
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

Requirements on Component Technologies
for Heavy Vehicles1

Anders Möller†,‡, Joakim Fröberg†,•, Mikael Nolin†

† MRTC, Mälardalen University, Box 883, SE-721 23 Västerås, Sweden
‡ CC Systems, www.cc-systems.com

• Volvo Construction Equipment, www.volvo.com

{Anders.Moller, Joakim.Froberg, Mikael.Nolin}@mdh.se

Abstract. Software component technologies have not yet been generally
accepted by embedded-systems industries. In order to better understand why this
is the case, we present a set of requirements, based on industrial needs, that are
deemed decisive for introducing a component technology. The requirements we
present can be used to evaluate existing component technologies before
introducing them in an industrial context. They can also be used to guide
modifications and/or extensions to component technologies, to make them better
suited for industrial deployment. One of our findings is that a major source of
requirements is non-technical in its nature. For a component technology to
become a viable solution in an industrial context, its impact on the overall
development process needs to be addressed. This includes issues like component
life-cycle management, and support for the ability to gradually migrate into the
new technology.

1 Introduction

During the last decade, Component-Based Software Engineering (CBSE) for
embedded systems has received a large amount of attention, especially in the software
engineering research community. In the PC/Internet area CBSE has had tremendous
impact and today components are downloaded and on the fly integrated into, e.g., word
processors and web browsers. In industry however, CBSE is still, to a large extent,
envisioned as a promising future technology to meet industry specific demands on
improved quality and lowered cost, by facilitating software reuse, efficient software
development, and more reliable software systems [1].

CBSE has not yet been generally accepted by embedded-system developers. They
are in fact, to a large extent, still using monolithic and platform dependent software
development techniques ’, in spite of the fact that this make software systems hard to
maintain, upgrade, and modify. One of the reasons for this status quo is that there are
significant risks and costs associated with the adoption of a new development

1 This work is supported by Volvo Construction Equipment, CC Systems, and KKS (The

Knowledge Foundation), within the project HEAVE.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

technique. These risks must be carefully evaluated and managed before adopting a new
development process.

The main contribution of this paper is that it straightens out some of the question-
marks regarding actual industrial requirements placed on a component technology. We
describe the requirements on a component technology as elicited from two companies
in the business segment of heavy vehicles. Many of the requirements are general for the
automotive industry, or even larger parts of the embedded systems market (specifically
segments that deal with issues about distributed real-time control in safety-critical
environments), but there are also some issues that are specific for the business segment
of heavy vehicles.

The list of requirements can be used to evaluate existing component technologies
before introducing them in an industrial context, therefore minimising the risk when
introducing a new development process. Thus, helping companies to take the step into
tomorrow’s technology today. They can also be used to guide modifications and/or
extensions to component technologies, to make them better suited for industrial
deployment within embedded systems companies. Our list of requirements also
illustrates how industrial requirements on products and product development impact
requirements on a component technology.

This paper extends previous work, studying the requirements for component
technologies , in that the results presented are not only based on our own experience or
experience from a single company [18][19]. We base most of our result on interviews
with senior technical staff at the two companies involved in this paper, but we have
also conducted interviews with technical staff at other companies. Furthermore, since
the embedded systems market is so diversified, we have limited our study to
applications for distributed embedded real-time control in safety-critical environments,
specifically studying comp anies within the heavy vehicles market segment. This gives
our results higher validity, for this class of applications, than does more general studies
of requirements in the embedded systems market [20].

2 Introducing CBSE in the Vehicular Industry

Component-Based Software Engineering (CBSE) arouses interest and curiosity in
industry. This is mainly due to the enhanced development process and the improved
ability to reuse software offered by CBSE. Also, the increased possibility to predict the
time needed to complete a software development project, due to the fact that the
assignments can be divided into smaller and more easily defined tasks, is seen as a
driver for CBSE

CBSE can be approached from two, conceptually different, points of view;
distinguished by whether the components are (1) used as a design philosophy
independent from any concern for reusing existing components, or (2) seen as reusable
off-the-shelf building blocks used to design and implement a component-based system
[15]. When talking to industrial software developers with experience from using a
CBSE development process [21], such as Volvo Construction Equipment2, the first
part, (1), is often seen as the most important advantage. Their experience is that the
design philosophy of CBSE gives rise to good software architecture and significantly

2 Volvo Construction Equipment, Home Page: http://www.volvo.com

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

enhanced ability to divide the software in small, clearly-defined, development
subprojects. This , in turn, gives predictable development times and shortens the time-
to-market.

The second part, (2), is often viewed as less important and the main reason for this is
that experience shows that most approaches to large scale software reuse is associated
with major risks and high initial costs. Rather few companies are willing to take these
initial costs and risks since it is difficult to guarantee that money is saved in the end.

On the other hand, when talking to companies with less, or no, experience from
component-based technologies, (2) is seen as the most important motivation to consider
CBSE. This discrepancy between companies with and without CBSE experience is
striking.

However, changing the software development process to using CBSE does not only
have advantages. Especially in the short term perspective, introducing CBSE represents
significant costs and risks. For instance, designing software to allow reuse requires
(sometimes significantly) higher effort than does designing for a single application [9].
For resource constrained systems, design for reuse is even more challenging, since
what are the most critical resources may wary from system to system (e.g. memory or
CPU-load). Furthermore, a component designed for reuse may exhibit an overly rich
interface and an associated overly complex and resource consuming implementation.
Hence, designing for reuse in resource constrained environments requires significant
knowledge not only about functional requirements, but also about non-functional
requirements. These problems may limit the possibilities of reuse, even when using
CBSE.

With any software engineering task, having a clear and complete understanding of
the software requirements is paramount. However, practice shows that a major source
of software errors comes from erroneous, or incomplete, specifications [9]. Often
incomplete specifications are compensated for by engineers having good domain
knowledge, hence having knowledge of implicit requirements. However, when using a
CBSE approach, one driving idea is that each component should be fully specified and
understandable by its interface. Hence, the use of implicit domain knowledge not
documented in the interface may hinder reuse of components. Also, division of labour
into components require good specifications of what interfaces to implement and any
constraints on how that implementation is done, further disabling use of implicit
domain knowledge. Hence, to fully utilise the benefits of CBSE, a software engineering
process that do not rely on engineers’ implicit domain knowledge need to be
established.

Also, when introducing reuse of components across multiple products and/or
product families, issues about component management arise. In essence, each
component has its own product life -cycle that needs to be managed. This includes
version and variant management, keeping track of which versions and variants is used
in what products, and how component modifications should be propagated to different
version and variants. Components need to be maintained, as other products, during
their life cycle. This maintenance needs to be done in a controlled fashion, in order not
to interfere aversively with ongoing projects using the components. This can only be
achieved using adequate tools and processes for version and variant management.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

3 A Component Technology for Heavy Vehicles

Existing component technologies are in general not applicable to embedded
computer systems, since they do not consider aspects such as safety, timing, and
memory consumption that are crucial for many embedded systems [6][7]. Some
attempts have been made to adapt component technologies to embedded systems , like,
e.g., MinimumCORBA [12]. However, these adaptations have not been generally
accepted in the embedded systems segments. The reason for this is mainly due to the
diversified nature of the embedded systems domain. Different market segments have
different requirements on a component technology, and often, these requirements are
not fulfilled simp ly by stripping down existing component technologies; e.g.
MinimumCORBA requires less memory then does CORBA, however, the need to
statically predict memory usage is not addressed.

It is important to keep in mind that the embedded systems market is extre mely
diversified in terms of requirements placed on the software. For instance, it is obvious
that software requirements for consumer products, telecom switches, and avionics are
quite different. Hence, we will focus on one single market segment: the segment of
heavy vehicles, including, e.g., wheel loaders and forest harvesters. It is important to
realise that the development and evaluation of a component technology is substantially
simplified by focusing on a specific market segment. Within this market segment, the
conditions for software development should be similar enough to allow a lightweight
and efficient component technology to be established [8]. However, many of the
requirements and results presented in this paper are more general and not only
applicable to our industrial partners in the business segment of heavy vehicles. Many of
the issues are general for the automotive industry, or even larger parts of the embedded
systems market (specifically segments that deal with issues about distributed real-time
control in safety-critical environments).

3.1 The Business Segment of Heavy Vehicles

Developers of heavy vehicles faces a situation of (1) high demands on reliability, (2)
requirements on low product cost, and (3) supporting many configurations, variants and
suppliers. Computers offer the performance needed for the requested functions in a
modern vehicle, but at the same time vehicle reliability must not suffer. Computers and
software add new sources of failures and, unfortunately, computer engineering is less
mature than many other fields in vehicle development and can cause lessened product
reliability. This yields a strong focus on the ability to model, predict, and verify
computer functionality.

At the same time, the product cost for volume products must be kept low. Thus,
there is a need to include a minimum of hardware resources in a product (only as much
resources as the software really needs). The stringent cost requirements also drive
vehicle developers to integrate low cost components from suppliers rather than develop
in-house. On top of these demands on reliability and low cost, vehicle manufacturers
make frequent use of product variants to satisfy larger groups of customers and thereby
increase market share and product volume.

In order to accommodate (1)-(3), as well as an increasing number of features and
functions, the electronic system of a modern vehicle is a complex construction which

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

comprise electronic and software components from many vendors and that exists in
numerous configurations and variants.

The situation described cause challenges with respect to verification and
maintenance of these variants and integration of components into a system. Using
software components and a CBSE approach is seen as a promising way to address
challenges in product development including integration, flexible configuration, as well
as good reliability predictions, scalability, software reuse, and fast development.
Ultimately, the use of components would allow both scalability in that a system of
components is modular and allows for more dynamic partitioning (and thereby allows
for more optimal hardware usage) and that the reliability could be high due to reuse of
extensively tested components.

Further, the concept of components is widely used in the vehicular industry today.
Using components in software would be an extension of the industry’s current
procedures where the products today are associated with the components that constitute
the particular vehicle configuration.

What distinguishes the segment of heavy vehicles in the automotive industry is that
the product volumes are typically lower than that of, e.g., trucks or passenger cars. Als o
the customers tend to be more demanding with respect to technical specifications such
as engine torque, payload etc, and less demanding with respect to style. This causes a
lower emphasis on product cost and optimisation of hardware than in the automotive
industry in general. The lower volumes also make the manufacturers more willing to
design variants to meet the requests of a small number of customers.

However, the segment of heavy vehicles is not homogeneous with respect to
software and electronics development practices. For instance, the industrial partners in
this paper face quite different market situations and hence employ different
development techniques:
• CC Systems 3 (CCS) is developing and supplying advanced distributed embedded

real-time control systems with focus on mobile applications. Examples, including
both hardware and software, developed by CCS are forest harvesters, rock drilling
equipment and combat vehicles. The systems developed by CCS are built to endure
rough environments, and are characterised by safety criticality, high functionality,
and the requirements on robustness and availability are high.
 CCS works as a distributed software development partner, and cooperates, among
others, with Alvis Hägglunds4, Timberjack5 and Atlas Copco6. Experience from
these companies are included in this paper, this makes our findings more
representative for the business segment of heavy vehicles.
 CCS’ role as subcontractor requires a high degree of flexibility with respect to
supported target environments. Often, CCS’ customers have requirements regarding
what hardware or operating systems platforms to use, hence CCS cannot settle to
support only some predefined set of environments. Nevertheless, to gain
competitive advantages, CCS desires to reuse software between different platforms.

3 CC Systems, Home page: http://www.cc-systems.com
4 Alvis Hägglunds, Home page: http://www.alvishagglunds.se/
5 Timerjack, Home page: http://www.timberjack.com/
6 Atlas Copco, Home page: http://www.atlascopco.com/

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

• Volvo Construction Equipment (VCE) is one of the world’s major manufacturers of
construction equipment, with a product range encompassing wheel loaders,
excavators, motor graders, and more. What these products have in common is that
they demand high reliability control systems that are maintainable and still cheap to
produce. The systems are characterised as distributed embedded real-time systems,
which must perform in an environment with limited hardware resources.
 VCE develops the vehicle electronics and most software in house. Some larger
software parts, such as the operating system, are bought from commercial suppliers.
VCE’s role as both system owner and system developer gives them full control over
the system’s architecture. This, in turn, has given them the possibility to select a
small set of (similar) hardware platforms to support, and select a single operating
systems to use. Despite this degree of control over the system, VCE’s experience is
that software reuse is still hindered; for instance by non-technical issues like version
and variant management, and configuration management.

3.2 System Description

In order to describe the context for software components in the vehicular industry,
we will first explore some central concepts in vehicle electronic systems. Here, we
outline some common and typical solutions and principles used in the design of vehicle
electronics. The purpose is to describe commonly used solutions, and outline the de
facto context for application development and thereby also requirements for software
component technologies.

The system architecture can be described as a set of computer nodes called
Electronic Control Units (ECU’s). These nodes are distributed through out the vehicle
to reduce cabling and to allow for dividing the system into subsystems. The nodes are
interconnected by one or more communication busses, forming the network
architecture of the vehicle. When several different organisations are developing ECU’s,
the bus often acts as the interface between nodes, and hence also between the
organisations. Busses are typically low cost and low bandwidth, such as the Controller
Area Network (CAN) [3].

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

ECU
1

ECU
2

ECU
3

I/O

Sensor
Actuator

Bus 1

Gateway
ECU

5
ECU

4

Bus 2

Service
Computer

Intelligent
Sensor

Fig. 1. Example of vehicle network architecture

In the example shown in figure 1, the two communication busses are separated using

a gateway. This is an architectural pattern that can be used for several reasons, e.g.,
separation of criticality, increased total communications bandwidth, fault tolerance,
compatibility with standard protocols [4][5]. Also, safety critical functions may require
a high level of verification, which is usually very costly. Thus, non-safety related
functions might be separated to reduce cost and effort of verification. Communicating
functions may require support for global clock or fault tolerance mechanisms.

The hardware resources are typically scarce due to the requirements on low product
cost. Addition of new hardware resources will always be defensive, even if customers
are expected to embrace a certain new function, because of the uncertainty of
predictions. Manufacturers have difficulties in estimating the customer value of new
functions and thus, the general approach is to keep resources at a minimum.

In order to exemplify the settings in which software components are considered, we
have studied our industrial partner’s currently used nodes. Below we list the hardware
resources of a typical ECU with requirements on sensing, actuating, and a relatively
high computational capacity (this example is from a typical power train ECU):

Processor: 25 MHz 16 bit processor (e.g. Siemens C167)
Memories:

Flash: 1 MB used for applications
RAM: 128 kB used for the runtime memory usage
EEPROM: 64 kB used for system parameters

Serial interfaces: RS232 or RS485, used for service purpose
Communications: Controller Area Network (CAN) (one or more interfaces)
I/O: There is a number of digital and analogue in and out ports

Also, included in a vehicle’s electronic system can be display computer(s) with
varying amounts of resources depending on product requirements. There may also be
PC-based ECU’s for non-control applications such as telematics, and information

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

systems. Furthermore, in contrast to these resource intense ECU’s, there typically
exists a number of small and lightweight nodes, such as, intelligent sensors (i.e.
processor equipped, bus enabled, sensors).

Figure 2 depicts the typical software architecture of an ECU. Current practice
typically builds on top a reusable "software platform", which consists of a hardware
abstraction layer with device drivers and other platform dependent code, a Real-Time
Operating System (RTOS), one or more communications protocols, and possible a
software (component) framework that is typically company (or project) specific. This
software platform is accessible to application programmers through an Application
Programmers Interface (API). Different nodes, presenting the same API, can have
different realisation of the different parts in the software platform (e.g. using different
RTOS’s).

Today it is common to treat parts of the software platform as components , e.g. the
RTOS, device drivers, etc, in the same way as the ECU’s bus connectors and other
hardware modules. That is, some form of component management process exists;
trying to keep track of which version, variant, and configuration of a component is used
within a product. This component based view of the software platform is however not
to be confused with the concept of CBSE since the components does not conform to
standard interfaces or component models.

Fig. 2. Internals of an ECU – A software platform

4 Requirements on a Component Technology for Heavy Vehicles

There are many different aspects and methods to consider, when looking into
questions regarding how to capture the most important requirements on a component
technology suited for heavy vehicles. Our approach has been to cooperate with our
industrial partners very closely, both by performing interviews and by participating in
projects. In doing so, we have extracted the most important requirements on a
component-based technique from the developers of heavy vehicles point of view.

The requirements are divided in two main groups, the technical requirements
(section 4.1) and the development process related requirements (section 4.2). The
reason for this division is mainly to clarify that the industrial actors are not only
interested in technical solutions, but also in improvements regarding their development

Application

Application Programmers Interface

Software Framework
RTOS

Hardware

Communication

Hardware Abstraction Layer

Device Drivers

Software
Platform

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

process. Section 4.3 contains implied (or derived) requirements, i.e. requirements that
we have synthesised from the requirements in sections 4.1 and 4.2, but are not explicit
requirements from the industry. In section 4.4 we present a discussion and some
conclusions drawn from the listed requirements.

4.1 Technical Requirements

The technical requirements describe the needs and desires that our industrial partners
have regarding the technically related aspects and properties of a component
technology.

4.1.1 Analysable
Vehicle industry strives for better analyses of computer system behaviour in general.

This striving naturally affects requirements placed on a component model. System
analysis, with respect to non-functional properties, such as the timing behaviour and
the memory consumption, of a system build up from well-tested components is
considered highly attractive. In fact, it is one of the single most distinguished
requirements defined by our industrial partners.

When analysing a system, built from well-tested, functionally correct, components,
the main issues is associated with composability. The composability problem must
guarantee non-functional properties, such as the communication, synchronisation,
memory, and timing characteristics of the system [1].

When considering timing analysability, it is important to be able to verify (1) that
each component meet its timing requirements, (2) that each node (which is built up
from several components) meet its deadlines (i.e. schedulability analysis), and (3) to be
able to analyse the end-to-end timing behaviour of functions in a distributed system.

Because of the fact that the systems are resource constrained (see section 3), it is
important to be able to analyse the memory consumption. To check the sufficiency of
the application memory, as well as the ROM memory, is important. This check should
be done pre-runtime to avoid failures during runtime .

In a longer perspective, it is also desirable to be able to analyse properties like
reliability and safety. However, these properties are currently deemed too difficult to
address on a component level and traditional methods (like testing and reviewing) are
considered adequate.

4.1.2 Testable and debuggable
It is required that there exist tools that support debugging both at component level,

e.g. a graphical debugging tool showing the components in- and out-port values, and at
the traditional white-box source code debugging level. The test and debug environment
needs to be “component aware” in the sense that port-values can be monitored and
traced and that breakpoints can be set on component level.

 Testing and debugging is by far the most commonly used technique, to verify
software systems functionality. Testing is a very important comp lement to analysis, and
it should not be compromised when introducing a component technology.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

The ability to test embedded-system software can, however, be improved when
using CBSE. Te test can be carried out at many different levels and in many different
ways. The embedded-systems software can be tested in (1) a simulated environment PC
environment [14]. (2) The software can be tested in the traditional way, using a
laboratory target test environment. (3) The additional contribution of testing the
software when using CBSE, is the ability to test components in isolation. This is a
desired functionality asked for by our industrial partners. This test should be used
before the system tests and this approach can help finding functional errors and source
code bugs in the earliest possible state.

4.1.3 Portable
The components, and the infrastructure surrounding them, should be platform

independent to the highest degree possible. Here, platform independent means
hardware independent, RTOS independent and communication protocol independent.

Components are kept portable by minimising the number of dependencies to the
software platform. Such dependencies are off course necessary to construct a
executable system, however the dependencies should be kept to a minimum, and
whenever possible dependencies should be generated automatically by some
configuration tool.

Ideally, components should also be independent of the component framework used
during run-time. This may seem far fetched, since traditionally a component model has
been tightly integrated with its component framework. However, this kind of
optimisation is important for companies cooperating with different customers, using
different hardware and operating systems, such as CC Systems . Such an approach also
enhances the ability to upgrade or update the hardware or the operating system.

4.1.4 Resource Constrained
The components should be small and light-weighted and the components

infrastructure and framework should be minimised. Ideally there should not be any run-
time overhead compared to not using a CBSE approach.

Systems are resource constrained to lower the production cost and thereby increase
the profit. When companies design new ECU’s, future profit is the main concern.
Therefore the hardware is dimensioned for anticipated use but not more.

Provided that the customers are willing to pay the extra money, to be able to use
more complex software functionality in the future, more advanced hardware may be
appropriate. This is however seldom the case, usually the customers are very cost
sensitive. The developer of the hardware rarely takes the extra cost to extend the
hardware resources, since the margin on electronics development usually are rather
low.

One possibility, that can significantly reduce resource consumption of components
and the component framework, is to limit the possible run-time dynamics. This means
that it is desirable only to allow static, off-line, configured systems. Many existing
component technologies have been design to support high run-time dynamics, where
components are added, removed and reconfigured at run-time. However, this dynamic
behaviour comes at the price of increased resource consumption.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

4.1.5 Component Modelling
Based on information extracted during the interviews, a component technology

should be based on a standard modelling language like UML [10] or UML 2.0 [17].
The main reason to choosing UML is that it is a well known and thoroughly tested
modelling technique with tools and formats supported by third-party developers.

The reason for our industrial partners to have specific demands in these details, is
that different companies in the business segment of heavy vehicles have a lot in
common and that the business segment does not have the possibility do develop their
own standards and practices. Instead they preferably relay on the use of simple and
mature techniques.

4.1.6 Computational Model
Components should preferably be passive, i.e. they should not contain their own

threads of execution. A view where components are allocated to threads during
component assembly is preferred, since this is believed to enhance reusability and to
limit resource consumption. The computational model should be focused on a pipe-
and-filter model [11]. This is partly due to the well known ability to schedule and
analyse this model off-line. Also, the pipes-and-filters model is a good conceptual
model for control applications.

However, experience from VCE shows that the pipe-and-filter model does not fit all
parts of the system, and that force fitting applications to the pipe-and-filter model may
lead to overly complex components. Hence, it is desirable to have support for other
computational models; unfortunately, however, which models to support is not obvious
and is an open question.

4.2 Development Requirements

When discussing requirements for CBSE technologies, the research community
often overlooks requirements related to the development process. For software
developing companies, however, these requirements are at least as important as the
technical requirements. When talking to industry, earning money is the main focus.
This cannot be done without having an efficient development processes deployed. To
obtain industrial reliance, the development requirements need to be considered and
addressed by the component technology and tools associated to the technology.

The change in development process is as sociated with major risks and costs. This
fact implies that the development requirements are very essential and cannot be
neglected.

4.2.1 Introducible
It should be possible for companies to gradually migrate into a new development

technology. It is important to make the change in technique as safe and inexpensive as
possible.

Revolutionary changes in the development technique used at a company are
associated with high risks and costs. Therefore a new technology should be possible to
divide into smaller parts, which can be introduced separately. If the architecture

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

described in figure 2 is used, the components can be used for application development
only and independently of the real-time operating system. Or, the infrastructure can be
developed using components, while the application is still monolithic.

One way of introducing a component technology in industry, is to start focusing on
the development process related requirements. When the developers have accepted the
CBSE way of thinking, i.e. thinking in terms of reusable software units, it is time to
look at available component technologies. This approach should minimise the risk of
spending too much money in an initial phase, when switching to a component
technology without having the CBSE way of thinking.

4.2.2 Reusable
Components should be reusable, e.g., for use in new applications or environments than
those for which they where originally designed [22]. The requirement of reusability can
be considered both a technical and a development process related requirement.
Development process related since it has to deal with aspects like version and variant
management, initial risks and cost when building up a component repository, etc.
Technical since it is related to aspects such as , how to design the components with
respect to the RTOS and HW communication, etc.

Reusability can more easily be achieved if a loosely coupled component technology
is used, i.e. the components are focusing on functionality and do not contain any direct
operating system or hardware dependencies. Reusability is further simplified by using
input parameters to the components. The parameters, which are fixed at compile-time,
should allow automatic reduction of run-time overhead and complexity.

A clear, explicit, and well-defined component interface is crucial to enhance the
software reusability. To be able to replace one component in the software system, no
necessary time should be spent on trying to understand the component that should be
interchanged.

It is, however, both complex and expensive to build reusable components for use in
distributed embedded real-time systems [1]. The reason for this is that the components
must work together to meet the temporal requirements, the components must be light-
weighted since the systems are resource constrained, the functional errors and bugs
must not lead to erroneous outputs that follow the signal flow and propagate to other
components and in the end cause unsafe systems.

4.2.3 Maintainable
The components should be easy to change and maintain, meaning that developers

that are about to change a component need to understand the full impact of the
proposed change. Thus, not only knowledge about component interfaces and their
expected behaviour is needed. Also, information about current deployment contexts
may be needed in order not to break existing systems where the component is used.

In essence, this requirement is a product of the previous requirement on reusability.
The flip-side of reusability is that the ability to reuse and reconfigure the components
using parameters leads to an abundance of different configurations used in different
vehicles. The same type of vehicle may use different software settings and even
different component or software versions. So, by introducing reuse we introduce more
adminis trative work.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

Reusing software components leads to a completely new level of software
management. The components need to be stored in a repository where different
versions and variants need to be managed in a sufficient way. Experiences from trying
to reuse software components shows that reuse is very hard and initially related with
high risks and large overheads [1]. These types of costs are usually not very attractive
in industry.

The maintainability requirement also includes sufficient tools supporting the service
of the delivered vehicles. These tools need to be component aware and handle error
diagnostics from components and support for updating software components.

4.2.4 Understandable
The component technology and the systems constructed using it should be easy to

understand. This should also include making the technology easy and intuitive to use in
a development project.

The reason for this requirement is to simplify evaluation and verification both on the
system level and on the component level. Also, focusing on an understandable model
makes the development process faster and it is likely that there will be fewer bugs.

It is desirable to hide as much complexity as possible from system developers.
Ideally, complex tasks (such as mapping signals to memory areas or bus messages, or
producing schedules or timing analysis) should be performed by tools. It is widely
known that many software errors occur in code that deals with synchronisation, buffer
management and communications. However, using component technologies such code
can, and should, be automatically generated; leaving application engineers to deal with
application functionality.

4.3 Derived Requirements

Here, we present two implied requirements, i.e. requirements that we have
synthesised from the requirements in sections 4.1 and 4.2, but that are not explicit
requirements from industry.

4.3.1 Source Code Components
A component should be source code, i.e., no binaries. The reasons for this include

that companies are used to have access to the source code, to find functional errors, and
enable support for white box testing (section 4.1.2). Since source code debugging is
demanded, even if a component technology is used, black box components is
undesirable.

Using black-box components would, regarding to our industrial partners, lead to a
feeling of not having control over the system behaviour. Provided that all components
in the systems are well tested, and that the source code are checked, verified, and
qualified for use in the specific surrounding, the companies might alleviate their source
code availability. However, the possibility to look into the components does not
necessary mean that you are allowed to modify them.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

4.3.2 Static Configuration
For a component model to better support the technical requirements of analysability

(section 4.1.1), testability (section 4.1.2), and light-weightiness (section 4.1.4), the
component model should be configured pre-runtime, i.e. at compile time. Component
technologies for use in the PC/Internet domain usually focus on a dynamic behaviour
[6][7]. This is of course appropriate in this specific domain where one usually has
access to powerful computers. Embedded systems , however, face another reality – with
resource constrained ECU’s running complex, dependable, control applications. Static
configuration should also improve the development process related requirement of
understandability (section 4.2.4), since there will be no complex real-time
configurations.

Another reason for the static configuration is that a typical control node, e.g. a
power train node, does not interact directly with the user at any time. The node is
started when the ignition key is turned on, and is running as a self-contained control
unit until the vehicle is turned off. Hence, there is no need to reconfigure the system
during runtime. However, most vehicles can operate in different modes, hence the
technology must support switches between a set of statically configured modes.

4.4 Discussion

In this section we present a discussion and some conclusions drawn from the
requirements in section 4.1, 4.2, and 4.3.

Reusability is perhaps the most obvious reason to introduce a component technology
for a company developing embedded real-time control systems. This matter has been
the most thoroughly discussed subject during our interviews. However, it has also been
the most separating one, since it is related to the question of deciding if money should
be invested in building up reusable components .

Two of the most important requirements that have appeared during the discussions
with our industrial partners are safety and reliability. These two are, as we see it, not
only associated with the component technology, instead the responsibility of designing
safe and reliable system rests mainly on the system developer when designing the
system, using components or not. The technology and the development process should,
however, give good support for designing safe and reliable systems .

Another part, which has emerged during our requirements capturing is the need for a
quality rating of the components depending on their success when used in target
systems. This requirement can, e.g., be satisfied using Execution Time Profiles,
discussed in [13]. By using Execution Time Profiles (ETP’s) to represent the timing
behaviour of software components, tools for stochastic schedulability analysis can be
used to make cost-reliability trade offs by dimensioning the resources in a cost efficient
way to achieve the reliability goals. There are also emerging requirements regarding
the possibilities to grade the components depending on their software quality, using for
example different SIL (Safety Integrity Levels) [16] levels.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

5 Conclusions

Component-based software engineering for embedded systems receives a large
amount of attention, especially in the software engineering research community. In
industry however, CBSE is still, to a large extent, envisioned as a promising future
technology to meet industry specific demands on improved quality and lowered cost,
by achieving software reuse, efficient software development, and more reliable
software systems.

Developers of vehicles faces a situation of (1) high demands on reliability, (2)
requirements on low product cost, and (3) supporting many configurations, variants and
suppliers. In order to accommodate (1)-(3), as well as an increasing number of features
and functions, the electronic system of a modern vehicle has become a complex
construction that comprise electronic and software components from many vendors and
products. The situation described cause challenges with respect to verification and
maintenance of these variants and integration of components into a system. Using
software components and a CBSE approach is seen as a promising way to address
challenges in product development including integration, flexible configuration, as well
as good reliability predictions, scalability, reliability reuse, and fast development.

However, changing the software development process to using CBSE does not only
have advantages. Especially in the short term perspective, introducing CBSE represents
significant costs and risks. Furthermore, a component designed for reuse may exhibit
an overly rich interface and an associated overly complex and resource consuming
implementation. Hence, designing for reuse in resource constrained environments
requires significant knowledge not only about functional requirements, but also about
non-functional requirements. When introducing reuse of components across multiple
products and/or product families, issues about component management arise. In
essence, each component has its own product life-cycle that needs to be managed. This
includes version and variant management, keeping track of which versions and variants
is used in what products, and how component modifications should be propagated to
different version and variants. Components need to be maintained, as other products,
during their life cycle. This maintenance needs to be done in a controlled fashion, in
order not to interfere aversively with ongoing projects using the components. This can
only be achieved using adequate tools and processes for version and variant
management.

The main contribution of this paper is that it straightens out some of the question-
marks regarding actual industrial requirements placed on a component technology. We
describe the requirements on a component technology as elicited from two comp anies
in the business segment of heavy vehicles. The requirements are divided in two main
groups, the technical requirements and the development process related requirements.
The reason for this division is mainly to clarify that the industrial actors are not only
interested in technical solutions, but also in improvements regarding their development
process.

The list of requirements can be used to evaluate existing component technologies
before introducing them in an industrial context, therefore minimising the risk when
introducing a new development process. Thus, helping companies to take the step into
tomorrow’s technology today. They can also be used to guide modifications and/or

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

extensions to component technologies, to make them better suited for industrial
deployment within embedded systems companies.

6 Future Work

We have in this paper presented an investigation of the requirements on a
component technology for the business segment of heavy vehicles. We will continue
our work by evaluating existing software component technologies with respect to these
requirements. Our initial findings from this evaluation can be found in [2].

Using that evaluation we will (1) study to what extent existing technologies can be
adapted in order to fulfil the requirements of this paper, (2) investigate if selected parts
of standard technologies like tools, middleware, and message-formats can be reused,
(3) make a specification of a component technology suitable for heavy vehicles, and (4)
build a test bed implementation based on the specification.

7 Acknowledgements

A special thanks to Nils -Erik Bånkestad and Robert Larsson, at Volvo Construction
Equipment, for fruitful discussions and for their helpfulness during our stay. We would
also like to thank Jörgen Hansson at CC Systems for interesting discussions, new ideas,
and for making this research project possible.

MRTC report ISSN 1404-3041 ISRN MDH-MRTC-155/2004-1-SE

Reference
[1] I. Crnkovic, M. Larsson, Building Reliable Component-Based Software Systems, 2002, ISBN 1-

58053-327-2
[2] A. Möller, M Åkerholm, J. Fredriksson, M. Nolin; Software Component Technologies for Real-

Time Systems - An Industrial Perspective -, In Proceedings of the WiP Session of the 24th
IEEE Real-Time System Symposium, Cancun, Mexico, December, 2003

[3] Road Vehicles – Interchange of Digital Information – Controller Area Network (CAN) for
High-Speed Communication, “International Standards Organisation (ISO)”, vol. ISO Standard-
11898, Nov 1993

[4] CANopen, Home Page: http://www.canopen.org
[5] SAE Standard, SAE J1939, Joint SAE/TMC Electronic Data Interchange Between

Microcomputer Systems In Heavy-Duty Vehicle Applications, www. sae.org
[6] COM/DCOM/.NET by Microsoft ; Home Page: http://www.microsoft.com
[7] Enterprise Java Beans by Sun; Home Page: http://www.java.sun.com
[8] A. Möller, J. Fröberg, M. Nolin; What are the needs for components in vehicular systems? - An

industrial perspective -, In Proceedings of the WiP Session of the 15th Euromicro Conference
on Real-Time Systems, Porto, Portugal, July, 2003

[9] S. R. Schach, Classical and Object-Oriented Software Engineering, 1996, Irwin, ISBN 0-256-
18298-1

[10] B. Selic, J. Rumbaugh, Using UML for modelling complex real-time systems, Rational
Software Corporation 1998

[11] M Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging Discipline.
PrenticeHall 1996

[12] Object Management Group. Minimum CORBA 1.0, http://www.-
omg.org/technology/documents/formal/minimum_CORBA.htm

[13] T. Nolte, A. Möller, M. Nolin; Using Components to Facilitate Stochastic Schedulability
Analysis, In Proceedings of the WiP Session of the 24th IEEE Real-Time System Symposium,
Cancun, Mexico, December, 2003

[14] J. Engblom, M. Nilsson, Time Accurate Simulation: Making a PC behave like an 8-bit
embedded CPU, Technical Report at the Dept. of Information Technology, Uppsala University,
2002-024, July 2002.

[15] A. Brown, K Wallnau, The Current State of CBSE, IEEE Software, September/October 1998
[16] Safety Integrity Levels - Does Reality Meet Theory?, Report of seminar held at the IEE,

London, on 9 April 2002.
[17] UML 2.0 Superstructure Specification, The OMG Final Adopted Specification,

http://www.omg.com/uml; 2003
[18] M. Winter, T. Genssler, A. Christoph, O. Nierstrasz, S. Ducasse, R. Wuyts, G. Arévalo, P.

Müller, C. Stich, B. Schönhage, Components for Embedded Software — The PECOS
Approach, Second International Workshop on Composition Languages, In conjunction with
16th European Conference on Object-Oriented Programming (ECOOP) Málaga, Spain, June
11, 2002.

[19] R. van Ommering, et al., The Koala Component Model for Consumer Electronics Software.
Computer, 2000. 33(3): p. 78-85.

[20] K. C. Wallnau. Volume III: A Technology for Predictable Assembly from Certifiable
Components, Technical report, Software Engineering Institute, Carnegie Mellon University,
April 2003, Pittsburgh, USA

[21] C. Nordström; M. Gustafsson, K. Sandström, J. Mäki-Turja, N-E. Bånkestad; Experiences from
Introducing State-of-the-art Real-Tim Techniques in the Automotive Industry, In Eigth IEEE
International Conference and Workshop on the Engineering of Computer-Based Systems,
Washington, USA, April 2001

[22] D. Garlan, R. Allen, J Ockerbloom; Architectural Mismatch or Why it's hard to build systems
out of existing parts; Proceedings of the Seventeenth International Conference on Software
Engineering, Seattle WA, April 1995

