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ABSTRACT
Product Line Engineering is an approach to reuse assets of com-
plex systems by taking advantage of commonalities between prod-
uct families. Reuse within complex systems usually means reuse
of artifacts from different engineering domains such as mechan-
ical, electronics and software engineering. Model-based systems
engineering is becoming a standard for systems engineering and
collaboration within different domains. This paper presents an ex-
ploratory case study on initial efforts of adopting Product Line
Engineering practices within the model-based systems engineering
process at Volvo Construction Equipment (Volvo CE), Sweden. We
have used SysML to create overloaded models of the engine sys-
tems at Volvo CE. The variability within the engine systems was
captured by using the Orthogonal Variability Modeling language.
The case study has shown us that overloaded SysML models tend to
become complex even on small scale systems, which in turn makes
scalability of the approach a major challenge. For successful reuse
and to, possibly, tackle scalability, it is necessary to have a database
of reusable assets from which product variants can be derived.
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1 INTRODUCTION
Product development is about satisfying the needs and requirements
of customers. In order for a product to be successful it must be well
adapted to all its customers. However, different customers might
need similar products with subtle differences, but also they might
have completely different requirements for the same product. This is
apparent in the automotive domain, where product configurations
can be very specific to customers and specific to the region where
the product is to be distributed. Having standardized products is
sometimes challenging, especially in recent years, where software is
becoming part of products in all domains. Such software-intensive
systems introduce even more variations within products [20].

The first software used in the automotive industry was used
to control the engine, namely, to control the engine spark timing
in the GM Oldsmobile Tornado [4]. Nowadays, software is used
to control the complete engine behavior. The same applies to the
diesel engines considered in our case study at Volvo Construction
Equipment (Volvo CE). Volvo CE produces heavy machinery such
as excavators, articulated haulers, wheel loaders, etc. The engines
used in heavy machines have several thousand parameters which
need to be configured for each product variant individually.

In order to facilitate reuse within the engine system, while re-
ducing time to market and cost of development, it is necessary
to address variability, starting from variable user requirements,
through the design process, implementation and later coping with
variants during validation and verification procedures [3].

Traditionally, when a system is to be developed, it is rarely de-
veloped from scratch. Rather, it is considered as an evolution of an
existing system. The same is true at Volvo CE, where new gener-
ation engines are developed by improving the functionality and
performance of previous systems. Even though reuse of artifacts
such as specification documents or test procedures is a fairly com-
mon practice in the industry, additional work is necessary to define
reuse strategies within the systems engineering domain [24].

Model-Based Systems Engineering (MBSE) is a methodology pro-
posed to address issues in the systems engineering process, by using
models to support systems engineering activities [7]. Adopting a
model-based approach leads to a paradigm shift from document-
based representation of information to having models as a central
source of information [19]. A visual modeling language widely
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used in MBSE is SysML [8]. It is indifferent to any specific systems
engineering methodology [7].

This paper presents the first steps towards the adoption of model
based product line engineering within the Engine Controls depart-
ment at Volvo Construction Equipment. The main objective is to
create design models of the the engine systems with respect to vari-
ability. The secondary objective is to identify potential challenges
that arise while modeling variability within the MBSE process.

The case study was conducted on the Urea Dosing System (UDS),
which is a part of the exhaust aftertreatment system. Two types
of UDS systems have been modeled and combined into a single,
overloaded, SysML model. The model was then annotated with
Orthogonal VariabilityModeling constructs. A successful derivation
of individual UDS variants from the overloaded model has been
demonstrated.

An observation made in the study is that the overloaded model
of the UDS became complex even though the UDS is a fairly simple
system. This in turn makes scalability a great challenge. A possible
approach to tackle scalability is to divide a complex system into
manageable subsystems and model them as a database of reusable
assets from which product variants can be created.

2 BACKGROUND
Systems engineering represents a set of processes that, when com-
bined, bridge the gap between customer requirements and the sys-
tem solution which is intended to satisfy the customer requirements.
From a technical perspective, it includes activities to analyze, spec-
ify, design, verify and validate the product to be developed to ensure
that customer requirements are satisfied [10]. With the advance-
ments in technology, systems are getting more complex and it is
necessary to have an efficient systems engineering process that
allows for communication between different domains. MBSE is an
evolving approach targeting these challenges [19].

2.1 Variability Modeling
To address product variability in any domain it is first necessary to
identify commonalities and differences between product variants.
Product variants appear as a consequence of decisions made by sys-
tem designers in order to address different user requirements. They
can appear throughout all design artifacts, from requirements, to
design specifications, test cases etc. Variability modeling is the pro-
cess of documenting and defining variants and constraints between
variants within product artifacts in order to increase understanding
and provide an overview of the system variability [22].

Variability can be viewed from two perspectives. The first one be-
ing the variability in the problem domain where a specific product is
decomposed as a set of features that can appear within that product.
The features in the problem domain represent what functionality
must be implemented in the system, e.g., the base engine system
needs to have a Turbocharger, an Engine Brake etc. On the other
hand, solution domain variability represents the variability within
design artifacts which are used to extend, customize or change the
system in order to implement product features. In other words,
solution domain represents how the features are implemented in
the given system [15]. For example, there are several types the

Turbocharger, or the Engine Brake can be implemented in several
different ways.

Variability information, from the problem domain perspective,
is usually captured in separate models [5]. Feature models and deci-
sion models are the most commonway of representing variability in
the problem domain. Several feature-based modeling methods can
be identified in literature and comprehensive studies on the research
can be found in [1, 20]. Most feature-based modeling approaches
are derived from the feature-oriented domain analysis [13]. Feature
models represent user-visible aspects, or features, of a product line,
with relationships between them. From feature models it is possible
to derive all possible variants of the product line. However, as said,
to create a feature model, it is necessary to identify commonalities
and differences within a product line. Guidelines on how to extract
and structure features can be found in [14].

After identifying features of a system, it is necessary to present
these in a model. In [6] it is proposed that notations for feature
models should be graphically represented in a readable and clear
form. They should distinguish between types of variability (options,
alternatives etc.). It must be possible to specify properties of vari-
ation points, such as cardinalities. Additionally, it is necessary to
represent dependencies between features. Feature models should
support evolution over time and provide a way to manage traceabil-
ity between versions. They need to be adaptable to specific needs,
scalable and unified for the whole development cycle. A report
on the experience from three industrial settings that use feature
modeling for variability management can be found in [2]. They
conclude that the primary benefit of variability modeling lies in the
ability to organize, visualize and scope features.

Other than feature models, there are decision models which
essentially represent a fixed set of questions and answers that are
used to derive a product. A systematic literature review on decision-
oriented variability modeling techniques can be found in [21].

In order to address the solution domain it is necessary to address
the variability in the systems engineering process. That means
variability has to be considered throughout the development of
requirements, system analysis, system design, testing procedures
etc. [15]. Using SysML in MBSE allows the representation of com-
plex systems throughout the systems engineering process using one
modeling standard [7]. However, SysML does not provide language
constructs to represent variability. Nevertheless, it is possible to ex-
press variability in SysML by, for example, extending the standard
notations with custom profiles [23].

Feature and decisionmodels in the problem domain are presented
separately from, but linked to, development artifacts in the solution
domain [5]. Derivation is performed such that features are selected
in the separate models and a set of development artifacts is derived
according to the selected features. According to [2], managing
traceability in an efficient manner between models in the problem
and solution domain is key for variability management.

An approach that allows the combination of variability models
from the problem domain with models from the solution domain
is proposed in [18]. Orthogonal Variability Modeling (OVM) is an
annotative approachwhich enables the annotation of SysMLmodels
with variability constructs. In this case, both design and variability
are presented in the samemodel with explicit links between variants
and parts of the design models.
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(a) Articulated Hauler

(b) Excavator

Figure 1: Machine Duty Cycle

3 CASE STUDY DESIGN
The Engine Controls department at Volvo CE is in the initial phase
of migrating from the traditional document-based to the MBSE
approach with the aim to increase reuse, reduce costs and reduce
time-to-market of new products. For Volvo CE, variability manage-
ment is a key factor for a successful reuse. An example of variability
can be seen in Figure 1. The two machines: excavator (Fig. 1b) and
articulated hauler (Fig.1a) are using the same base engine, however
the required engine behavior is completely different between the
machine types. The x-axis represents the engine speed in rotations
per minute, whereas the y-axis represents the torque produced by
the engine. It can be seen that an excavator engine (Fig. 1b) needs
to produce a wide range of torque while maintaining a fixed engine
speed. On the other hand, the engine of an articulated hauler needs
to be able to produce a wide range of torque while operating on
varying engine speeds.

There are two objectives with this study. Firstly, we want to
create models of the engine systems at Volvo CE with regards to
variability. The second objective is to identify potential challenges
which arise due to the introduction of variability modeling in MBSE.
Identifying challenges in early stages is necessary to plan ahead
and adjust the MBSE practices to fit the specific context at Volvo
CE.

3.1 Case and Study Object
The studied case is the Engine Controls department at Volvo CE in
Eskilstuna, Sweden. Volvo CE develops, manufactures and markets
equipment for the construction and non-road applications. The
product range of Volvo CE includes different types of wheel loaders,
excavators, articulated haulers and construction machinery.

The Engine Controls department at Volvo CE is the provider of
engine systems for their complete range of products. In general, all
engine systems have twomain subsystems: (i) the diesel enginewith
the role to produce torque and (ii) the aftertreatment system with
the role to reduce the amount of emission gases. In order to have a
comprehensible scope for this exploratory study, the Urea Dosing
System (UDS), part of the aftertreatment system, was selected as the
study object of analysis. The UDS consists of physical components
and software calibration parameters (e.g. linearizion parameters for
the urea tank unit sensor, urea dosing pump injection calibration
parameters etc.). These calibration parameters affect the behavior
that is shown in Figure 1.

Due to regulations and norms imposed on diesel engines, it is
important that the amount of pollutants in the exhaust stream are
reduced below certain limits depending on the region where the ma-
chines are to be used [12]. The role of the UDS is to inject the diesel
exhaust fluid (urea) into the exhaust in order to reduce nitrogen
oxides (NOx) in the Selective Catalytic Reduction Catalysts.

The UDS was selected since it is a fairly isolated system and it
is possible to analyze it in this exploratory study as an individual
system. It includes both shared and variable components between
the two different UDS types.

3.2 Case Study Procedure
The Orthogonal Variability Modeling (OVM) [18] language was
selected to represent variability in the problem domain due to
already existing tool support at Volvo CE. SysML, as a standard
for MBSE, was selected to create system models in the solution
domain.

An overloaded SysML model was created that captures both
types of UDS systems in a single model. OVM was used to create a
variability model of the UDS, with constraints between variations.
OVM also allowed us to explicitly link the variations from the vari-
ability model to designmodels in SysML. The analysis andmodeling
was performed with support from expert system architects from
the Engine Controls department at Volvo CE.

The PTC IntegrityModeler1 tool was used for modeling activities.
The derivation procedure is demonstrated in Section 4.

4 RESULTS
Most of the research on the topic of product lines and variability
management concerns software product lines [20]. Although soft-
ware is an essential component of Volvo CE products, it is necessary
to address variability within the complete systems engineering pro-
cess. That includes not just software but also other disciplines such
as mechanical and electrical engineering, industrial engineering,
project management and organizational studies [10]. Systems engi-
neering is essentially the whole process of developing a complete
system, hardware and software, based on customer requirements.
1https://www.ptc.com/en/products/plm/plm-products/integrity-modeler
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4.1 Variability within the engine system
The engine system consists of twomain subsystems, the base engine
(responsible for producing torque) and the aftertreatment system
(responsible for the reduction of emissions of the base engine) .

The base engines can be classified into three categories according
to their size: heavy duty, medium duty and light duty engines.
Engines of different sizes will be treated as separate product lines
due to major differences in both hardware and software.

In addition, there are three types of aftertreatment systems,
tightly coupled to the three categories of base engine platforms. The
three aftertreatment systems consist of a set of mechanisms (such
as the UDS, diesel particulate filters etc.) to reduce the emissions of
the engine systems. However, some features of the aftertreatment
system depend as well on the regulations and norms of the location
where the machine is intended to be used. Additionally, software
calibration parameters might vary depending on the environmental
legislation as well. The regulations in the three largest markets
of heavy machinery: US, China and Europe differ significantly in
aspects such as allowed NOx emissions [12].

In some cases product features, or parts of features, are shared
between different product lines. It is important to address these com-
monalities in order to reuse the design and development artifacts
between product lines. One example is the urea dosing subsystem.
It is a part of the aftertreatment system and its purpose is to support
the reduction of NOx emissions within the engine system.

The following subsections will introduce the mechanisms used
at Volvo CE in order to model variability within the problem and
solution domains.

4.2 Modeling techniques and tools
The current reuse approach at Volvo CE Engine Controls is based
on the fact that engines and engine control software are developed
to be able to answer a wide range of different needs. However, a
mechanism to manage variations in features (including calibration)
of an engine is not clearly defined. When a new product is to be
developed, a gap analysis is performed and the closest already
existing product is replicated and modified according to the new
set of requirements.

Variations and commonalities at the engine controls can range
from user visible characteristics (e.g. type of the UDS system) to
internal characteristics such as type of the NOx level sensor. By
combining all system features into one model, an overloaded prod-
uct line is created. The product line includes all possible internal and
external variations that can appear within a given engine system.

The SysML standard does not support variability modeling ex-
plicitly. Nevertheless it is possible to express variability by creating
SysML profiles to extend the language with variability concepts, as
it can be seen in [25]. However this approach increases the complex-
ity of models significantly. Variability management is an important
aspects of product lines and in order to be successful in our ap-
proach of using SysML, an easy and holistic approach to formalize
variability in all SysML models is required. The language we used
for variability modeling is the Orthogonal Variability Modeling
language [18]. The notation for OVM is shown in Figure 2 [18].
The connection between SysML models and the OVM models is
represented with explicit links that are drawn between the variants

Figure 2: Orthogonal Variability Modeling language nota-
tion

and design blocks in SysML. The links between OVM and SysML
are part of the OVM language. In case a variant is not selected, the
linked SysML blocks need to be removed from the diagram.

OVM is used to capture the problem domain variability in di-
agrams that are separate from SysML diagrams. It is possible to
represent variation points, variants, dependencies and constraints
between variants, as illustrated in Figure 2. Variability of the solu-
tion domain is presented in the form of overloaded SysML models,
where all possible variations of the solution are represented.

In this case, when a new product needs to be developed, again a
gap analysis is performed. However, now instead of replicating a
complete product, one would select features that satisfy the require-
ments of the new product. It is important to consider constraint
rules between artifacts that must be satisfied. Constraints between
artifacts are represented within the OVM models (Figure 2).

The next subsection provides a demonstration of the overloaded
SysML models created for the urea dosing systems (UDS) including
the procedure for derivation of a specific UDS type.

4.3 Demonstration on the Urea Dosing System
The system logical view of the UDS is shown in Figure 3, represented
as a SysML activity diagram. The main three tasks of the UDS are:

• Storing the urea, represented by the Store UREA activity.
• Dosing the urea into the exhaust (Pressurize UREA activity).
• Defrosting the urea (Defrost Urea System activity).

The UDS receives dosing demands to the urea system via the Dos-
ingDemand interface from the Engine System. The dosing demand
is processed and the Pressurize Urea activity is invoked. The pump
(representing the Pressurize Urea activity) is then creating a suction
effect to move the urea from the urea tank, pressurize it and inject
into the exhaust stream through the exhaust port. Temperature
sensor readings from the tank and pump unit are then sent back to
the Process UDS demands activity where a temperature evaluation
is performed. In case of low temperatures, the defrosting activity is
invoked. Defrosting is necessary since the Volvo CE machines are
supposed to work in environments with temperatures below -11°C,
which is the freezing temperature of urea.

Depending on the engine system requirements, imposed from the
machine level, there are two types of dosing systems. Air supported
injection is when urea is initially pressurized by a pump and then
mixed with high pressure air in order to disperse it into the exhaust
stream. However, if pressurized air is not provided by the machine,
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Figure 3: Urea Dosing System Logical Architecture

it is necessary to use a dosing system that can create high enough
pressures to disperse the urea without having air support.

An overloaded SysML model that combines both types of the
UDS is presented in Figure 5. It includes the urea storage tank unit,
suction hose and pressure hose as shared components. It can be
seen in Figure 5 that individual components from both systems
are included in a single diagram. The blocks: Air Supported Pump,
Air UDS ACM (Air UDS After treatment Control Module) and Air
Dosing Nozzle are part of the air supported dosing system. The
blocks: Dosing Pump, UDS ACM, CoolingWater Valve, Return hose,
Dosing Nozzle are part of the UDS without air support.

The Urea Tank Unit from Figure 5 can be mapped to the Store
Urea activity in Figure 3. The UDS control unit is mapped to the Pro-
cess demands and Monitor UDS activities. The software, which de-
fines behavior of the system resideswithin this block, it is parametrized
with calibration parameters of individual blocks in the system.

The defrosting activity is such that the UDS is defrosted by
circulating engine cooling water through the urea pump unit and
the urea storage tank. Transport hoses are heated electrically from
the respective UDS Controller.

The transport hoses, urea pump and injection nozzle from Fig-
ure 5 can be mapped to the Pressurize Urea activity in Figure 3.

As a component that is shared between the different dosing
systems, the urea storage tank (as shown in Figure 5) is connected
to both types of UDS in the overloaded model. There exist several
variations within the storage itself: storage tank size, sensor type,
direction of flow of cooling water and type of return hose port on
the tank armature (Figure 7).

The direction of flow of engine cooling water through it is oppo-
site for the two types of UDS, therefore the tank unit calibration
parameters that define defrosting time are also different.

The UDS without air support has an additional hose between the
pump unit and urea tank since some of the urea fluid is flowing back
from the pump to the tank. The return hose is not explicitly stated
as a variation and is included in the UDS System Type - Without Air
Support variant. The return hose port is, however, represented as a
variation point for the urea tank, since one could derive a variant
of the tank unit without considering the complete UDS.

In the overloaded SysML model, the UDS components from the
two systems connect to the same interfaces on shared components.
E.g., both control units (Air UDSACMandUDSACM) are connected
to the same tank port for sensor readings. However, only a single
connection will remain when a specific UDS variant is derived.

Figure 4: Variant Diagram of the UDS

An overview of all variation points with variants and depen-
dencies between them can be seen in Figure 4. For example, if one
selects the UDS with air support variant, then it is required to select
the Closed variant of the Return Hose Tank port. Moreover, if one
selects a Large variant of the Urea Tank Size, then the Short Variant
of Sensor Type is excluded due to the dependency between them.

The overloaded SysML diagram from Figure 5 is annotated with
OVM variability constructs in order to connect components of dif-
ferent UDS types (solution domain) to the variability model from
Figure 4 (problem domain). After the variability model is connected
to the SysML design model it is possible to start the derivation
process. The PTC Integrity Modeler tool used for this demonstra-
tion allows the configuration of individual products through the
Variant Selector tool capability. The Variant Selector provides a
configuration interface based on the variability model in Figure 4.
The derived system variant must satisfy the constraints from the
variability model.

Figure 6 represents the derived air supported UDS variant. It can
be seen that it was derived by removing all the blocks which are
not part of the selected variant. The overloaded tank unit model
is shown in Figure 7. The tank unit variation points are: tank size,
tank sensor type, engine cooling water flow direction and a varying
return hose armature port. During the derivation process of the air
supported UDS from Figure 6, the variant of the Urea Tank Unit
has been selected as shown in Figure 8. It includes a medium tank
size, long tank sensor, armature without a return hose port (closed)
and a positive flow of engine cooling water through the tank.

5 LESSONS LEARNED
Although internal block diagrams were used to represent the phys-
ical structure of an engine subsystem, it is possible to annotate any
type of SysML diagram with variability constructs.

We have avoided using different diagram viewpoints to model
the system as that would contribute to the complexity of overloaded
models as each of the diagrams would need to be consistently an-
notated with variability constructs. Furthermore, since variants in
physical components and their calibration parameters were consid-
ered in the current study, internal block diagrams were sufficient
to express the required information.

The study allowed us to identify potential benefits and chal-
lenges which arise from variability modeling in the MBSE approach
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Figure 5: Internal block diagram of the overloaded model of the urea dosing system

Figure 6: Internal block diagram of the Air supported UDS system

at Volvo CE. Overloaded models present a potentially good way of
managing commonalities in a product line and allow for reduction
of efforts required to maintain the commonalities between systems.
For the engine system, an efficient approach to document and man-
age variability would have the benefit of firstly having a single
source of information (the model).

Additionally, the configuration of an engine system (e.g. the
UDS) would now allow for a simplified derivation procedure, from
a single model, compared to the manual synchronization of several
document-based artifacts. When the models are created, it is possi-
ble to derive a specific variant of a system or subsystem with little
effort.

However, during the later evaluation of the models, we noted
the following challenges:

• Complexity
The creation of overloaded SysML models was shown to be a
complex and error prone task. A single UDS contains a small
number of components and there are only two different UDS
types. Yet, when one combines them into a single overloaded
model, the design becomes rather difficult to comprehend.
That is seen in Figure 5. The variations in interfaces on the
shared components need to be clearly defined. In the case
of UDS, the tank unit had an additional interface for the
return hose when the UDS without air support was used.
Additionally, the flow of engine cooling water is reversed
between the UDS types, meaning that an input for one sys-
tem, in the overloaded model, can be an output for the other
system. On the other hand, calibration parameters of each
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Figure 7: Internal block diagram of the overloaded model of
the UDS tank unit

Figure 8: Internal block diagram of the tank unit for the Air
supported UDS

of the physical components are stored within the respective
blocks, it allows us an easier parametrization of the software
by taking calibration parameters directly from a derived
variant model. Due to the complexity of overloaded models,
scalability represents a major challenge.

• Scalability
In order to manage scalability and create comprehensible
models, one possibility would be to have several layers of
abstraction in the design process. In the case of the UDS
(Figure 5), one could group together variable components
based on the type of UDS. These component groups could
be placed into separate internal block diagrams in order to
simplify the overloaded model in Figure 5. Although the
separation of concerns (observing variable and shared com-
ponents individually) is fairly simple on the UDS, separating
concerns within the complete engine system is no easy task.
The engine subsystems are highly interconnected, interde-
pendent and difficult to observe each on its own. Due to
the complexity of the presented overloaded models, we con-
clude that this approach would be unfeasible for a larger
scale. To address scalability, one possibility would be to cre-
ate a library of assets, without interconnecting them into
overloaded model as in Figure 6.

• Asset Management
With an model-based asset library, we want to avoid the
use of large overloaded models. It is necessary to divide the

engine system into self contained subsystems as far as pos-
sible in order to create an extensive database of assets. An
example of an asset would be the Tank Unit, it does not nec-
essarily have to be modeled as a part of a larger subsystem
as shown in Figure 5, rather it would be contained in the
asset database. Another asset of the UDS example would be
the injection system (ACM, pump unit and dosing nozzle).
As long as the individual assets are consistently annotated
with variability constructs, a derived UDS variant would
still be a correct, although not interconnected in a diagram
anymore (as in Fig. 6). With an asset database, it would be
possible to derive a single product by selecting variants from
the database according to system requirements. Constraints
between assets must be clearly defined and maintained. Due
to varying requirements, some assets might need modifica-
tions for a new product variant and it is necessary to keep
track of different versions.

• Evolution of assets
Asset changes are related to adjustments of subsystems for
new machine variants (e.g. addition of a new urea tank size,
change of the cooling water valve etc.). In the proposed
asset library, incremental changes would be added to the
currently existing assets in the form of additional variants of
its overloaded model. For example, if a new tank sensor type
is required, the asset shown in Figure 7 would be updated
with a new type of the tank sensor. Furthermore, the variant
diagram (Fig.4) would need to be updated with the new vari-
ant and its constraints similar to the approach presented for
feature models in [16], except that in our case, the version
number of the variability model would not change. In case
changes to assets can not be made without affecting its cur-
rent components, a new type of the same asset would have to
be created. For example, if the modular Tank Unit would be
replaced with a compound unit that integrates all elements
into itself, it would be added as new tank asset to the library.
Additionally, the product line variant diagram would have to
be updated with the new assets and their constraints to other
assets. A product version, at any time, would be defined as a
certain selection of features from the same variability model
since changes are introduced as new features (new assets or
new features to existing assets).

It should be noted that no specific guidelines for structuring
solution domain variability within MBSE have been followed for
this research, as none are present in the current state of the art.
These limitations will be addressed as a part of the continuation of
research on this topic.

6 RELATEDWORK
Variability management with OVM and overloaded SysML models
is presented in [11]. An example on how to structure a library
of reusable assets is demonstrated. The potential benefits of their
approach are the reduction of development costs and reduction in
time to market.

The use of SysML profiles to represent variants in different dia-
gram views has been presented in [23]. They used the IBM Rational
Rhapsody/Gears bridge tools to model different variants for a wind
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turbine cooling system. They demonstrated successful use of SysML
with stereotypes to manage product line variability. However, the
paper does not describe how the SysML variants are mapped to
feature diagrams and it is not shown how a specific variant can be
derived by utilizing the feature models.

A study on the use of MBSE within product lines from the rail
transportation industry is presented in [9]. They report on first steps
towards introducing MBSE into PLE by creating a product line of a
metro train. The product line includes development artifacts from
which all possible alternatives can be derived. The Orthogonal
Variability Modeling language [18] was used to define problem
space variability. They estimate cost savings on fixed engineering
costs in the specification phase for up to 50%.

Structuring product lines and mapping variability models is
not an easy task, an industrial report on the topic is presented
in [17]. They found that most of the challenges when adopting
product lines and variability modeling in an automotive context
arise from lacking modeling guidelines and limited scalability of
current approaches.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we presented an exploratory study on the introduction
of model based product line engineering at the Engine Controls
department at Volvo Construction Equipment, Sweden.

We have demonstrated an model-based approach for artifact
reuse and product derivation on the UDS. It was shown that it is
possible to generate system variants from a overloaded model with
little effort.

However, overloaded models become complex and difficult to
manage even on smaller subsystems. In our example, the UDS sys-
tem has only two system types and a small number of components,
yet, the overloaded model became rather complex. Due to high
complexity of the models, scalability represents an issue as well.
In order to scale this approach to the complete engine system it is
necessary to separate it into manageable subsystems, however the
separation of concerns has proven to be a great challenge.

Further work will be done on the identification and documenta-
tion of artifacts that are reused between engine product lines. After
that it is necessary to create a asset database from which it will be
possible to derive and configure a specific product. Additionally, it
is necessary to define guidelines on structuring the design models
in order to create a library of reusable design assets where ver-
sion control is an important aspect to consider. Another interesting
aspect is to evaluate modeling tools with respect to the support
for variability modeling. The end goal is to exploit commonality
between products developed at Volvo CE in order to facilitate reuse,
reduce the time-to-market and reduce costs of developing new
products.
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