ESSES 2003

European Summer School on
Embedded Systems

Lecture Notes
Part XIlI

Embedded Systems:
Embedded System
Programming and Compiling

European Summer School on

Enbedded Systems

Jul 14 - Oct 10 2003
Visterds Sweden

Editors: Ylva Boivie, Hans Hansson, Jane Kim, Sang Lyul Min

Visteras, August 25-29, 2003

M ISSN 1404-3041
ISRN MDH-MRTC-108/2003-1-SE

MALARDALEN REAL-TIME
RESEARCH CENTRE www.mrtc.mdh.se

Flash Memory Basics

Sang Lyul Min

School of Computer Science and Engineering
¥ Seoul National University

2003. 8.29

SNU Flash Team

Why flash memory ?

m Faster access

Lower power

Shock / Temperature resistance
Smaller size

Lighter weight
Noiseless

SNU Flash Team

Test Framework

Sang Lyul Min

School of Computer Science and Engineering
Seoul National University

\\ 2K" & 2003. 8.29

SNU Flash Team

Test Framework

Target: CompactFlash (CF)

SAMSUNG

128MB

Compa

000 OO Tt

SNU Flash Team

"_[‘est Framework

Controller (S3F49FAX)

NAND flash chips

Host NOR flash SRAM
(48KB) (16KB)
PCMCIA for code for data
or
USB

SNU Flash Team

Test Framework

Data

FTL functions

Buffer requests

Request & Response

SNU Flash Team

Test Framework

Detailed model

[Data =

Host

Buffer

TEST BENCH HOST INTERFACE FTL

S : -
7777 2

- 2

g 7 | 7

% /.
Host Buffer § i Host Buffer
Interface _
.

P4 Interface

Command Command
Interface Interface 7 Handler

0
7 7

7

7

.

SNU Flash Team

Test Framework

Detailed model

CData

Host
Buffer

TEST BENCH HOST INTERFACE

R Z
7 /%g/;//{////@;yg/;%ﬂ N
.

_
-
7

FTL
Functi

7
7
77

///5;;
]
ditdy)

.

.
d 7

andle v

7
.

-

7 _ /

g

_Validated Module

SNU Flash Team

"_[‘est Framework

nteraction between
test bench and host interface

Host Interface
Specific Commands
(1) ATA

(2) scsl
(3) GENERIC

ﬁ Three kinds of
requests
Command - INITIALIZE
- READ x sectors
from sector y

or - WRITE x sector

Command from sector y
Generator

SNU Flash Team

Test Framework

nteraction between
host interface and FTL

Execute
corresponding

FTL functions E>
- fti_initialize

- ftl_open

- ftl_read

- ftl_write

Host Interface
Specific
Commands

Host interface module interprets host interface
specific commands and invokes the corresponding FTL functions

SNU Flash Team

Test Framework

nteraction between

FTL functions
- ftl_initialize
- ftl_open

- ftl_read

- ftl_write

Buffer manager functions
- producer_get_buff,

- producer_unget_buff

- producer_advance,

- consumer_get_buff,

- consumer_unget_buff

- consumer_advance

Flash Chip

File

Flash memory
(emulated with file)

- read_physical_page

- write_physical_page
- erase_physical_block
- copy_back_page

SNU Flash Team

Test Framework

Flash chip emulator

Requests from FTL
- READ PAGE

- WRITE PAGE

- ERASE BLOCK

- COPY-BACK PAGE

Flash Chip
Emulator

Exceptions are emulated in order to
test fault tolerance aspect of FTL

Flash Chip

File

SNU Flash Team

Test Framework

Emulated exceptions

= Exceptions in flash emulator

= Power failure

= Flash operation error (Read/Write/Erase/Copy-back)
= Exceptions in host interface

s Corrupted data transfer

= Probabilities of different exceptions can be set by
configuration file for each exception type

SNU Flash Team

How to use

a0 @2 AL @8 ar
15 BA 16 BA 17

1D B9 1E B9
[
an
[}
[
[
[T
[
o
[
[
[

= Available functions

= Init Chip, Init FTL, Logical Read/Write, Physical Read/Write/Erase, Random
Read/Write, Trace

SNU Flash Team

Test Framework

Commands for initializing

= INITCIHP

= Initialize flash chips

» Parameter : num chips, num blocks per chip, bad
block ratio

= INITFTL
= Initialize FTL
= Parameter : none

SNU Flash Team

I Commands mainly for primitive test purposes

= LREAD

» Logical read
= Parameter : start sector #, sector count

= LWRITE

= Logical write
= Parameter : start sector #, sector count, data

SNU Flash Team

Test Framework

Commands for validation purposes

= RANDRW
= Random Read/Write test
» Parameter : generated command count

= Related files

= flash.exception_rate : specifies exception rates
(read/write/erase error rates, power failure rates ...)

» random_rw_test.config : specifies test features (backup
period, read/write command ratio, debug mode
setting...)

SNU Flash Team

Test Framework

Config. files for random read/write test

= flash.exception_rate

read

read_error_rate 0.0
read_power_failure_rate 0.00005
write

write_error_rate 0.0
write_power _failure_rate 0.00005

= random_rw_test.config

number of backup files
retain_count 10

read command generation ratio
read_command_ratio 0.5

write command generation ratio
write_command_ratio 0.5

SNU Flash Team

Test Framework

Commands for debugging purposes

= PREAD

= Physical read

» Parameter : chip num, block num, page num
= PWRITE

= Physical write
» Parameter : chip num, block num, page num, data

= PERASE
» Erase a block
» Parameter : chip num, block num

SNU Flash Team

Test Framework

Commands for performance evaluation

= TRACE

» Trace-driven testing & performance evaluation
» Parameter : trace file name
= Results :

= Number of flash memory operations
(Read, Write, Erase, Copy-Back)

SNU Flash Team

Vanilla FTL

Sang Lyul Min

School of Computer Science and Engineering
: Seoul National University

\ i 2003. 8. 29
B >,

SNU Flash Team

FTL (Flash Translation Layer)

s Definition

= Software layer that makes flash memory appear to
the system like a disk drive

Controller
(running FTL)
with NAND
flashes

SNU Flash Team

Logical interface for a disk drive

= Operations
. Identify drive(): returns N
> Read sectors(start sector #, # of sectors)
5. Write sectors(start sector #, # of sectors)

SNU Flash Team

Vanilla FTL

= Barebone FTL implementation
» Embarrassingly simple
= No error recovery
= No wear leveling
= No, nothing...

= Supported flash memory chips

= 27d generation flash memory chips
= Page size : 2KB, block size : 64 pages (128KB)

SNU Flash Team

Block level mapping

= Logical blocks

0 1 N -1

sectors | Ll

256 sectors

blocks
0 N/ 256

SNU Flash Team

Block level mapping

= Logical to physical block mapping

Logical blocks

Visible (data blocks) Invisible
| j
BB e (T
1 L

Block mapping table
(map block)

0

Physical blocks

SNU Flash Team

Block level mapping

= How many map blocks are needed?
= Block addresses
= 2 byte unsigned integer
= 256 map entries in a sector (512B)
= One map block

= 256 (# of map entries/sector) x
256 (sectors/block) x
128KB (block size)
=8GB

= One map block can cover 8GB of storage!

SNU Flash Team

Read procedure

s Ex. read 3 sectors from 255

Logical blocks

Block mapping table

|
Ll - O0IO - - W -
(map block)

L A 4 . . 2 X

Physical blocks

SNU Flash Team

Write buffer blocks

= Reserved blocks for write processing

Logical blocks

Block mapping table

(map block)

T & 1

Physical blocks

Write buffer blocks

SNU Flash Team

Write procedure

1. Erase write buffer blocks for data
2. Write new data pages to write buffer blocks
3. Fill in remaining data pages

4. Erase write buffer blocks for map

5. Read-modify-write map page (update map
entry for data blocks)

6. Fill in remaining map pages

SNU Flash Team

Write procedure

Block mapping table

[
[. [i
- e - B - -l
0 1

(map block)

Write buffer blocks

1. E 3. Fill remaining data pages ata

SNU Flash Team

Write procedure

Write buffer blocks

6. Fill remaining map pages

SNU Flash Team

Checkpoint

= To make changes permanent

= Written to flash after each write operation is
completed

= Power down & recovery

» Power down before checkpoint write

= Recovered as if no write operation performed (no sectors
are written)

= Guarantee atomicity
= Either all of sectors are written, or no sectors are written

SNU Flash Team

Checkpoint

= In-memory data structure changed with write
operation
= Write buffer block addresses
= Map block addresses

= Use of pages in checkpoint blocks
= Round-robin

= Need timestamp to locate the page containing the
most recent checkpoint at the recovery time

SNU Flash Team

Checkpoint blocks

= Checkpointing procedure

1. Increment timestamp

2. Write checkpoint data to the next page (in the
round-robin order)

If the next page is in a new block, erase the block

before write

1l
1l
1l

SNU Flash Team

Permanent data

= Data that is never changed once FTL is initialized

= Flash chip configuration info

= Number of chips
= Number of blocks in a chip

» Checkpoint block info
= Number of checkpoint blocks
= Physical addresses of checkpoint blocks

» Information about logical address space

= Stored in the system block

SNU Flash Team

Block arrangement

Address Space

Unmapped Area Mapped Area
By CP Block

Bad blocks] [System Block }/ [CP Blocks erte buffer blocks] [Data blocks]

Physical block 0 Map blocks

By Map Block

By System Block

/

!
|
i
/

SNU Flash Team

Interfaces between modules

> Host interface
Command handler

ftl_initiaiize ftl_opén ftl_iden;tify B ftl_'rerad_serctors ftl_wfite_séctors

— | Write physical page
g Get buffer
Buffer manager . Read physical page
Unget buffer
| Erase physical block
Copy-back physical
L page

SNU Flash Team

FTL interface functions

uint8 ftl_initialize(init_parameter_t *init_parameter_p);
o called only once at format time

uint8 ftl_open(void);
o called on power-on

ftl_info_t* ftl_identify(void);

uint8 ftl_read_sectors(uint32 start_sector_num,
uint16 sector_count,
uint16 *processed_sector_count,
uint8 read_mode);

uint8 ftl_write_sectors(uint32 start_sector_num,
uint16 sector_count,
uint16 *processed_sector_count,
uint8 write_mode);

SNU Flash Team

FTL interface functions

struct init_parameter {
flash_chip_info_t flash_chip_info; // flash chip configuration
I

typedef struct init_parameter init_parameter_t;

struct ftl_info {

uint32 num_total_sectors;
b
typedef struct ftl_info ftl_info_t;

SNU Flash Team

Buffer manager

= Structure of single buffer

struct buffer_info {
uint8 is_valid;
uint8 error_code;
uint32 |_page_addr; // logical physical address of buffer data
uint8 *buffer_p; // buffer pointer
i5

typedef struct buffer_info buffer_info_t;

SNU Flash Team

Buffer manager

= Buffer manager interface functions

buffer_info_t* buffer_manager_producer_get_buffer(void);
void buffer_manager_producer_unget_buffers(uint8 num_buffers_to_unget);
void buffer_manager_producer_advance(uint8 num_buffers_to_advance);

buffer_info_t* buffer_manager_consumer_get_buffer(void);
void buffer_manager_consumer_unget_buffers(uint8 num_buffers_to_unget);
void buffer_manager_consumer_advance(uint8 num_buffers_to_advance);

SNU Flash Team

Possible project topics

1. Wear-leveling for checkpoint blocks and
possibly for data blocks and map blocks
2. Recovery from
= Physical block erase errors
= Physical page write errors
= Physical page read errors
3. Advanced write buffering for
= Large sequential writes (data writes)

» Small random writes within a block (FAT writes)

4. Caching for map pages

SNU Flash Team

Typical write access pattern

8000

7000 /
6000 |

5000
3 /
E
5
2 4000 [
£
]
&
3000 [/
2000 /
1000 [f
0 /’/(/) e e et e e e IR et et el '
0 1000 2000 3000 4000 5000 6000 7000 8000 9(

SNU Flash Team

Then why still limited deployment ?

= Higher cost
» Flash memory: 25 ¢/MB
» Hard disk: 0.83 ¢/MB
« CD-ROM: 0.07 ¢/MB

= Limited write performance
» Flash memory: 4~5 MB/s
» Hard disk: 20~30 MB/s

SNU Flash Team

Different flash memory types

Type NOR NAND DINOR AND
Intel Samsung
28F128]J3A-150 K9F5608UOM Mitsubishi
28F320D18B110 | Toshiba Suvis Hitachi
Product M5M29GB/
AMD TH58512FT1 T160BVP-80 HN29W25611
Am29LV641DU { AMD
Am29DL322D Am30LV0064D
Density Low High Low High
Erase Large Large Large Small
Block size (64 - 128KB) (16 - 128KB) (32 - 64KB) (2KB)
s 1,2, 8,328 512B, 2KB 1,2, 256B 2KB
size
Capacity Low High Low High

SNU Flash Team

T

NAND flash memory chip (big picture)

2 blocks

Spare
Spare
Spare
20 DA B
pages

Spare

Note 1

i=>5, Data = 512B, Spare = 16B, NOP =1 for first-generation NAND flash
i =6, Data = 2KB, Spare = 64B, NOP = 4 for second-generation NAND flash
j depends on chip capacity
& Note 2
Some blocks are bad at the manufacturing time that are marked in the spare area,
but block 0 is guaranteed to be good
“ Note 3
There is an upper limit on the maximum number of erases allowed for each block

SNU Flash Team

Basic flash memory operations
= Read physical page
= (chip #, block #, page #)
= ~45us
= Write physical page
= (chip #, block #, page #)
= ~325us
= FErase block
= (block #)
= ~2ms
= Copy-back
= (chip #, target block #, target page#,
source block #, source page #)
= ~320 us

SNU Flash Team

Flash memory interface routines

= read_physical_page
= write_physical_page

erase_physical_block

copy_back_physical_page

SNU Flash Team

Read physical page

read physrcal page(ch1p num, [block addlj in ch1p, p_page num
-~~~ offset, size, *buff p, ecc_| mode ecc_p),

PARAMETERS
- chip_num : chip number ECC_INTERNAL
- p_block_addr : physical block address
- p_page_num : page number in block (0 ~ 63) Data
- offset : offset in page (0 ~ 2111, most cases 0, 512, 1024, or 1536) 4 byte ECC
- size : data size to be read from offset (most cases 512)
- buff_p : buffer pointer for read data ECC_EXTERNAL
- ecc_mode : ECC_NONE, ECC_INTERNAL, ECC_EXTERNAL
(Use ECC_NONE for now) Data

- ecc_p :ecc for ECC_EXTERNAL (4B) +

4 byte ECC

SNU Flash Team

Write physical page

write_physical_page(chip_num, p_block_addr, p_page_num,
offset, unit_size, *buff_p[], ecc_mode,
ecc_p[][ECC_SIZE]);

PARAMETERS
- chip_num : chip number
- p_block_addr : physical block address
- p_page_num : page number in block (0 ~ 63)
- offset : offset in page (0 ~ 2111)
- unit_size : data size in each buffer to be written (most cases 512)
- buff_p : array of buffer pointers (unused buffer = NULL)
- ecc_mode : ECC_NONE, ECC_INTERNAL, ECC_EXTERNAL
(Use ECC_NONE for now)
- ecc_p : ecc for ECC_EXTERNAL (4B)

SNU Flash Team

Erase physical block

PARAMETERS
- chip_num : chip number
- p_block_addr : physical block address

SNU Flash Team

Copy-back physical page

copy_back_physical_page(chip_num,
p_target_block_addr, p_target_page_num,
p_source_block_addr,
p_source_page_num);

PARAMETERS
- chip_num : chip number
- p_target_block_addr : physical address of target block
- p_target_page_num : page number in target block (0 ~ 63)
- p_source_block_addr : physical address of source block
- p_source_page_num : page number in source block (0 ~ 63)

SNU Flash Team

Jakob Engblom

Uppsala University & Virtutech
jakob.engblom@it.uu.se
jakob @virtutech.com

Embedded Systems

Embedded
Systems

You’'re all
wrong, it is a
fan!

No, itis a
treetrunk!

embedded

real-time

Contactless
transmission o
power and

Capacitive
sensor for
fluid | |

8-bit, 8-pin
PIC processor

Inductive coil for
RF ID activation
&

Embedded
processing

Outside World

Code memory

Packaging

Features

Serial Communications Controller (SCC)

Fast Communications Controller (FCC)

Multi-Channel Controller (MCC2)

Serial Management Controller (SMC)

Serial Peripheral Interface (SPI)

12C controller

DDR Memory controller

PCI-X/PCI controller

RapidlO controller

Ethernet 10/100/1000 controller

Nlalalalalalpdiv]|wl s

Capabilities

Ethernet, 10 (from SCC)

Ethernet, 10/100 (from FCC)

Ethernet 10/100/1000

Utopia Il ATM (from FCC)

Synchronous Serial Comms (SSC)

Capture/Compare Channels

8-bit ports from devices

16-bit ports from devices

Fast General Internal RAM (IRAM) 3kB

= CD controller
*MMC/SDcard intf
‘=camera interface
keyboard interface
*RTC
=[2C
=8 serial ports
3 UARTs
\ *14 GPIO pins

" Total capacity:
8 clusters of 2
External Context Men| about 5 GOps, at
bl ea around 160 Mhz

Each TMC is a Two 32-bit

VLIYV mach_ine ALUs and three
with 74 bit control/data

instructions, 2k movement units
instructions in per TMC

local memory

eqgntott

0.63 1.00 1.05 1.14 1.23 1.33

26388 40768 28097 29401 46746 4464
0.65 1.00 0.69 0.72 1.15 1.10

espresso

72596 109923 125686 137194 131854 14275
0.66 1.00 1.14 1.25 1.20 1.30

4316 4929 4974 5214

16826 18176 26705 15968

1632 2594 3450 3244

5514 13804 22694 15000

000TB &EOPT

Cmem, Xmem, Ymem:
memory accesses +
address updating

C55 DSP has three
independent data
buses, X, Y,and C

Special
condition
register

Jark |0OTB| OPT
--
overall !

Autocorr

Convolution

Bit alloc

FFT
Viterbi
GSM

=

Envitonment

EDA Configuration

LCache Configuration

Memory Subsysiem

Debuyg Components

Ancillary Componets

¥iew Warning Information

o

s TEaion

e

instruction
set choices

memory size
counters

External External
RAM FLASH

External
FLASH

Hardware
pointer =

_bank0 _bank1 _bank2 _bank3

pointer to any
data bank

Power
Aspects

] Voltage (mV)
& Power (mW)

off-chip
on-chip
off-chip
on-chip

115.8
51.6
76.5
16.4

100%
44.6%
66.1%
14.2%

Closing
Remarks

(C) Programming

SYSTEMS

To give an understanding of
current industrial practice
regarding compilers and
programming technology for
embedded systems.

Compiler
Tool Chain

Compiler System

Compiler

Linker

Debugger >

Simulator

Hardware

Compiler
useability

Optimization
Challenges

Code size
optimizations,
select another
hip, buy bigger

memory

Energy use optimizations,
select another chip,
decrease clock frequency,
decrease memory size

Code speed optimizations,
select another chip,
increase clock frequency

OUT 62,R25
MOV R31,R26
LDD R20,Z+15 JMp foo_end
LDD R21,2+16
LDD R22,Z+17
OR R20,R21

bar(}

OUT 62,R25
R31,R26
B3l Rz7
B20,Z+15
R21.2+18
RIZ.Z+17
B20,R21
R2G,R22

Discussion

Dr. — Ing. Daniel Kastner

AbSint
Angewanfdte Informatik GmbH
kaestner@absint.com

Compilation for Embedded
Processors
Basics and Principles

Dr.-Ing Daniel Kastner
kaestner@absint.com

Compiler Structure

Input
program

void main(void) {

int a, b, c
c=a+b;

Frontend Backend
Intermediate Assembly or machine
representation code
Syntactic and Code generation
semantic analysis Code optimization
rl=dm(i7, m7)
r2=pm(i8, m8)

r3=rl+r2

Compilation for Embedded P

rocessors

Detailed Compiler Structure

S _

Lexical Analysis (Scanning & Screeing)

®m Input: Program text as sequence of characters.
Output: Program text as sequence of symbols (tokens).

1. Read Input file.
2. Report errors about symbols illegal in the programming
language.
3. Screening subtask:
Identify language keywords and standard identifiers.
- Elimininate "white-spaces"”, e.g. consecutive blanks and newlines.
- Count line numbers.

Compilation for Embedded Processors

Lexical Analysis (Scanning)

zmm M!&? L w{u am mwmm mmﬁ?m;@ ek
; i o
W vk W s B e mﬁ“%mm& i Wit gt

\?; A Mfﬁ/?,%?

it

Syntax Analysis (Parsing)

m Input: Sequence of symbols (tokens).
Output: Structure of the program:
m concrete syntax tree,
m abstract syntax tree, or
m parse (derivation).

m Syntax errors:
m report (as many as possible) syntax errors,
m diagnose syntax errors,
m correct syntax errors.

Compilation for Embedded Processors

Syntax Analysis (Parsing)

M

o

|
[FAT

- A I
msmamm 3 T w*&*‘xysm kmmm?;m ammmm
? Z § § £ 3 { §

\NZally

BECRRAECE L

Semantic Analysis

m [nput: Abstract syntax tree.
Output: Abstract syntax tree decorated with
attributes, e.g. types of subexpressions.

m Report semantic errors, e.g. undeclared variables,
type mismatches.

m Resolve usage of variables: identify applied
occurrences of variables with their declarations.

m Compute type of every (sub-)expression.

Compilation for Embedded Processors

Semantic Analysis

W Ber WM wed B el eeER

Middle End: High-Level
Optimizations

m High-level optimizations are usually termed machine-
independent optimizations. They comprise e.g. dead code
elimination, constant propagation, constant folding,
common subexpression elimination, loop unrolling, loop
fusion, software pipelining,...

® BUT: Many machine-independent optimizitations are not
machine-independent at all. For example:

e constant folding may lead to large immediate constants resulting in
code growth or preventing instruction-level parallelism

 common subexpression elimination may increase the register
pressure and cause problems if few registers are available

e loop unrolling may cause the instruction cache to overflow

&

Compilation for Embedded Processors

Backend: Code Selection, Register Allocation,
and Instruction Scheduling

Code selection Register allocation
ioaj ajr (z) abrl
T load adr®) b r2
a c—r3

» store adr (c)

<

rl=load adr(a) || r2=load adr(b)

Instruction scheduling r3=add rl, r2
store adr(c), r3

Phase Coupling Problem

dl=sl*sl1;
d2=s1+s2;

r3=rl*ril r3=rl*rl, rd4=rl+r2

store r3 store r3

r3=rl+r2 store r4

store r3

Optimize number of Optimize code
used registers speed and size

Compilation for Embedded Processors

Main Tasks of Code Generation (1)

® Code selection: Map the intermediate representation to a
semantically equivalent sequence of machine operations
that is as efficient as possible.

m Register allocation: Map the values of the intermediate
representation to physical registers in order to minimize
the number of memory references during program
execution.

e Register allocation proper: Decide which variables and
expressions of the IR are mapped to registers and which ones
are kept in memory.

® Register assignment: Determine the physical registers that are

used to store the values that have been previously selected to
reside in registers.

-

Main Tasks of Code Generation (2)

m |nstruction scheduling:
Reorder the produced operation stream in
order to minimize pipeline stalls and exploit
the available instruction-level parallelism.

m Resource allocation / functional unit binding:
Bind operations to machine resources, e.g.
functional units or buses.

Compilation for Embedded Processors

The Code Generation Problem

® Instruction scheduling, register allocation and code
selection are NP complete problems.

m In classical approaches they are addressed by heuristic
methods in separate phases.

m Unfortunately, all the code generation phases are
interdependent, i.e. decisions made in one phase may
impose restrictions to the other phases.

m Thus: often suboptimal combination of suboptimal partial
results.

m Moreover: specific/irregular hardware features not well
covered by standard code generation methods.

-

The DSPStone Study

m Evaluation of the performance of DSP compilers and joint
compiler/processor systems. Evaluated compilers:
e Analog Devices ADSP2101,
= AT&T DSP1610,
e Motorola DSP56001,
= NEC mPD77016,
= TI TMS320C51.

®m Hand-crafted assembly code is compared to the compiler-
generated code.

®m Result: overhead between 100% and 1000% of compiler-
generated code is typical !

~

Compilation for Embedded Processors

Compiling for DSPs

m Code quality of traditional high-level language
compilers is not satisfactory.

B Thus: Assembly programming.

Case Study: Infineon TriCore

Zero-Overhead Loops
v SIMD Instructions

v Auto-modify
addressing

- 6 times faster!
(execution in SRAM)

Compilation for Embedded Processors

Classification of Microprocessors

BSP (Dioital Signal Processor)

programmable microprocessor
for exiensive numerical
tealume computations

A /

Specialization

Architectural Valuation

e [Campbell, Northrop Grumman Corporation, 1998]

» More efficient architectures will use less energy to
complete the same task on the same generation
CMOS solid state technology

« Power consumption P=CV?* AN
- C : Capacitance
- V : CPU Core Voltage
- f : CPU clock frequency
— AN : Number of gates changing state

Compilation for Embedded Processors

10

Architectural Valuation

m Observations:

m Higher performance by increasing the clock
frequency does not change the performance per

power ratio
O Cycl
Performance _ 7" Fioe __of 0

Power CVZfAN CVZMAN CV?AN

m A voltage decrease improves performance per
power non-linearly

Performance = O

Power CV? AN

Architectural Valuation

m Architectural specialization as a measure for
how well the architecture fits a given target
application.

m Estimation of architectural specialization:
Performance per power.

Compilation for Embedded Processors

11

Comparion of Performace Per
Power Ratios

FFT MFLOPSNWATT

80
70
60
50
40
30
20
10

Qhifon _109 _ 4
e A8

+ b —)
64 128 256 512 1024 2048 4096 8192 16384 32768
Complex FFT Length (Points)

< Alpha 21064A, 275 MHz, 275 MFLOP Peak, 3.3 Volts, 33+8 Watts
= Alpha 21164, 333 MHz, 666 MFLOP Peak, 2.2 Volt, 25.4+6 Watts
« SHARC 21060, 40 MHz, 120 MFLOP Peak, 3.3 Volt, 1.75 Watts

Program Representations
m Abstract Syntax Tree (AST)
m Static Single Assignment (SSA)

m Control Flow Graph (CFG), Call Graph (CG) and
Interprocedural Control Flow Graph (ICFG)

m Data Dependence Graph (DDG)

m Low-Level Intermediate Representation:
Abstract Machine Code / Register Transfer Languages

~

Compilation for Embedded Processors

12

High-Level and Low-Level IRs

m High-level intermediate representation: close to source
level. Typically centered around source language
constructs. Constructs: implicit memory addressing,
expression trees, for- while-, switch-statements, etc.

B Low-level intermediate representation: close to machine
level. Typically centered around basic entities that
specify properties of machine operations.

m Most program representations can be defined at high-
level and at low-level.

IR Levels

High-Level Medium-Level Low-Level
tl = a[i]l[j+3]; tl = addr(a); vl = fp-216;
t2 = i*20; v2 = [fp-4];

t3 = j+3; v3 = v2*20;
t4 = t2+t3; vd = [fp-8];

t5 = 4*%t4; vd = v4+3;

t6 = tl1+t5; v6 = v3+v5;

t7 = *t6; vl = 4*v6;
v8 = [v1+v7];

Assumption: Input language C, a declared as int a[10] [20];

Compilation for Embedded Processors

13

IR Levels

m High-level IRs:
= abstract syntax tree

> control flow graph and data dependence graph used for array
dependence analysis and high-level code transformations

m Low-level IRs:
& abstract machine code (medium-level)
e direct representation of target machine instructions

m register transfer language (machine-independent
representation for machine-specific instructions)

» control flow graph and data dependence graph used for
machine-level dependence analysis and low-level code
transformations

T
E
F

if id +iconst cmp abstract syntax tree

it

concrete syntax tree it
plus}’\ assign assign
AN NN
id iconst id id iconst id iconst

Compilation for Embedded Processors

14

Call Graph

®m There is a node for the main procedure — being the entry
node of the program — and a node for each procedure or
function declared in the program.

B The nodes are marked with the procedure names.

m There is an edge between the node for a procedure p to
the node of procedure g, if there is a call to g inside of p.

Control Flow Graph

B The control flow graph of a procedure is a directed graph
Ge=(Ng E ¢ ny ;) with node and edge labels. For each instruction i of
the procedure there is a node n; that is marked by i. The edges (n,m,1)
denote the control flow of the procedure: 1 , {T,F,e}is the edge label.
The nodes for composed statements are shown on the next slide.
Edges belonging to unconditional branches lead from the node of the
branch to the branch destination. The node ny, is the uniquely
determined entry point in the procedure; it belongs to the first
instruction to be executed. n, denotes the end node that is reached by
any path through the control flow graph.

B Nodes with more than one predecessor are called joins and nodes with
more than one successor are called forks.

o

Compilation for Embedded Processors

15

Control Flow Graph — Composed

Statements
cfg (while B do S od) = cfg (if B then S, else S,fi) = cfg (S:S) =
F T ‘ E Cfgl(sl)
T cfg(S) cfg (S,) g (S)

()

Basic Block Graph

m A basic block in a control flow graph is a path of maximal
length which has no joins except at the beginning and no
forks except possibly at the end.

m The basic block graph Gg=(Ng Eg ba,b,;) of a control flow
graph G.=(N.E;,n,.n,) is formed from G, by combining
each basic block into a node. Edges of G. leading into the
first node of a basic block lead to the node of that basic
block in Gg. Edges of G; leaving the last node of a basic
block lead out of the node of that basic block in Gg. The
node b, denotes the uniquely determined entry block of
the procedure; by, denotes the exit block that is reached at
the end of any path through the procedure.

~

Compilation for Embedded Processors

16

Interprocedural Control Flow Graph

The interprocedural control flow graph consists of three
parts:

1. Call graph whose nodes are meta-nodes containing
basic block graphs.

2. Basic block graph for each procedure in the program.

3. Ordered list of instructions for each block in the basic
block graph of each procedure.

The ICFG describes the control flow of a program
completely.

Control Dependence Graph

m Operation i dominates an operation j, if i appears on
every path from the entry node of the procedure to j.
Each operation dominates itself.

m Operation j postdominates i, if j appears on every path
from i to the exit node of the procedure.

m Given a control flow graph Gy=(NgE; N, n,) . Node m |
N, is control dependent on n _ N if
= (n,a) is an edge of the control flow graph
= m does not postdominate n
= there is a path from n, a, ..., m so that m postdominates all

nodes between n and m.

® The dominance frontier of a node x of the CFG (or BBG)
is the set of all nodes y so that x dominates an
immediate predecessor of y, but not y itself.

~

Compilation for Embedded Processors

17

Control Dependence

Dominator Tree Postdominator Tree

Control Flow Graph Control Dependence Graph

{D} is dominance frontier of B, C, F, G L

Data Dependence Graph
Low Level View

B Let G; be a control flow graph. It data dependence graphis a
directed graph Gp=(Np,Ep) with node and edge labels whose nodes
are labeled by the operations of the procedure. An edge runs from the
node of an operation i to the node of an operation j, if i has to be
executed before j, i.e. if there is a path from i to j in the control flow
graph and if

e | defines a resource r, j uses it and the path from i to_j does not contain
other definitions of r (true dependence, RAW): (ij.r,t) . Ep

E i uses a resource, j defines it and the path from i to_j does not contain any
definitions of r (anti dependence, WAR): (ij.r.a) . Ep

e i and_j define the same resource and the path from i to_j does not contain
any uses nor definitions of r (output dependence, WAW): (ij,r,0) . Ep

(1) rl = r2*r3;
1, 2.1, 1)

(2) r5 = ri+rl;

o

Compilation for Embedded Processors

18

Data Dependence Graph
High Level View

[teration distance: Number of loop iterations between two dependent
instruction instances (0 for intra-iteration dependences).

B Delay: Minimal number of clock cycles between the issuing of two
dependent operation instances.
B Edges of the DDG are labeled with (itDist delay,type).
B The delay for a dependence a — b depends on the latencies of a and b
and the type of the dependence:
e true dependence (def-use): latency(a)
e anti dependence (use-def): 1 - latency(b)
e output dependence (def-def): 7 + latency(a) - latency(b)

for (i=2; i<100; i++) {
(a) A[il=B[il+C[il;
b, 2011
(b) D[i]=Afi-2];

Life Range and Register
Interference

m A symbolic register (a variable) r is live at a program
point p, if there is a program path from the entry
node of the procedure to p that contains a definition
of r and there is a path from p to a use of r on which
ris not defined. The life range of a symbolic register
ris the set of program points at which ris live.

m Two life ranges of symbolic registers interfere, if one
of them is defined during the life range of the other.
The register interference graph is an undirected
graph whose nodes are life ranges of symbolic
registers and whose edges connect the nodes of
interfering life ranges.

Compilation for Embedded Processors

19

Life Range and Register
Interference

'ifi VQ vi L AL
ajv, = Mem[OxAFAD]
bjv, =Mem[DxAFCO]
iYW, =W by,
g, =M,y I

{

fireturmny, i

Global Register Allocation

'Global' means Register allocation across whole procedures /
programs.

Symbolic registers: hold intermediate results and modified variables.
A definition of a symbolic register is the computation of an
intermediate result of the modification of a variable

Two symbolic registers collide/interfere, if their contents are live at
the same time, ie if one of them is defined during the life range of the
other.

Colliding symbolic registers cannot be allocated to the same real
register.

Goal: allocate the (unbounded number of) symbolic registers to the
fixed number of physical registers without collision.

The register interference graphis an undirected graph whose nodes
are life ranges of symbolic registers and whose edges connect the
nodes of interfering life ranges.

o

Compilation for Embedded Processors

20

Register Allocation by Graph Coloring

m If k physical registers are available, the k-coloring
problem must be solved.

m NP-complete for k>2 -> Use heuristics

m Algorithm:

s If G contains a node n with degree < k:
= n and its neighbors can be colored with different colors
= Remove n from G, decreasing the size of G.
= G is k-colorable, if we arrive at the empty graph.
m If G is not empty and there exists no node with degree
<k:
= use heuristics to select one node to remove (spilling)
= modify program inserting spills at definitions and loads at uses
= reflect changes in graph.

-

Heuristics for Node Removal

m Degree of the node: high degree causes many
deletions of edges.

m Costs of spilling.

Compilation for Embedded Processors

21

Example: Graph Coloring

vl=Mem[0xafa0]
v2=Mem[0xafc0]
v3=vl1+v2
vi=v1*v2

vi=v3+v4d

return v5

Instruction Scheduling

m Definition: Reordering an operation sequence in order to
exploit instruction-level parallelism and to minimize pipeline
stalls.

s Complexity: NP-complete.

® Terminology:
& An operation is a basic machine operation like add, sub, etc.

e An instruction is a set of machine operations that are issued
simultaneously (cf. VLIW).
Example:

Compilation for Embedded Processors

22

Instruction Scheduling

m Scope of instruction scheduling:

® local acyclic instruction scheduling: reordering operations inside
basic blocks. Standard technique: list scheduling.

m global acyclic instruction scheduling: reordering operations across
basic block boundaries but not across loop boundaries. Standard
technique: trace scheduling.

e cyclic instruction scheduling: reordering operations across loop
boundaries. Standard technique: software pipelining.

List Scheduling

SET data_ ready;
int cycle=0;

Insert operations without predecessors in the data
dependence graph into the data_ ready set.

while (data_ready . ~) do {
cycle = cycle+l;

Choose operations from data_ready in priority order
and insert them into the current cycle, until
data_ready is empty or the insertion leads to a
resource conflict.

Insert all operations into data_ready that can be
scheduled in the next cycle without violating data
dependences.

d -

Compilation for Embedded Processors

23

List Scheduling

m The priority in which operations from the data
ready set are chosen is determined by heuristics.

m Common heuristics: highest-level-first heuristics.

m The priority of each operation is the length of the
longest path in the data dependence graph starting
from this operation.

m Code quality: often within 10% from local
optimum (inside basic blocks)

Exposing More Instruction-Level

Parallelism
m Degree of instruction-level parallelism inside basic blocks is
limited — typically to 2.
® The available parallelism in contemporary microprocessors
grows. Better exploitation by
® scheduling sequences of consecutive basic blocks
e scheduling entire loops
e Speculation

® Two kinds of speculation:

s dynamic: based on hardware branch prediction. In case of
mispredicted branch forgetting or undoing effects of speculatively
executed instructions.

e Static: generating compensation code for "speculatively placed"

instructions.
e Recently: Static data and control speculation with hardware support
to deal with mispredictions (Intel |A-64). *

48

Compilation for Embedded Processors

24

Trace and Superblock Scheduling

B Profile-directed scheduling of sequences of consecutive basic blocks
(traces, superblocks)

B Program annotated with profiling information: each branch of a
conditional associated with a relative frequency, or each basic block
annotated with its execution frequency.

B Profile used to identify frequently taken paths.

ldea: if a sequence of basic blocks is often executed one after
another, they should be optimized jointly.

B Frequently taken paths (traces) are optimized at the costof less
frequently taken traces.

Trace Scheduling

m A trace is a sequence of consecutive basic blocks that are
frequently executed one after another. A trace is never
extended across loop boundaries.

®m The control flow graph of a procedure is partitioned into a
disjoint set of traces.

m The traces are formed in the order of decreasing
execution frequency by repeatedly

m Selecting the basic block with highest execution frequency that has
not been assigned to a trace yet as a seed of the new trace

® joining predecessors and successors to that trace in decreasing
frequency order until the frequency falls below a given threshold,
or a loop boundary is reached.

o

Compilation for Embedded Processors

25

A Partitioning into Traces

Trace Scheduling

m List scheduling of a trace leads to problems: the
semantics may be destroyed by
m code motion past side exists from the trace
m code motion past side entrances to the trace

m Consequence: compensation code has to be
inserted on off-trace paths.

m Problems of compensation code:
= code growth
m exceptions raised by compensation code

Compilation for Embedded Processors

26

Superblock Scheduling

m Goal: Avoiding code motion past side entrances
by tail duplication: copying code starting with side
entrance and redirecting the branches.

m Superblock formation:
m starts with a trace
m produces a trace without side entrances

m Compensation code only for code motion past
side exits.

Impact of Code Selection

Compilation for Embedded Processors

27

Generating Code Selectors

® Machine grammar: regular tree grammar;
= terminals: operators from the program representation
non-terminals: represent storage resources
often ambiguous
each rule has associated costs
factorization, e.g. of addressing modes reduces size.

DREG E
/Dl‘(p S\L')COnSt
AREG IREG

Generating Code Selectors

® A machine grammar enables IR trees for expressions to be
derived. The derivation tree for an IR tree represents one
possibility of generating code for the IR tree.

®m The generated code selector
® parses intermediate representations of programs

m computes derivations according to the machine grammar, each
corresponding to a sequence of machine instructions

m has to select a cheapest derivation, corresponding to the (locally)
cheapest code sequence

B May compute costs in states or use dynamic programming

Compilation for Embedded Processors

28

Tree Languages

®m An alphabet with arity is a finite set Z of operators
together with a function p: = =N, (arity).

Y, ={acX]|pla) =k}

®m The homogeneous tree language over X is the following
inductively defined set T(X):
B ac T(Z) forallae 3,
e Are by, by, ..., b€ T(Z)andis f€ X, then
f(by,by,....by) € T(Z)

m Example: =={a,cons,nil}; p(a)= p (nil)=0, p(cons)=2
Some trees over X: a, cons(nil,nil), cons(cons(a,nil),nil)

-

Tree Grammars

®m A Regular Tree Grammar is a grammar
G=(N,Z, P, S) where

m N is a finite set of non-terminals

m X is a finite alphabet with arity of terminals (operators
labeling nodes)

m Pis a finite set of rules X-»s where X € N and
s € T(ZUN)

m S € Nis the start symbol

Compilation for Embedded Processors

29

Example: Machine Grammar

G‘?& = (sz Es PM» REQ}

£ = {eonst, m, plus; REG} o
where pleonst) = 0; p(m) = L, p(plus) = 2,

Nui = {REG}

Ppo=={ addme ©: REG - plus(m{const), REG),
addm: REG — plus{m(REG), REG),
add ; REG — plus(BEG, REG),
idme REG ~ miconst],
lde BEG s oomat,

id REG —+ REG}

Generating Code Selectors

Let G = (N, X, P, 8) be aregular tree grammar. From G
a non-deterministic finite tree automaton (NTFA) is
generated whose computations correspond to the
derivation trees wrt G. In a second step, the non-
deterministic finite tree automaton is transformed in a
DFTA.

Starting with the leaves of the input tree, the NFTA
guesses the correct right-hand sides of grammar rules and
checks that the right-hand sides really fit. This way, the
input tree is covered by the right-hand side of the
grammar rules.

Code selector generators are, e.g., BEG [Emm89], Iburg
[FraHan95], ...

~

Compilation for Embedded Processors

30

Example: Generating Code by
Computing the Derivation Tree

% R Exhsution TQ;ﬂ n%mmm
f/}m \ adme A/e}d N e ‘ et o \‘kﬁ,
*;r KWXW ?Ek HEGTE G . e :
TEHIEE g{{ *%@ L g /}M x"a
; b]
- = i3
s, pAE
AN T N -t e
E }Xﬁﬁ i ,@A‘ %Mﬁ i %Rﬁ{i A w‘x‘ e, SR% G
BT Ry N f N SN aee B
an ?1 wEE i BEG e W R REG
o Lo

Excerpt from an lburg Specification

rcl: reg "%0"

rcl: conl "%0"

reg: con "%c = %0\n" 1
reg: ADDI4(reg, rcl) "%e = %0 + %1\n" 1
reg: ADDU4(reg, rcl) "%e = %0 + %1\n" 1
reg: ADDP4(reg, rcl) "%e = %0 + %1\n" 1
reg: ADDF4(reg, rcl) "f%c = f%0 + f%I1\n" 1
reg: ADDF5(reg, rcl) "f%c = f%0 + f%I1\n" 1
reg: SUBI4(reg, rcl) "% = %0 - %1\n" 1
reg: SUBU4(reg, rcl) "% = %0 - %1\n" 1
reg: SUBP4(reg, rcl) "% = %0 - %1\n" 1
reg: SUBF4(reg, rcl) "f%c = f%0 - f%1\n" 1
reg: SUBF5(reg, rcl) "f%c = f%0 - f%1\n" 1

Compilation for Embedded Processors

31

Retargetable Compilation

Markets for Embedded Systems

cost sensitivity

Retargetable Compilation

m Code selector generators: iburg, twig, olive,...
m Retargetable optimizers:

m PO [DaFra80,DaFra84], vpo[BeDa88,BeDa94]
m Retargetable compilers:

m Icc [FraHa95], GNU gcc [Stall98], CoSy [COSY],
Trimaran [Tri98]

m Retargetable compilers/optimizers for embedded
processors:

m RECORD [Le97], CHESS [FPF95], PROPAN [DKO0O],
Express [HTGDN99], ...

Compilation for Embedded Processors

32

The PROPAN System

Architecture Description Languages

m Behavioral: specification of the instruction set,
focussing on instruction semantics.

m Structural: close to gate level; specification of
hardware modules with their interconnections.

m Mixed: this type is often used for code generation
and optimization,

m Hardware description languages: VHDL, Verilog,
MIMOLA [No87], nML [FaVPFre95], SALTO

[BChaRSe97], ISDL [Ha98], EXPRESSION
[HGGKDN99], CSDL [DaRa98], TDL [Kaest03].

>

Compilation for Embedded Processors

33

Example: TDL (Target
Description Language)

m Developed within the PROPAN framework
® Design goals:

e Generating an assembly parser

e Supporting instruction scheduling, register assignment and
resource allocation

s Easy extendability
e Specification of irregular hardware properties in a way that
supports:
= generic incorporation into ILP-based optimisations
= generic program analyses
= Semantical analysis of the specification itself

TDL Descriptions

B Resource section: Declaration of the relevant hardware
resources with their properties.

B [nstruction set section: Definition of the instruction set in
the form of an attribute grammar.

m Constraint section: Logical constraints that have to be
respected to preserve correctness during code
transformations — Support for architectural irregularities

m Assembly section: Syntactic details of the assembly
language

Compilation for Embedded Processors

34

Resource Spezification of Analog
Devices SHARC ADSP-2106x

Resources-Section

FuncUnit ALU 1;

Register ireg "r%d"” [0:15] size =40, type=signed<32>;
ResourceClass iregA {ireg[0:31};

ResourceClass iregB {ireg[4:71};

ResourceClass iregC {ireg[8:111};

ResourceClass iregD {ireg[12:15]};

DefineAttribute replacement {"LRU", "FIFO"} associated to Cache;

replacement=LRU;

Specification of the Instruction Set

Instructionset-Section

DefineOp SharcAdd "%s = %S + %s" {
dstl = "$1"in {ireg}, sicl = "$2° in {ireg},
Srce = "$3"in {ireg}} |
{ALU(execiime=1, laiency=1, siots=0);}.
{ts] = s1C + 2}

Compilation for Embedded Processors

35

Bibliography

m Compiler Design:
® [ASU86] Aho, Sethi, Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1986.
e [WiMa95] Wilhelm, Maurer. Compiler Design. Addison-Wesley,
1995.

e [M97] Muchnick. Advanced Compiler Design & Implementation.
Morgan Kaufmann Publishers, 1997.

® [SSO3] The compiler design handbook: Optimizations and Machine
Code Generation. Ed. Srikant, Shankar. CRC Press, 2003.

Bibliography

® Code Selection:

e [AJ76] Aho, Johnson. Optimal Code Generation for Expression
Trees. Journal of the ACM, vol 23, no 3, 1976.

e [GG78] Glanville, Graham. A new Method for Compiler Code
Generation. Proceedings of the 5th ACM Symposium on Principles
of Programming Languages, 1978.

e [AG85] Aho Ganapathi. Efficient Tree Pattern Matching: An Aid to
Code Generation. Proceedings of the 12th ACM Symposium on
Principles of Programming Languages, 1985.

e [FSW94] Ferdinand, Seidl, Wilhelm. Tree Automata for Code
Selection. Acta Informatica, vol 31, 1994.

Compilation for Embedded Processors

36

Bibliography

m Register Allocation:

[Cha82] Chaitin. Register Allocation and Spilling via Graph
Coloring. Proceedings of the SIGPLAN'82 Symp. on Compiler
Construction. SIGPLAN Notices, vol 17, no 6, 1982.

[CH84] Chow, Hennessy. The Priority-Based Coloring Approach to
Register Allocation. ACM Transactions on Programming Languages
and Systems, vol. 12, no 4, 1990.

[Bri92] Briggs. Register Allocation via Graph Coloring. Phd Thesis,
Rice University, 1992.

[BCT94] Briggs, Cooper, Torczon. Improvements to Graph Coloring
Register Allocation. ACM Transactions on Programming Languages
and Systems, vol 16, no 3, 1994.

Bibliography

® Instruction Scheduling and Parallelization:

[LDSM80] Landskov, Davidson, Shriver. Local Microcode
Compaction Techniques. ACM Computing Surveys, vol 12, no 3,
1980.

[Fis81] Fisher. Trace Scheduling: A Technique for Global Microcode
Compaction. |EEE Transactions on Computers, vol 20, no 7, 1981.
[AJLA95] Allan, Jones, Lee, Allan. Software Pipelining. ACM
Computing Surveys, 1995.

[R96] Rau. Iterative Modulo Scheduling. International Journal of
Parallel Processing, vol 24, 1996.

[LAQOO] Larsen, Amarasinghe. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. ACM SIGPLAN

Notices, 2000.

Compilation for Embedded Processors

37

Bibliography

B Retargetable Compilation and Optimization:

[FraHan91b] Fraser, Hanson. A Retargetable Compiler for ANSI C. SIGPLAN
Notices, vol 26, no 10, 1991.

[FraHan95] Fraser, Hanson. A Retargetable C Compiler: Design And
Implementation. Benjamin/Cummings Publishing Company, Inc., 1995.

[DaFra80] Davidson, Fraser. The Design and Application of a Retargetable Peephole
? éi(gnizer. ACM Transactions on Programming Languages and Systems, vol 2, no 2,
[DaFra84] Davidson, Fraser. Code Selection through Object Code O ptimization.
ACM Transactions on Programming Languages and Systems, vol 6, no 4, 1984.
[BeDa88] Benitez, Davidson. A Portable Global Optimizer and Linker. Proceedings
of the ACM SIGPLAN '88 Conference on Programming Language Design and
Implementation, in SIGPLAN Notices, vol 23, no 7, 1988.

[BeDa94] Benitez, Davidson. Target-Speciﬁc Global Code Improvement: Principles
and Applications. Department of Computer Science, University of Virginia, 1994.
[Sta98] Stallman. Using and Porting GNU CC. Free Software Foundation, 1988.
[Tri98] TRIMARAN: An Infrastructure for Research in Instruction-Level Parallelism.
http://www frimaran.org.

[COSY] Ace Associated Computer Experts. htip://w

Bibliography

B Retargetable Compilation and Optimization for Embedded Processors:

[CHESS95] Lanneer, Van Praet, Kifli, Schoofs, Geurts, Thoen, Goossens.
CHESS: Retargetable Code Generation For Embedded DSP Processors. In
[MaGo95]. Kluwer Academic Publishers, 1995.

[MaGo95] Marwedel, Goossens, G. Code Generation for Embedded
Processors. Kluwer Academic Publishers, 1995.

[Le97] Leupers. Retargetable Code Generation for Digital Signal
Processors. Kluwer Academic Publishers, 1997.

[HTGDN99] Halambi, Tomiyama, Gruen, Dutt Nicolau. Automatic Software
Toolkit Generation for Embedded Systems-on-Chip. Proceedings of the
1999 International Conference on VLS| and CAD (ICVC99), 1999.

[DKOO] Kastner. Retargetable Postpass Optimisation by Integer Linear
Programming. Saarland University, 2000.

[DKO1] Kastner. ILP-based Approximations for Retargetable Code
Optimization. Proceedings of the 5th International Conference on
Optimization: Techniques and Applications, Hong Kong, 2001.

Compilation for Embedded Processors

38

Bibliography
® Architecture Description Languages:

s [Emm89] Emmelmann. BEG -- a Back End Generator. GMD Forschungsstelle an der
Universitaet Karlsruhe, 1989.

m [LSU93] Lipsett, Schaefer, Ussery. VHDL: Hardware Description and Design. Kluwer
Academic Publishers, 1993.

& [TM95] Thomas, Moorby. The Verilog Hardware Description Language. Kluwer
Academic Publishers, 1995.

= [FaPraFre95] Fauth, Van Praet, Freericks. Describing Instruction Set Processors
Using nML. Proceedings of the European Design and Test Conference. |IEEE, 1995.

= [BCRS97] Bodin, Chamski, Rohou, Seznec. Functional Specification of SALTO. A
Retargetable System for Assembly Language Transformation and Optimization, rev.
1.00 beta, INRIA, 1997.

= [RaFe97] Ramsey, Fernandez. Specifying Representations of Machire Instructions.
ACM Transactions on Programming Languages and Systems, vol 19, no 3, 1997.

= [DaRa98] Davidson, Ramsey. Machine Descriptions to Build Tools for Embedded
Systems. Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Embedded Systems. Springer LNCS, Volume 1474, 1998.

= [DKO3] Kaestner. TDL: A Hardware Description Language for Retargetable Postpass
Optimizations and Analyses. Proceedings of the Second ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component Engineering (GPCE'03),
Erfurt, 2003.

' -

Bibliography

m Postpass Optimizations

e [DKOOa] Késtner. A Retargetable System for Postpass
Optimisations and Analyses. Proceedings of the ACM SIGPLAN
Workshop on Language, Compiler and Tools, Montreal, 2000.

e [CFOO] Ferdinand. Post Pass Code Compaction at the Assembly
Level for C16x. Contact, vol 3, no 9, 2000.

= [BKCPS03] De Bus, Kaestner, Chanet, Van Put, De Sutter. Post-
Pass Compaction Techniques. Communications of the ACM, vol 46,
no 8, 08/2003.

Compilation for Embedded Processors

Bibliography

®m Program Analysis

e [CC79] Cousot, Cousot. Systematic Design of Program Analysis
Frameworks. Proceedings of the 6th ACM Symposium on Principles
of Programming Languages POPL, 1979.

e [F97] Ferdinand. Cache Behavior Prediction for Real-Time
Systems. PhD thesis, Saarland University, 1997.

e [NNH99] Nielson, Nielson, Hankin. Principles of Program Analysis.
Springer, 1999.

® [M99] Florian Martin. Generation of Program Analyzers. PhD
thesis, Saarland University, 1999.

Compilation for Embedded Processors

40

Jaejin Lee

Seoul National University
jlee@cse.snu.ac.kr

Lecture #1

Jagjin Lee
Advanced Compiler Research Laboratory
School of Computer Science and Engineering
Seoul National University
jlee@cse.snu.ac.kr
http://aces.snu.ac.kr/~jlee

dvanced Compiler Research Loboratory
i of Computer Science and Fngineering
Mational {iniversity

Data Flow Analysis

m Most of the compiler optimizations require
data flow analysis

m Propagate information from one point of
the program to another

...=a+b
a=.."7
=a+b

Is there any intervening definition to a or b?

esedrch Laboratory
Soignce ond Engleeering

Basic Blocks

m A sequence of statements

! read m
that is always entered at the f0=0
beginning and exited at the f1=1
end without halt or ;f=m2<‘1 goto L3
possibility of branching L7:7f1 <=m goto L2
except at the end return f2
, L2:f2=1f0 + f1
?
m Algorithm~ 0 = f1
f1=12
i=i+1
goto L1
L3: return m

Control Flow Graphs

m Flow-of-control

, . ent
information Y f%af o
m Directed graph =1
— i m<=1
m Node = basic block .
m There is a directed return m =2
M /
edge from B1 to B2 if i<=m
& = \
B2 can Em'medaately 7 VI
follow B1 in some return 2| <5 - ¢
execution sequence f1 =12
: i = i+1
___ —

Data Flow Problem #1
Reaching Definitions

m Which definitions of a variable may
reach each use of the variable in a
procedure?

m A definition d reaches a point pif
there is a path from the point
immediately following dto p, such that
dis not killed along that path

m A statement defines a variable x if it
may assign x a value

- An assignment of x

- A procedure that can access x

- *p = 3 (p may points to x)

ced Compiler Research Laboratory
of Computer Science and Engineering

m Detect constant
computation entry
m Detect uninitialized =7 i=3
uses of variables

Effects of a Basic Block

m Compose effects of statements

m A basic block B

- Generates definitions: Gen[B]
= |f a definition d in B reaches at the end of B, d is in Gen[B]
- Kills definitions: Kill[B]
= |f a definition d in B never reaches at the end of B, d is in Kill[B]

in[B]={d0,d4}

Gen[B|={d2,d3} | dl:x=a+b 40- 2=7
d2: y=x+3 ST
Kl[BJ={d4} | g3 x=x+4 | G4 Y=4*8

out[B]={d0,d2,d3}

nced Compiler Research Laboraiory
o of Computer Science and Engineering
Seoud National University 7

Transfer Functions of a Basic Block

m The relationship between in[B] and out[B] of a
basic block B

m Out[B] is a function of in[B]

out[B] = f(in[B])
= Gen[B] U (in[B] - Kill[B])

in[B]={d0,d4}

Gen|[B]={d2,d3} d1: x=a+b 40: 2=7
d2: y=x+3 e
Kill[B]={d4} d3: x=x+4 d4: y=4+8

out[B]={d0,d2,d3}

franiced Lompiler Research Laboratory
ol of Computer Science ond Enginesring

Effects of Control Flow

m Deal with incoming
information from
different
predecessors of a
basic block B

in[B] = out[P1] U out[P2] U ... U out[Pn]
P1,P2, ..., Pn are predecessors of B

o Compiler Research Laboraiory
of Computer Science and Engineering
zou! National Lniversity g

Solving Reaching Definitions
Problem

m Create data flow equations and solve for all the
basic blocks in the CFG

- out[B] = Gen[B] U (in[B] — Kill[B])
- in[B] = Upreci, pof g OUL[P]
m Data flows forwards
m Use iterative algorithm to solve the equations
m Use bit vectors to represent sets (not
necessarily)

- One bit for each definition

- M becomes bitwise and

- U becomes bitwise or

0

lterative Solution

Repeatedly visit all the nodes and update in and out
Worklist algorithm?
- excluding unreachable nodes

for each block B do

in[B] =9
out[B] = @ // or out[B] = Gen[B]
enddo

while changes to any out occur do
for each block B do
iN[B] = U 04 p o g OUL[P]
out[B] = Gen[B] u (in[B] - Kill[B])
enddo
enddo

dranced Compiler Research Laboratory
chiool of Computer Seience and Engineering
zotd Nationg! University 11

Example
(Reaching Definitions)

out{B1]=Gen[B1] U (in[B1]-Kill[B1])

Kill[B2] = {d1,d2,d7} = 1100001

Gen[B3] = {d6} = 0000010
Kill[B3] = {d3} = 0010000

Gen[B4] = {d7} = 0000001
Kill[B4] = {d1,d4} = 1001000

Gen[B5] = { } = 0000000
Kill[B4] = { } = 0000000

ced Compiler Research Laboratory
chool of Computer Science and Enginesering
ol National University

]-
Gen[B1] = {d1,d2,d3} = 1110000 out[B2]=Gen[B2] U (in[B2]-Kill[B2])
d3:a=x = Kill[B1] = {d4,d5,d6,d7} = 0001111 out[B3]=Gen[B3] U (in[B3]-Kil[B3])
d4 """" ¢+1 """" Gen[B2] = {d4,d5} = 0001100 out[B4]=Gen[B4] U (in[B4]-Kill[B4])
=

out[B5]=Gen[B5] U (in[B5]-Kill[B5])
in[B1]=out[entry]

in[B2]=out[B1] U out[B5]
in[B3]=out[B2]

in[B4]=out[B2]

in[B5]=out[B1] U out[B5]

12

Example

(Reaching Definitions)

" out[entry] = 0000000

in[B1] = 0000000

out{B1] = 1110000
in[B2] = 0000000

out[B2] = 0001100
= 0000000

1= 0000001
0000000
0000000

Advanced Compiter Research Laboraiory
School of Computer Science and Engineering

Seotd Nationa! Liniversity

Gen[B1] = 1110000
Kill[B1] = 0001111

Gen[B2] = 0001100
Kill[B2] = 1100001

Gen[B3] = 0000010
Kill[B3] = 0010000

Gen[B4] = 0000001
Kill[B4] = 1001000

Gen[B5] = 0000000
Kill[B4] = 0000000

Example

d4:
ds:

i=i+1
=1
i<j

(Reaching Definitions)

' outfentry] = 0000000

in[B1] = 0000000

out[B1] = 1110000
in[B2] = 1110000

in[B3] = oolyoo/ \ in[B4]

out[B2] = 0011100
= 0011100

d6: a=y|

drii=z

out[B3] = 0007410

5 Advanced Compiler Research Laboratory
2 Sehoo! of Computer Science ond Englngering

Seoul National University

out[B4] = 0010101
0011111

0011111

Gen[B1] = 1110000
Kill[B1]1= 0001111

Gen[B2] = 0001100
Kill[B2] = 1100001

Gen[B3] = 0000010
Kil[B3] = 0010000

Gen[B4] = 0000001
Kill[B4] = 1001000

Gen[B5] = 0000000
Kill[B4] = 0000000

14

Example
(Reaching Definitions)

] out[entry] = 0000000

d1: i=m-1 n[B1] = 0000000

d2: j=n Gen[B1] = 1110000
d3?=X ,,,,,,,,,,,, out{B1] = 1110000 Kill[B1]= 0001111
v . _ Gen[B2] = 0001100
gg !‘!*11 inB2] = 1111 kiB21= 1100001
' Ji_i—j Gen[B3] = 0000010

out[B2] = 0011110 Kill[B3] = 0010000
in[B3] = oom in[B4]| = 0011110 Gen[B4] = 0000001
46 amy| [d7iiFz Kill[B4] = 1001000

out[B4] = 0010111 Gen[B5] = 0000000
KilljB4] = 0000000

out[B3] = 0001410
0011111
0011111

dranced Compiler Research Laboratory
chiool of Computer Seience and Engineering B
zotd Nationg! University 15

Data Flow Problem #2
Live Variable Analysis

A variable x is live at a point p if the value of x at p could
be used along some path in the flow graph starting at p
Used in

- Register allocation

- Code motion in loops

- Elimination of useless assignments (dead code elimination)

Data flows backwards

ced Compiler Research Laboratory
chool of Computer Science and Enginesering
ol National University 16

Transfer Functions of a Basic Block

ef[B]: the set of variables definitely assigned values in
B prior to any use of that variable in B

Use[B]: the set of variables whose values may be used
in B prior to any definition of the variable
- Uses not covered by the definitions in B

in[B] is a function of out[B]

in[B]={a,b,z}

se[Bl={ab} | XZ3*L | po ¢ outiB))

Def[Bl={x.y} g’;iﬁ = Use[B] U (out[B] - Def[B])

out[B]={x,z}

wnced Compifer Research Laboratory
00f of Computer Science and Engineering
: erst

Effects of Control Flow

out[B3]

in[B1] in[B2]

B1 B2

out[B] =in[P1] U in[P2] U ... U in[Pn]
P1,P2, ..., Pn are successors of B

aniced Compiler Research Laboratory
ool oF Computer Science ond Englrzering

18

Example
(Live Variable Analysis)

entry
Def[B1] = {a,b}
a=a+1 ~
B1 | b=b+1 Use[B1] = {a,b,c,d}
e Def[B2] = {e}

80 Aa: dB3 Use[B2] = {c}

e b>=0 Def[B3] = {a}
— | Use[B3] = {b,d}

r=a+e | B4 Def[B4] = {1}
Use[B4] = {a,e}

exit

Advanced Compiter Research Laboraiory
School of Computer Science and Engineering
Seotd National University 18

lterative Solution for Live Variable
Analysis

m Repeatedly visit all the nodes and update in and out
m Worklist algorithm?

for each block B do
in [B] = @ // orin[B] = Def[B]
out[B] = &

enddo

while changes to any in occur do
for each block B do

OUt{B] = suce. Pof B ER[P]

in[B] = Use[B] u (out[B] — Def[B])
enddo
enddo

Advanced Compiler Research Laboratory
Srhool of Computer Science and Engineering
Seoul National University 20

Example
(Live Variable Analysis)

out[entry]={}

in[B1]={} Def[B1] = {a,b}
Use[B1] = {a,b,c,d}

out[B1]=(} Def[B2] = {e}
B3 Use[B2] = {c}
in[B3]={}
_ Def[B3] = {a}
—| qui[B3]={} Use[B3] = {b,d}
n[B4= Def(B4] = {1}
out[B4]={} Use[B4] = {a,e}
in[exit]={}
ed Compiler Research M&c::'afory B
eoler Conputer S and Exgincerty 2

Example
(Live Variable Analysis)

out[entry]={a,b,c,d,e}

in[B1]={a,b,c,d,e} Def[B1] = {a,b}
Use[B1] = {a,b,c,d}

B1

31]={ab,cde} DefB2={e}
Use[B2] = {c}
in[B3]={b,d,e}
) Def[B3] = {a}
utlB3l=ael Use[B3] = {o.d}
in[B4]={a,e} Def[B4] = {r}
[ImaTo out[B4]={} Use[B4] = {a’e}

e — A in[exit]={}

22

Example
(Live Variable Analysis)

out[entry]={a,b,c,d,e}
in[B1]={a,b,cd,e} DeflB1]={ab}

a=a+1 Use[B1] = {a,b,c,d}
B1 | b=b+1
c<d Def[B2] = {e}

\ 5 é)ut[B1]={a,b,c,d,e} Use[B2] = {c}
a=d n[B3l={b,c,d,e}

b>=0 | oyt[B3]=fa,b,cd,e} 852[3832}; {'?b},d}

out[BZ]={a,e}i

in[B4]={a,e} Def[B4] - {r}
out[B4]={ Use[B4] = {a,e}
in[exit]={}

In the order of B4, B3, B2, B1

dranced Compiler Research Laboratory
chiool of Computer Seience and Engineering
2o National Lmversity 23

The order of computation in an iterative method should
follow the flow of information for speed

Any solution to the dataflow equations is a conservative
approximation

The number of iterations:

- By traversing in reverse postorder (in postorder, a node is not
visited until all its depth-first spanning tree successors have
been visited), the depth of the flow graph + 2

- Flow graph depth: given a depth-first spanning tree for the graph,
the largest number of retreating edges on any cycle-free path

- Retreating edges: go from a node m to an ancestor of m in the
depth-first spanning tree

ced Compiler Research Laboratory
chool of Computer Science and Enginesering
ol National University 24

Data Flow Problem #3
Available Expressions

m An expression x+y is available at a
point p if every path from the initial
node to p evaluates x+y, and after the
last such evaluation prior to reaching p,
there are no subsequent assignments
toxory

m Used for common subexpression
elimination

m Data flow equations
- Kill[B]: the set of expressions a+b such 2 é

that there is a definitionofaorbin B
- Gen[B]: the set of expressions a+b t=a+b ‘ t=a+b |

computed in B at a position where .
neither a nor b are defined X=
subsequently

- oullBl=Gen[B] u (in[BI-KIll[B])
- In[B]=n pred. P of B out[P]

Advanced Compiter Research Laboraiory
- - e PP
w5 Schoof of Computer Science and Engineering .
L Seouf National iniversity 25

Data Flow Problem #4
Copy Propagation

m A copy a=b is available at point p if
every path from the entry node to p has
an occurrence of a=b, and there are no
definitions of a or b after the last such
occurrence

Used for eliminating useless copy
statements
m Data flow equations

- Kill[B]: the set of copies a=b such that
eithera or bis definedin B 2 é

- Gen[B]: the setof copies a=b appearing .« = &
in B at a position where neitheranorb | | |
are redefined subsequently

- oul{Bl=Gen[B] u (in[BI-Kill[B])

- In[B]=n pred. P of B out[P]

nced Lompiter Research Laboratory
ol of Computer Science ond Enginesring
Seoul National University il

Data Flow Problem #5
Upwards Exposed Uses

A use of a variable is upwards exposed if there is
s%mﬁ ;t:)}ath in ié’]% CFG rofmhthe entg to the use
which has no definition of the variable =
a=b+c
What uses of variables at particular points are —
reached by particular definilions
The same as live variable analysis but the
location at which the variables are used are
recorded z=a+b
Statement and use pairs: (8,4 X=7+C

Upwards exposed uses in B: uses of variables
such that no prior definition of the variable
occurs in B
Dala flow equations
- KBl { (8,x) xis defined in B}
GeniBL { (s,x}| s is in B and upwards exposed use
of x in 8}
in[Bl=GenB] « (outlB-KIEBD
- oul[Bl= infF]

suce P of B

wof of Computer Seience and Engineering
Seotd Nationa! University o7

Transformations Using Data Flow
Analysis

Common subexpression elimination
Constant propagation

Copy propagation

Dead code elimination

Register allocation

Partial redundancy elimination
- bidirectional

. Advanced Compiler Research Laboratory
Srhool of Computer Science and Engineering
L Seoul National University 28

Data Flow Analysis Framework

A data flow analysis is performed by
operating on elements of a lattice

Lattices
- L:a set of elements /l\

- Meet () and join (1) operations 100 010 001
- Closed undermand u M
- Commutative 110 101 011
- Assocna%nve

- L (bottom) element: forallx € L, xnl=1
111 bottom

mand v induce a partlai erde;f (i) on the Meet. and
values Join: or
- xBy iff x7y=x or xLy iff xuy=y

dranced Compiler Research Laboratory
chiool of Computer Seience and Engineering
2o National Lmversity 20

Meet-Over-all-Paths (MOP)
Solutions

We prefer the true, exact solution to the
data-flow problem
- However, there is no efficient way 1o tell exactly
which paths are real and which are not
MOP solution

- Path(B): the set of all paths from entry to a
node B

- P:any element of Path(B)
- fg: the transfer function of block B

- fp the composition of the transfer functions
encountered in following the path P
* fp=1g,0fp, 10 ... Ofg
= Bi=eniry, 82,.,,, Bn=B are the blocks in P
- MOP(B) = Qpepam(g};) fP(Ventry)

ced Compiler Research Laboratory
chool of Computer Science and Enginesering
ol National University 30

Maximal-Fixed-Point (MFP)
Solutions

Loops result in an infinite number of paths
- impossible to get MOP

A fixed point of a function f:L—L is an
element xeL s.t. f(x)=x

MFP solution: the solution to the data-flow
equations that is maximal in the ordering

- Compute meets early rather than at the end

- lterative algorithm

dranced Compiler Research Laboratory
o of Computer Science and Engineering
d National Linversity 31

MFP and MOP

A solution S(B) is a conservative approximation if
S(B)EMOP(B)
If all the transfer functions are monotone, the iterative
algorithm produces the MFP solution but not necessarily
the MOP solution

- MFP solution & MOP solution (legal)

- t:L—L, is monotone if for all x and y, xty implies f(x)Ef(y)

- Guarantee termination of the iterative algorithm
If all the transfer functions are distributive,

- MFP solution = MOP solution

- f:L—L, is distributive if for all x and y, f(x " y) = f(x) 1 f(y)

- Distributivity implies monotonicity

Advanced Compiler Research Laboratory
Srhool of Computer Science and Engineering
Seoul National University g2

lterative Data Flow Analysis
Framework

Forward
[Init (Tor L) forentry

l Npeproaie) OUL[P] otherwise
out[B] = fz(in[B])
Backward
[Init (Tor L) for exit
out(B)= 1
| Npesuece) iN[P] otherwise
in(B) = f5 (out(B))

o Compiier Research Lobaratory
f Computer Science and Frgineering
o Metiona! iniversity 33

Control Flow Analysis

Abstract syntax tree or other intermediate
representations from the compiler front end
provides relatively few hints about what the
program does

Discover hierarchical flow of control
- Basic blocks

- Control flow graph

- Intervals

- etc.

Better data flow analyses are based on intervals

34

Dominators

A node m dominates a node n (m

dom n), if every possible execution

path from entry to n includes m
Reflexive: every node dominates itself

- Antisymmetric: if a dom b and b dom a,
then a=b

- Transitive: if a dom b and b dom ¢,
thenadomc

- dom[m]: the set of all dominators of m

For m#n, m immediately
dominates n iff m dom n and there
does not exist a node p such that
p#+m and p#*n for which m dom p
and p dOm n

/fu vanced Compifer Research Laboraiory
v Schoo! of Computer Science and Engineering ~
- Seoul National University 35

Computing Dominators

m A node m dominates a node niff, dom[entry] = {entry}

- m=n or for each block B in N — {entry} do
- mis the unique immediate dom[B] =N

predecessor of n or enddo
- n has more than one immediate while changes to

predecessor and for all any dominators occur do

immediate predecessors p of n,
p#Fmand mdomp

- dom[n]={n} u(N pe pradn] dom(p])
Iterative algorithm

for each block B in N — {entry} do
for each pe pred[B] do
dom[B]=dom[B]~dom|p]
enddo
dom|[B]=dom[B]U{B}
enddo
enddo

nced Lompiter Research Laboratory
ol of Computer Science ond Enginesring
Seoul National University &6

Example
(Computing Dominators)

entry <10000 00000>
v
B1 <1111111111>

B2 <1111111111> B3 | <11111 11111>

11111 11111> B4 BS | <11111 11111> | B6 | <11111 11111>

v T —

B7 B8 | <11111 11111>

<1111 11111>

exit <11111 11111>

dvanced Compiler Research Loboratory
i of Computer Science and Fngineering
National iniversity 37

Example
(Computing Dominators)

entry <10000 00000>

B1 <11000 00000>

B2 | <11100 00000> B3 <11010 00000~

A/l |
B5 <11100 10000> B6 <1101001000>
T~ T, —
B7 B8 <11000 00010>
<11100 00100> i

exit <11000 00011>

<11101 00000>

! of Computer Science ond Englneering
Seoul National University 38

More on Dominators

m Strict dominators

- M strictly dominates n if m dominates n entry
and m#n

m Postdominators

- A node p postdominates a node q if
every possible execution path from g
to exit includes p

- pdom g in the flow graph in which the
direction of all the edges reversed and
entry and exit nodes are interchanged

m Back edges
- The head dominates its tail

Advanced Compiter Research Laboraiory
- - e PP
w5 Schoof of Computer Science and Engineering
L Seoul National Liniversity 38

Natural Loops

Given a back edge (m,n), the natural loop of (m,n) is the subgraph
consisting of

- the set of nodes containing n and all the nodes from which m can be
reached in the flow graph without going through n and

- the set of edges connecting all the nodes in its node set
Unique single entry point (loop header)
m There is at least one path back to the header from a node

exit

nced Lompiter Research Laboratory
ol of Computer Science ond Enginesring
Seoul National University iyl

Reducible Flow Graphs

A flow graph is reducible iff we can

partition the edges into two disjoint entry
groups: ¥
- The forward edges that form an acyclic B1
graph in which every node can be P
reached from the entry node B2 B3
- The back edges <~ =
Reducible — all the loops are natural

loops
No jumps into the middle of the loops

Structured flow-of-control statements
produce reducible flow graphs

- if-then-else, while-do, continue, break,

elc.
Non-reducible flow graphs are rare in
most of programs v
exit
: Advanced Compiter Research Laboraiory
k. School of Computer Science and Engineering
- Seotd National iniversity 41

Du-Ud chains

- A du-chain for a variable
connects a definition of the
variable to all the uses to
which it may flow

- A ud-chain for a variable
connects a use of the
variable to all the
definitions to which it may
flow

Du-chain of x: d2-d6,d2-d5,0d4-d6,d7-d8
Ud-chain of x: d5-d2,d8-d7,d6-d4,d6-d2

nced Lompiter Research Laboratory
ol of Computer Science ond Enginesring
Seoul National University 42

Static Single Assignment Form

m A procedure is in SSA form if every variable
assigned a value in it occurs as the target of only
one assignment

m Explicit Du-chains but compact

m Useful

Dead-code elimination

Constant propagation

Invariant code motion and removal
Strength reduction

etc.

o Compiler Research Laboraiory
of Computer Science and Engineering
2o National Lmversity 43

O-Functions

m Each ®-function has as many

argument positions as there are
versions of the variable coming [iz=7 |
together at the join point

m Each argument position
corresponds to a particular
control-predecessor of the point

m Simply place ®-functions at
each join point in the program
(but wasteful)

i5=0 (i3,i4)

Dominance Property
of the SSA form

If variable x is
used in a ©-

function in a block i=false

n, the definition of 122

X dominates every !
k3= ¢ (k1,k2)

predecessor of n

If x isusedina
statement that
does not contain a

®-function in a P
block n, the k=true [printj3 | | i4=i3+1 |
definition of x =341

dominates n

3= ¢(i1,i2)

/’ 13=¢01j2)

i3<=n1

o Compiier Research Lobaratory
f Computer Science and Frgineering
o Metiona! iniversity

SSA Translation

m Translation (not minimal)

1. Figure out at what join points to insert ©-
functions

2. Insert trivial ®-functions (i.e., ®(x,x,...,x))
3. Rename the definitions and uses of variables

m |nefficient, use iterated dominance
frontiers!

- Complicated, but efficient

esedrch Laboratory
Seiene ond Englneering

Dominance Frontiers

m The dominance frontier of
node x is the set of all
nodes y in the flow graph
such that x dominates an
immediate predecessor
of y but does not strictly
dominates y

- The dominance frontier of
a node is the border
between dominated and
undominated nodes

o Compiler Research Laboraiory
of Computer Science and Engineering
2o National Lmversity 47

Data Dependence Analysis

Determine the ordering relationship between
statements

For two given storage (register or memory)
references, whether the locations of storage
they access overlap

For

- Instruction scheduling
- Cache optimization

- Parallelization

- efc.

Dependence Relations

m |f S1 precedes S2 in their given execution
order, S1 < S2.

m A dependence between two statements
In a program is a relation that constraints
their execution order

o Compiier Research Lobaratory
f Computer Science and Frgineering
o Metiona! iniversity 49

Data Dependences

A constraint that arises from the $1: a=brc
flow of data between statements oz T 10gotoss
- Write a < read a: true (flow) S4 e=d+1
dependence (51 &' S2) S5. d=ef2
- Read a < write a: antidependence
(8162 52)
- Write a < write a: output dependence _
(81 0° 52) |
- Read a < read a: input dependence
(819'82)

Dependence graph
- Nodes: statements i
- Edges: dependences

hoo! of Computer Science ond Engineering

iniversity 50

Basic Block Dependence DAGs

m A basic block’s dependence graph
IS aiways a DAG Exacution time {(m)

= Depeﬂdence DAG Delay | —f—

Y nitiation (m)

Node: machine instructions Vo Latenoy

- Edges: dependences between the Initiation ()
ms‘irug:tsgns ' ‘ .

- Used in instruction scheduling 2: 14 =[r15+4](4)

, 3 2=13-r4

- Anode mis a predecessor of 4: 15 = [r12](4)
another node n in the dependence 3 razEnsva
DAG if n must not execute until m 7' [M5+4](4) = 3
has executed for some number of 8 15=r6+2

cycles

- Anedge betweenmandnis
labeled with the required latency
between mandn

m List scheduling

dvanced Compiler Research Loboratory
00f of Computer Science and Engineering
Seouf Netiona! University 51

Dependences in Loops

teration space: k-dimensional poly
consisting of all the k-tuples (index
vectors) of values of the loop indices. y 5 3 4
fori=11t03do
forj=11oi+1do 1 . ******* ’.
S1 - a(ij) = b(ij) + c(i))
S2 b(ij)=a(ij-1)
endfor | 2 €& o
endfor ‘ ———— >.
- Dependence T
~ S1[i,j-1] 8 S2[ij] 3 @
M 31[%’} &a SQ{i,j] ‘ ' >. >.
= Lexicographic ordering of index vectors
= iy o) < (padoss o) 1 3k, 1<ksn, s.t,
=1y, 2""32: 1=y and i <.
- lteration 8132, "; of a Eoop nest precedes
A

iteration (jy,js, iff (ol o) <ol 0

eqaron

aniced Compiler Research Laboratory
2 Sehoo! of Computer Science ond Englngering
L Seoul National University 52

Loop-carried Dependences

m Loop-carried dependence: caused by a
loop surrounding it.

m Loop-independent dependence:
independent of the loop surrounding

ced Compiler Research Laboratory
of Computer Science and Engineering
National Liniversity 53

Dependence Testing

fori=1to4do
bli] = a[3%i-5] + 2.0
a[2*i+1] = 1.0/i
endfor
We need to see whether there is an integer i1 and i2
that satisfy the equation
2*1+1=3%2— 5and 1 <=1, i2 <=4
m Dependece testing techniques for loops

- Constrained Diophantine equations, Integer programming (NP-
complete), GCD test, Extended GCD test, Strong and weak
Single Index Variables tests, Delta test, Acyclic test, Power test,
Simple Loop Residue test, Fourier-Motzkin test, Constraint-
Matrix test, Omega test, efc.

54

Control Dependences

A constraint that arises from the
control flow of the program

m Can node m directly control whether
node n is executed?

m A node nis control-dependent on m iff

- there exists a control-flow path frommton
such that every node in the path other
than m is postdominated by n and

- ndoes not postdominate m

Control Dependence Graph

- Edge from m o n whenever n is control-
dependentonm

- nis control dependent on m whenever m
is in the dominance frontier of n in the
reverse flow graph

Advanced Compiter Research Laboraiory
School of Computer Science and Engineering .
Seowd National University 55

Bibliography

Alfred Aho, Ravi Sethi, and Jeffrey D. Ullman.
“Compilers: Principles, Techniques, and Tools”,
Addison Wesley, 1986.

Andrew W. Appel. “Modern Compiler Implementation in
%%\5% second edition, Cambridge University Press,

Ron Cytron, Jean Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. “Efficiently
Computing Static Single Assignment Form and the
Program Dependence Graph”, ACM Transactions of
Programming Languages and Systems, Vol. 13, No. 4,
October 1991, pp. 451-490.

Steven S. Muchnick. “Advanced Compiler Design and
Implementation”, Morgan Kaufmann, 1997.

Advanced Compiler Research Laboratory
Srhool of Computer Science and Engineering
Seoul National University 86

Lecture #2

Jagjin Lee
Advanced Compiler Research Laboratory
School of Computer Science and Engineering
Seoul National University
jlee@cse.snu.ac.kr
http://aces.snu.ac.kr/~jlee

Advanced Compiter Research Laboraiory
School of Computer Science and Engineering
Seoud National University 4

Billion Transistor Architectures

m Microprocessors will have more than a billion transistors
on a single chip by 2010

m The trends
- Advanced wide issue superscalar processors
= Issue 16 or 32 instructions per cycle
- Simultaneous multithreaded (SMT) processors

= Share an aggressive pipeline between multiple tasks when there is
insufficient instruction-level parallelism

- Chip multiprocessors (CMP)
= Place a small number (2 to 18) of processors on a single chip
- Processing in Memory (PIM) Architectures

= Superscalar core with DRAM banks on a single chip to provide with
sufficient bandwidth

franiced Lompiler Research Laboratory
ool oF Computer Science ond Englrzering
Seoul National University Y4

Threads

m [hread of control

- Program counter
- Register set
- Stack

m Share resources with other threads
- Code or text section
- Data section
- OS resources: open files, signals, etc.

: Advanced Compiter Research Laboraiory
k. School of Computer Science and Engineering
L Seotd Nationa! Liniversity 3

Simultaneous Multithreading
Architectures

uperscalar processors already have many
mechanism {o support multithreading

- é%ding a per thread renaming 1able and separate
s

Alpha 21464

Conventional superscalar

- Issue slols are wasted when there is not enough ILP
in a thread (horizontal waste)

Conventional multithreaded architecture (Tera)
- Switching different thread contexis each cycle

- Tolerate long latency operations {remove vertical
waste)

- Still waste unused issue slots (horizontal waste)
SMT architecture
- Selects instructions fro execution from all threads

Famons B Thread
- Remove both horizontal and vertical waste] Trresd 2
| Thread 3

nced Lompiter Research Laboratory
ol of Computer Science ond Enginesring
Seou! National University 4

Chip Multiprocessor Architectures

A group of small identical

processors in a single chip CPUT CPU2 CPU3 CPU4
- E.g., eight 2-issue superscalar oats | | togie | | oals | | ogie
processors PC PC PC PC
- Shared on chip L2 SRAM cache Regs | Regs | | Regs Regs
SUN dual-core UltraSparc 3 Ifetch | Ifetch | | Ifetch [feich
Wlth SMT Exec Exec Exec Exec
To exploit thread level and 1K18) |1oK18) TeKls TeKIS
process level parallelism 16KD3 16KD§ 16KDS 16KD$
o . | | | |
Similar to conventional SRAM (2§
Symmetric multiprocessors,
but tightly coupled

Advanced Compiter Research Laboraiory
School of Computer Science and Engineering
Seouf Netiona! University 5

Processing-In-Memory

Architectures
The performance of applications is
dominated by memory Mermory
- To provide high bandwidth and low :
Eaten(:y Vector unit CPUand § 1O
A simple processor core is embedded Memory

in the memory system
PIM chips as main processors
- |RAM, RAW, Execube, Smart Memories,

hip

Pm.éhips as helper processors
(Intelligent Memory)

- Heterogeneous processors

- In main memory DRAM chip
FlexBAM, DIVA, Active Pages, ... Memory |
processor
- In memory controller core DRAM
NVIDIA (graphics engine)

franiced Lompiler Research Laboratory
ool oF Computer Science ond Englrzering
Seoul National University &

Embedded Systems Architectures

Supercomputing technology
{(about 10 years later) —desktop computing technology
(? years later) - embedded computing technology
Require a device that does more things at one lime
Multiple simultaneocus deadlines
Heterogeneous multiprocessor architectures
Philips Viper with MIPS and TriMedia cores

= For set-lop box and digital TV systems
= MIPS RISC core
s bgh performanos, neming O, condroiing periphersls
= TriMedia VLIW core
> High perormanes, audio and video procsssing
Intel IXP2xoo network processor architeciure
= KScale core
> Foule able mainiananoe and sysierslovel management
« 16 programmable microengines
> Packst processing
Lots ...
SMT architectures

MemoryLogix MLXY
= Multithreaded 586 core

Advanced Compiter Research Laboraiory
w5 Sch e st S Eerinees
w5 Schoof of Computer Science and Engineering
L Seoul National University 7

Programming These Systems?

m Conventional multithreading will not work
- Loop level parallelism

m Heterogeneous multithreading
- Main threads and helper threads

- How to extract these threads?
« Compiler’s work

= More difficult than exploiting conventional
parallelism

nced Lompiter Research Laboratory
ol of Computer Science ond Enginesring
i Mational University b1

The Case of Intelligent Memory
Architectures

m Co-execution
m Prefetching

dcvanced Compiler Research Loboratory
chiool of Computer Seience and Engineering
7 onal Liniver

Memory Wall Problem

m Processor-Memory performance gap

- Moore’s law: microprocessor performance
has been improving at a rate of 60% per year
(2Ghz <) .

- The latency of DRAM has been improving at a
rate of less than 10% per year (< 533Mhz).

Advanced Compiler Research Laboratory
Srhool of Computer Science and Engineering
Seoul National University 10

Processor-Memory
performance gap

60%/yr.
CPU
Moore’s Law

0] Ty T oo E

Performance

m Performance is dominated by memory

m No optimal solutions yet
- E.g., memory hierarchy
- More than 2,000 papers on this topic

m One of the feasible hardware solutions:
Processing-In-Memory (PIM) architectures

Advanced Compiler Research Laboratory
Srhool of Computer Science and Engineering
Seoul National University 12

PIM Architectures
(Berkeley VIRAM Case)

m A simple processor
core is embedded in
the memory system.

- On-chip memory
latency 1/5-1/10X,

- Bandwidth 50X-100X

- Energy efficiency 2X-
4X (no off-chip bus)

The Intelligent Memory Architecture

14

Heterogeneous Mix of

Processors

m Host processor (P.host) and memory
processor (P.mem)

- P.host: a wide-issue superscalar with a deep
cache hierarchy

- P.mem: a simple, narrow-issue superscalar
with only a small cache

m A user-level thread is running on the
memory processor.

- Flexible and adaptable

: dcvanced Compiler Research Loboratory
of Computer Science and Engineering

How to Exploit the Intelligent
Memory?
m Co-execution of the memory thread with
the main thread

m Prefetching using the memory thread for
the main thread

%

Co-execution

m Using a compiler,
- Partition code into compute-/memory-
intensive sections.

- The memory-intensive sections are wrapped
into a memory thread.

- Statically/dynamically map the sections to the
best processor.

- Overlap the execution of the main thread and
the memory thread.

o Compiler Research Laboraiory
of Computer Science and Engineering
2o National Lmversity 17

Cache Coherence

m Compiler controlled

- Before P.mem staris
execution, P.host
write-back dirty lines
that may be read by

P.mem

Off-the-shelf

interconnection - Before P.host starts
execution, it

invalidates lines that
may have been written
by P.mem

18

Overview of the Co-execution
Algorithm

Numerical Non-numerical

Agﬁiica?ions Agi!icaﬁons

Basic Partitioning Basic Partitioning

Affinity Estimation
(profiling)

Affinity Estimation
(performance model)

Advnced

Advnced
itioni Par

Part

Overlapping

Mapping

Mapinq
i tat | dynamic

d

By
Compiler

dranced Compiler Research Laboratory
chiool of Computer Seience and Engineering
2o National Lmversity 19

Overview of the Co-execution
Algorithm

Numerical Non-numerical
Applications Applications

Basic Psﬁi?icni@ Basic Partitioning

Affinity Estimation
(performance model)

Advced
Partitioni

Overlapping

Mapping

Mapénq ’
i dynamic

d

By
Compiler

ced Compiler Research Laboratory
of Computer Science and Enginesring
National University 20

Basic Partitioning

m Finds code sections (basic modules) that
are easy to extract and have,

- Homogeneous computing and memory
behaviors

- Good locality of references
m A basic module is a loop nest, where

- Each nesting level has only one loop
- May span several subroutine levels

o Compiler Research Laboraiory
of Computer Science and Engineering
2o National Lmversity 24

Basic Partitioning (example)

Nl = N*2
o =, 11
2 = X @ 2

Do J

e o .

ENDIF
ENDDO
C(N)

Overview of the Co-execution
Algorithm

Numerical Non-numerical

Agﬁiica?ions Agi!icaﬁons

ic Partitioning

Affinity Estimation
profiling

Advanced
Partitioni

Mapping
tic |

dranced Compiler Research Laboratory
o of Computer Science and Engineering
d National Linversity

23

Advanced Partitioning

Increases the grain size of the module,
possibly reducing uniformity (compound
modules)

Decreases synchronization overhead

Repeatedly applying expansion and
combining steps

Advanced Compiler Research Laboratory
Srhool of Computer Science and Engineering
Seoul National University

24

Advanced Partitioning (Expansion)

m Expansion: similar to the basic partitioning,
but

if P then
New module M’

else

: dcvanced Compiler Research Loboratory
o of Computer Science and Engineering
L National Liniversity 25

Advanced Partitioning (Combining)

m Combining: two adjacent modules with the same
affinity are combined into a new module

if P then

New module M’

26

Overview of the Co-execution
Algorithm

Numerical Non-numerical

Agﬁiica?ions Agi!icaﬁons

Basic Partitioning Basic Partitioning

Affinity Estimation
(performance model)

Affinity Estimation
(profiling)

Advanced
Partitioning

Advanced
Partitioning

Overlapping

By
Compiler

dranced Compiler Research Laboratory
=k School of Computer Science and Engineering
L Seouf Naviona! University o7

Static Mapping

m Performance model (numerical apps)
- Execution time = T ;5 + Tremstan
- Stack distance model for the number of misses

— ’I‘in TfP Tlds
Tcomp B maX(%\I int ’ A fp ’ / Nldst) +T0ther

T = Z miss; e penalty,

memstall —
iecaches

m Profiling (non-numerical apps)

- Gather execution time and the number of invocations
for all modules and subroutines

ced Compiler Research Laboratory
choo! of Computer Science ond Engineering
ol National University sl

Overview of the Co-execution
Algorithm

Numerical Non-numerical
Agﬁiica?ions Agi!icaﬁons

ic Partitioning
Affinity Estimation
(perform mode

Affinity Estimation
(profiling

Advanced
Partitioning

Advanced
Partitioning

Overlapping

Mappi ?’Etgw

Mapping
i namic By

By
Compiler

Advanced Compiter Research Laboraiory
School of Computer Science and Engineering
Seowd National University 28

Dynamic Mapping

m Decision runs at runtime to determine affinity

m Coarse and CoarseR
- Decision runs are module invocations

Invocation 1 2 3 4 5 oeee
Coarse P.host L i e
P.mem —
CoarseR P.host L B
P.mem e s

m Fine and FineF
- Decision runs are module iterations
= The first two iterations of the first invocation or of each invocation
« May be inaccurate and induce high overhead

franiced Lompiler Research Laboratory
ool oF Computer Science ond Englrzering
Seoul National University 30

Overview of the Co-execution
Algorithm

Numerical Non-numerical

Agﬁiica?ions Agi!icaﬁons

Basic Partitioning Basic Partitioning

Affinity Estimation
(profiling)

Advanced
Partitioning

Advanced
Partitioning

Mapping
stafic | dynamic

31

m Module-wise parallel region and module-
wise serial region

Module-wise parallel region
Module 1 P.host P.mem
Module 1

Module 2 |

Module 3

74

Fully parallel -
Distributable -

do i=1,100
A() = A(-1)+B(0)

dcvanced Compiler Research Loboratory
chiool of Computer Seience and Engineering
Seotd Nationa! Liniversity

Overlapping Execution (contd.)

Module-wise serial region

|

2 4 s
~men

Pmem
do i=1,100
if mod(i+3,4)=0 then
Wait
endif
C(i) = A(i)
Enddo

iD, ;?GS(?L
do i=1,100
Al = A(-1)+B(H)
if mo)=0 then
Writeback
Signa
endif
enddo

33

Evaluation Environment

Applications:

- Numerical: Swim, Tomcatv, LU, TFFT2, Mgrid
- Non-numerical: Bzip2, Mct, Go, M88ksim

Simulation: Mint-based execution-driven

Write-back overhead
Invalidation overhead

Module Parameter Values
P.hostuP.mem | Frequency 800MHz :: 800MHz
Issue width Out-of-order 6 :: In-order 2
Functional Units 4Int+AFpe2Ld/ 51 o 2Int+2Fp+1Ld/ St
Phost Caches | L1-Data Write-through, 32KB, Z-cycle hit
L2-Data Write-back, 1MB (512KB for non-numerical apps.),

10-cycie hit
5+ 1 x num_cache_lines (background)
5+ 1 x num_cache_lines

P.mem Cache | L1-Data Write-back, 16KB, 2-cycle hit
Memory Memory Latency (cycles) | 160 from P.host, 21 from P.mem
and Bus Bus Type Split transaction, 16-B wide

5 wiced (ompl esearch Lab
2 Sehoo! of Computer Science ond Englngering
| Seoul MNational University

34

Average Characteristics of Basic
Modules

Different applications have a different distribution of
module affinity.

Numerical Non-numerical
Averages Applications Applications
Total Modules 13.2 (99.1%) 41.8 (63.0%)
P.host Affinity 4.0 (37.0%) 31.0 (38.9%)
P.mem Affinity 9.2 (62.1%) 10.8 (24.1%)
Parallel Modules 11.4 (70.9%) 8.8 (1.3%)
Serial Modules 1.8 (28.2%) 33.0 (61.7%)
Average Number of
Invocations 442.9 182,025
Average Module Size
(P.host cycles) 4,570 K 477 K
dranced Compiler Research Laboratory
chiool of Computer Seience and Engineering
2ot Mational University 35

Tomcatv (SPECfp95)

Tomcatv

Normalized Execution Time

& Busy \ Memory & Othe le mWBA&INV O Ideal

ced Compiler Research Laboratory
chool of Computer Science and Enginesering
ol National University 36

Swim (SPECfp2000)

_

Normalized Execution Time

Busy N\ Memory g Other # Idle mWB&INV O Ideal

wnced Compifer Research Laboratory
k. School of Computer Science and Engineering
Seouf Netiona! University 37

Mgrid (SPECfp2000)

Normalized Execution Time

% Busy N\ Memory & Othe dle mWB&INV O Ideal

Advanced Compiler Research Laboratory
School of Computer Science and Enginesring
il Mational University 38

Normalized Execution Time

Busy N\ Memory & Other gz Idle m WB&INV O Ideal

Advanced Compiter Research Laboraiory
School of Computer Science and Engineering

Seouf Netiona! University

32

TFFT2 (NAS)

Normalized Execution Time

dle mWB&INV O Ideal

Busy N\ Memory & Other

Advanced Compiler Research Laboratory
ok Sehoo! of Computer Science vnd Engineering

| Seoul National University

40

Bzip2 (SPECint2000)

Bzip2
(input1) (input2)

Normalized Execution Time

. Advanced Compiler Research Laboratory

- - e PP

. School of Computer Seience and Engineering

L Seouf National iniversity 41

(input1) (input2)

—_

Normalized Execution Time
[eNoNeNeoNoNoNeNeNel
O—= N WHAhUUIONODO O = =

Srhool of Computer Science and Engineering
| Seoul MNational University A7

Go (SPECint95)

o
Rt

P

3 o 3
© - u_uu_

O n —_

a o
N M w W- W
2 a2 £ &
S = O = =
u []
2 E o
: 0 :
£ 3
o 0] < 3
(O] A m e
>
S
— 1S
e m = m
w- T m- %
o = >
g N < :
' @
00 :

2o National Lmversity

awli] UoIIN28XT PazijewIoN awj] uollndaxgy pazijewoN

8
&
2
3
]

£

3

g
¥

&
N

g

S
AN
S

&
=
@

&
w
&
N
N
3
$
&
&

. School of Computer Seience and Engineering

. Advanced Compiler Research Laboratory
. Advanced Compiler Research Laboratory

Overall Speedups for Co-execution

m Our co-execution algorithm delivers speedups
that are comparable to the ideal speedup.

Apps. P host{alone) P host{dlone) Amdahl's 2-processor
/AdvCoarseR /OverDyn 2 P.hosts S6L
Swim 1.67 2.71 2.00 185
Tomecaty 117 1.60 167 144
LU 126 1.22 1.04 099
TFFT2 142 1.22 191 0.80
Mgrid 105 1.55 194 147
Average 131 1.66 1.71 131
Bzip2 1.37 - 101 099
Mcf 1.37 - 1.01 1.00
6o 097 - 1.01 0.57
/88ksim 101 - 103 1.00
Average 1.18 - 1.02 0.89
nced Compiler Research Laboratory
Seout Narional vy e a5

Prefetching

m New correlation prefetching in software
using the memory thread

Widely applicable

Effective

Flexible

Inexpensive

cierice
onal University 46

Background

m Correlation Prefetching

- Joseph and Grunwald [ISCA’97], Alexander and Kedem
[HPCA’96], Lai, Fide, and Falsafi [ISCA,01]

Records sequences of miss addresses in a correlation table.
When the head of a sequence is seen, prefetch the rest.
Effectively prefetches data when there are repeatable patterns.
Hardware implementation (SRAM).

ald* (1++)]

al[foo(1)]

Z{a 14

Advanced Compiter Research Laboraiory
School of Computer Science and Engineering
Seotd Nationa! University 47

The Scheme

franiced Lompiler Research Laboratory
ool oF Computer Science ond Englrzering
Seoul National University 48

Comparison

Previous work Our approach
Prefetcher Custom hardware User programmable
implementation general purpose core
Location L1 prefetching L2 prefetching
Table structure Large (1-7.6MB SRAM) Small (DRAM)
On-chip, dedicated Dynamically allocated
Multiprogramming Cross polution One table per application
support
Customization No Yes
support
dvanced Compiler Research Loboratory
tiool of Computer Seience and Engineering
o Metiona! iniversity 49

The Mechanism of the Memory
Thread

m Requirements
- Low response time
- Occupancy time < miss distance

Miss address Prefeich addresses Table
observed generated updated
Prefetching step Learning step

Response time "
Occupancy time

s = Em - = s g = -

. Advanced (ompiler Research Laboratory
(3 P : bt
% Schoo! of Computer Science ond Englneering

L Seoul National University 50

Correlation Table

Basic Organization
(Joseph & Grunwald)

Addresses of
immediale successors

Advanced Organization

[TT—

Suce

Tag Level 1

. Advanced Compiler Research Laboratory
st Sohoof of Computer Science and Frgineering
L Seotd Nationa! Liniversity

Addresses of next
immediate successors

/

Tag

Suce
Level 1

Suce
Level 2

51

Learning Step

Basic Organization

Suce

T
a9 Level 1

Advanced Organization

Tag

Suce
Level i

Succ
Level 2

A BCADC,..

Current miss

o y ;

5 Advanced Compiler Research Laboratory

% Schoo! of Computer Science ond Englneering
| Seoul National University

52

Learning Step (contd.)

Basic Organization Advanced Organization
Tag Suce Tag Suce Suce
Level 1 Level 1 Level 2
AlsB Ale®
B B

A, B,C,AD,C, ...
t

Current miss

Advanced Compiter Research Laboraiory
School of Computer Science and Engineering
Seowd National University 53

Learning Step (contd.)

Basic Organization Advanced Organization
Tag Suce Tag Suce Suce
Level 1 Level 1 Level 2
A B A B c
B C B C
C C

A B CADC,..

Current miss

Advanced Compiler Research Laboratory
Srhool of Computer Science and Engineering
Seoul National University 84

Learning Step (contd.)

Basic Organization

il
Al s
B | c
c | a

Advanced Organization

Tag Suce Suce
Level 1 Level 2
A B c
B c A
C A

A, B,C,AD,C, ...
f

Advanced Compiter Research Laboraiory
School of Computer Science and Engineering
Seouf Netiona! University

Current miss

Basic Organization

Tag Suce
Level 1
A B D
B c
c A
D

Advanced Organization

Tag Suce Suee
Level 1 Level 2
A B ol C
B c A
C A D
D

A B CADC,..

Advanced Compiler Research Laboratory
Srhool of Computer Science and Engineering
Seoul National University

Current miss

56

Learning Step (contd.)

Basic Organization Advanced Organization
Tag Suce Tag Suce Suce
Level 1 Level 1 Level 2
Al | D AlB|D]C
B | € B|c A
c | A c| a D
D | c D | c

A,B,C,AD,C, ...
f

Current miss

vanced Compifer Research Laboraiory
tiool of Computer Seience and Engineering
ot National University 57

Prefetching Step

m Onmiss A, Band D
are prefetched

m Not far ahead
prefetching

m Low coverage

Basic Organization

Tag

v, y .
5. Advanced Compiter Research Laboratory
(3 P : bt
% Schoo! of Computer Science ond Englneering
L Seoul National University 58

Prefetching Step (contd.)

Basic Organization ™ On miss A, B,D, and
+ chaining C are prefetched

m Pointer chasing
m High response time

Suce
Level 1

o Compiler Research Laboraiory
of Computer Science and Engineering
zou! National Lniversity 50

Prefetching Step (contd.)

m On miss A, B,D, and
Advanced Organization C are prefetched

m Far ahead frefetching
m High coverage

m Timely prefetches

c| a b m Low response time

Tag Suce Suce

60

Evaluation Environment

Applications

- SPECint2000, SPECfp2000, NAS, Olden,
SparseBench

- Numerical apps: CG, Equake, FT, Sparse,
Tree

- Non-numerical apps: Gap, Mcf, MST, Parser
- Mostly irregular (except CG)

dranced Compiler Research Laboratory
o of Computer Science and Engineering
d National Linversity &1

Evaluation Environment (contd.)

Main processor:

- 1.6 GHz, 6-issue out of order

- L1: 2-way 16 KB; L2: 4-way 512 KB

- Memory: 243 cycle round-trip (RT)

Memory processor:

- 800 MHz, 2-issue out of order

- L1: 2-way 32 KB

- Memory: 100 cycle RT (in North Bridge chip), 56
cycle RT (in DRAM)

Correlation table:

- Application dependent, e.g. 64K entries, 3 levels, 2
successors

Advanced Compiler Research Laboratory
Srhool of Computer Science and Engineering
Seoul National University 62

Predictability of Miss Sequences

M Seq4+Base
Advanced Compiter Research Laboraiory
School of Computer Science and Engineering
Seotd National University &3

Predictability of Miss Sequences

W Seq4+Repl

Advanced Lompi esearch Lab
Srhool of Computer Science and Engineering
Seoul National University &4

.
\\\\\\\\\\\\\\\\\\\\\\%
.
.
.
.. =

|
EN EN EN
o)
®

& &
K2
Y~

5

Miss Distance
¢ F W E S

]
@&Iy

- &
Response and Occupancy Time

Execution Time in DRAM

Execution Time in MC

Bus Utilization

B Due to prefetching

%

50%

40% # Due to the reduced
execution time

30%
No prefetching
20%

10%

0%

dranced Compiler Research Laboratory
chiool of Computer Seience and Engineering
2o National Lmversity 69

Summary

(Co-execution and Prefetching)

m Co-execution
- Static and dynamic algorithms implemented in a compiler
- Exploiting the heterogeneity
- The performance is better than a more expensive 2-SMP system
= Non-numerical applications: average speedup of 1.2
= Numerical applications: average speedup of 1.7
m Prefetching
- Effectively prefetches for irregular applications
- Average speedup of 1.53
- Little hardware cost
- Very flexible

. Advanced Compiler Research Laboratory
choo! of Computer Science ond Engineering
ol National University 76

Other Helper Threads?

m Branch prediction
m Precomputation
m Speculation

dranced Compiler Research Laboratory
chiool of Computer Seience and Engineering
zotd Nationg! University 71

Link-Time Optimizations

. Advanced (ompiler Research Laboratory

(3 P : bt

% Schoo! of Computer Science ond Englneering

ol National University 72

Limitation of Conventional
Optimizing Compilers

m Only one module at a time

- Compile one module without knowing much about its
companion modules

- Can’t see library code
m Separate phases of compilation
- Machine independent and dependent parts
- Produce assembly code
m Interprocedural analysis?
- Limited to code that is available at compile time

Advanced Compiter Research Laboraiory
- - e PP
w5 Schoof of Computer Science and Engineering
L Seotd Nationa! Liniversity 73

Optimization at Link Time

eed interprocedural analysis _
Machine dependent - Executable file
Advantages or
- Whole program analysis is possible - Object modules
- Can do machine level optimizations Disas‘semble
- Independent from compilers and source

languages ‘ _____________________________

Disadvantages e R ~
- High-level information has been lost _ (CFG,RTL,etc) -

E.g., type information —

- Much more difficult to find control-flow
or data-flow information

T
Optimization and
Code generation

E.g., jump tables for case or switch
statemenis *
- Executable programs are significantly Executable
larger than the source programs file

nced Lompiter Research Laboratory
ol of Computer Science ond Enginesring
Seoul National University T4

Dead Code Elimination

m An instruction is dead if it T R13, 20(50)
computes only values that .. deffuse of r13
are not used on any 1 R1% not used
executable path leading e Ri3 00y o
from the instruction return
Liveness analysis needed Store R13, 20050
Reduce the amount of . defluse of r13
code x=atb R1 := result

Nouse ofx | 224 R13.20(5p)

"""""""""" - R13: callee saved register
...................................... R1 I’esel'ved fOI' retum Values

ced Compiler Research Laboratory
of Computer Science and Engineering
Mational Liniversity 75

Unreachable code: code that will never be
executed

Compile time

- Debugging statements turned off

- Result of other optimizations

Link-time

- lrrelevant library routines

- ldentified as unreachable due to the propagation of
actual parameters

Reduce the amount of code
Reduce instruction cache pollution

76

Constant Propagation

Given an assignment x=c for a variable
x and a constant c, replace later uses
of xwithusesofcaslongas

intervening assignments have not b=3 b=3

changed the value of x c=4*b c=4*3

- E.g., the value of gp is determined at c>b c>3
fink time

Good for RISC

- Immediate operand
Save registers
Enable other optimizations

- Constant folding b=3
- Induction variable optimizations c=12
- Dependence analysis based
optimizations e=a+3
Advanced Compiler Research Laboratory
School of Computer Science and Engineering
Seouf Netiona! University 77

Constant Folding

m Evaluating expressions at compile or link time, whose
operands are known to be constant

- e.g., the value of R31 is always 0 in a particular architecture, the
value of gp is known at link time, read-only region

m Must preserve the semantics of exceptions

ldq R1, 16(gp) ldq R1, 16(gp) ldq R1, 16(gp)
ldq R2, 64(gp) lda R2, 8(R1)

ldq R3, 48(gp) lda R3, 16(R1)

Idq R4, O(R1) ldq R4, O(R1) Idq R4, O(R1)
ldq R5, O(R2) ldq R5, 8(R1) ldg R5, 8(R1)
addq R4, R5,R6 addq R4, R5, R6 | | addq R4, R5, R6
stq R6, O(R3) stq R6, 16(R1) stq R6, 16(R1)

gp points fo global address table whose area is read only

franiced Lompiler Research Laboratory
ool oF Computer Science ond Englrzering
Seoul National University 78

Loop Invariant Code Motion

Loop invariant code
computations in loops that
produce the same value on
every iteration of the loop
and moves them out of the
loop

- e.g., address computations

Need UD/DU-chains

Interprocedural loop
invariant code motion at link
time

dranced Compiler Research Laboratory

chiool of Computer Seience and Engineering
2o National Lmversity

doi=1, 100
L=i*(n+2)
do j=1,100
a(i,j)=100"n+10*L+j
enddo
enddo

t1=10"(n+2)
2=100*n
doi=1, 100
t3=t2+i*t1
do j=1,100
a(ij)=t3+j
enddo
enddo

foo:
L1:

call bar

goto L1:
refurn

bar:

Invariant
code

return

78

Other Link Time Optimizations

m Elimination of unnecessary memory operations

- Escaping variables

- Aliasing

- Register pressure

m [nlining

- Function call overhead
m Code layout change

- Cache locality

- Branch prediction

m Instruction scheduling

ced Compiler Research Laboratory
chool of Computer Science and Enginesering
ol National University

&0

Bibliography

r Wayne Wolf. “How Many System Architectures”, IEEE Computer, March
2003.

Christoforos E. Kozyrakis, Stylianos Perissakis, David Patterson, Thomas
Anderson, Krste Asanovic, Neal Cardwell, Richard Fromm, Jason Golbus,
Benjamin Gribstad, Kimberly Keeton, Randi Thomas, Noah Treuhaft, and
Katherine Yelick. “Scalable Processors in the Billion-Transistor Era: IRAM”,
IEEE Computer, September 1997.

Lance Hammond, Basem A. Nayfeh, and Kunle Olukotun. “A Single-Chip
Multiprocessor”, IEEE Computer, September 1997.

Elliot Waingold, Michael Taylor, Devabhakiuni Srikrishna, Vivek Sarkar,
Walter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev
Barua, Jonathan Babb, Saman Amarasinghe, and Anant Agarwal. “Baring It
All to Software: Raw Machines”, IEEE Computer, September 1997.

Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca L.
Stamm, and Dean M. Tullsen. “Simulianeous Multithreading: A Platform for
Next-Generation Processors”, IEEE Micro, September/October 1997.

Advanced Compiter Research Laboraiory
School of Computer Science and Engineering
Seowd National University 81

Bibliography

Yan Solihin, Jaejin Lee, and Josep Torrellas. "Correlation Prefetching with a User-Level Memory
Ehreagéb §3E‘EE Transactions on Parallel and Distributed Systems, Vol. 14, No. 8, pp. 563-580,
une .

Yan Solihin, Jaejin Lee, and Josep Torrellas. "Using a User-Level Memory Thread for Correlation
;refe’mhing”, In Proceedings of the international Symposium on Computer Architecture (ISCA),
ay 2002.

Yan Solihin, Jasjin Lee, and Josep Torrellas. "Automatic Code Mapping on an Intelligent Memory
Architecture”, IEEE Transactions on Computers, Vol. 50, No 11, pp. 1248-1268, November 2001.
Jaejin Lee, Yan Solihin, and Josep Torrellas. “Automalically Mapping Code in an Intelligent
Memory Architecture”, In Proceedings of the Intermational Symposium on High Performance
Computer Architecture (HPCA), January 2001,

Amitabh Srivastava and David W. Wall. “Link-Time Optimization of Address Calculation on a 64-
bit Architecture”, In Proceedings of the ACM Conference on Programming Language Design and
Implementation (PLDI), 1894.

Amitabh Srivastava and David W, Wall. “A Practical System for Intermodule Code Oplimization at
Link-Time”, Journal of Programming Languages, pp1-18, March 1883,

Robert Muth, Saumya Debray, Scolt Watterson, and Koen De Bosschere. "Alto: A Link-Time
\?ptim%zeé é((})a the Compag Alpha”, Software - Practice and Experience, Vol. 31, pp 67-101,
anuary .

Advanced Compiler Research Laboratory
2 Sehoo! of Computer Science ond Englngering
L Seoul National University 82

Dr. — Ing. Daniel Kastner

AbSint
Angewanfdte Informatik GmbH
kaestner@absint.com

Compilation for Embedded
Processors
Advanced Techniques

Dr.-Ing Daniel Kastner
kaestner@absint.com

Acyclic and Cyclic Scheduling

m Scheduling of acyclic code:
m List scheduling: basic blocks
m Trace/Superblock scheduling: sequences of basic blocks

m In the presence of loops: cyclic scheduling

m Unroll the loop n times and then schedule the body of
the new loop. Drawbacks:
= code growth
= no overlapping across back edge
= Scheduling loops for overlapping executions of several
consecutive iterations: Software Pipelining.

~

Compilation for Embedded Processors

Loop Unrolling and Software

Pipelining
Data Dependence ~ After Loop After Software
Graph: Unrolling (4x) Pipelining

Pl

-

e,
A
A X

Terminology

m Operation: Machine operation, e.g. add, 1oad, store. Names:
abec, ..

B Instruction: Set of machine operations scheduled at the same
position.
Names: A, B, C, ...

B latency: Execution time of an operation.

® Delay: Distance between two consecutive dependent operations.

E Schedule: Mapping from operations to positions (cycles).
Names: o, ...

Compilation for Embedded Processors

Goal of Software Pipelining

m Given:
e |oop with body L and A iterations
e p-times parallel architecture

® Wanted:
= Efficient parallel schedule for L.

= L[*is transformed into ax*s where x is the body of a new loop, o
the prologue (prelude) and o the epilogue (postlude).

Prologue: initiates the pipeline
Kernel / Steady State

Epflogua: finishes te remaining
ferations

Constraints

m Precedence constraints (data dependences)

m Resource constraints

m All operations from the body L occur equally often
in the kernel x, p times.

m Width of x<p

m Goal: |K| minimal.

Compilation for Embedded Processors

Approaches

m Move-then-schedule: move code forwards/backwards
over loop back edge to improve schedule.
Problems: Which operations to be moved, in which
direction and how many times.

®m Schedule-then-move: find a schedule and transform
code accordingly.
& Unroll-while-scheduling: Kernel recognition.
Problems: Complex information to be maintained, complex
checks are required, no realiable implementation?
e Modulo-Scheduling: Generate and solve a set of modulo
constraints.

Problem: No control flow inside loops allowed (if conversion
required).

-

Terminology and Properties of the
Kernel

m Span W of the kernel K: number of consecutive iterations
of L of which operations are contained in K
(in general: different from p).

m [nitiation interval |1=|K] is the distance between two
successive iterations of the new loop.

®m Observation:

m Prelude starts \-1 iterations and postlude finishes p-1 iterations.
 Number k of kernel iterations:

_1-2(m-1)
B r

k

Compilation for Embedded Processors

Modulo Scheduling

m Goal: Compute a schedule for one iteration of
the loop so that when it is repeated at regular
intervals, no intra-or inter-iteration dependences
are violated and no resource conflicts arise.

m Basic steps:
1. compute a lower bound for the initiation interval 11
2. find a schedule
3. generate the kernel code
4. generate prologue and epilogue code

SIMD Instructions and
Superword-Level Parallelism

Compilation for Embedded Processors

SIMD Instructions

m Developed originally because of increasing focus on
multimedia applications.

m SIMD: Single Instruction Multiple Data.

m SIMD-Instruction: instruction operating concurrently
on data that are packed in a single register or
memory location.

SIMD Instructions

m Past: mostly used for small data types (8-bit, 16-bit)

m Future: 128-bit registers enabling simultaneous access to
4 32-bit words.

m SIMD execution units currently are appearing in desktop
microprocessors for several reasons:
= simple control
s replicated functional units often already available
e No heavily ported register file required
= simple, amenable to scaling.

Compilation for Embedded Processors

Exploiting SIMD Instructions

1. Inline assembly
2. Specialized library calls

3. Vectorization techniques developed to parallelize
scientific code for vector machines.
Pro: well-understood, many applications are vecorizable
Contra:

= often very difficult since complex loop transformations might
be necessary

= incapable of locating SIMD-style parallelism with basic blocks
requires large amounts of parallelism to achieve speed-up

4. Algorithms for superword-level parallelism extraction

-

Superword-Level Parallelism

m Superword-Level Parallelism (SLP): Form of SIMD-
parallelism in which source and result operands of a SIMD
instruction are packed in larger storage words.

m [somorphic statements: statements that contain the same
operations in the same order.

m Detection of SLP: identification of independent isomorphic
statements within a basic block. After statement packing
they can be executed in parallel.

a=b+c*z[i+0]
d=e+f*z[i+1]
r=s+t*z[i+2]
w=x+y*z[i+3]

Compilation for Embedded Processors

Cost and Benefit of SLP

m Result of packed computation is also packed
= Unpacking may be required
= Performance benefit of statement packing =
speedup from parallelization minus cost of
packing and unpacking

m Performance degradation is possible e.g. when packing
and unpacking costs are high relative to ALU operations.

Goals of SLP Detection

m Minimize packing and unpacking:
e look for cases where packed data produced as a result in one
computation can be directly used in another computation.

m Locate adjacent memory references:

m if packed statements contain adjacent references among
corresponding operations, operands are effectively packed in
memory = no reshuffling within a register is needed

® One address calculation followed by a load/store is required
instead of one individual calculations and loads and stores per
element.

Compilation for Embedded Processors

Algorithm for Exploiting SLP

1. Loop unrolling: transform vector parallelism into SLP

2. Alignment analysis: determine address alignment of each load/store
(for architectures not supporting unaligned memory access)

3. Transformation of IR into a low-level IR

4. Application of standard compiler optimizations to remove redundant
computations and spurious data dependences.

5. Core of algorithm:

1. Locate statements with adjacent memory references and pack them into
groups of size 2.

2. Discover more groups based on the active set of packed data.

3. Merge all groups into larger clusters of a size consistent with the
superword datapath width.

4. Produce a new schedule for each basic block where groups of packed
statements are replaced by SIMD instructions.

-

Scheduling

m Statements within a group must be independent and can
be executed in parallel.

m Executing two groups can cause dependence violations:
e A dependence edge is drawn from group g, to g, if a statement in
g, is dependent from a statement in g;.
= A (non-trivial) cycle in this graph indicates that the set of chosen
groups is invalid and at least one group has to be eliminated. This
can be expected to occur seldomly in practice.

Compilation for Embedded Processors

Scheduling

m When a group of packed statements is scheduled, a new
SIMD instruction is emitted. If this new instruction
requires operand packing, reshuffling the necessary
operands is performed first. Similarly, if any statements
require unpacking of source operands.

m The algorithm assumes that all data are in unpacked
configuration upon entry to the block
= all variables that are alive on exit are unpacked at
the end of the block
= improvement by dedicated analysis possible.

Architectural Limitations to SLP

m Complex CISC-like instructions that are hard to exploit by
automatic code generation methods at all.

m Often SLP is only viewed as multimedia extension and only
implemented for a subset of the instruction set, e.g. not
for floating-point operations.

m Restricted interconnectivity between register banks limit
possible data moves.

m Bad support for packing and unpacking limits the
achievable speedup.

Compilation for Embedded Processors

Phase Coupling Problems and
Code Optimization by Integer
Linear Programming

The Phase Coupling Problem during
Code Generation

® Main subtasks of compiler backends:
m code selection: mapping of IR statements to machine instructions of the
target processor
m register allocation: map variables and expressions to registers in order to
minimize the number of memory references during program execution

® register assignment: determine the physical register used to store a value
that has been previously selected to reside in a register

m instruction scheduling: reorder an instruction sequence in order to exploit
instruction-level parallelism and minimize pipeline stalls

e resource allocation: assign functional units and buses to operations

B Most of these tasks are interdependent, i.e. decisions made in one
phase may turn out to be suboptimal in terms of overall code quality
since they impose restrictions to other phases.

o

Compilation for Embedded Processors

11

The Phase Coupling Problem in
Code Generation

m Solution in a perfect world: Address all problems
simultaneously in a single phase. BUT:

e How to formulate this?

e Code selection, register allocation/register assignment and
instruction scheduling in general are NP-hard problems.

e This means that in general there is no chance to optimally solve
even one single of these tasks separately.

The Phase Coupling Problem in
Code Generation

m Classical approaches: isolated solution by heuristic methods (list
scheduling, trace scheduling, graph coloring register allocation,
etc).
= Problem: interdependence of code generation phases.
= Suboptimal combination of suboptimal partial results.
= Inefficient code.

& Purely heuristic phase coupling (mutation scheduling, etc.) :

m Code quality depends on the chosen heuristics to a large degree.

e Efficiency of the heuristics depends on the target architecture.
= Goal conflict between easy retargetability and high code
quality.

Compilation for Embedded Processors

12

Code Selection and Register
Allocation

® The goal of code selection is to determine the cheapest instruction
sequence for a subgraph of the IR. However, the code selector does
not know what the real overall costs of the instruction sequence will
be; it can use only estimations.

E Register allocation usually is done after code selection so the code
selector typically has to assume an infinite number of registers
(virtual registers).

® In consequence when estimating the cost of an instruction sequence
the code selector will mostly assume register references.

E Register allocation has to cope with a finite number of registers. If
there are too few registers, spill code is generated.

E However, the cost of this spill code has not been considered during
code selection, so the chosen operation sequence may in fact be a
bad choice since another one might have worked without spill code.

>

Register Allocation and Instruction
Scheduling

E Goal of register allocation: minimize number of registers.

e Consequence: false dependences caused by register reuse, limiting
instruction-level parallelism.

e Goal of instruction scheduling: maximize instruction-level
parallelism.

m Consequence: parallelization often forbits register reuse, possibly
triggering generation of spill code during register allocation.

m Whichever task is executed first: it can make decisions which are
globally suboptimal due to restrictions they impose to the second
task.

(Example for phase-coupling problem between code selection and

o

instruction scheduling: later.)

Compilation for Embedded Processors

13

Instruction Scheduling and Register
Assignment

Analog Devices SHARC: Restricted Parallelism between ALU and multiplier.

R1=fi* i
R2=R8+R12

R1=R1=*R3
R2=R8 +R12

Code Selection and CISC
Instructions

E Code selection usually is done by tree parsing (tree pattern
matching) and dynamic programming.

E Usuall the IR however takes the form of directed acyclic graphs,
e.g. due to common subexpressions.

B Before code selection proper DAGs must be broken into trees
for the code selection algorithm to work.

B Breaking the trees is done heuristically. Thus the resulting trees
and the resulting use of temporary storage locations may
destroy the opportunity of generating complex instructions
which would correspond to larger expression trees.

Compilation for Embedded Processors

14

Code Selection and CISC Instructions

On TriCore: could be
implemented by one
maddsum.h instruction

Reguires sequences of
mud, add, sub instructions

breaking

Code Selection and Complex Data
Routes

m Complex data paths can have the consequence that
moving a value from one register to another takes place
across a route of register sets.

e Code selection: Breaking the expression DAG into trees can lead
to choosing a temporary storage location for one tree which
leads 1o a sequence of register moves in other trees using this
value.

e Other consequence: the cost of one subtree depends on the
code selected for other subtrees. This violates the precondition
for dynamic programming which is commonly used to
implement code selection.

o

Compilation for Embedded Processors

15

Code Selection and Instruction-
Level Parallelism

E For architectures exhibiting instruction-level parallelism
operations from different expression trees can be executed in
parallel if no dependences are violated.

E This cannot be taken into account during code selection, since
the code of different subtrees is not independent any more.
Again this violates the independence precondition of dynamic
programming. A code sequence that locally seems clumsy may
be the best one since it might allow many parallelizations with
operations from other expression trees.

B Consequence: the quality of code selection can be severely
affected due to the phase-coupling problem between instruction
scheduling and code selection.

-

Heterogeneous register sets

Phase coupling problem between instruction scheduling and register
assignment.

R1=Ei*id
R2=R8+R12

R1=R1=*R3
R2=R8 +R12

Compilation for Embedded Processors

16

Integer Linear Programming

eInteger linear programming is NP-complete,
thus computing a provably optimal solution
requires a structured formulation.

*Pr=P,: Optimal integer solution can be %

P . . / Objective Function
computed in polynomial time. 'l

«|LP allows to incorporate several code
generation phases, e.g. instruction Integer Points
scheduling, register assignment and
resource allocation (functional unit
allocation) in a homogeneocus problem
description and to solve them optimally.

*Optimal phase-coupled code generation can be done for hot code
sequences, |LP-based approximations provide high-quality
approximative solutions.

ILP-Structure
min Msteps
tj s Msteps v J

Compilation for Embedded Processors

17

ILP-Modelling Styles

m |LP-formulations in the area of code generation:

m Time-indexed formulations: Choice of decision variables is based
on the points of time the modeled events are assigned to.

k

Xjp = 1 : operation j is started in clock cycle n by resource type k.

s Order-indexed formulations: Decision variables reflect the
ordering of the modeled events.

k Lo .
* x; = 1 : operation jis executed after i by resource type k.

Code Generation By Integer Linear
Programming

m Well-structured ILP formulations:

= SILP (Scheduling and Allocating with Integer Linear
Programming) [Zhang,96],[DKO0O]: order-indexed.
= OASIC (Optimal Architectural Synthesis with

Interface Constraints) [Gebotys,Elmasry,93],
[DKOO]: time-indexed.

SILP OASIC
Instruction scheduling Instruction scheduling
Register assignment Resource allocation
Resource allocation Register assignment

Compilation for Embedded Processors

18

The SILP Formulation (1)

m Order-based formulation.

m The main decision variables describe the flow of
the hardware resources through the operations of
the program: x; e {0,1}

m The resource flow graph:

The SILP Formulation (2)

mjnMs[eps
t]sMSteps vj

tj_ti zZ W V(j,j)e E]f?
L Lo w wel v jc B

t<t+w-1 V({4)eEp

Flow Modelling

® Number of constraints: O(n?)
® Number of variables: O(n?) Y

Compilation for Embedded Processors

19

1 rl=M[...];
2 r2 = M[...1;
3 r3 =rl1 + r2;
4 r4 =r3 *ri;
5 r5 = r2 + r3;
6 rl =r4 + r5;
7 M[...] = r3;
g8 M[...] = rl;

Functional Units:
- AU
- MUL:1

Execution Time: 1 clock cycle
Latency: 1 clock cycle

Example (1)

- MEM:1 Data Dependence Graph

-t =21
t-t,21
t,-t=21
t-t;=1
t-t21
-t 21

Precedence Constraints

v true dependences (i, j)*
v antidependences (i, j)*

t,-t;> w,-w,+1 v output dependences (i, j)°

t-t;21
t-t>1
t,<t,
t,<t

L-t;>1

Compilation for Embedded Processors

20

Ints

Constrai

ion

Flow Conservat

0000

+ 0+ o+ o+

Ints

t Constra

Ass

ignmen

21

Compilation for Embedded Processors

Resource Constraints

XII\\441+X11\\4/12+X11\\/1/I7+XA1\;851

Alu Alu Alu
Xzt Xajgs + Xapgs < 1

Serial Constraints

t,-t =1+ (xy -1)-8
t-t,>1+ (x) -1)-8
t-t21+(xy-1)-8

Compilation for Embedded Processors

The OASIC Formulation (1)

m [ime-based formulation.

m The main decision variables describe the
assignment of an operation's starting time to a
control step and a functional unit type.

m Main decision variables: X;fn where X;fn =1
means that the execution of operation j is started
in control step n on an instance of functional unit
type k.

-

The OASIC Formulation (2)

min M

alap(j)

tj=2 zn'xﬁnSMsteps Vj

k n=asap(}j)

steps

*Precedence Constraints
*Assignment Constraints

*Resource Constraints

Number of constraints: O(n3)

*Number of variables: O(n2)

Compilation for Embedded Processors

23

Time & Precedence Constraints

t=1x"+2. x4 +3. 21 +4.x < M,

steps

L=1x1+2.x1+3.xM+ 4. xM< M s
L=2-X0+3 Xa+4-X1+5 X< M,

steps

ASAP ALAP
1 4

+
IN

+
IA

IA
—_ = = = =

+

+
IN

f‘zf‘z:i‘zf‘z:f‘zﬁ‘z
U N S

+

©® NG AW N =
IA

a W AW wWw N =
0 0 N OO N

Assignment & Resource Constraints

ASAP ALAP X1+ Xy + X5+ %y =1
1 1 4 M M _
X1+ Xpg + Xpa + Xpg = 1
2 1 4 M M
3 2 5
4 3 6
©3 0 X+ Xy <1
6 4 7
7 3 8 12"'XZI‘/2!Sl
8 5 8)q”3‘+ 23+X%S1

Compilation for Embedded Processors

24

Extensions

m Incorporating architectural irregularities
® Assumption: All specified resource types can work in parallel.

e Many processors exhibit restrictions of instruction-level parallelism
and of resource usage.

e PROPAN approach [DKO3]: specifying architectural irregularities in
the hardware specification (TDL) via logical formula which are
automatically transformed into integer linear constraints.

m Reducing computation time:

e Coupling with standard heuristical techniques, the ILP techniques
focussing on the hotspots of the program.

m |LP-based approximations [DKOO]: Iteratively solve partial
relaxations of the original problem (some integer variables may
take non-integral values). In each iteration: fix some variables
with an integer value to their current value. The computation time

can be significantly reduced, yet high-quality solutions are
obtained.

-

Postpass Code Compaction: The
aiPop Framework

Compilation for Embedded Processors

25

Why Code Compaction?

m Embedded systems

= Memory is expensive
= Price
= Space
= Weight
= Power consumption

= PC architecture is limited, e.g.
= 16 MBytes
= 64 KBytes OTP

Postpass Optimizations

m Larger scope
= Procedure
= Module
= Entire application

m Lower level
= Standard optimizations
= Target-architecture-dependent optimizations

Compilation for Embedded Processors

26

Real World Requirements

m Debuging

m Speed

m Minimal interference
with the existing development process

aiPop166 - Code Compaction for C166

The aiPop166 optimizer suite was developed to reduce code size and to
improve code quality of assembly files produced by a C-compiler.

Compilation for Embedded Processors

27

aiPop166 Features

Functional abstraction for common basic blocks

Tail merging for procedures
m Optimizations based on data dependency analysis
Interprocedural constant propagation
Optimizations based on live variable analysis
EXTP optimizations in memory model LARGE

Peephole optimizations

Functional Abstraction,
Tail Merging
1. Find multiple occurences of instruction sequences
2. Make one representative sequence

3. Replace the occurences by

s function calls: functional abstraction

= _jumps between procedures: tail merging

Compilation for Embedded Processors

28

Example: Functional Abstraction

Functional

Abstraction

Integration into the Development Cycle

filel.src src2crl + optimization filel.crl
file2.src imizati file2.crl
src2crl + optimization i hashbb alibb.src

{assembly source)

fileN.src src2crl + optimization fileN.crl

Search Tree Generation

allf.pat.gz
(search free)

file.src src2crl + optimization file.crl hashbb file opt.crl

Code Optimization

assembler file_opt.see

file_opt.obj

Linking Process ;
allbb.obj assembler

Executable %

Compilation for Embedded Processors

29

Interprocedural Constant Propagation

On C16x (large) constant values are expensive!

Example:

MOV R7, #FFFFh
ADD R3.R7
MOV R5, #FFFFh

‘ Transformed to: MOV R5, R7 uses only

two bytes

MOV R7, #FFFFh
ADD R3,R7

; MOV R5,#FFFFh ; -aipopl66: --opt-coreg 1
MOV R5,R7 ; +aipopl66: --opt-coreg 1

Optimizations Based on DDA

Redundant Cyclic Moves

Example; j is eliminated if:

E i is the only definition of Ra
i: MOV Ra, RD reaching j
Ji MOV D Ra B Rb reaching the second

operation j is uniquely
‘ Transformed to: defined and identical to
the definition of Rb
. OV Ra. Rb reaching i
j: ;”l\i()\l Rb, Ra ; -aipopl66: --opt-cymo # No flags set byJ are used as
an input to other operations
®

Compilation for Embedded Processors

Typical struct assignment:

I.)..).cpos= a. xpos;
b.ypos= a.ypos;
b.count= a.count;

Needs free registers

MOVB RL1,_a
MOVB _b,RL1
MOVB RL2, (_a+8)
MOVB (_b+8),RL2
MOVB RL3, (_a+2)
MOVB (_b+2),RL3

MOV R1,WORD PTR _a
MOV WORD PTR _b,R1
MOV R3,WORD PTR (_a+2)
MOV WORD PTR (_b+2),R3

Combining Assignments

MOVB RL1,_a

MOVB _b,RL1
MOVB RL2, (_a+1)
MOVB (_b+1),RL2
MOVB RL3, (_a+2)
MOVB (_b+2),RL3

Needs DDA information

MOV R1,WORD PTR _a
MOV R2,WORD PTR _b
MOV [R1], [R2+]

ADD R1,#2

MOV [R1], [R2+]

ADD R1,#2

Four bytes less per assignment

-

m 5.3% (small application
featuring highly hand-optimized C code)

m 66% on specific modules

Compaction Rates

m 20.39% (large mobile phone application)

-~ over 25% more functionality can be
packed into a flash memory of the same size

Compilation for Embedded Processors

31

Tool Demonstration
aiPop

Program Analysis and Abstract
Interpretation

Compilation for Embedded Processors

32

Program Analysis Goals

m Automatically computing information about a
program

= Checking for possible program optimizations
= replacing the program with a "better" one
that does "the same"

= Generating "intelligent" error messages

= Validating other aspects (e.g. timing)

Other Examples

m Elimination of useless assignments
m Loop invariant code motion

m Cache analysis

m Pipeline analysis

m Stack analysis

m Worst-Case Execution Time Analysis
m Other safety-critical analyses

Compilation for Embedded Processors

33

Dynamic PA vs Static PA

m Dynamic Program Analysis:
collecting information by means of testing

-> Disadvantage:
generated code still must cover all possible inputs

m Static Program Analysis:
generating information without executing the program

=> Optimizations hold for any given input

Static Program Analysis

m Determination of runtime properties at compile time

m Most of the (interesting) properties are undecidable:
The results cannot always be correct and exact =>
approximations

m An approximate program analysis is safe, if its results
can always be depended on. Results are allowed to be
imprecise as long as they are on the safe side

m Quality of the results (precision) should be as good as
possible

Compilation for Embedded Processors

34

Exact Answers

Property Property
holds does not hold

Approximations

Property Property
definitely holds might not hold

- Erring on the safe side

Compilation for Embedded Processors

35

Abstract Interpretation

Semantics-based methodology for program analyses;
introduced 1977 by Patric and Radhia Cousot.

Basic idea: Perform the program's computations using
value descriptions or abstract value in place of the

concrete values.
m (0 ensure that analysis results are obtained in finite time
® (0 obtain results that describe the result of computations on a set
of possible inputs

Supports systematic derivation of program analyses

m Supports correctness proofs

Tool support (e.g. PAG, the Program Analyser Generator)
g

Compilation for Embedded Processors

36

Cache Memories and Real-Time Systems

e On hardware with caches: worst case assumption every access is a
cache miss

e Worst case timings are far away from realistic timings. This leads to
a waste of hardware resources.

E The degree of success of timing validations depends on precise
predictions.

e Software monitoring, dual loop benchmark, direct measurement
with logic analyser, hardware simulation are no longer generally
applicable.

e Choosing the fastest available processor, praying, or crossing fingers
is not a true alternative.

Cache Analysis by Abstract

Interpretation
the semantics _ determines set of all cache states

for each program point

Al

"cache” semantics ——==is o set of all cache states
for each program point

Al

conec

defermines abstract cache states
for each program point

abstract semantics —m
PAG

Compilation for Embedded Processors

37

Cache Analysis by Abstract

Interpretation
(& alT] miss
- Example:
(b, [B1] miss Fully Associative Cache (2
ix Elements)

alETB wit

,ﬂi}hﬁs; Eﬁ)méss

W[TTE] mayEdE]
() musi[aTT] may[ZEA it

Result of the Analyses

Categorization of memory references
Category Abb. | Meaning

always hit ah | The memory reféerence will
ahways result in a.cache hit.

always miss am | The memory reference will
always result in a cache miss.
not classified | nc | The memory reference could
neither be classified as ah

nor am.

Compilation for Embedded Processors

38

Tool Demonstration
aiT WCET Analyzer

Bibliography

m Compiler Design:

e [ASU86] Aho, Sethi, Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1986.

s [WiMa95] Wilhelm, Maurer. Compiler Design. Addison-Wesley,
1995.

 [M97] Muchnick. Advanced Compiler Design & Implementation.
Morgan Kaufmann Publishers, 1997.

e [SSO3] The compiler design handbook: Optimizations and Machine
Code Generation. Ed. Srikant, Shankar. CRC Press, 2003.

Compilation for Embedded Processors

39

Bibliography

m Code Selection:

® [AJ76] Aho, Johnson. Optimal Code Generation for Expression
Trees. Journal of the ACM, vol 23, no 3, 1976.

e [GG78] Glanville, Graham. A new Method for Compiler Code
Generation. Proceedings of the 5th ACM Symposium on Principles
of Programming Languages, 1978.

e [AG85] Aho Ganapathi. Efficient Tree Pattern Matching: An Aid to
Code Generation. Proceedings of the 12th ACM Symposium on
Principles of Programming Languages, 1985.

m [FSW94] Ferdinand, Seidl, Wilhelm. Tree Automata for Code
Selection. Acta Informatica, vol 31, 1994.

Bibliography

m Register Allocation:

e [Cha82] Chaitin. Register Allocation and Spilling via Graph
Coloring. Proceedings of the SIGPLAN'82 Symp. on Compiler
Construction. SIGPLAN Notices, vol 17, no 6, 1982.

e [CH84] Chow, Hennessy. The Priority-Based Coloring Approach to
Register Allocation. ACM Transactions on Programming Languages
and Systems, vol. 12, no 4, 1990.

® [Bri92] Briggs. Register Allocation via Graph Coloring. Phd Thesis,
Rice University, 1992.

e [BCT94] Briggs, Cooper, Torczon. Improvements to Graph Coloring
Register Allocation. ACM Transactions on Programming Languages
and Systems, vol 16, no 3, 1994.

Compilation for Embedded Processors

40

Bibliography

m Instruction Scheduling and Parallelization:

[LDSM80] Landskov, Davidson, Shriver. Local Microcode
Compaction Techniques. ACM Computing Surveys, vol 12, no 3,
1980.

[Fis81] Fisher. Trace Scheduling: A Technique for Global Microcode
Compaction. |EEE Transactions on Computers, vol 20, no 7, 1981.
[AJLA95] Allan, Jones, Lee, Allan. Software Pipelining. ACM
Computing Surveys, 1995.

[R96] Rau. Iterative Modulo Scheduling. International Journal of
Parallel Processing, vol 24, 1996.

[LAQOO] Larsen, Amarasinghe. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. ACM SIGPLAN

Notices, 2000.

Bibliography

m Retargetable Compilation and Optimization:

[FraHan91b] Fraser, Hanson. A Retargetable Compiler for ANSI C. SIGPLAN
Notices, vol 26, no 10, 1991.
[FraHan95] Fraser, Hanson. A Retargetable C Compiler: Design And
Implementation. Benjamin/Cummings Publishing Company, Inc., 1995.
[DaFra80] Davidson, Fraser. The Design and Application of a Retargetable Peephole
? éi(gnizer. ACM Transactions on Programming Languages and Systems, vol 2, no 2,
[DaFra84] Davidson, Fraser. Code Selection through Object Code O ptimization.
ACM Transactions on Programming Languages and Systems, vol 6, no 4, 1984.
[BeDa88] Benitez, Davidson. A Portable Global Optimizer and Linker. Proceedings
of the ACM SIGPLAN '88 Conference on Programming Language Design and
Implementation, in SIGPLAN Notices, vol 23, no 7, 1988.
[BeDa94] Benitez, Davidson. Target-Speciﬁc Global Code Improvement: Principles
and Applications. Department of Computer Science, University of Virginia, 1994.
[Sta98] Stallman. Using and Porting GNU CC. Free Software Foundation, 1988.
[Tri98] TRIMARAN: An Infrastructure for Research in Instruction-Level Parallelism.
) -t

[COSY] Ace Associated Computer Experts. hitp://www.ace ni/products/cosy him

o

Compilation for Embedded Processors

41

Bibliography

E Retargetable Compilation and Optimization for Embedded Processors:

[CHESS95] Lanneer, Van Praet, Kifli, Schoofs, Geurts, Thoen, Goossens.
CHESS: Retargetable Code Generation For Embedded DSP Processors. In
[MaGo95]. Kluwer Academic Publishers, 1995.

[MaGo95] Marwedel, Goossens, G. Code Generation for Embedded
Processors. Kluwer Academic Publishers, 1995.

[Le97] Leupers. Retargetable Code Generation for Digital Signal
Processors. Kluwer Academic Publishers, 1997.

[HTGDN99] Halambi, Tomiyama, Gruen, Dutt Nicolau. Automatic Software
Toolkit Generation for Embedded Systems-on-Chip. Proceedings of the
1999 International Conference on VLS| and CAD (ICVC99), 1999.

[DKOO] Kastner. Retargetable Postpass Optimisation by Integer Linear
Programming. Saarland University, 2000.

[DKO1] Kastner. ILP-based Approximations for Retargetable Code
Optimization. Proceedings of the 5th International Conference on
Optimization: Techniques and Applications, Hong Kong, 2001.

Bibliography

m Architecture Description Languages:

[Emm89] Emmelmann. BEG -- a Back End Generator. GMD Forschungsstelle an der
Universitaet Karlsruhe, 1989.

[LSU93] Lipsett, Schaefer, Ussery. VHDL: Hardware Description and Design. Kluwer
Academic Publishers, 1993.

[TM95] Thomas, Moorby. The Verilog Hardware Description Language. Kluwer
Academic Publishers, 1995.

[FaPraFre95] Fauth, Van Praet, Freericks. Describing Instruction Set Processors
Using nML. Proceedings of the European Design and Test Conference. |IEEE, 1995.
[BCRS97] Bodin, Chamski, Rohou, Seznec. Functional Specification of SALTO. A
Retargetable System for Assembly Language Transformation and Optimization, rev.
1.00 beta, INRIA, 1997.

[RaFe97] Ramsey, Fernandez. Specifying Representations of Machire Instructions.
ACM Transactions on Programming Languages and Systems, vol 19, no 3, 1997.
[DaRa98] Davidson, Ramsey. Machine Descriptions to Build Tools for Embedded
Systems. Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Embedded Systems. Springer LNCS, Volume 1474, 1998.

[DKO3] Kaestner. TDL: A Hardware Description Language for Retargetable Postpass
Optimizations and Analyses. Proceedings of the Second ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component Engineering (GPCE'03),
Erfurt, 2003. *

Compilation for Embedded Processors

42

Bibliography

m Postpass Optimizations

m [DKOOa] Késtner. A Retargetable System for Postpass
Optimisations and Analyses. Proceedings of the ACM SIGPLAN
Workshop on Language, Compiler and Tools, Montreal, 2000.

e [CFOO] Ferdinand. Post Pass Code Compaction at the Assembly
Level for C16x. Contact, vol 3, no 9, 2000.

e [BKCPSO03] De Bus, Kaestner, Chanet, Van Put, De Sutter. Post-
Pass Compaction Techniques. Communications of the ACM, vol 46,
no 8, 08/2003.

Bibliography

m Program Analysis

e [CC79] Cousot, Cousot. Systematic Design of Program Analysis
Frameworks. Proceedings of the 6th ACM Symposium on Principles
of Programming Languages POPL, 1979.

e [F97] Ferdinand. Cache Behavior Prediction for Real-Time
Systems. PhD thesis, Saarland University, 1997.

e [NNH99] Nielson, Nielson, Hankin. Principles of Program Analysis.
Springer, 1999.

e [M99] Florian Martin. Generation of Program Analyzers. PhD
thesis, Saarland University, 1999.

Compilation for Embedded Processors

43

Sponsored by:

’B” i* ‘qm

	
	1 forelasare.ps.rdo
	

	1 engholm-emberchitecture.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2 engholm-embe.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3 engholm-embe.ps.rdo
	
	
	
	
	

	34 forelasare.ps.rdo
	

	4. Kaestner_esses03.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	45 forelasare.ps.rdo
	

	5 lee-esses.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	6 lee-esses.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	67 forelasare.ps.rdo
	

	7. Kaestner_esses03_dk2.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	baksida X.ps.rdo
	

