=C fj
is equivalent to fi ,C |= fj . For example, it holds that f1 ∧ f2 ̸ |= f3
but if the set C contains the constraint f1 → f3 then it holds that

f1 ∧ f2 |=C f3.

Definition 3.3 (Invariant Assumption). Given a specification S
and set of specification S1, . . . , Sn where S is the assumption of

contracts (S, S1) . . . (S, Sn ), assumption S is invariant if P(S) |=C∨
K=(S,Si ) P(Si ). �

Definition 3.4 (Invariant Guarantee). Given a specification S
and set of specification S1, . . . , Sn where S is the guarantee of

contracts (S1, S) . . . (Sn , S), guarantee S is invariant if P(S) |=C∨
K=(Si ,S ) P(Si ). �

Definition 3.5 (Invariant Allocation). An allocation of a contract

(A,G) to a component C where A and G are an invariant assump-

tion and guarantee, respectively, is invariant if P(G) |=C P(C) and
equally if P(A) |=C P(C). �

Definition 3.6 (Invariant Composition). Composition of atomic

components C1, ...,Cn into a composite component C ′ =
⊗

i Ci is
invariant if it holds that ∀Ci .P(Ci ) |=C P(C ′). �

Given a PL specification structure D̂ with invariant assumptions,

guarantees, allocation, and composition, instantiating D̂ for an arbi-

trary configuration γ , results in a specification structure according

to Def. 2.5.

Theorem 3.7. Given a set of configurations {γi }i ∈N and a PL
specification structure D̂, if

i) each assumption is invariant,
ii) each guarantee is invariant,
iii) each allocation of a contract (Ai ,G j ) is invariant,
iv) component composition is invariant,

then each instantiation Dγi is a specification structure. �

Theorem 3.7 established the conditions under which instantiat-

ing the PL specification structure D̂ for any configuration γ will

result in a specification structure. However, as shown by Theo-

rem 2.7, proving that a property, in the form of a guarantee of a

contract allocated to the system is satisfied, instantiating a PL spec-

ification structure must result in a proper specification structure.

Theorem 3.8. Given a set of configurations {γi }i ∈N and a proper
PL specification structure D̂ such that each instantiation Dγi is a
specification structure, if

i) for each Ai it holds that P(Ai ) |=C
∨

full(Sj ,Ai ) P(Sj ),
ii) for each Gi it holds that P(Gi ) |=C

∨
full(G j ,Gi ) P(G j ),

then each Dγi is proper. �

A direct consequence of Theorem 3.7 and Theorem 3.8 in con-

junction with Theorem 2.7 is the following corollary.

Corollary 3.9. Given a set of configurations {γi }i ∈N, and a PL
specification structure D̂, if

i) premises of Theorem 3.7 hold,
ii) premises of Theorem 3.8 hold,
iii) ∀full(Si , Sj ).Si |= Sj ,
iv) for each contract Ki allocated to an atomic component Ci it

holds that Ci � Ki ,
then it holds that C ′ � (A′,G ′) for each γi . �

If a PL specification structure is considered to be the PL design,

then Corollary 3.9 summarizes all conditions that the design must

satisfy (i-iii), and the condition that the implementationmust satisfy

(iv) in order to be able to claim that each configuration satisfies

the contract (A′,G ′). Given a particular PL specification structure,

providing evidence that the premises of Corollary 3.9 hold, is the

basis for construing a PL safety case in the next section.
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4 CONSTRUCTING A SAFETY CASE FROM D̂
This section presents the second contribution, which is a method for

the construction of a safety case, expressed using the GSN notation,

which is based on a PL specification structure of a configurable

system. Before presenting the safety-case construction method, the

GSN notation is briefly introduced.

4.1 Goal-Structuring Notation
GSN notation [28] is one of the most prominent formalism for safety

case representation. GSN is "a graphical argument notation which
can be used to document explicitly the elements and structure of an
argument and the argument’s relationship to evidence" [28]. More

specifically, GSN models form graphs called goal-structures which
capture the safety-case argumentation structure. Figure 3 shows

the GSN elements considered in the present paper. A complete

description of the GSN notation, can be found in [28].

Figure 3: GSN elements used in the present paper

The elements in Figure 3 have the following meaning: i) Goal
represents a claim about the system, ii) Solution represents the

evidence expected to show that a goal has been met, iii) Strategy
represents the rationale for decomposing a goal into sub-goals, iv)

Assumption is the context in which a claim should hold, v) Context
explicitly declares the scope of a claim, and vi)Module is a container
for smaller, coherent goal-structures. The presented elements can be

related via the supportedBy link, which allows decomposing goals

to subgoals and connecting them to solutions, or via inContextOf
links, which allow relating goals with assumptions and contexts.

In order to present a formal transformation of a CBS model to

GSN notation, and in accordance with definitions from [11], a GSN

model is defined as follows.

Definition 4.1 (GSN model). A GSN model G is a tuple, G =

(B,A,TB ,TA ,d), where:

i) B is a set of nodes, where each node is denoted as bi ,
ii) A ⊆ B × B is a set of edges, where each edge is denoted as

⟨bi ,bj ⟩,
iii) nodes and edges form a rooted, directed acyclic-graph,
iv) TB is a labeling function TB : B → {Goal, Strategy,

Solution,Assumption,Module},
v) TA is a labeling function TA : A → {supportedBy, inCon-

textOf },
vi) d is a labeling function d : B → String which labels each

node with a textual description,

vii) for each edgeTA (⟨bi ,bj ⟩) = supportedBy it holds thatTB(bi )
∈ {Goal,Strategy}. If TB(bi ) = Goal then TB(bj ) ∈ {Strategy,
Solution} and if TB(bi ) = Strategy then TB(bj ) = Goal,

viii) for each edgeTA (⟨bi ,bj ⟩) = inContextOf it holds thatTB(bi )
= Goal and TB(bj ) = {Assumption,Context}. �

4.2 Constructing a safety case
A safety case can only be developed with respect to a particular stan-

dard for which compliance should be shown. In what follows, we

consider the ISO 26262 functional safety standard for the automo-

tive domain but the approach is general and it can be reused in other

domains. Note that ISO 26262 contains nearly 800 requirements

that are both process-based and product-based. Process-based re-

quirements relate to the use of appropriate tools, the existence

of appropriate expertise among the developers etc. This section

focuses on product-based requirements. Product-based argumenta-

tion must show that the system-level requirements are sufficient to

mitigate the potential hazards in the systems intended operating

environment and that the system, in each of its configurations,

implements these requirements. With this overall goal in mind, we

propose the GSN model in Figure 4 as the overall argumentation-

structure of the PL safety case.

The root node of the PL safety case is the claim that the "Product
Line is safe", and the supporting argumentation is partitioned using

the GSN modules in order to separate goal-structures related to

different systems. The argument that a particular system is safe

is achieved by decomposing this claim into arguments about sys-

tem safety with respect to each identified hazard, as exemplified in

Module-System 1. One part of showing that a system is safe with re-

spect to a certain hazard corresponds to arguing that overall system

requirement, G ′
in Figure 4, mitigates the identified hazard. The

evidence for this claim, as indicated by Figure 4, is in the majority

of cases a manual review. As support for this review process, the

GSN context nodes are used to refer to the artifacts that define

the system and that have been produced while analyzing poten-

tial hazards based on which systems requirements were defined.

On the contrary, the argumentation about the fact that the system

implements the requirement in the form of a guarantee G ′
can be

fully developed from the PL specification structure of the system.

Arguing that the system satisfies the contract (A′,G ′) corre-

sponds to arguing that the premises of Corollary 3.9 hold for the

given system. In other words, besides the invariance conditions

on the PL specification structure, for each pair of specifications

full(Si , Sj ) it should be verified that Si |= Sj , and for each con-

tract Ki and component Ci such that allTo(Ki ,Ci ), it should be

verified that Ci � Ki by using techniques such as testing or for-

mal verification. Aggregating claims, supported by evidence, that

all of the previously mentioned conditions hold, corresponds to a

claim that the system satisfies the contract (A′,G ′). Because such

argumentation-structure is based on a CBS model of the PL, from a

formal point of view, the argumentation-structure is complete.
Before presenting the transformation rules from a PL specifi-

cation structure to a GSN model, additional constraints must be

enforced on a GSN model. For example, a single node bi ∈ B is a

valid GSN model but it does not represent a valid safety case.

Definition 4.2 (GSN safety case). A GSN model is a GSN safety
case if

i) the root node b is such that TB(b) = Goal,
ii) for each node bi where TB(bi ) = Goal, there exists a path to

a node bj where TB(bj ) = Solution. �
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Figure 4: Overview of the PL safety case where the shaded
part is constructed from a CBS model of the PL.

The reason for introducing these conditions is that a safety case

must argue that a certain claim holds, and each claim must be

eventually supported by evidence.

4.3 PL specification structure to GSN
transformation rules

Given an arbitrary PL specification structure D̂, the corresponding

GSN safety case argumentation-structure is constructed as follows:

i) for each contract (A′,G ′) such that allTo((A′,G ′),C ′)where

C ′
is the composite component representing the system,

create a GSN node bi such that TB(bi ) = Goal and d(bi ) =
”C ′ satisfies (A′,G′) for each configurationγ ”,

ii) create three GSNnodesb1,b2,b3 such thatTB(b1) = TB(b2) =
TB(b3) = Strategy, TA (⟨bi ,b1⟩) = TA (⟨bi ,b2⟩) =
TA (⟨bi ,b3⟩) = supportedBy, and d(b1) ="Argue that premises
(i) and (ii) of Corollary 1 hold", d(b2) =Argue that semantics of
each fulfills relation holds", and d(b3) =Argue by verification
that contracts allocated to atomic components are satisfied".

iii) for each premise of Theorem 3.7 and Theorem 3.8 create a

GSN node bj such that TB(bj ) = Goal where TA (⟨b1,bj ⟩) =
supportedBy and d(bj ) ="Premise x holds" where x is one of
the premises. Also, for each Si or Cj that is in the scope of a

premise x, create a GSN node bjs where TB(bjs ) = Solution,
TA (⟨bj ,bjs ⟩) = supportedBy and bjs refers to the evidence

about presence conditions entailment.

iv) for each pair full(Si , Sj ) create a GSN node bf such that

TB(bf ) = Goal, where TA (⟨b2,bf ⟩) = supportedBy and

d(bf ) = ”Si entails Sj ”. Also, for each bf create a GSN node

bf s whereTB(bf s ) = Solution,TA (⟨bf ,bf s ⟩) = supportedBy
and bf s refers to the evidence of specification entailment.

v) for each pair allTo((Ai ,Gi ),Ci ) whereCi is an atomic com-

ponent, create a GSN node bv such that TB(bv ) = Goal,
where TA (⟨b3,bv ⟩) = supportedBy and d(bv ) = ”Ci satis-
fies (Ai ,Gi ). Also, for each bv create a GSN node bvs where
TB(bvs ) = Solution, TA (⟨bv ,bvs ⟩) = supportedBy and bvs
refers to the evidence of contract (Ai ,Gi ) being satisfied.

The presented transformation rules can be easily converted into

an algorithm that can be used to automate the creation of the

safety case argumentation-structure. Given these transformation

rules, and Def. 4.1 and Def. 4.2, next section presents an example

application of the extended CBS framework and the transformation

rules for the construction of FLD system safety case.

5 EXAMPLE APPLICATION
Figure 5 depicts the PL specification structure for the subset of

all possible configurations of Scania’s FLD system, and the cor-

responding part of the constructed safety case. The example is a

simplification of the complete FLD technical architecture presented

in [39], but unlike in [39], the example in Figure 5 considers multi-

ple configurations of the FLD system in order to validate the PLE

extension of the basic CBS framework.

The FLD system, represented by the component CFLD , has sub-
components CTANK−ASSY representing the fuel tank assembly,

CCOO representing a complete system, the COOrdinator Electronic
Control Unit (ECU), and CBMS representing another system, the

Body Management System ECU. Component CTANK−ASSY has fur-

ther subcomponents CTANK representing the actual fuel tank and

two fuel level sensors; an analog one represented by Ca−SENS and

a digital one represented by Cd−SENS . Component CCOO has sub-

components CC−EST which is a C-code function performing the

fuel level estimation for all types of fuel except for diesel, and the

subcomponent CC−CAN which is a C-code function responsible

for transmitting the estimated value over Controller Area Network
(CAN) to the vehicle Instrumentation CLuster represented by compo-

nent CICL . Similarly, the component CBMS has the subcomponent

CB−EST which performs the fuel level estimation in FLD configura-

tions with diesel fuel, and subcomponentCB−CAN which transmits

the estimated value to CCOO .

Note that each SW component exists in several production ver-

sions, each HW component exists in several variants, e.g. round or

square CTANK , and each ECU exists in several variants depending

on the ECU generation, e.g. generation 7 of CCOO . Due to space

limitations, representing each of these is beyond the scope of the

paper, i.e. each component in Figure 5 represents a single version,

variant, or a generation of a component. As described, the applica-

bility of a particular component or a specification to a particular

configuration is defined through presence conditions
1
. The pres-

ence conditions φ1 − φ33 were manually extracted from various

tools in Scania CV AB. Due to space limitations, not all presence

conditions are shown but for illustration purposes, several are pre-

sented in Table 1. Each term FX .Y represents one of more than

40000 Boolean features, e.g. F1.1 is the Truck feature while F1.2 is
the Bus feature. RD stands for release date which is a point in time

when a certain component is released for production.

The contracts in the PL specification structure of the FLD, are

based on the ones presented in [39] but because the present paper

considers multiple configurations, the PL specification structure

in Figure 5, contains additional contracts such as (A6,G5) or all

contracts allocated to CBMS and its constituent components. These

contracts were manually extracted from FLD system documentation

by relying on principles presented in [39]. Besides the contract

examples in Table 1, the PL specification structure of the FLD system

contains contracts guaranteeing that if the position of floater in

CTANK corresponds to the actual fuel volume, then either of the

sensors can guarantee that the measured value corresponds to the

1
Feature names have been modified due to confidentiality reasons.
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Figure 5: PL specification structure of the FLD system (left), and the corresponding safety case argumentation-structure (right)

Table 1: Examples of presence conditions and contracts

Presence conditions from the FLD system

φ26 = (F 1.1∧F 1323.5)∨(F 1.2∧F 1323.5)∨(F 1.1∧F 1323.6∧RD ≥ 201706)

φ28 = [F 2482.1∨(F 2482.2∧ F 1940.1)]∧ [F 1837.1∨(F 1837.19∧ F 579.26)]∧
[(F 37.1 ∧ F 2719.1 ∧ 201404 ≤ RD ≤ 201801) ∨ (F 37.3 ∧ F 2719.1)]

φ35 = (F 1.1 ∨ F 1.2) ∧ F 1323.5
φ1 = φ2 = F 1.1 ∨ F 1.2
...

Contracts from the FLD system

A′
: The ignition state equals true.

G′
: Indicated fuel volume deviates atmost 7% compared to actual fuel volume.

A12 : Estimated fuel volume value is updated every 1s.

G11 : Indicated fuel volume deviates atmost 7% compared to actual fuel volume.
A5 : Measured fuel volume corresponds to the actual fuel volume.
A6 : Estimated fuel volume is received over CAN every 60ms.

G6 : Estimated fuel volume is transmitted over CAN every 90ms.

...

actual fuel volume and consequently, theCC−EST andCB−EST can

in different configurations guarantee that the estimated value will

corresponds to the actual fuel volume. Then CCOO guarantees to

transmit the estimated value CICL which displays it.

It should be noted that the development of assemblies and ECUs

represented by components CTANK , CCOO , CBMS and their sub-

components is performed by dedicated engineering groups, while

the overall system, represented by component CFLD with subcom-

ponentsCTANK ,CCOO , andCBMS is managed by the architecture

group. In other words, the CBS model in Figure 5 is a holistic inter-

pretation of the FLD system that spans across several engineering

teams and its purpose is to enable holistic analyses of the FLD

system, e.g. for the purpose of the safety case.

5.1 Obtained Argumentation-Structure
The right-hand side of Figure 5 shows the argumentation structure

corresponding to the CBS model on the left-hand side. Application

of the transformation rules from Section 4.3 is straightforward

and it results in the argumentation structure with the goal root-
node with the claim ”CFLD satisfies (A′,G ′) in eachγ ”, followed by

further strategy, sub-goals, and expected solution nodes. In this

section we discuss the feasibility, benefits and limitations of the

presented approach.

5.1.1 Feasibility of producing the required evidence. The first set
of required evidence relates to proving that premises of Theorem 3.7

and Theorem 3.8 hold. As shown in [32], verifying these premises

can be automated using Description Logic [2] or in general, using

SMT solvers [9]. The second set of evidence relates to proving that

for each pair of specifications full(Si , Sj ) it holds that Si |= Sj .
In the general case, independently of the approach, this is a hard

problem because specifications Si and Sj can be such that it is not

possible to formalize them and verify entailment. However, the ob-

servation from the analysis of the FLD system is that most often, as

exemplified in Table 1, Si and Sj are either identical, e.g.G11 andG
′
,

or even without formal analysis it is obvious that Sj fulfills Si , e.g.
G6 and A6. The reason for this is that when specifying components

in terms of contracts over component’s interfaces, not matching

assumptions and guarantees of components is immediately counter-

intuitive. The third set of evidence relates to proving that for each

contract Ki and atomic component Ci , such that allTo(Ki ,Ci ), it
holds that Ci satisfies Ki . Providing this type of evidence is the

most difficult because it involves verifying the behavior of Ci . On
the one hand, because functional safety standards recommend that

safety-critical software should be of low complexity, formal SW ver-

ification approaches against contract-based specifications produce

good results [23]. On the other hand, large-scale formal verification

is still not adopted in industrial settings which means that majority

of evidence for arguments of type Ci � Ki will be based on testing,

as observed during the analysis of the FLD system. Since unit-testing
is a de-facto standard in SW development practice, the third type

of evidence will certainly be created. However, because testing is a

technique that does prove absence of faults, the confidence in claims

supported by testing evidence should be assessed [13]. Note that

because a compositional reasoning framework is the basis of the

PL safety case, the need to perform integration testing is removed

and unit testing is sufficient to produce the third type of evidence.
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5.1.2 Benefits of the approach. The primary aim of the pre-

sented approach is the reduction in the amount of manual work.

Most importantly, the approach enables automated construction

of safety case argumentation-structure for an arbitrary PL. Also,

in the worst case, at least a half of the required evidence can be

produced using automated techniques. The presented approach also

facilitates the decoupling of the responsibilities among the different

engineering groups, i.e. it allows modular safety case development.

In the example from Figure 5, the engineering group responsible

for vehicle level safety should monitor if the premises of Corol-

lary 3.9 hold for the composition of components CFLD , CTANK ,

CCOO , CBMS while the group managing subcomponents of, for

exampleCCOO , should monitor if the Corollary 3.9 holds forCCOO .

Because the constructed safety case argumentation-structure is di-

rectly based on the PL design and implementation, expressed as a

CBS model, the approach enables stepwise creation of the safety

case in parallel with PL development process. In other words, ex-

cept the evidence needed to show that Ci � Ki , the premises of

Corollary 3.9 can be verified at any stage of the PL development.

The tight coupling of the PL safety case with the PL design and

implementation also facilitates change-impact analysis. Elements

of the safety case affected by a change in the CBS model of the PL

can be precisely determined, but more importantly, it is possible

to verify if a change in the CBS model of PL is such that a premise

of Corollary 3.9 no longer holds, and consequently the safety case

cannot be created.

5.1.3 Limitations of the approach. The described benefits re-

quire that an enterprise adopts a sufficiently formal approach to

requirements engineering.While in general this cannot be expected,

in cases of highly critical safety-critical systems, the relevant stan-

dards typically highly recommend semi-formal and formal methods

for requirements engineering and verification. An issue that hinders

complete automation of the presented approach is the need to access

various types of information about the PL. Because such informa-

tion is typicallymaintained by different tools, a data-integration [12]
process that would merge and clean the necessary information is

required. A promising approach for such data-integration are se-
mantic web technologies as suggested in [20, 31, 33]. Finally, in

order to simplify the exposition, but primarily due to the lack of

space, the presented CBS framework is simplistic in some aspects.

For example, there are scenarios where it would be beneficial to

declare a contract without assumptions or perhaps with a set of

assumptions. Since such generalizations are non-conceptual and

mostly trivial, they are left as future work.

6 RELATEDWORK
Two main approaches have been proposed for the construction of

argumentation structures. The first line of research has focused on

capturing safety case patterns that have been used in real world

safety cases or in case studies performed by researchers [11]. The

second line of research has focused on the generation of safety case

argumentation-structures from various types of artifacts [10, 25, 37].

In the area of PLE, most notable contributions [10, 16, 17, 19, 25, 36,

37] come from the latter group.

Work in [24] uses artifacts resulting from safety analyses to con-

struct a safety case for a PL by showing that the contributions of

identified faults to potential failures is acceptable. Work in [25]

uses the method from [24] for the creation of a safety case for a

configurable PL architecture. Unlike the presented approach which

directly argues about the safety of all product configurations, the

approach in [24] defines a GSN extension that allows merging

safety cases of individual product configurations. However, there

are no criteria for assessing the completeness of individual safety

cases or of the merged safety case. Also, unlike the presented ap-

proach, which uses the identified requirements as the basis of the

argumentation structure, work in [24] uses the identified faults

as the basis of the argumentation structure. The tool-supported

method presented in [10] provides an automated way to construct

a modular safety case based on the meta-models presented in [24]

given the information from a variability management tool, architec-

ture specification tool, and a hazard and safety-analysis tool. Work

in [36, 37] provides an approach for the creation of reusable safety

cases fragments based on a semi-formal notion of weak and strong
safety contracts. The approach considers the concept of Safety Ele-
ment out of Context (SEooC) from the standard ISO 26262, which

is used to represent the components that OEMs procure from ex-

ternal suppliers. The essence of the approach is to perform hazard

analysis and risk assessment for a SEooC using a variant of Fault
Propagation and Transformation Calculus (FPTC) [18] and then

transform the analysis results into safety contracts. The present pa-

per considers development and assurance of arbitrary PLs from the

OEM perspective, and because of that relies on a more expressive

contract-based framework which subsumes the weak and strong
safety contracts. Consequently the approach in the present paper

argues about system-level safety instead of only SEooC. Further-

more, unlike the approach in [36] where presence conditions are

assumptions of contracts, the presence conditions in the present

paper are orthogonal to components and specifications thus allow-

ing presence conditions of artifacts and the artifact themselves to

evolve separately. The line of research in [16, 17, 19] introduces

approaches for constructing reusable safety case fragments that

target particular requirements from various domain-specific safety

standards. A notable aspect of these approaches is the attention to

processes and their assurance with respect to standardized practices.

Unlike this work, our approach is oriented towards product-based

arguments for arbitrary PLs.

7 CONCLUSION
To satisfy the needs of as many different customers as possible,

enterprises are increasing the allowed levels of customization, even

for safety-critical systems. Making safety-critical systems highly

configurable, e.g. creating Product Lines (PLs), prevents the use of
existing, primarily manual, safety assurance practices because the

number of configuration is simply too high.

The present paper has introduced a general and novel approach

for the construction of a safety case that argues about the safety of

the complete PL, instead about each product configuration individu-

ally. The first contribution of the paper is the PL-oriented extension

of a general-purpose Contract-Based Specification (CBS) framework,

in order to create a rigorous, holistic model of all product con-

figurations. The result of this extension is Corollary 3.9, which

summarizes the constraints on CBS models of PLs that preserve



SAC ’19, April 8–12, 2019, Limassol, Cyprus Damir Nešić, Mattias Nyberg, and Barbara Gallina

the sound compositional reasoning of the original CBS framework.

This ability allows the reasoning about the properties of all PL con-

figurations by analyzing only their constituent components. The

second contribution defines a set of transformation rules from an

arbitrary CBS model of a PL into a PL safety case expressed using

GSN. Because the compositional reasoning in the CBS framework

is sound, it is ensured that the argumentation structure of the PL

safety case is complete-by-construction.
Future work includes generalizations of the approach, and de-

velopment of tool support that will enable large-scale case studies.
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