
Int J Softw Tools Technol Transfer (2018) 20:547–561
https://doi.org/10.1007/s10009-017-0480-3

SPIN 2016

Modeling and analyzing real-time wireless sensor and actuator
networks using actors and model checking

Ehsan Khamespanah1,2 · Marjan Sirjani2,3 · Kirill Mechitov4 · Gul Agha4

Published online: 20 November 2017
© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract Programmers often use informal worst-case anal-
ysis and debugging to ensure that schedulers satisfy real-time
requirements. Not only can this process be tedious and error-
prone, it is inherently conservative and thus likely to lead to an
inefficient use of resources. We propose to use model check-
ing to find a schedule which optimizes the use of resources
while satisfying real-time requirements. Specifically, we rep-
resent a Wireless sensor and actuator network (WSAN) as
a collection of actors whose behaviors are specified using a
Java-based actor language extended with operators for real-
time scheduling and delay representation. We show how the
abstraction mechanism and the compositionality of actors in
the actor model may be used to incrementally build a model
of aWSAN’s behavior from node-level and network models.
We demonstrate the approach with a case study of a dis-
tributed real-time data acquisition system for high-frequency
sensing using TimedRebecamodeling language and theAfra
model checking tool.

Keywords Sensor network · Schedulability analysis ·
Actor · Timed Rebeca · Model checking

B Ehsan Khamespanah
e.khamespanah@ut.ac.ir

1 School of ECE, University of Tehran, Tehran, Iran

2 School of Computer Science and CRESS, Reykjavik
University, Reykjavík, Iceland

3 Mälardalen University, School of IDT, Västerås, Sweden

4 OSL, University of Illinois at Urbana-Champaign,
Champaign, IL, USA

1 Introduction

Wireless sensor and actuator networks (WSANs) can pro-
vide low-cost continuous monitoring. However, building
WSAN applications is particularly challenging. Because of
the complexity of concurrent and distributed programming,
networking, real-time requirements, and power constraints,
it can be hard to find a configuration that satisfies these con-
straints while optimizing resource use. A common approach
to address this problem is to perform an informal analysis
based on conservative worst-case assumptions and empirical
measurements. This can lead to schedules that do not utilize
resources efficiently. For example, a workload consisting of
two periodic tasks would be guaranteed to be safe only if the
sum of the two worst-case execution times (WCET) were
less than the period of both of the two tasks. Whereas, it is
possible in practice to have many safe schedules violating
this restriction.

A second approach is trial and error. For example, in [22],
an empirical test-and-measure approach based on binary
search is used to find configuration parameters: worst-case
task runtimes, time slot length of the communication pro-
tocols, etc. Trial and error is a laborious process, which
nevertheless fails to provide any safety guarantees for the
resulting configuration.

A third possibility is to extend scheduling techniques
that have been developed for real-time systems [23] so that
they can be used in WSAN environments. Unfortunately,
this turns out to be difficult in practice. Many WSAN plat-
forms rely on highly efficient event-driven operating systems
such as TinyOS [11]. Unlike a real-time operating sys-
tem (RTOS), event-driven operating systems generally do
not provide real-time scheduling guarantees, priority-based
scheduling, or resource reservation functionality. Without
such support, many schedulability analysis techniques can-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-017-0480-3&domain=pdf


548 E. Khamespanah et al.

not be effectively employed. For example, in the absence
of task preemption and priority-based scheduling, unneces-
sarily conservative assumptions must be used to guarantee
correctness in the general case.

We propose an actor-basedmodeling approach that allows
WSAN application programmers to assess the performance
and functional behavior of their developed codes through-
out the design and implementation phases. The developed
models are analyzed using model checking to determine the
parameter values resulting in the highest system efficiency.

We represent a WSAN application as a collection of
actors [1]. The model can be incrementally extended and
refined during the application design process, adding new
interactions and scheduling constraints to actors. We use
Timed Rebeca [30] as the modeling language and its model
checking tool Afra [19,29] for the analysis of WSAN appli-
cations. Timed Rebeca is a high-level actor-based language
capable of representing functionality and timing behavior at
an abstract level. Afra supportsmodeling and analysis of both
Rebeca and Timed Rebeca models; we use the timed model
checking engine. Afra uses the concept of Floating Time
Transition System (FTTS) [19] for the analysis of Timed
Rebeca models. FTTS significantly reduces the state space
that needs to be searched. The idea is to focus on event-
based properties while relaxing the constraint requiring the
generation of states where all the actors are synchronized.
As the examples in [20] suggest, this approach can reduce
the size of the state spaces by 50–90% in comparison with
the state spaces which are generated based on the concept
of timed transition system. Using FTTS fits with the analyz-
ing the schedulability of events, we are interested in WSAN
applications.

In addition to the schedulability analysis, Timed Rebeca
provides TCTLmodel checking facilities for analyzing timed
actors against more complicated properties. Later, we will
show how TCTL model checking can be used to guarantee
theminimum utilization of resources ofWSAN applications.
In the developed case study, figuring out theminimumutiliza-
tion of the communication medium (Ether) was the property
we were interested in.

We present a case study involving real-time continuous
data acquisition for structural health monitoring and control
(SHMC) of civil infrastructure [22]. This system has been
implemented on the Imote2 wireless sensor platform, and
used in several long-term developments of several highway
and railroad bridges [37]. SHMC application development
has proven to be particularly challenging: It has the com-
plexity of a large-scale distributed system with real-time
requirements, while having the resource limitations of low-
power embeddedWSAN platforms. Ensuring safe execution
requires modeling the interactions between the CPU, sensor
and radio within each node, as well as interactions among
the nodes. Moreover, the application tasks are not isolated

from other aspects of the system: They execute alongside
tasks belonging to other applications, middleware services,
and operating system components. In the application we
consider, all periodic tasks (sample acquisition, data process-
ing, and radio packet transmission) are required to complete
before the next iteration starts. Our results show that a
guaranteed-safe application configuration can be found using
the Afra model checking tool. Moreover, this configuration
improves resource utilization compared to the previous infor-
mal schedulability analysis used in [22], supporting a higher
sampling rate or a larger number of nodes without violating
schedulability constraints.

1.1 Contributions

This paper is an extended version of the paper [18]. In [18],
we presented our preliminary results on modeling and ana-
lyzing WSAN applications using model checking toolset of
Timed Rebeca. Apart from adding more detail about the pro-
posed approaches, this paper extends [18] as follows:

– We show how WSAN applications can be modeled by
event graphs and how the elements of an event graph are
associated with actors (Sect. 2.2). This way, the proposed
approach can be used for not only structural health mon-
itoring, but also for modeling and analysis of different
kind of WSAN applications.

– We use TCTL model checking engine of Timed Rebeca
for the analysis of WSAN applications (Sect. 6.3).

– We demonstrate the detailed Timed Rebeca source code
of B-MAC protocol to illustrate how naturally commu-
nication protocols can be modeled using our approach
(Sect. 4). We also discussed that the proposed template
is general enough to be used for the modeling of other
wireless communication protocols.

– We show how the approach can be generalized to sup-
port modeling and analysis of a wide range of WSAN
applications and presented lessons we have learned in
the development of this work (Sect. 5).

2 Preliminaries

A WSAN application is a distributed system with multiple
sensor nodes, each comprised of the independent concurrent
entities: CPU, sensor, radio system, and bridged together via
a wireless communication device which uses a transmission
control protocol. Interactions between entities, both within
a node and across nodes, are concurrent and asynchronous.
Moreover, WSAN applications are sensitive to timing, with
soft deadlines at each step of the process that are required to
ensure correct and efficient operation.

123



Modeling and analyzing real-time wireless sensor and actuator networks using actors and… 549

A B
t

(i)

Fig. 1 An example of an event graph

Due to the performance requirements and latencies of
operations on sensor nodes, coordination among sensing,
data processing, and communication activities is required. In
particular, once a sample is acquired from a sensor, its cor-
responding radio transmission activities must be performed.
At the same time, data processing tasks must be executed
(for example, because of the environmental changes in the
temperature, a kind of data compensation must be applied
on sensor data to adjust the acquired values). Moreover, the
timing of radio transmissions from different nodes must be
coordinated using a communication protocol.

Although schedulability analysis of WSAN applications
can be challenging in the absence of a real-time scheduler,
we reduce the problem of checking for deadline violations
to the problem of reachability from a relatively small set of
possible initial configurations. Model checking is the natural
approach for this class of problems, and it is the approach we
explore in this paper.

2.1 Event graph

At the first step of modeling WSAN applications, we need
to explain event graphs in which a highly abstracted view of
scheduling events can be depicted. Event graphs have a single
type of node and two types of edges, i.e., jagged and ordinary
edges. The nodes represent events in a system. Edges corre-
spond to the scheduling of other events [3]. In this graph, the
initial event is shown by jagged edges. Edges can optionally
be associated with an enabling guard, i.e., a boolean condi-
tion, for scheduling an event and/or a time delaywhichmeans
that an event will be scheduled after the delay. Figure 1 shows
an example of an event graph where the event B is scheduled
by the event A if its associated guard (i) is evaluated to true,
at t units of time later than the current time.

Event graphs are widely used in the engineering commu-
nity for simulation and analysis of complex systems. More
specifically, they are used to graphically represent discrete-
event simulation models. We use event graphs in this paper
only to give a highly abstracted view of how events are sched-
uled in our case studies.

2.2 The actor model of WSAN applications

The Actor model is a well-established paradigm for model-
ing distributed and asynchronous component-based systems.
This model was originally introduced by Hewitt as an

Fig. 2 The event graph of a WSAN sensor behavior

agent-based language where goal directed agents did logical
reasoning [10]. Subsequently, the actor model developed as
a model of concurrent computation for open distributed sys-
temswhere actors are the concurrently executing entities [1].
One way to think of actors is as a service-oriented frame-
work: Each actor provides services that may be requested
via messages from other actors. A message is buffered
until the provider is ready to execute the message. As a
result of processing a message, an actor may send mes-
sages to other actors, and to itself. Extensions of the actor
model have been used for real-time systems, in particu-
lar: RT-synchronizer [28], real-time Creol [6], and Timed
Rebeca [30].

The characteristics of real-time variants of the actormodel
make them useful for modeling WSAN applications: many
concurrent processes and interdependent real-time deadlines.
Observe that common tasks such as sample acquisition, sam-
ple processing, and radio transmission are periodic and have
well-known or easily measurable periods. This makes analy-
sis of worst-case execution times feasible. However, because
of the event-triggered nature of applications, initial offsets
between the tasks are variable.

At the first step of proposing an actormodel for theWSAN
applications, we need to have a look into the interaction of the
components and the events which are triggered and served by
them. Based on the specification of the WSAN applications,
there are many nodes which have the role of data acquisition
and data transmission. For data acquisition, a node has a set
of sensors which periodically acquire data from the environ-
ment and send the data to the processing unit of the node.
The processing unit is responsible for validating the data and
storing it into an internal buffer. Upon receiving enough data,
the processor unit sends the data to the radio communication
unit. The radio communication unit tries to send data via
wireless medium, considering a predefined communication
protocol. The event graph of this model is depicted in Fig. 2.
The majority of WSAN applications can be modeled using
this graph, although minor modifications maybe needed.

We split up the event handlers of the events of Fig. 2 into
three different actors, depicted in Fig. 3 and add one addi-
tional actor for carrying out miscellaneous tasks unrelated
to sensing or communication. This additional actor is nec-
essary for making the model close to its real configuration.
The three actors are called Sensor (for the data acquisi-
tion), CPU (processing unit), RCD (a radio communication

123



550 E. Khamespanah et al.

Fig. 3 How events of a WSAN sensor are associated with actors

Fig. 4 How events of wireless communication mechanism are associ-
ated with actors

device) and the additional actor is called Misc. Sensor
collects data and sends it to CPU for further data processing.
Meanwhile, CPU may respond to messages from Misc by
carrying out other computations. The processed data are sent
to RCD to forward it to a data collector node actor.

Composing the collection of sensor nodes to develop
a complete WSAN application requires that the wireless
communication medium be specified and a communication
protocol is implemented in radio communication devices.
Note that the process of sending a packet is controlled
by a wireless network communication protocol. We model
the communication medium as an actor (Ether) and the
receiver node also by the actor RCD. Using the actor Ether
facilitates modularity: Specifically, implementation of the
MediaAccessControl (MAC) level details of communication
protocols is localized. As a result, different implementation
of communication protocols can be replaced without sig-
nificantly impacting the remainder of the model. As shown
in Fig. 4, Ether serves events for receiving the status of
the medium and broadcasting data. For the development of
different communication protocols, different combination of
these two events can be triggered to model the behavior of
the protocols.

During the application, design phase, different com-
ponents, services, and protocols may be considered. For
example, TDMA [7] as a MAC-level communication proto-
col may be replaced by B-MAC [27] with minimal changes.
In a nutshell, using the mentioned association of events with

actors, a given WSAN application is modeled by actors as
shown in Fig. 5.

2.3 Timed Rebeca and the model checking toolset

ATimedRebeca [30]model (as the real-time extension of the
Rebeca modeling language [34–36]) consists of a number of
reactive classes, each describing the type of a certain num-
ber of actors (called rebecs).1 Each reactive class declares
the size of its message bag and a set of state variables. The
local state of each actor is defined by the values of its state
variables and the contents of its message bag. Following the
actor model, communication in the Timed Rebeca models
takes place by asynchronous message passing among actors.
Each actor has a set of known rebecs to which it can send
messages. Reactive classes of a Timed Rebeca model may
have some constructors. Constructors have the same name as
the declaring reactive class and do not have a return value.
They are responsible for initializing the actor’s state variables
and putting initially needed messages in the bag of that actor.
A properly written constructor leaves the resulting actor in a
valid state. Reactive classes declare the messages to which
they can respond. The way an actor responds to a message
is specified in a message server. The state of an actor can
change during the executing of its message servers through
assignment statements, makes decisions through conditional
statements, communicates with other actors by sending mes-
sages, and performs periodic behavior by sending messages
to itself. Since communication is asynchronous, each actor
has a message bag from which it takes the next incoming
message. The ordering of the messages in a message bag is
based on the arrival times of messages. An actor takes the
first message from its message bag, executes its correspond-
ing message server in an isolated environment, takes the next
message (or waits for the next message to arrive) and so on.
A message server may have a nondeterministic assignment
statement which is used to model the nondeterminism in the
behavior of amessage server. Finally, the main block is used
to instantiate the actors of themodel. Note that TimedRebeca
does not support dynamic actor creation, so all the actors of
a model must be defined in the main block.

Timed Rebeca adds three primitives to Rebeca to address
timing issues: delay, deadline and after. A delay statement
models the passage of time for an actor during execution of
a message server. Note that all other statements of Timed
Rebeca are assumed to execute instantaneously. The key-
words after and deadline are used in conjunction with a
method call. The term after(n) indicates that it takes n
units of time for a message to be delivered to its receiver.
The term deadline(n) expresses that if the message is not

1 In this paper, we use rebec and actor interchangeably.

123



Modeling and analyzing real-time wireless sensor and actuator networks using actors and… 551

Fig. 5 Modeling the behavior of a WSAN application in its real-world installation in the actor model

taken in n units of time, it will be purged from the receiver’s
message bag automatically.

A Rebeca model may contain some private methods.
These methods can not be called from the other actors and
used to make the model of a reactive class more modular.
The definition of a method starts with the type of its return
value (instead of the msgsrv keyword), and its body is the
same as the body of a message server.

The model checking toolset of Timed Rebeca models is
called Afra. Afra 1.0 supports model checking of Rebeca
models against LTL and CTL properties. Afra 2.0 supports
deadlock detection and schedulability analysis of Timed
Rebeca models; we use Afra 2.0 in this work for the schedu-
lability analysis ofWSAN applications.We also benefit from
TCTL model checking toolset of Timed Rebeca, which will
be integrated to Afra. Timed Rebeca and Afra toolset have
previously been used to model and analyze real-time actor-
based models such as routing algorithms and scheduling
policies in NoC (Network on Chip) designs [31,32].

3 Schedulability analysis of a stand-alone node

We now illustrate our approach using a node-level Timed
Rebeca model of a WSAN application to check for possi-
ble deadline violations. Specifically, by changing the timing
parameters of ourmodel,wefind themaximumsafe sampling
rate in the presence of other (miscellaneous) tasks in the node.
Then, we show how the specification of a node-level model
can be naturally extended to network-wide specifications.
Note that the values which are used in this model (e.g., radio
transmission time and sensor task delay) are come from the
real implementation of a WSAN application in the domain
of structural health monitoring.

Following themapping of Fig. 5, the TimedRebecamodel
for the four different reactive classes is presented in List-

ing 1 through Listing 3. As shown in Listing 1, the maximum
capacity of the message bag of Sensor is set to 10, the only
actor which Sensor knows about is of type CPU (line 4),
and Sensor does not have any state variables. The behavior
of Sensor is to acquire data and send it to CPU peri-
odically. Sensor is implemented using a message server
sensorLoop (lines 10–14) which sends the acquired data
toCPU (line 12). The sent datamust be served before the start
time of the next period, specified by the value of period as
the parameter of deadline.

Recall that there is a nondeterministic initial offset after
which the data acquisition becomes a periodic task. To rep-
resent this property, Sensor which sends a sendLoop
message to itself; the message is nondeterministically deliv-
ered after one of 10, 20, and 30 (line 8). After this random
offset, the sensor’s periodic behavior is initiated. Note that
in line 1, the sampling rate is defined as a constant. A similar
approach is used in the implementation of the Misc reactive
class.

Listing 1 TheTimedRebeca implementation of Sensor reactive class

1 env int samplingRate = 25; // Hz
2
3 reactiveclass Sensor(10) {
4 knownrebecs { CPU cpu; }
5
6 Sensor() { self.sensorFirst(); }
7 msgsrv sensorFirst() {
8 self.sensorLoop() after(?(10, 20, 30));
9 // ms

10 }
11 msgsrv sensorLoop() {
12 int period = 1000 / samplingRate;
13 cpu.sensorEvent() deadline(period);
14 self.sensorLoop() after(period);
15 }
16 }

The behavior of CPU as the target of Sensor and
Misc events is more complicated (Listing 2). Upon receiv-

123



552 E. Khamespanah et al.

ing a miscEvent, CPU waits for miscTaskDelay
units of time; this represents computation cycles con-
sumed by miscellaneous tasks. Similarly, after receiving
the sensorEvent message from Sensor, CPU waits for
sensorTaskDelay units of time; this represents cycles
required for intra-node data processing. Data must be packed
in a packet of a specified bufferSize. The number of
collected samples + 1 is computed (line 16) and when the
threshold is reached (line 17), CPU asks senderDevice,
to send the collected data in one packet (line 18).

Listing 2 The Timed Rebeca implementation of CPU reactive class

1 env int sensorTaskDelay = 2; // ms
2 env int miscTaskDelay = 10; // ms
3 env int bufferSize = 3; // samples
4
5 reactiveclass CPU(10) {
6 knownrebecs {RCD senderDevice,

receiverDevice;}
7 statevars { int collectedSamplesCounter; }
8
9 CPU() { collectedSamplesCounter = 0; }
10
11 msgsrv miscEvent() {
12 delay(miscTaskDelay);
13 }
14 msgsrv sensorEvent() {
15 delay(sensorTaskDelay);
16 collectedSamplesCounter += 1;
17 if (collectedSamplesCounter == bufferSize)
18 {
19 senderDevice.send(receiverDevice, 1);
20 collectedSamplesCounter = 0;
21 }
22 }
23 }

As this is a node-level model, communication between
nodes is omitted and the behavior of RCD is limited towaiting
for some amount of time (line 6 of Listing 3); this represents
the sending time of a packet.

Listing 3 The node-level implementation of RCD

1 env int OnePacketTT = 7; // ms(transmission
time)

2
3 reactiveclass RCD (2) {
4 RCD() { }
5 msgsrv send(RCD receiver, byte numOfPackets) {
6 delay(OnePacketTT * numOfPackets);
7 }
8 }

Note that computation times (delay’s) depend on the
low-level aspects of the systemandare application-independent;
they can be measured before the application design. For
schedulability analysis, we set the deadline for messages
in a way that any scheduling violations are caught by the
model checker.

4 Schedulability analysis of multi-node model with
a distributed communication protocol

Composing the models of stand-alone nodes to have a
multi-node model requires that the wireless communication
medium Ether be specified and a communication protocol is
implemented for radio communication devices. Recall that
nodes in the multi-node model periodically send their data
to an aggregator node (Listing 5). The sending process is
controlled by a wireless network communication protocol.
The reactive class of Ether (Listing 4) has three message
servers: these are responsible for sending the status of the
medium, broadcasting data, and resetting the condition of
the medium after a successful transmission.

Broadcasting data take place by sending data to an RCD
which results in setting the values of senderDevice and
receiverDevice to their corresponding actors. So, the
status of the Ether can be easily examined by the value
of receiverDevice (i.e., using null as the value of
receiverDevice is interpreted as medium is free, line
13). This way, upon sending data successfully, the value of
receiverDevice and senderDevice must be set to
null to show that the transmission is completed (lines 30
and 31). Data broadcasting is the main behavior of Ether
(lines 16–28). Before the start of broadcasting, the Ether
status is checked (line 17) and data-collision error is raised
in the case of two simultaneous broadcasts (line 26). With a
successful data broadcast,Ether sends an acknowledgment
to itself (line 20) and the sender (line 22), and informs the
receiver of the number of packets sent to it (line 24). In addi-
tion to the functional requirements of Ether, there may be
nonfunctional requirements. For example, the Imote2 radio
offers a theoretical maximum transfer speed of 250kbps.
When considering only the useful data payload (goodput),
this is reduced to about 125 kbps.

Listing 4 The Timed Rebeca implementation of Ether reactive class

1 env int OnePacketTT = 7; // ms(transmission
time)

2
3 reactiveclass Ether(5) {
4 statevars {
5 RCD senderDevice, receiverDevice;
6 }
7
8 Ether() {
9 senderDevice = null;

10 receiverDevice = null;
11 }
12 msgsrv getStatus() {
13 ((RCD)sender).receiveStatus(
14 receiverDevice != null);
15 }
16 msgsrv broadcast(RCD receiver, int packets)
17 {
18 if(senderDevice == null) {
19 senderDevice = (RCD)sender;

123



Modeling and analyzing real-time wireless sensor and actuator networks using actors and… 553

20 receiverDevice = receiver;
21 self.broadcastingIsCompleted()
22 after(packets * OnePacketTT);
23 ((RCD)sender).receiveResult(true)
24 after(packets * OnePacketTT);
25 receiver.receiveData(receiver, packets);
26 } else {
27 ((RCD)sender).receiveResult(false);
28 }
29 }
30 msgsrv broadcastingIsCompleted() {
31 senderDevice = null;
32 receiverDevice = null;
33 }
34 }

We now extend RCD to support communication protocols.
Listing 5 shows the Timed Rebeca implementation model of
TDMAprotocol. TDMAprotocol defines a cycle, overwhich
each node in the network has one or more chances to transmit
a packet or a series of packets. If a node has data available
to transmit during its allotted time slot, it may be sent imme-
diately. Otherwise, packet sending is delayed until its next
transmission slot. The periodic behavior of TDMA slot is
handled by handleTDMASlot message server which sets
and unsets inActivePeriod to show that whether the
node is in its alloted time slot. Upon entering into its slot, a
device checks for pending data to send (line 32) and sched-
ules handleTDMASlot message to leave the slot (line
31). On the other hand, when CPU sends a packet (mes-
sage) to an RCD, the message is added to the other pending
packets which are waiting for the next alloted time slot.
tdmaSlotSize is the predefined size of the TDMA slots,
andcurrentMessageWaitingTime is thewaiting time
of this message in the bag of its receiver.

Listing 5 The Timed Rebeca implementation of TDMA protocol in
RCD

1 env int OnePacketTT = 7; ms (transmission time)
2
3 reactiveclass RCD (10) {
4 knownrebecs { WirelessMedium medium; }
5 statevars {
6 byte id;
7 int slotSize, sendingData;
8 boolean busyWithSending, inActivePeriod;
9 RCD receiverDevice;
10 }
11
12 RCD(byte myId) {
13 id = myId;
14 inActivePeriod = false;
15 sendingData = 0;
16 busyWithSending = false;
17 receiverDevice = null;
18 ...
19 }
20 msgsrv send(RCD receiver, int data, int

packetsNumber) {
21 assertion(receiverDevice == null);

22 receiverDevice = receiver;
23 sendingData = data;
24 self.checkPendingData();
25 }
26 msgsrv handleTDMASlot() {
27 inActivePeriod = !inActivePeriod;
28 if(inActivePeriod) {
29 int remainedTime = tmdaSlotSize -

currentMessageWaitingTime;
30 assertion(remainedTime > 0);
31 self.handleTDMASlot() after
32 (remainedTime);
33 self.checkPendingData();
34 } else {
35 self.handleTDMASlot() after(
36 (tmdaSlotSize * (numberOfNodes - 1))-

currentMessageWaitingTime);
37 }
38 }
39 msgsrv checkPendingData() { ... }
40 msgsrv receiveStatus(boolean result)
41 { ... }
42 msgsrv receiveResult(boolean result)
43 { ... }
44 msgsrv receiveData(RCD receiver, int data,

int receivingPacketsNumber) {
45 if (receiver == self) {
46 delay(receivingPacketsNumber *

OnePacketTransmissionTime);
47 }
48 }
49 }

For the sake of simplicity, some details of RCD are
omitted inListing 5. The complete source code (which imple-
ments the B-MAC protocol) is available on the Rebeca web
page [29].

Using TDMA, an execution period is defined and each
node in the network has one or more time slots to transmit
a packet or a series of packets in an execution period. If a
node has data available to transmit during its allotted time
slot, it may be sent immediately. Otherwise, packet send-
ing is delayed until its next allotted time slot. This way,
the packet transmission of one sensor node does not inter-
fere with the other sensor nodes. Having more sensor nodes
only results in having shorter time slots, so the presence
of sensor nodes can be abstracted and modeled as making
time slots shorter. Using this abstraction, compositional ver-
ification of WSAN applications against schedulability and
deadlock-freedom properties become feasible as only one
node which is in communication with the central node has to
be considered for networks in any size.

B-MAC protocol is designed for low-power ad hoc net-
works in which some sender nodes send data to a receiver.
Like the other low-power protocols, B-MAC uses period-
ical sleep/wakeup cycles. During wakeup times, the node
listens for incoming data transmissions. If there is no data
received, the listen state is interrupted after passing a prede-
fined duration. Otherwise, the node stays in listen state for

123



554 E. Khamespanah et al.

complete data transmission. The sleep periods of nodes may
differ,makingB-MACan asynchronous communication pro-
tocol. When a node wants to send, it turns on the radio and
starts sending an announcement. This announcement is long
enough to make sure that it has overlap with the wakeup time
of the data receiver. Afterward, the sender transmits data to
the target address and starts sending data. In order to reduce
the amount of needed energy, clear channel assessment is
used with the aim of better separation between signals and
noise on the channel. B-MAC has an application interface for
flexible configuring parameters. A good value for this some-
times depends on the use case, so, this can be adjusted by a
higher layer application.

We now extend RCD to implement B-MAC protocols,
depicted in Listing 6. In contrast to TDMA, in B-MAC RCD
tries to detect free channel status and send data upon receiv-
ing a request fromCPU (line 20). In the case of detecting free
channel, the data are sent immediately (line 24). This way,
collisions may occur; so, RCD has to wait for some amount
of time and resend data (line 23). B-MAC protocol does not
need complicated and expensive synchronization methods.
It also avoids data fragmentation. So, it would be more com-
plicated to coordinate long messages and B-MAC expects
short messages, which is common for information ofWSAN
nodes.

Based on this fact, the presence of sensor nodes can be
abstracted and modeled as the possible number of colli-
sions before a data communication is performed successfully.
Using this abstraction, efficient verification of WSAN appli-
cations becomes feasible as only one sensor node which is
in communication with the central node has to be considered
for networks in any size. Any data transmission of this sen-
sor nodemay encounter a collision. Themaximumnumber of
the collisions is the number of sensor nodes in the model. So,
in the Rebeca code for RCD, for each data transmission we
have a nondeterministic choice between a successful trans-
mission or a collision. During model checking, in the case of
collision, data transmission with zero, one, ..., up to n colli-
sions are considered where n is the number of sensor nodes.
The Timed Rebeca model of this protocol is available on the
Rebeca web page [29].

Listing 6 The Timed Rebeca implementation of B-MAC protocol in
RCD

1 env int OnePacketTT = 7; ms (transmission
2 time)
3
4 reactiveclass RCD (10) {
5 knownrebecs { WirelessMedium medium; }
6 statevars {
7 byte id;
8 int sendingData;
9 RCD receiverDevice;
10 }
11

12 RCD(byte myId) {
13 id = myId;
14 sendingData = 0;
15 receiverDevice = null;
16 }
17 msgsrv send(RCD receiver, int data, int

packetsNumber) {
18 assertion(receiverDevice == null);
19 receiverDevice = receiver;
20 sendingData = data;
21 medium.getStatus();
22 }
23 msgsrv receiveStatus(boolean result) {
24 delay((numberOfNodes/2) * (OnePacketTT +

1));
25 medium.broadcast(receiverDevice,
26 sendingData, packetsNumber);
27 delay(OnePacketTT * packetsNumber);
28 }
29 msgsrv receiveResult(boolean result)
30 { ... }
31 msgsrv receiveData(RCD receiver, int data,

int receivingPacketsNumber) { ... }
32 }

Once a complete model of the distributed application
has been created, the Afra model checking tool can verify
whether the schedulability properties hold in all reachable
states of the system. If there are any deadline violations,
a counterexample will be produced, indicating the path—
sequence of states from an initial configuration—that results
in the violation. This information can be helpful with chang-
ing the system parameters, such as increasing the TDMA
time slot length or reducing the sampling rate, to prevent
such situations.

5 Generalization of the approach for any WSAN
application

Here, we summarize the modeling approach and describe
the way of extending it to make the approach applicable
for the other WSAN applications. It is noteworthy that the
actor-based approach is aligned with the structure of WSAN
applications with different types of behaviors. Loosely cou-
pled actors as the units of concurrency, with asynchronous
message passing, and event-driven computation, are natu-
ral candidates for modeling such systems. The semantic gap
between the model and the real-world system that has to be
modeled is small, this so-called fidelity of the model to the
systemmakesmodeling easier and alsomakes themodel easy
to understand.Also, the possibility of building anunderstand-
able model with the least needed effort shows the usability
of the model.

The first lesson we have learned by performing the mod-
eling of this paper is the fact that there is a natural rule for
mapping aWSAN application to the actormodel. Each entity

123



Modeling and analyzing real-time wireless sensor and actuator networks using actors and… 555

in the WSAN application that is running concurrently, and
is serving or creating events, has to be mapped into an actor.
Therefore, two events which are served concurrently will be
served by two different actors. In contrast, if there are two
triggered events which are sent to the same entity and are
served sequentially, then this entity is mapped to an actor
which serves both events.

The simplest scenario is when there is no concurrent
activity within each node in aWSAN application. In this sce-
nario, the network communication among nodes are directly
mapped to asynchronous communication among actors, and
intra-node activities of each node are mapped into the event
handlers of the corresponding actor. In a more general case,
we recognize five different actors in a WSAN application,
Sensor, CPU, Misc, RCD, and Ether. Here, the events cre-
ated by sensors and miscellaneous activities have to be
served by CPU and then sent to other nodes in the net-
work.

One may want to make the model even more gen-
eral as there may be more than one sensor in each node
(e.g., one for humidity and one for temperature measure-
ments). In this case, two different actors are needed to
model the concurrent (data acquisition and) event creation
of sensors. Also, in the case of using multi-core CPUs
inside a node, more than one CPU actor has to be asso-
ciated with a node and the incoming tasks from sensors
and miscellaneous activities have to be dispatched among
them. Note that handling a multi-core CPU in a node
requires developing a task scheduler which must be run
on one of the cores and dispatches the incoming tasks to
appropriate CPUs. A modeler may perform these activi-
ties using event graphs or associating events with actors
directly.

In addition to the mapping of entities to actors, we also
have learnedmanydetails behind the implementationofwire-
less communication protocols. This helped us in developing
a general enough template for parts which are involved in
the implementation of wireless communication protocol. To
this aim, we developed Ether with the ability of serving two
events, as explained in Sect. 4, which facilitates modeling of
any wireless node-to-node communication protocol. Basi-
cally, no modification is needed in this part for developing
node-to-node communications protocols. However, one may
want to develop aWSAN application in which a node broad-
casts data to some other nodes. In this case, Ether must be
extended to support multi-node data broadcasting, multicas-
ting, or anycasting.

6 Experimental results and a real-world case study

We examined the applicability of our approach using a
WSAN model intended for use in structural health moni-

toring and control (SHMC) applications.2 Wireless sensors
deployed on civil structures for SHMC collect high-fidelity
data such as acceleration and strain. Structural health mon-
itoring (SHM) involves identifying and detecting potential
damages to the structure by measuring changes in strain and
vibration response. SHM can also be employed with struc-
tural control, where it is fed into algorithms that control
centralized or distributed control elements such as active
and semi-active dampers. The control algorithms attempt
to minimize vibration and maintain stability in response to
excitations from rare events such as earthquakes, or more
mundane sources such as wind and traffic. The system we
examine has been implemented on the Imote2wireless sensor
platform [22], which features a powerful embedded pro-
cessor, sufficient memory size, and a high-fidelity sensor
suite required to collect data of sufficient quality for SHMC
purposes. These nodes run theTinyOSoperating system, sup-
ported by middleware services of the Illinois SHM Services
Toolsuite [12].

This flexible data acquisition system can be configured
to support real-time collection of high-frequency, multi-
channel sensor data from up to 30 wireless smart sensors
at frequencies up to 250Hz. As it is designed for high-
throughput sensing tasks that necessitate larger networks
sizes with relatively high sampling rates, it falls into the
class of data-intensive sensor network applications, where
efficient resource utilization is critical, since it directly deter-
mines the achievable scalability (number of nodes) and
fidelity (sampling frequency) of the data acquisition process.
Configured on the basis of network size, associated sam-
pling rate, and desired data delivery reliability, it allows for
near-real-time acquisition of 108 data channels on up to 30
nodes—where each node may provide multiple sensor chan-
nels, such as 3-axis acceleration, temperature, or strain—with
minimal data loss. In practice, these limits are determined
primarily by the available bandwidth of the IEEE 802.15.4
wireless network and sample acquisition latency of the sen-
sors. The accuracy of estimating safe limits for sampling and
data transmission delays directly impacts the system’s effi-
ciency.

6.1 Finding the maximum sampling rate

To illustrate the applicability of this work, we considered
applications where achieving the highest possible sampling
rate that does not result in any missed deadline is desired.
This is a very common requirement in WSAN applications
in the SHMC domain in particular. We begin by setting

2 The Timed Rebeca code of this case study, some complimentary shell
scripts, the model checking toolset, and the details of the specifications
of the state spaces in different configurations are accessible from the
Rebeca homepage [29].

123



556 E. Khamespanah et al.

Fig. 6 The maximum sampling rate in case of using TDMA protocol and setting the value of sensorTaskDelay to 2ms

the value of OnePacketTT to 7ms (i.e., the maximum
transmission time of this type of applications) and fixed
the value of sensorTaskDelay, miscPeriod, and
miscTaskDelay to some predefined values. In addition
to the sampling rate, the number of nodes in the network
and the packet size remain variable. By assuming different
values for the number of nodes and the packet size, differ-
ent maximum sampling rates are achieved, shown as a 3D
surface in Fig. 6. As shown in the figure, higher sampling
rates are possible when the buffer size is set to a larger num-
ber (there is more space for data in each packet). Similarly,
increasing the number of nodes decreases the sampling rate:
In competition among three different parameters of Fig. 6,
the cases with the maximum buffer size (i.e., 9 data points)
and minimum number of nodes (i.e., 1 node) result in the
highest possible maximum sampling rates. Decreasing the
buffer size or increasing the number of nodes, nonlinearly
reduces the maximum possible sampling rate.

A server with Intel Xeon E5645 @ 2.40GHz CPUs and
50GBofRAM, runningRedHat 4.4.6-4 as the operating sys-
tem was used as the host of Afra, the model checking toolset
of Rebeca family models. We changed the size of the state
space from less than 500 to more than 140K states, resulting
in model checking times ranging from 0 to 6 seconds. Ana-
lyzing the specifications of the state spaces, some relations
between the size of the state spaces and the configurations of
themodels are observed. For example, the largest state spaces
correspond to configurations where sensorTaskDelay,

bufferSize, and numberOfNodes are set to large val-
ues.

6.2 Real-world applications

Although we showed that how WSAN applications can be
modeled by Timed Rebeca and be analyzed by Afra, its
usability for the real-world applications has to be discussed.
To illustrate how practical is the approach of this paper, we
performed two examinations.

In the first one,we tried to use the approach for the analysis
of a real-world installation of an SHMC application. To this
end, the parameters of the model are set to values which are
determined by a real-world installation of an SHMC appli-
cation and the communication protocol of the model is set
to TDMA. Our results show that the current manually opti-
mized installation can be tuned to an even more optimized
one: By changing the configuration based on the findings of
using analysis approach of this paper, the performance of the
system safely improved by 7% percent.

In the second one, we tried to figure out the effect of
using twodifferentwidely used communication protocols, B-
MAC and TDMA, using the approach of this paper. B-MAC
(BerkleyMedia Access Control) is a MAC-level protocol for
WSAN applications which uses adaptive preamble sampling
scheme. This technique consists of sampling the medium
at fixed time periods. Using B-MAC, every node samples
the medium at fixed intervals to figure out nodes which are

123



Modeling and analyzing real-time wireless sensor and actuator networks using actors and… 557

willing to communicate. If there is a node which has a data
packet to send, sender senses the medium if it is free, takes
a small back-off and then sends the data packet. This way,
data packets are sent as soon as the communication medium
is free. But, the possibility of communication loss because
of transmission collisions is increased. In contrast, TDMA
protocol allocates to each node an exclusive time slot for
communication and guarantees collision-free media access
in that slot. This behavior allows reducing preamble trans-
missions to save more energy. But, as they afford longer slots
with a larger sleeping part, a ready data packet may wait
for a longer time to be sent. We also changed the value of
sensorTaskDelay in the supported maximum sampling
rate, considering 648 different configurations. Themaximum
sampling rate found for each configuration is depicted in
Figs. 7 and 8; the figures show that increasing the value of
sensorTaskDelay as the representer of intra-node activ-
ities, decreases the sampling rate dramatically. Conforming
the theoretical expectation, they also show that usingB-MAC
results in achieving higher sampling rates in comparisonwith
TDMA, as the waiting times of ready to send data packets in
B-MAC are smaller than that of TDMA.

6.3 TCTL model checking of WSAN applications

In addition to the schedulability analysis of Timed Rebeca
models, they can be model checked against TCTL proper-
ties. In case of the WSAN model, checking for utilizing the
communication medium in at least each 50 time units is the
sample property we examined. This property can be formu-
lated like:

AG≤50(A(freeChannel)U≤50(¬freeChannel) )

We verified the WSAN application in a limited number of
configurations, changing the value of the sampling rate, the
number of nodes, the packet size, and the sensor task delay.

We also applied “Folding Instantaneous Transitions”
reduction technique [16], to make the model checking of
WSAN applications against TCTL more efficient. The idea
of folding instantaneous transitions is developed based on
the fact that the instantaneous transitions take no time to
execute; so, the system cannot “stay” in the states whose out-
going transitions are instantaneous. Hence, these states are
not observable to the verifier (as an external observer). Note
that as generally assumed in the modeling of timed systems,
instantaneous transitions take priority over noninstantaneous
ones. So, any state which has an instantaneous outgoing tran-
sition cannot have noninstantaneous transitions. Hence, there
are two types of states: The ones whose outgoing transi-
tions are all instantaneous (called transient states), and the
ones which have no outgoing instantaneous transition (called
progress-of-time states). Folding instantaneous transitions

Fig. 7 Maximum possible sampling rate in case of different commu-
nication protocols, number of nodes, sensor internal task delays, and
radio packet size. a TDMA, sensor task delay is 5 ms. b TDMA, sensor
task delay is 10 ms. c TDMA, sensor task delay is 20 ms. d TDMA,
sensor task delay is 30 ms

123



558 E. Khamespanah et al.

Fig. 8 Maximum possible sampling rate in case of different communi-
cation protocols, number of nodes, sensor internal task delays, and radio
packet size. a B-MAC, sensor task delay is 5 ms. bB-MAC, sensor task
delay is 10 ms. c B-MAC, sensor task delay is 20 ms. d B-MAC, sensor
task delay is 30 ms

eliminates all instantaneous transitions as well as all tran-
sient states from state spaces. Therefore, there is a transition
between two states of the resulted transition systems if and
only if the two states are consecutive progress-of-time states
in the original transition system [17].

The results of these experiments are depicted in Table 1. In
each row, the configuration (the numbers which are separated
by a dash) is a combination of the sampling rate, the number
of nodes, the packet size, and the sensor task delay of the
experiment, respectively. We choose the state space size and
the model checking time consumptions as the performance
metrics of the model checking. The values of these metrics
are depicted in a table for each case study. In the table, ORG
is used to refer to the original state spaces and RED is used to
refer to the reduced state space (i.e., Folding Instantaneous
Transitions). We also reported the spent times for the state
space generation. There is no difference between the spent
times for the generation of the original state spaces and the
reduced state spaces as the reduction technique is applied
during state space generation with a very small footprint, so
only one number is reported as the spent times.

As shown in Table 1, the time consumption of the model
checking is less than one for all cases and changing the con-
figuration of the model does not end in large state spaces.
However, the effectiveness of the reduction technique is
reduced in configurations which result in bigger state spaces.
This is because of the fact that changing the configuration of
WSAN in this way does not increase the number of messages
which are sent at the same time. So, the chance of finding
transient transitions is decreased as there is no increment in
the number of simultaneously executing instantaneous tran-
sitions.

7 Related work

Three different approaches have been used for analysis of
WSANs: system simulation, analytical approach, and formal
verification.

7.1 System simulation

Simulation of WSAN applications is useful for their early
design exploration. Simulation toolsets for WSANs provide
modeling and analysis of networks [21], power consump-
tion [33], and deployment environment [38]. Simulators can
adequately estimate performance of systems and sometimes
detect conditions which lead to deadline violations. But even
extensive simulation does not guarantee that deadline misses
will never occur in the future [5]. For WSAN applications
with hard real-time requirements this is not satisfactory.
Moreover, none of available simulators is suitable for the
analysis WSAN application software.

123



Modeling and analyzing real-time wireless sensor and actuator networks using actors and… 559

Table 1 The size of the state
spaces, the gained reductions,
and the time consumption of
TCTL model checking of a
WSAN model with different
configuration

Configuration State space generation Model checking time

States ORG States RED Gain (%) Time (s) ORG (s) RED (s)

25-5-3-10 1741 402 77 < 1 < 1 < 1

33-6-4-2 1934 451 77 < 1 < 1 < 1

25-5-4-10 3718 945 75 1 < 1 < 1

30-6-4-2 9353 2774 71 1 < 1 < 1

25-6-4-2 34,503 10,368 70 2 < 1 < 1

20-6-4-2 57,621 17,714 69 3 < 1 < 1

7.2 Analytical approach

A number of algorithms and heuristics have been suggested
for schedulability analysis of real-time systemswith periodic
tasks and sporadic taskswith constraints, e.g., [24]. Although
these classic techniques are efficient in analyzing schedula-
bility of real-time systems with periodic tasks and sporadic
tasks, their lack of ability to model random tasks make them
inappropriate for WSAN applications.

7.3 Formal verification

Real-time model checking is an attractive approach for
schedulability analysis of models with guarantees [5].Model
checking tools systematically check whether a model satis-
fies a given property [4]. The strength of model checking is
not only in providing a rigorous correctness proof, but also in
the ability to generate counter-examples, as diagnostic feed-
back in case a property is not satisfied. This information can
be helpful to find flaws in the system. Norström et al. sug-
gest an extension of timed automata to support schedulability
analysis of real-time systems with random tasks [25]. Feres-
man et al. studied an extension of timed automata which its
main idea is to associate each location of timed automata
with tasks, called task automata [9].

TIMES [2] is a toolset which is implemented based
on the approach of Feresman et al. [8] for analysis of
task automata using UPPAAL as back-end model checker.
TIMES assumes that tasks are executed on a single processor.
This assumption is the main obstacle against using TIMES
for schedulability analysis ofWSAN applications, which are
real-time distributed applications. Jaghoori et al. in [14,15]
presented a framework for schedulability analysis of real-
time concurrent objects. The proposed approach supports
both multi-processor systems and random task definition,
which are required for schedulability analysis of WSAN
applications. But asynchronous communication among con-
current elements of WSAN application results in generation
of complex behavioral interfaces which lead to a state space
explosion even for small size examples.

Real-Time Maude is used in [26] for performance esti-
mation and model checking of WSAN algorithms. The
approach supports modeling of many details such as com-
munication range and energy use. The approach requires
some knowledge of rewrite logic. Our tool may be easier
to use by engineers unfamiliar with rewriting logic: Our
language extends straight-forward C-like syntax with actor
concurrency constructs and primitives for sensing and radio
communication. This requires no formal methods experience
from the WSAN application programmer, as the language
and structure of the model closely mirror those of the real
application.

8 Conclusion and future work

We have shown one of the applications of real-time model
checking method in analyzing schedulability and resource
utilization of WSAN applications. WSAN applications are
very sensitive to their configurations: The effects of even
minor modifications to configurations must be analyzed.
With little additional effort required on behalf of the applica-
tion developer, our approach provides a much more accurate
view of an WSAN application’s behavior and its interac-
tion with the operating system and distributed middleware
services than can be obtained by the sort of informal anal-
ysis or trial-and-error methods commonly in use today. Our
realistic—but admittedly limited—experimental results sup-
port the idea that the use of formal tools may result in more
robustWSAN applications. This would greatly reduce devel-
opment time asmany potential problemswith scheduling and
resource utilization may be identified early.

In this paper, we only addressed the schedulability
analysis of WSAN components and did not consider the
interference on the wireless channel issues (the details of
communication protocols). We assumed that there is a reli-
able wireless infrastructure in the application which provides
guaranteed delivery of messages, which is a reasonable
assumption for a wide range of deployments of structural
health monitoring and control systems. However, this work
can be extended by taking the details of communication pro-

123



560 E. Khamespanah et al.

tocols into account together with noises and unreliability of
wireless communication which results in errors. This way,
only Ether and RCD actors have to be modified to contain
the details of the protocols. Note that the implementation of
the chosen MAC protocol as well as the interaction of the
processing hardware with the transmitter has to be added to
RCD to take hardware and software into account and provide
combined analysis of the underlying hardware infrastructure
as well as the application software. Other different assump-
tions, including fairness in access to B-MAC, time drift of
actors, and uncertainties, can be added. Note that extend-
ing the number of modeled MAC layer protocols also can
be performed as a future work of this paper. Comparing the
efficiency of MAC protocols in different cases to study their
characteristics will be one of the outcomes of this extension.

On the other hand, some WSAN applications also exhibit
probabilistic behaviors which are not discussed in this paper.
Also, in many soft real-time systems it is desirable to know
whether the application does not violate any deadlineswith at
least a given probability. This is particularly important when
deadline violation probability is very small, but requires sig-
nificant extra resource allocation to be avoided completely. In
resource-constrainedWSAN environments, the price of such
safety guarantee may be too high. To address these cases, we
are going to extend this work by using Probabilistic Timed
Rebeca [13] for modeling WSAN application and benefiting
from combining performance evaluation with functional ver-
ification of models. This way, we develop one model for the
purposes of model checking, performance evaluation, and
probabilistic model checking.

Acknowledgements The work on this paper has been supported in
part by the project “Self-Adaptive Actors: SEADA” (nr. 163205-051)
of the Icelandic Research Fund, by Air Force Research Laboratory and
the Air Force Office of Scientific Research under agreement number
FA8750-11-2-0084, and by National Science Foundation under grant
number CCF-1438982. The US Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon.

References

1. Agha, G.A.: ACTORS—A Model of Concurrent Computation in
Distributed Systems. MIT Press Series in Artificial Intelligence.
MIT Press, Cambridge (1990)

2. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.:
Times: a tool for schedulability analysis and code generation of
real-time systems. In: Larsen, K.M., Niebert, M.P. (eds.) FOR-
MATS. Lecture Notes in Computer Science, pp. 60–72. Springer,
Berlin (2003)

3. Buss, A.H.: Modeling with event graphs. In: Charnes, J.M., Mor-
rice, D.J., Brunner, D.T., Swain, J.J. (eds.) Proceedings of the 28th
Conference on Winter Simulation, WSC 1996, Coronado, CA,
USA, 8–11Dec 1996, IEEEComputer Society, pp. 153–160 (1996)

4. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT
Press, Cambridge (1999)

5. David, A., Illum, J., Larsen, K.G., Skou, A.: Model-based design
for embedded systems. In: Model-Based Framework for Schedula-
bility Analysis Using UPPAAL 4.1, CRC Press, pp. 93–119 (2010)

6. Frank, S., de Boer, F.S., Chothia, T., Jaghoori, M.M.: Modular
schedulability analysis of concurrent objects in creol. In: Arbab,
F., Sirjani, M. (eds.) Fundamentals of Software Engineering, Third
IPM International Conference, FSEN 2009, Kish Island, Iran, 15–
17 Apr 2009, Revised Selected Papers, vol. 5961 of Lecture Notes
in Computer Science, Springer, pp. 212–227 (2009)

7. El-Hoiydi, A.: Spatial TDMA and CSMAwith preamble sampling
for low power ad hoc wireless sensor networks. In: Proceedings of
the Seventh IEEE Symposium on Computers and Communications
(ISCC 2002), 1–4 July 2002, Taormina, Italy, pp. 685–692, IEEE
Computer Society (2002)

8. Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Schedulability
analysis of fixed-priority systems using timed automata. Theor.
Comput. Sci. 354(2), 301–317 (2006)

9. Fersman, E., Pettersson, P., Yi, W.: Timed automata with asyn-
chronous processes: schedulability and decidability. In: Katoen,
J.P., Stevens, P. (eds.) TACAS, Lecture Notes in Computer Sci-
ence, vol. 2280, Springer, pp. 67–82 (2002)

10. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR
formalism for artificial intelligence. In: Nilsson, N.J. (ed.) IJCAI,
pp. 235–245, William Kaufmann (1973)

11. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.:
System architecture directions for networked sensors. SIGPLAN
Not. 35, 93–104 (2000)

12. Illinois SHM Services Toolsuite. http://shm.cs.illinois.edu/
software.html

13. Jafari, A., Khamespanah, E., Sirjani, M., Hermanns, H., Cimini,
M.: Ptrebeca: modeling and analysis of distributed and asyn-
chronous systems. Sci. Comput. Program. 128, 22–50 (2016)

14. Jaghoori, M.M., de Boer, F., Longuet, D., Chothia, T., Sirjani,
M.: Schedulability of asynchronous real-time concurrent objects.
J. Log. Algebr. Program. 78(5), 402–416 (2009)

15. Jaghoori, M.M., de Boer, F.S., Longuet, D., Chothia, T., Sirjani,
M.: Compositional schedulability analysis of real-time actor-based
systems. Acta Inf. 54(4), 343–378 (2017). https://doi.org/10.1007/
s00236-015-0254-x

16. Khamespanah, E., Khosravi, R., Sirjani, M.: Efficient TCTLmodel
checking algorithm for timed actors. In: Boix, E.G., Haller, P.,
Ricci, A., Varela, C. (eds.) Proceedings of the 4th International
Workshop on Programming based on Actors Agents and Decen-
tralized Control, AGERE! 2014, Portland, OR, USA, 20 Oct 2014,
pp. 55–66, ACM (2014)

17. Khamespanah, E., Khosravi, R., Sirjani, M.: An efficient TCTL
model checking algorithm and a reduction technique for verifica-
tion of timed actor models. Sci. Comput. Program. (2017)

18. Khamespanah, E., Mechitov, K., Sirjani, M., Agha, G.: Schedula-
bility analysis of distributed real-time sensor network applications
using actor-based model checking. In: Proceedings of Model
Checking Software—23rd International Symposium, SPIN 2016,
Co-located with ETAPS 2016, Eindhoven, The Netherlands, 7–8
Apr 2016, pp. 165–181 (2016)

19. Khamespanah, E., Sirjani, M., Sabahi-Kaviani, Z., Khosravi, R.,
Izadi, M.-J.: Timed rebeca schedulability and deadlock freedom
analysis using bounded floating time transition system. Sci. Com-
put. Program. 98, 184–204 (2015)

20. Khamespanah, E., Sirjani, M., Viswanathan, M., Khosravi, R.:
Floating time transition system: more efficient analysis of timed
actors. In: Braga, C., Ölveczky, P.C. (eds.) Formal Aspects of Com-
ponent Software—12th International Symposium, FACS2015, Rio
de Janeiro, Brazil, 14–16 oct 2015, Lecture Notes in Computer Sci-
ence, Springer (2016)

21. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: accurate and
scalable simulation of entire tinyos applications. In: Akyildiz, I.E.,

123

http://shm.cs.illinois.edu/software.html
http://shm.cs.illinois.edu/software.html
https://doi.org/10.1007/s00236-015-0254-x
https://doi.org/10.1007/s00236-015-0254-x


Modeling and analyzing real-time wireless sensor and actuator networks using actors and… 561

Estrin, D., Culler, D.E., Srivastava, M.B. (eds.) Proceedings of the
1st International Conference on EmbeddedNetworked Sensor Sys-
tems, SenSys 2003, Los Angeles, California, USA, 5–7 Nov 2003,
pp. 126–137, ACM (2003)

22. Linderman, L.E., Mechitov, K.A., Spencer, B.F.: TinyOS-based
real-time wireless data acquisition framework for structural health
monitoring and control. Struct. Control Health Monit. 20, 1007–
1020 (2012)

23. Lipari, G., Buttazzo, G.: Schedulability analysis of periodic and
aperiodic tasks with resource constraints. J. Syst. Archit. 46(4),
327–338 (2000)

24. Liu, J.W.S.: Real-Time Systems, 1st edn. Prentice Hall, Upper Sad-
dle River (2000)

25. Norström, C., Wall, A., Yi, W.: Timed automata as task models
for event-driven systems. In: RTCSA, IEEE Computer Society, pp.
182–189 (1999)

26. Olveczky, P.C., Thorvaldsen, S.: Formal modeling, performance
estimation, and model checking of wireless sensor network algo-
rithms in real-time maude. Theor. Comput. Sci. 410(2—-3),
254–280 (2009)

27. Polastre, J., Hill, J.L., Culler, D.E.: Versatile low power media
access for wireless sensor networks. In: Stankovic, J.A., Arora,
A., Govindan, R. (eds.) Proceedings of the 2nd International Con-
ference on Embedded Networked Sensor Systems, SenSys 2004,
Baltimore, MD, USA, 3–5 Nov 2004, pp. 95–107, ACM (2004).
https://doi.org/10.1145/1031495.1031508

28. Ren, S., Agha, G.: RTsynchronizer: language support for real-time
specifications in distributed systems. In: Gerber, R., Marlowe, T.J.
(eds.) Workshop on Languages, Compilers, and Tools for Real-
Time Systems, pp. 50–59. ACM, New York (1995)

29. Rebeca Formal Modeling Language. http://www.rebeca-lang.org/
30. Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A.,

Ingólfsdóttir, A., Sigurdarson, S.H.: Modelling and simulation of
asynchronous real-time systems using timed Rebeca. Sci. Comput.
Program. 89, 41–68 (2014)

31. Zeinab, S., Mohammadi, S., Sirjani, M.: Comparison of NoC rout-
ing algorithmsusing formalmethods. In: Proceedings ofPDPTA’13
(2013)

32. Sharifi, Z., Mosaffa, M., Mohammadi, S., Sirjani, M.: Functional
and performance analysis of network-on-chips using actor-based
modeling and formal verification. In: ECEASST, vol. 66 (2013)

33. Shnayder, V., Hempstead, M., Chen, B.R., Allen, G.W.,Welsh, M.:
Simulating the power consumption of large-scale sensor network
applications. In: Stankovic, J.A., Arora, A., Govindan, R. (eds.)
Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, SenSys 2004, Baltimore, MD, USA,
3–5Nov 2004, pp. 188–200,ACM(2004). https://doi.org/10.1145/
1031495.1031518

34. Sirjani, M., de Boer, F.S., Movaghar-Rahimabadi, A.: Modular
verification of a component-based actor language. J. UCS 11(10),
1695–1717 (2005)

35. Sirjani, M., Jaghoori, M.M.: Ten years of analyzing actors: Rebeca
experience. In: Gul, A., Danvy, O., Meseguer, J. (eds.) Formal
Modeling: Actors, Open Systems, Biological Systems—Essays
Dedicated to Carolyn Talcott on the Occasion of Her 70th Birth-
day. Lecture Notes in Computer Science, vol. 7000, pp. 20–56.
Springer, Berlin (2011)

36. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and
verification of reactive systems using Rebeca. Fundam. Inform.
63(4), 385–410 (2004)

37. Spencer, B.F., Jo, H., Mechitov, K.A., Li, J., Sim, S.H., Kim, R.E.,
Cho, S., Linderman, L.E., Moinzadeh, P., Giles, R.K., Agha, G.:
Recent advances in wireless smart sensors for multi-scale monitor-
ing and control of civil infrastructure. J. Civ. Struct. Health Monit.
6(1), 1–25 (2015)

38. Sameer, S., Kim, W.: et Gul Agha Sens: a sensor, environment
and network simulator. In: Proceedings 37th Annual Simulation
Symposium (ANSS-37 2004), 18–22 Apr 2004, Arlington, VA,
USA, pp. 221–228, IEEE Computer Society (2004)

123

https://doi.org/10.1145/1031495.1031508
http://www.rebeca-lang.org/
https://doi.org/10.1145/1031495.1031518
https://doi.org/10.1145/1031495.1031518

	Modeling and analyzing real-time wireless sensor and actuator networks using actors and model checking
	Abstract
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Event graph
	2.2 The actor model of WSAN applications
	2.3 Timed Rebeca and the model checking toolset

	3 Schedulability analysis of a stand-alone node
	4 Schedulability analysis of multi-node model with a distributed communication protocol
	5 Generalization of the approach for any WSAN application
	6 Experimental results and a real-world case study
	6.1 Finding the maximum sampling rate
	6.2 Real-world applications
	6.3 TCTL model checking of WSAN applications

	7 Related work
	7.1 System simulation
	7.2 Analytical approach
	7.3 Formal verification

	8 Conclusion and future work
	Acknowledgements
	References




