
On the Correlation between Testing Effort and
Software Complexity Metrics

Adnan Muslija, Eduard Enoiu,
Mälardalen University, Västerås, Sweden.

Abstract—Software complexity metrics, such as code size
and cyclomatic complexity, have been used in the software
engineering community for predicting quality metrics such as
maintainability, bug proneness and robustness. However, not
many studies have addressed the relationship between complexity
metrics and software testing and there is little experimental
evidence to support the use of these code metrics in the es-
timation of test effort. We have investigated and evaluated the
relationship between test effort (i.e, number of test cases and test
execution time) and software complexity metrics for industrial
control software used in an embedded system. We show how to
measure different software complexity metrics such as number
of elements, cyclomatic complexity, and information flow for a
popular programming language named FBD used in the safety
critical domain. In addition, we use test data and test suites
created by experienced test engineers working at Bombardier
Transportation Sweden AB to evaluate the correlation between
several complexity measures and the testing effort. We found
that there is a moderate correlation between software complexity
metrics and test effort. In addition, the results show that the
software size (i.e., number of elements in the FBD program)
provides the highest correlation level with the number of test
cases created and test execution time. Our results suggest that
software size and structure metrics, while useful for identifying
parts of the system that are more complicated, should not be
solely used for identifying parts of the system for which test
engineers might need to create more test cases. A potential
explanation of this result concerns the nature of testing, since
other attributes such as the level of thorough testing required
and the size of the specifications can influence the creation of test
cases. In addition, we used a linear regression model to estimate
the test effort using the software complexity measurement results.

I. INTRODUCTION

Testing is a vital part of engineering industrial software. Its
efficiency and effectiveness depends not only on the quality
of the test suite, but also on the complexity of the software
to be tested: some programs need more test cases than others.
In practice, test managers and engineers want to know what
parts of their software are more complex and need more testing
effort. Software engineering studies and textbooks often used
software complexity metrics to predict quality metrics such as
faults proneness and maintainability (e.g., [1]–[3]). However,
not many studies have looked at the relationship between code
complexity and test effort. It is therefore not clear that software
complexity is directly related to test efficiency.

This paper presents a study of the relationship between
software complexity metrics and testing effort in an industrial
embedded software project from Bombardier Transportation

Sweden AB. In practice, we answer the following research
questions:

• Research Question 1: Is software complexity correlated
with the number of test cases in a test suite?

• Research Question 2: Is software complexity correlated
with the execution time of all test cases in a test suite?

The paper makes the following contributions to this kind of
investigations:

• A method and tool for measuring code complexity
for embedded software written in IEC61131-3 Function
Block Diagram (FBD), a popular programming language
in the safety critical domain. There is a need to investigate
how existing software complexity metrics can be tailored
to FBD software.

• Empirical and industrial evidence showing that there is
a moderate correlation between software complexity and
the number of test cases created by experienced industrial
engineers as well as the execution time of these test cases.

• A discussion of these results as well as the use of a linear
regression model to estimate the test effort using software
complexity are shown.

II. BACKGROUND

In this section, we explain the concepts necessary for
understanding the methodology used to obtain the results by
covering software complexity metrics and industrial control
software. The work presented in this paper focuses on the
measurement of software complexity for industrial embedded
software written in the FBD language.

A. Industrial Control Software

In domain-specific domains (e.g. transportation, nuclear,
aerospace and automotive), embedded systems implemented
using Programmable Logic Controllers (PLCs) are widely
used to provide supervisory control [4]. For example, this
supervisory control can be used for opening and closing doors
or controlling the temperature in a furnace. PLC software
differentiate from its general-purpose counterpart in several
ways, including the way that they are written and tested. PLC
programs are usually created using one of the IEC 61131-3
programming languages [5]. IEC 61131-3 is a international
standard that describes the programming language rules and
requirements used for creating PLC programs [5]. IEC 61131-
3 has a number of programming language implementations:
Structure Text (ST), Instruction List (IL), Ladder Diagram

i f (a > b) {
sum = a + c ;

} e l s e {
sum = b + c ;

}

Fig. 1: Two equivalent simplified programs written in two different program languages: a Java example (left) and an FBD
program (right).

(LD), Function Block Diagram (FBD). Two of these lan-
guages, FBD and LD, are graphical programming languages
and do not use a textual source code notation. Since the IEC
61131-3 programming languages are used in domain-specific
applications, the resulting software is organized and operates
using Program Organization Units (POUs) [5] containing func-
tions (i.e., procedure-like program code), function blocks (i.e.,
stateful functions) and a top-level program code that has access
to the IO ports. FBDs contain variables, data types, functions.
However, conditional statements and loops are implemented
differently in FBDs. As shown in Figure 1, the IF statement
is encapsulated in the MAX function. In this study we used
programs developed in the IEC 61131-3 standard and FBD
programming language by industrial engineers describing a
safety-critical system used in the train domain.

B. Software Complexity

A software complexity metric is a quantitative value that
describes a certain dimension of the software and depends
on the type of the artifact used for measurement [6]. Even
if multiple software dimensions can be used, it is not easy to
use such measures on multiple software artifacts (e.g., program
source code and the software architecture). Nevertheless, there
are a number of software complexity metrics that have been
successfully used in software engineering domain [7]. Source
Lines of Code (SLoC) is a simple size metric that measures
the logical and the physical size of a source file. It is a size
metric, since it can only describe the size dimension of a
software artifact (e.g. the program source code). Weyuker et
al. [8] have shown how to formalize, evaluate and compare
different complexity metrics including SLoC. Although the
motivation for measuring a specific dimension of a software
varies in practice [9], several studies [10], [11] have indicated
that complexity metrics may be good at predicting quality
and development effort. For example, software complexity
measurements [12] can be used to indicate the number of
test cases needed to cover the logic of a particular artifact
or can be used to show that a software architecture has a high
levels of coupling [13]. Even if the literature on measuring
software complexity for industrial control software written in
IEC 61131-3 FBD programming language is scarce, other
graphical programming languages have been the focus of
research on complexity measurements. Olszewska et al. [14]
tailored software complexity metrics to the component-based
syntax of Simulink models. This study also performed a cor-

relation analysis between complexity and fault data obtained
from a car fuel program created using Simulink and found a
positive correlation between components with high complexity
and the number of faults found. The data was validated using
three domain experts. At the time of writing, no other study
considered any correlation evaluation between test effort and
software complexity metrics in the industrial control software
domain.

III. METHODOLOGY

This section shows the experimental roadmap used in this
paper including the subject software, how we measured soft-
ware complexity on such software as well as the measurement
of test effort.

A. Subject Programs

The safety-critical industrial control software we used in
this paper is part of the Train Control Management Sys-
tem (TCMS). TCMS is a system developed and used by
Bombardier Transportation Sweden AB for high speed trains.
TCMS is an embedded software running on PLCs and used for
handling a wide variety of operation-critical and safety-critical
functions of a train. TCMS is written in IEC 61131-3 FBD
programming language using a combination of IEC 61131-
3 function and function blocks and in-house built function
blocks. We used 82 different FBD control programs part of
TCMS that perform supervisory operations and are developed
independently of each other.

B. Measuring Software Complexity

Since there is no approach and tool support for measuring
software complexity on FBD programs, we developed a tool
called TIQVA [15] in an effort to create a complexity measure-
ment method for FBD software. Practically, we create an FBD
data structure model based on the Abstract Syntax Trees (AST)
used for parsing and processing source code. The data model
is organized hierarchically and works in several iterations. We
use the FBD XDS Schema rules in creating the data model
(as shown in Figure 2) that contains all relevant program
information from the FBD representation and maintains the
hierarchy and relationships between different FBD elements.

A significant number of software complexity metrics have
been proposed in the literature [12], [13], [16]–[18]. We chose
to adapt and implement the following complexity metrics,
since these are among the most popular and well-researched
metrics [6] in the software engineering literature: Source

Fig. 2: A high-level view of the input processing layer of TIQVA for parsing the FBD programs.

Lines of Code (SLoC), Cyclomatic complexity (CC), Halstead
complexity (HC) and Information Flow complexity (IFC).
Both SLoC and HC are code size metrics and can abstract
the size or the length of a program artifact. The HC metric is
suggested to be good at providing information about software
maintenance [16]. CC is a direct measure of the amount of
decisions programmed in the software [12] and is used for
determining the number of tests achieving basic path coverage
[19]. The IFC metric was proposed by Henry and Kafura [13]
and is mainly used for measuring the complexity of software
architecture designs, since the metric computes the amount
of coupling and cohesion between different software modules.
We use IFC for FBD programs since some of these architecture
models and FBD programs are both using basic component-
based modelling concepts [5].

1) Number of Elements: In the IEC 61131-3 FBD pro-
gramming language the notion of a program statement is very
different compared to other general-purpose programming
languages. While in Java, a line of code can be a function call,
in FBDs functions are encapsulated inside block components.
Therefore, we mapped the SLoC metric to FBDs. If the
function calls and other program statements are abstracted
via blocks, and the order of their execution is controlled
via connections, then we assumed that the SLoC metric for
FBDs would measure the number of elements including the
blocks and connections in an FBD program [5]. We propose
the use of Number of Elements (NOE) in the context of the
FBD programming language by counting the number of all
declarations, blocks and connections. When initialized in the
graphical programming environment, FBD variables and their
data types are represented as component blocks (e.g., input,
output and local component blocks).

2) Cyclomatic Complexity: In the original paper [12],
Thomas McCabe proposed a software measurement technique
for computing the number of linearly independent paths
through a program code. This metric is based on graph theory
and can be applied to a wide range of software artifacts (from
simple program functions to architectures [20]). Artifacts
measured for CC have to be abstracted via control flow graphs.
Since CC is influenced by the decision points of a program,
CC can directly be used for the FBD programming language.

3) Halstead Complexity: HC metric [16] is computing
multiple software dimensions based on the measurement of
operands and operators. We assume that a set of operators
are represented using different mathematical and logical op-
erations and programming language functions and syntax,
while the set of operands are variables and values used
in the operations. HC metric defines the following mea-
surements: program vocabulary, program length, calculated
program length, volume, difficulty, effort, time, and delivered
bugs. These measurements are computed based on both the
unique and total number of operators and operands with the
rest of the measurements being built upon them. In FBDs,
program variables and their definition are separated from the
logic itself, so operators and operands are created in a different
fashion compared to a Java programs. Functions and function
blocks are representing operations such as comparison and
multiplication. In addition, FBD connections are used for the
flow of data through the FBD algorithm using connections and
thus we used them to calculate the number of operands in an
FBD program.

4) Information Flow Complexity: Henry and Kafura pro-
posed the use of a software complexity metric [13] that could
be applied at earlier stages of software development (e.g.,
during the software architecture modelling). IFC can be used
also to measure the information flow between procedures or
functions of a single program unit. Although IEC 61131-3
POUs (i.e., programs, functions and function blocks) are used
as independent program units, these can be represented as
software modules in the overall software architecture of a PLC
software system. IFC can be tailored by measuring the number
of defined inputs and outputs of an FBD functions or function
blocks. This provides a baseline IFC score of an FBD POU,
and that value can only increase when the POU is used in
other FBD programs. In addition, we compute fan-in using
the number of output parameters and fan-out using the number
of input parameters. The SLoC value was measured using the
NOE metric already defined in this paper.

C. Manual Testing and Test Effort

In this paper we use test cases for the individual TCMS
FBD programs, which have been manually created and used

for thorough testing performed by experienced industrial engi-
neers. Practically, we used 82 test suites created by industrial
engineers in Bombardier Transportation from a TCMS project
delivered already to customers. A test case created for an
FBD program contains a set of test cases containing inputs,
expected and actual outputs and timing information. Data
about these test cases was collected by using a post-mortem
analysis [21]. In testing FBD programs in TCMS, the testing
processes of software assurance are performed according to
safety standards and regulations. Requirement-based testing is
mandated by the EN 50128 standard [22] to be used to design
test cases with each test case contributing to the requirement
satisfaction. In addition, testers are required to create test cases
based on multiple goals such as their experience, negative test
cases as well as coverage-based test cases. Executing test cases
on TCMS is supported by a test automation framework. The
test cases collected in this study were based on functional
requirements expressed in a natural language.

Many factors affect the effort needed to test an FBD
program. According to Leung and White [23], testing involves
direct and indirect costs. A direct cost includes the time
needed for testing activities and the machine resources such
as the test infrastructure used. Indirect costs could include the
management of the testing process and the test tool devel-
opment. Ideally, the test effort is captured by measuring the
time required for performing all the different testing activities.
Since this is a post-mortem study of a deployed TCMS system
and the testing process was performed a few years back, we
used proxy measures capturing the context that directly affects
testing effort.

We note here that the number of test cases depends on the
testing strategy used but also on other contextual factors. A
test strategy that requires that every branch in the program
to be executed generally needs more tests than one which
only requires all statements of the program to be executed.
In this paper we consider that the test effort is related to the
number of test cases and the execution time needed to execute
such test cases. The higher the number of tests cases and the
test execution time, the higher is the respective test effort.
Practically, this is a measure of the test effort of industrial
engineers (working at Bombardier Transportation Sweden AB
testing the programs used in our study) to perform thorough
testing. The intuition is that a complex program will require
more effort for testing, and also more tests than a simple
program. Thus, the investigated hypothesis is that the test
effort is related to the same factor— the complexity of the
software which will influence the number of test cases and
test execution time.

IV. RESULTS

In this section, we quantitatively answer the two research
questions posed in Section I. As Section III explained, we
collected the data to answer these questions by computing the
complexity measures for the FBD programs considered; and
collecting the number of test cases in each test suite as well
as the test execution time.

20 40 60 80 100

10

20

30

40

50

Test Suite ID

N
um

be
r

of
te

st
ca

se
s

in
a

te
st

su
ite

20 40 60 80 100

50

100

150

200

250

300

Test Suite ID

Te
st

su
ite

ex
ec

ut
io

n
tim

e
[s

ec
]

Fig. 3: The number of test cases and the test execution time
plotted for each individual test suite created for all programs.

A. Complexity Measurements

Figure 3 shows some of the data collected for all FBD
programs, with each data point representing the number of
test cases in each test suite as well as the test case execution
time. Table I gives the descriptive statistics of the test data. We
can observe that the average test execution time is 32 seconds
while the test suite with the largest execution time takes 900
seconds. In addition, the average number of test cases in a test
suite is 8.5 with the largest test suite containing 31 test cases.

In addition, we measured software complexity of each FBD
program using the TIQVA tool. This resulted in a total of 15
measurements for all software complexity measures used in
this paper (NoE, CC, HC, IFC). TIQVA consisted of these 15
measurements for the selected 82 programs.

In Table II we show the results of measuring the complexity
of all FBD industrial control software. The different software
complexity measures cannot be directly compared with each
other. However, one program and its IFC score stands out with
a high value of IFC complexity. Actually, four FBD programs

Measure of Test Effort Min Max Average Median Standard Deviation

Number of test cases 1 31 8.5 6 6.2
Test execution time (sec.) 1 900 32.2 10 105.2

TABLE I: Results for both test effort metrics: the number of test cases in each test suite and the test execution time.

Software complexity measure Min Max Average Median Standard Deviation

Variables 4 85 22 18.5 14.7
Connections 3 216 33.8 25.5 32.5

Blocks 5 228 39 29.5 35.1
Number of elements (NoE) 12 483 94.8 74.5 80

Cyclomatic Complexity (CC) 1 133 18.9 13 21.8

Information flow complexity (IFC) 12 57065472 2690651 68506 8478907.8

Unique operators 8 19 11.4 11 2.6
Unique operands 9 262 59.5 47.5 47
Total operators 12 229 59.1 49.5 39.8
Total operands 12 402 86.3 69 71.1

Halstead Program vocabulary 17 278 71 60 48.5
Halstead Program length 24 599 145.5 117 110.1

Halstead Calculated Program Length 52.5 2168.7 413.2 309.1 385.6
Halstead Volume 98.1 4844.3 942.5 691.5 886.8

Halstead Difficulty 5.3 14.1 8.1 7.9 1.8
Halstead Effort 523.2 59747.4 8756.5 5470.9 10925.8
Halstead Time 29 3319.3 486.4 303.9 606.9

Halstead Delivered Bugs 0.02 0.5 0.1 0.1 0.09

TABLE II: Results for all software complexity metrics (i.e., Number of Elements (NoE), Cyclomatic Complexity (CC),
Information Flow Complexity (IFC) and Halstead) together with the basic measures used to calculated these metrics.

from TCMS showed high software complexity scores (i.e.,
Program 9, Program 60, Program 32 and Program 55). In
particular, Program 32 achieved high complexity scores for
NoE, CC, and Halstead (HC). Program 55 achieved the highest
NoE score, Program 60 the highest IFC score and Program 9
the highest Halstead Difficulty score. Upon closer inspection,
Program 32 has a very high number of input and outputs
parameters as well as elements and can be considered based on
all complexity scores the most complex program considered
in this paper.

In order to get a better view on the distribution of indi-
vidual metrics, we normalized the reported values (i.e., with
0 representing the lowest complexity score while 1 showing
the highest complexity score. The plots in Figure 4 show the
distribution of NoE and CC metrics. We can observe that two
outliers (Programs 32 and Program 55) show high NoE and
CC scores. The rest of the programs are scattered below the
0.5 threshold score. A similar result can also be seen when
considering IFC and Halstead Difficulty metrics. In Figure 5
we observe that IFC scores are very much polarized with quite
low scores for most of the programs. In Figure 6 we show an
area plot for two Halstead complexity measures (i.e., Halstead
Difficulty and Halstead Volume) which are used to construct
the rest of the other Halstead metrics (i.e., Effort, Testing Time
and Delivered Bugs). Both of the metrics shown in Figure 6
have a similar distribution for all the programs considered in
this study.

For all programs we used the following complexity mea-
surements: Number of Elements and Halstead Metric for
measuring the size, Cyclomatic Complexity for measuring

the structure and Information Flow Metric as an architectural
metric.

B. Is software complexity correlated with the number of test
cases and test suite execution time?

Research questions 1 and 2 asked if the test effort (i.e,
number of test cases and test execution time) is influenced
by the software complexity of the programs considered in this
study. Table III shows the Kendall correlation coefficients [24]
we computed to answer this question. Kendall rank corre-
lation is used as a measure of correlation between software
complexity scores and the test effort proxy scores. Since the
data is not normally distributed we use Kendall correlation
to not introduce unnecessary assumptions about the collected
data. We try to determine the possible statistical relationship
between software complexity and the test effort scores. We
used Kendall’s rank correlation coefficient to calculate the
statistical relationship between the scores with a significance
level of 0.05 since a statistically significant correlation does
not necessarily mean that the strength of the correlation is
strong. Here we use the Cohen scale [25], in which correlations
with absolute value less than 0.3 are described as weak, 0.3
to 0.5 as moderate, 0.5 to 0.9 as strong and very strong.

The two test effort proxy measures required the computation
of the correlation coefficients using R [26]. Table III shows
τ coefficients and p-values for the two proxy measures (i.e.,
E stands for test suite execution time and N stands for the
number of test cases in a test suite). A positive correlation
can be observed for four software complexity metrics (i.e.,
Halstead is shown as three separate complexity measures:

20 40 60 80

0.2

0.4

0.6

0.8

1

Program ID

N
oE

co
m

pl
ex

ity

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Program ID

C
yc

lo
m

at
ic

C
om

pl
ex

ity
(C

C
)

Fig. 4: Normalized scores for the Number of Elements (NoE)
complexity and Cyclomatic Complexity (CC) for all consid-
ered programs.

Software complexity metrics τE p-valueE τN p-valueN

Number of Elements 0.342 8.192e−6 0.368 2.315e−6

Cyclomatic Complexity 0.225 0.003 0.252 0.001358
Information Flow Metric 0.264 0.0005 0.345 9.116e−06

Halstead Volume 0.328 1.878e−5 0.351 6.25e−6

Halstead Difficulty 0.208 0.006 0.125 0.1061
Halstead Effort 0.320 2.882e−5 0.320 3.876e−5

TABLE III: Kendall correlation coefficient (τ) and p-value
between software complexity metrics and the test effort. The
test effort was expressed by two proxy scores: test suite
execution time (E) and the number of test cases in a test suite
(N).

Difficulty, Volume and Effort). We should note here that the
p-valueN for Halstead Difficulty is 0.1, thus showing that for
this measure the correlation is not strong. Overall, the results
show that all coefficients, except for Halstead difficulty mea-
sure, are significant. Table III gives the correlation between

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Program ID

In
fo

rm
at

io
n

Fl
ow

M
et

ri
c

20 40 60 80

0.2

0.4

0.6

0.8

1

Program ID

H
al

st
ea

d
ef

fo
rt

co
m

pl
ex

ity

Fig. 5: Normalized scores for the Information Flow Metric
(IFC) and Halstead Effort Complexity for all considered
programs.

the different complexity scores and the test suite execution
time and the number of test cases measures of test effort. For
all programs, we see a low to moderate correlation between
software complexity and the number of test cases created
as well as for the test suite execution time (with a highest
correlation coefficient of 0.368 for the Number of Elements
(NoE) metric). These results show that there is a statistical
relationship between software complexity measures and test
effort measures for FBD programs and test data for a real
industrial system engineered by Bombardier Transportation
Sweden AB. The NoE metric achieved the highest correlation
score. Interestingly enough, the cyclomatic complexity metric,
a structure metric, obtained a lower correlation than NoE size
metric. This can be taken as an argument in favor of not
measuring the structure of FBD programs in this way.

20 40 60 80

0.5

1

1.5

2

Program ID

H
al

st
ea

d
M

et
ri

cs Volume
Difficulty

Fig. 6: A normalized area plot showing two Halstead metrics
(i.e., Volume and Difficulty) with a similar distribution of
scores across all programs in TCMS.

Our results suggest that, for 82 industrial programs,
there is a low to moderate correlation between the test
effort (i.e., the number of created test cases and the test
execution time) and the software complexity of a pro-
gram. The size of the software (i.e., number of elements
measure) provides the highest correlation with the test
effort.

C. Discussions

We examined a train control software, which is a valid and
representative case for industrial software and IEC 61131-
3 FBD software used in the embedded system domain. By
using the complexity measurement results and the test effort
dedicated for testing the software (i.e., the number of tests
cases of a test suite and the execution time of a test suite),
we indicated that there is a statistical relationship between
software complexity and test effort. However, the correlation
is low to moderate (i.e, 0.368 Kendall’s τ coefficient is the
highest correlation score). There are indications that higher
FBD software complexity does not imply a higher test effort.

As an effort to implement a test effort prediction model,
we designed a linear regression model of the test effort using
several software complexity metrics. The idea is to predict
a dependent variable using correlated independent variables.
We use a linear regression [27] (i.e., multiple linear regression
(multiple independent variable)) to show how the results and
the TIQVA tool can be used predict the test effort required
for adequate testing. In practice, we used a linear regression
model of the test effort measure using the following measures:

β1C1 + β2C2 + · · ·+ βn−1Cn−1 + βnCn = Tmeasure, (1)

where the test effort measure Tmeasure is a linear function
of different weighted software complexity scores Cns. The
linear regression model shown in equation 1 could be used
to predict the test effort for an industrial control software
after determining the weight values (βs), and it requires an
existing set of software complexity measurements and a test
effort measure to be solved.

0 5 10 15 20 25 30
Predicted Number of Test Steps

0

5

10

15

20

25

30

M
ea

su
re

d
Nu

m
be

r o
f T

es
t S

te
ps

Measured Test Effort
Predicted Test Effort

0 200 400 600 800
Predicted Test Case Execution Time

200

0

200

400

600

800

M
ea

su
re

d
Te

st
 C

as
e

Ex
ec

ut
io

n
Ti

m
e

Measured Test Effort
Predicted Test Effort

Fig. 7: Graphs showing the predictions of the trained linear
regression model for the test effort proxy measures (i.e.,
number of test cases and test suite execution time).

Using the previously measured software complexity scores
for the 82 FBD programs as the input data set and the two test
effort proxy measures as the output data set, we determined
the weights using a Python machine learning library [28]. We
used the Linear Regression module to determine the weights
as well as to assign a variance score (i.e., the amount of correct
predictions of the model with 1.0 being the highest score). Two
regression models have been developed based on the previous
equation (i.e., Equation 1) and several complexity metrics for
FBD programs:

βNoECNoE + βCCCCC + βHECCHEC + βIFMCIFC = TN (2)

βNoECNoE + βCCCCC + βHECCHEC + βIFMCIFC = TE, (3)

where NoE is the Number of Elements, CC is the Cyclo-
matic Complexity, HEC is the Halstead Effort Complexity,

Test Effort Measures βNoE βCC βHEC βIFM MSE Score
Number of Test Cases 1.118e−7 4.69e−2 −6.528e−4 1.36e−7 17.31 0.55

Test Suite Execution Time 1.92 −1.4 −3.82e−3 −5.56e−6 5077.68 0.54

TABLE IV: The complexity weights, mean square error of predictions based on the weights and the variance score of these
predictions.

IFC is the Information Flow Complexity, N and T stand for the
number of test cases and test suite execution time respectively.
Only Effort has been taken into account from the different HC
metrics.

Based on our results, we assumed that the linear regression
model will not have a high prediction accuracy considering
the low to moderate correlation between software complexity
metrics and test effort. After examining the trained linear
regression model using the full data set of 82 programs for
training and for testing the model, we report the results in
Table IV. These results show that only half of the test effort
predictions were accurate. The mean squared value was low
when the model tried to predict the number of test cases
and significantly higher for the test suite execution time. This
can be explained by the non-linear and irregular values of
the execution time test effort shown in Figure 3. Another
characteristic of the model is the achieved higher β weight
value for the Number of Elements (NoE) messure in both
models.

Figure 7 shows the predictions (in blue scatter points) of
the test effort in contrast to the measured test effort (black
line). Although the predictions of the test execution time
are similar to the predictions for the number of test cases,
these are clustered around one area (i.e., lower test execution
time), while the number of test cases is distributed across
the complete test effort scores spectrum. This shows that a
test effort estimation can be made using software complexity
measurement scores. Since test cases in industry are designed
using different information sources (e.g., in the safety critical
domain using functional specifications and human domain
knowledge), one would need to include other metrics for
predicting the test effort. The results are promising, but but
we only achieved a rough estimator. However, researchers
and practitioners should fine tune this kind of estimations by
taking into account other metrics for software artifacts (e.g.,
specification, test knowledge) which are heavily influencing
the overall test effort.

V. THREATS TO VALIDITY

Industrial control software used in PLCs can be pro-
grammed in a wide variety of programming languages, such
as IEC 61131-3 FBD and ST languages. In this paper, we
examined how software complexity metrics can be applied
on industrial control software developed using FBDs in one
company (i.e., Bombardier Transportation Sweden AB), thus
narrowing the scope of the study. However, we argue that the
examined software (TCMS) shows general characteristics of
the safety-critical industrial domain.

The set of software complexity metrics chosen to be used on
FBD programs is not complete by any means. We did not used

other complexity measures such as entropy [29], Kolmogorov
complexity [30]. The purpose of this paper is to explore the
test effort relation with software complexity. This is a first step
in an effort in this endeavour.

The test effort is not straightforward to measure and requires
knowledge of the multiple phases performed during software
testing including test creation. In this study we focus on two
proxy measures for test effort. More studies are needed to
generalize the results of this paper.

VI. CONCLUSION

This paper presents an initial exploration on how software
complexity can be applied on industrial domain-specific soft-
ware written in the FBD graphical programming language.
We used four, well known, software complexity metrics. We
studied the relationship between test effort (i.e., number of test
cases and test execution time of a program’s test suite) and
the program complexity scores From the 82 industrial FBD
programs we studied, we drew the following conclusions:

• There is a low to moderate correlation between the effort
needed to test a program and its complexity.

• The size of the software in terms of the number of
elements provides the highest correlation with the test
effort.

The results from the study also indicate that other aspects
than code complexity might be required to better capture the
relationship between the implemented and specified software
artifacts and test effort. Also, other complexity dimensions of
the FBD programs (e.g., function block relationships, block
coupling and timing) could be used to improve the measure-
ment of complexity for an FBD program.

ACKNOWLEDGMENT

This work is partially funded from the Electronic Compo-
nent Systems for European Leadership Joint Undertaking un-
der grant agreement No. 737494 and The Swedish Innovation
Agency, Vinnova (MegaM@Rt2).

REFERENCES

[1] V. R. Basili and B. T. Perricone, “Software errors and complexity: an
empirical investigation0,” Communications of the ACM, vol. 27, no. 1,
pp. 42–52, 1984.

[2] J. E. Gaffney, “Estimating the number of faults in code,” IEEE Trans-
actions on Software Engineering, no. 4, pp. 459–464, 1984.

[3] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software
maintainability prediction and metrics,” in Proceedings of the 2009
3rd International Symposium on Empirical Software Engineering and
Measurement. IEEE Computer Society, 2009, pp. 367–377.

[4] W. Bolton, Programmable logic controllers. Newnes, 2015.
[5] K.-H. John and M. Tiegelkamp, IEC 61131-3: programming industrial

automation systems: concepts and programming languages, require-
ments for programming systems, decision-making aids. Springer
Science & Business Media, 2010.

[6] T. Mens, “Research trends in structural software complexity,” arXiv
preprint arXiv:1608.01533, 2016.

[7] A. Abran, Software metrics and software metrology. John Wiley &
Sons, 2010.

[8] E. J. Weyuker, “Evaluating software complexity measures,” IEEE trans-
actions on Software Engineering, vol. 14, no. 9, pp. 1357–1365, 1988.

[9] M. Shepperd, “A critique of cyclomatic complexity as a software metric,”
Software Engineering Journal, vol. 3, no. 2, pp. 30–36, 1988.

[10] D. Kafura and G. R. Reddy, “The use of software complexity metrics
in software maintenance,” IEEE Transactions on Software Engineering,
no. 3, pp. 335–343, 1987.

[11] K. Kevrekidis, S. Albers, P. J. Sonnemans, and G. M. Stollman,
“Software complexity and testing effectiveness: An empirical study,” in
Reliability and Maintainability Symposium, 2009. RAMS 2009. Annual.
IEEE, 2009, pp. 539–543.

[12] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[13] S. Henry and D. Kafura, “Software structure metrics based on infor-
mation flow,” IEEE transactions on Software Engineering, no. 5, pp.
510–518, 1981.

[14] M. Olszewska, Y. Dajsuren, H. Altinger, A. Serebrenik, M. Waldén,
and M. G. van den Brand, “Tailoring complexity metrics for simulink
models,” in Proccedings of the 10th European Conference on Software
Architecture Workshops. ACM, 2016, p. 5.

[15] A. Muslija, “amuslija/fbd-complexity-tool 0.0.2,” May 2017. [Online].
Available: https://doi.org/10.5281/zenodo.580762

[16] M. H. Halstead, Elements of software science. Elsevier New York,
1977, vol. 7.

[17] C. L. McClure, “A model for program complexity analysis,” in Pro-
ceedings of the 3rd international conference on Software engineering.
IEEE Press, 1978, pp. 149–157.

[18] D. N. Card and R. L. Glass, Measuring software design quality.
Prentice-Hall, Inc., 1990.

[19] A. H. Watson, D. R. Wallace, and T. J. McCabe, Structured testing: A
testing methodology using the cyclomatic complexity metric. US De-
partment of Commerce, Technology Administration, National Institute
of Standards and Technology, 1996, vol. 500, no. 235.

[20] T. J. McCabe and C. W. Butler, “Design complexity measurement and
testing,” Communications of the ACM, vol. 32, no. 12, pp. 1415–1425,
1989.

[21] R. Conradi and A. I. Wang, Empirical methods and studies in software
engineering: experiences from ESERNET. Springer, 2003, vol. 2765.

[22] CENELEC, “50128: Railway Application: Communications, Signaling
and Processing Systems, Software For Railway Control and Protection
Systems,” in Standard Official Document. European Committee for
Electrotechnical Standardization, 2001.

[23] H. K. Leung and L. White, “A cost model to compare regression test
strategies,” in Software Maintenance, 1991., Proceedings. Conference
on. IEEE, 1991, pp. 201–208.

[24] M. G. Kendall, “Rank correlation methods.” 1948.
[25] J. Cohen, “Statistical power analysis for the behavioral sciences. 2nd,”

1988.
[26] “Kendall rank coefficient — r tutorial,” http://www.r-tutor.com/gpu-

computing/correlation/kendall-rank-coefficient, (Accessed on
04/27/2017).

[27] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear
regression analysis. John Wiley & Sons, 2015.

[28] “scikit-learn: machine learning in python scikit-learn 0.18.1
documentation,” http://scikit-learn.org/stable/index.html, (Accessed on
04/29/2017).

[29] C. E. Shannon, “Prediction and entropy of printed english,” Bell Labs
Technical Journal, vol. 30, no. 1, pp. 50–64, 1951.

[30] A. N. Kolmogorov, “On tables of random numbers,” Sankhyā: The
Indian Journal of Statistics, Series A, pp. 369–376, 1963.

