
Developing Predictable Embedded Systems in the
Vehicle Industry: Results and Lessons Learned

Saad Mubeen
Mälardalen University, Sweden

saad.mubeen@mdh.se

Abstract—This paper discusses the results achieved in a

technology-transfer project in the vehicle domain. The results ex-

tend the state-of-the art and practice in the area of model-driven

development and execution of predictable vehicular embedded

systems by developing new techniques, implementing them in the

existing industrial tools and validating them using industrial use

cases and prototype demonstrators. In this context, the paper also

discusses some important lessons learned and open challenges.

I. INTRODUCTION

Advanced features in modern vehicles require high levels of
computation capabilities in Electronic Control Units (ECUs),
mainly due to data-intensive sensors (e.g., camera and radar)
and computation-demanding functionality [1], [2], [3]. The
contemporary single-core ECUs are unable to keep up with
these requirements, which are expected to increase driven by
innovation in advanced vehicle architectures. To address these
requirements, a promising solution has recently emerged with
the introduction of multi-core processors that are specifically
designed for vehicular applications, e.g., AURIX TriCore
Family by Infenion1, MPC5675K dual-core and MPC5777C
tri-core by NXP2. Many vehicular embedded systems are
required to be predictable due to their time-critical nature [4].
This means, it should be possible to prove or demonstrate
at the design time that all specified timing requirements will
be satisfied when the system is executed. In comparison to
the single-core processors, multi-core processors are more
prone to unpredictable behavior due to shared resources among
the cores, e.g., system bus, I/Os and memories. Hence, de-
velopment of time-predictable vehicular embedded systems
on multi-core EUCs becomes a daunting challenge. PreView
(Developing Predictable Vehicle Software on Multi-core) [5]
is a technology-transfer project that takes on the above-
mentioned challenge. This paper provides an overview of the
results, experiences and lessons learned in the project.

II. PREVIEW: OVERVIEW, RESULTS & LESSONS LEARNED

The goal of the Preview project (Aug 2016- Jul 2018)
is to (i) develop a model-driven development methodology
and techniques for predictable vehicular multi-core embedded
systems, (ii) transfer the new techniques to the vehicle industry
by implementing them in the existing industrial tools as well
as developing new industrial tools, and (iii) demonstrate the
usability of the techniques and tools on industrial prototypes.

1https://www.infineon.com/cms/en/applications/automotive
2https://www.nxp.com

PreView is a joint collaboration between Mälardalen Univer-
sity and three industrial partners Arcticus Systems3, Volvo
Construction Equipment4 and BAE Systems5 as shown in
Fig. 1. The geographical separation among the project partners
are in the range of [40-550] km. The project has a total of 17
associated members, out of which 12 are from the vehicle
industry. This joint collaboration offers a clear value chain
from academia, developer of the new techniques and methods;
through the tool developer/vendor (Arcticus), implementer of
the techniques in industrial tools; and finally, to the end
users of the technology (Volvo and BAE), Original Equipment
Manufacturers (OEMs), users of the existing tools (for over 20
years [6]) and the newly developed tools on prototype vehicles.

Commercial tools supporting model-driven development (MDD) of predictable 
multi-core embedded systems in the vehicular industrial domain

Requirements, use cases, demonstrators

Requirements, 
existing tools and 

RTOS

Competence in MDD 
of embedded real-time 

systems

Use cases, 
demonstrators,

feedback on usability

Methods, 
techniques, prototypesTools 

provider OEMs and
end users

of the Tools

Fig. 1: Information flow and collaboration among the partners.

A. Inputs to the Project

Several inputs came from academia and industry at the start
of the project, which are also shown on the left side in Fig. 2.
• The state-of-the-practice software development process for

predictable vehicular embedded systems on single-core
EUCs was one of the inputs to the project. This process
allows to model the software architectures, verify time
predictability, automatically generate code, deploy and run
the systems on predictable single-core execution platforms.

• The Rubus tool chain was another input to the project. This
tool chain complies with the above-mentioned development
process. It has been used in the vehicle industry for over 20
years [6]. It consists of a complete Integrated Component
model development Environment (ICE), designer, inspector,
analyzer, code generator and simulator. It is also supported
by a Real Time Operating System (RTOS) that has been
certified according to ISO 26262 (ASIL-D) safety standard.

3https://www.arcticus-systems.com
4https://www.volvoce.com
5https://www.baesystems.com



• Over 20 years of experience of using the tool chain and the
development process by Volvo and BAE was another input.

• Several existing scientific techniques for the timing analysis
and execution of the systems on multi-core platforms.

B. Project Results

The project results extend the state-of-the art and practice
in the area of model-driven development and execution of
predictable vehicular embedded systems. The key scientific
and industrial results, also depicted in Fig. 2, are as follows.
• One of the main results in the project is a model-driven de-

velopment methodology to design temporally correct vehic-
ular embedded systems on single- and multi-core ECUs [7].

• Another important result is the extension of the state-of-
practice development process for single-core systems to
support the development of predictable vehicular multi-core
embedded systems as shown on the right side of Fig. 2.

• A new model- and component-based software development
technique for multi-core vehicular embedded systems is
developed and implemented in the existing industrial model,
namely the Rubus Component Model (RCM).

• A new end-to-end timing analysis framework [8] is devel-
oped and implemented as the extended analysis engine for
the Rubus Analyzer. The extended analyzer supports the
verification of time predictability in vehicular multi-core
embedded systems by analyzing their software architectures.

• Automatic code generation from the multi-core software
architectures and corresponding extensions to the Rubus
code generator.

• A new multi-core hypervisor that instantiates the certified
Rubus RTOS for each core. It provides a predictable execu-
tion environment for multi-core ECUs.

• Validation and feedback on the usability of the above results
by means of several use cases from the vehicle industry.

C. Experiences and Lessons Learned

The project provides valuable experience of transferring the
state-of-art research results to the industry. Two of the most
important lessons learned in the project are discussed below.

1) Predictability vs Performance: In this project, we wit-
ness a stand-off over predictability and performance in ve-
hicular multi-core embedded systems. In order to support a
predictable execution platform, the techniques implemented in
the multi-core hypervisor allow the time and space partitioning
among the cores. This means that the shared memories are
partitioned, while the Time Division Multiple Access (TDMA)
protocol is used to access the system bus. The TDMA protocol
ensures predictability of the system, but hampers the system
performance as the system bus can remain idle if a core does
not need to access it during its designated time slot. The
overall system performance reduces with the increase in the
number of cores if TDMA is used to ensure predictability
in multi-core systems. In PreView, we use the concept of
partitions within cores to increase the performance (utilization
of each core) without jeopardizing predictably, while using
the TDMA protocol to access the system bus. For instance,

an application that has performance requirements and no
predictability requirement can be assigned to a non-critical
partition on the same core, where another application with
predictability requirements is allocated to a critical partition.
This allows the critical application to preempt the non-critical
application, while ensuring the best-effort performance for the
non-critical application on the same core.

2) On-board Computation vs on-board Communication:
In many vehicular applications that are distributed over more
than one ECU, merely supporting powerful computation plat-
forms in the form of multi-core ECUs (focus of PreView)
is not enough. The on-board communication platforms (i.e.,
in-vehicle buses and networks) should equally support high
data rates that are required by these applications; otherwise,
the on-board communication becomes a performance and
predictability bottleneck. Majority of the contemporary on-
board networks such as CAN, LIN, Flexray and MOST do not
meet the high data-rate requirements of modern data-intensive
vehicular applications, especially in the autonomous vehicle
domain. One notable exception is the set of IEEE AVB stan-
dards that support high-bandwidth on-board communication
of up to 100 Mbit/s. However, AVB does not support low-
latency communication, which is very important in ensuring
predictability in time-sensitive vehicular applications that are
distributed over several ECUs. The recently introduced IEEE
TSN standards offer a promising solution to meet such re-
quirements. However, these standards are in their infancy and
require further research and academic-industrial collaborations
to utilize TSN in the industrial applications. Hence, supporting
model-driven development of computation- and data-intensive
vehicular systems with requirements on predictability and
high-bandwidth low-latency on-board communication remains
an open challenge.

ACKNOWLEDGEMENT

The work in this paper is supported by the Swedish Knowl-
edge Foundation via the projects PreView, HERO and DPAC
and by the Swedish Governmental Agency for Innovation
Systems (VINNOVA) via the project DESTINE. We thank
all the industrial partners, especially Arcticus Systems, Volvo
Construction Equipment and BAE Systems Hägglunds.

REFERENCES

[1] G. Gut, C. Allmann, M. Schurius, and K. Schmidt, “Reduction of
electronic control units in electric vehicles using multicore technology,”
in International Conference on Multicore Software Engineering, Perfor-
mance, and Tools, 2012, pp. 90–93.

[2] D. Reinhardt and M. Kucera, “Domain controlled architecture - a new
approach for large scale software integrated automotive systems,” in
International Conference on Pervasive and Embedded Computing and
Communication Systems (PECCS 2013), February 2013, pp. 221–226.

[3] L. Lo Bello, R. Mariani, S. Mubeen, S. Saponara, “Recent advances and
trends in on-board embedded and networked automotive systems,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 2, 2019.

[4] D. Grund, J. Reineke, and R. Wilhelm, “A Template for Predictability
Definitions with Supporting Evidence,” in Bringing Theory to Practice:
Predictability and Performance in Embedded Systems, ser. OpenAccess
Series in Informatics, vol. 18, Dagstuhl, Germany, 2011, pp. 22–31.

[5] PreView Project: Developing Predictable Vehicle Software on Multi-core,
http://www.es.mdh.se/projects/442-PreView, accessed Oct., 2018.



Industrial Results in the PreView Project: 

Development Methodology, Tool & Prototypes

Network(Input(Port(

So/ware(Circuit((SWC)( Network(Output(Port(

End(of(;ming(constraints(

So/ware(Circuit((SWC)(

Brake&
Control&
ECU&

Cruise&
Control&
ECU&

Graphical&
user&

interface
Control&
ECU&

Engine&
Control&
ECU&

Trigger(
terminator(Clock(

Data(port(

Trigger(port(System
Node
Core	1

Application	1

Mode	1

Core	2

Partition	1 Partition	2

Partition	1
Mode	2

isAllocated

Application	2

Mode	1

isAllocated

isAllocated

Ericsson research Day 20101125

The development context

System Architecture

Analysis
FrameworkDeveloper

Run-time system

Automatic
translation

Synthesis

Designs

Execute

Software architecture of a multi-core system

Software Architecture Modeling

Verification of Time Predictability

Analysis results

Timing 
analysis
engines

Automatic Code Generation

Predictable Execution Environment

Modeling of Software Architecture

End-to-end Timing Analysis

Code Generation and Deployment

Single-core
Hypervisor

Single-core 
Partitioned ECU

Rubus RTOS
(Per Partition)

Multi-core
Hypervisor

Multi-core ECU

Rubus RTOS
(Per Core)

Targeted Development

Multi-core real-time 
hypervisor

Multi-core 
ECUs

Single-core Real 
Time Operating 
System (RTOS)

	 3	

accomplished	by	clearly	separating	data	and	control	flow	mechanisms	in	a	network	of	software	circuits.	
The	model	of	a	software	circuit	is	shown	in	Figure	1.	

		

Figure	1:		Model	of	a	Software	Circuit.	

The	 Construct	 and	 Destruct	 logic	 are	 terms	 from	 Object	 Oriented	 languages	 that	 describe	 activation,	
respectively,	deactivation	of	the	circuit.	

2.2 Time	Triggered,	Event	Triggered,	and	Interrupt	Execution	
Software	Circuit	execution	is	triggered	based	on	these	three	categories	called	Red,	Blue	and	Green.	The	
ability	 to	mix	 both	 Red	 deterministic	 (time	 triggered)	 and	 Blue	 non-deterministic	 (event	 triggered)	 as	
well	as	treating	Green	interrupt	execution	is	a	unique	aspect	of	the	Rubus	product	suite.	

2.3 Model	Driven	Development	
Model-Driven	 Development	 (MDD)	 has	 had	 an	 increasingly	 important	 role	 in	 designing	 and	
implementing	 real-time	 embedded	 systems.	 Due	 to	 the	 complexity	 of	 real-time	 systems,	 the	
development	must	rely	more	and	more	upon	automation	and	the	interoperability	amongst	models	such	
as	 Simulink.	 The	 Rubus	 Tool	 Suite	 provides	 an	 integrated	 tool-chain	 that	 includes	 system	 modelling,	
design,	analysis	and	synthesis	providing	the	features	portrayed	in	Figure	2.	

	

		Figure	2:		Rubus	Conceptual	Models.	

The	three	models	provide	various	viewpoints	reflecting	all	of	the	necessary	information	concerning	the	
development,	analysis,	synthesis	and	execution	of	real-time	applications.		

Designing
Design

Anlysis

Synthesis

RCM	Rubus	
Component	

Model

RAM	Rubus	
Analysis	Mode

RRM	Rubus	Run-
Time	Mode

Configuring	

Properties	such	as:
• Timing	WCET,	BCET
• Resource

Run-Time	
measurements

Network(Input(Port(

So/ware(Circuit((SWC)( Network(Output(Port(

End(of(;ming(constraints(

So/ware(Circuit((SWC)(

Brake&
Control&
ECU&

Cruise&
Control&
ECU&

Graphical&
user&

interface
Control&
ECU&

Engine&
Control&
ECU&

Trigger(
terminator(Clock(

Data(port(

Trigger(port(

Software architecture of a multi-core system

State-of-the-practice 

development process for vehicular 
embedded systems on single-core platforms

Software Architecture Modeling

Verification of Time Predictability

Automatic Code Generation

Deployment and Execution

Over 20 years of end users’ 

experience & provisioning
of industrial use cases for 

single-core vehicular systems

Inputs to the PreView Project

State of the art development techniques for 

predictable multi-core embedded systems

Rubus
Multi-core
Hypervisor

Multi-core
Extentions

To RCM

Rubus        Industrial Toolchain

Rubus
Simulator

Rubus
Designer

Rubus
Inspector

Rubus
Analyser

ISO 26262

Rubus
Component

Model (RCM)

Rubus ICE Rubus RTOS

Multi-core
Extensions to 

the Rubus 
Analyser

Rubus Code
Generator for 

multi-core

Case studies based
on the use cases

from vehicle industry

E
xt

e
n

si
o

n
s 

to
 t

h
e

 s
ta

te
 o

f 
th

e
 a

rt
in

 m
od

el
-b

as
ed

 d
ev

el
op

m
en

t,
 t

im
in

g 
an

al
ys

is
 

an
d 

ex
ec

ut
io

n 
en

vi
ro

nm
en

t 
m

od
el

in
g 

of
 m

ul
ti

-c
or

e 
ve

hi
cu

la
r 

em
be

dd
ed

 s
ys

te
m

s

Fig. 2: PreView project: overview of the inputs, development methodology, scientific and industrial results.

[6] S. Mubeen, H. Lawson, J. Lundbäck, M. Gålnander, and K. L. Lundbäck,
“Provisioning of Predictable Embedded Software in the Vehicle Industry:
The Rubus Approach,” in IEEE/ACM 4th International Workshop on
Software Engineering Research and Industrial Practice, 2017, pp. 3–9.

[7] A. Bucaioni, L. Addazi, A. Cicchetti, F. Ciccozzi, R. Eramo, S. Mubeen,
and M. Sjödin, “Moves: A model-driven methodology for vehicular

embedded systems,” IEEE Access, vol. 6, pp. 6424–6445, 2018.
[8] M. Becker, S. Mubeen, D. Dasari, M. Behnam, and T. Nolte, “A generic

framework facilitating early analysis of data propagation delays in multi-
rate systems (invited paper),” in 23rd IEEE International Conference on
Embedded & Real-Time Computing Sys. & Applications, 2017, pp. 1–11.


