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Abstract: Component-based development is a software engineering paradigm that can facilitate
the construction of embedded systems and tackle its complexities. The modern embedded systems
have more and more demanding requirements. One way to cope with such a versatile and growing
set of requirements is to employ heterogeneous processing power, i.e., CPU–GPU architectures.
The new CPU–GPU embedded boards deliver an increased performance but also introduce additional
complexity and challenges. In this work, we address the component-to-hardware allocation for
CPU–GPU embedded systems. The allocation for such systems is much complex due to the
increased amount of GPU-related information. For example, while in traditional embedded systems
the allocation mechanism may consider only the CPU memory usage of components to find an
appropriate allocation scheme, in heterogeneous systems, the GPU memory usage needs also to be
taken into account in the allocation process. This paper aims at decreasing the component-to-hardware
allocation complexity by introducing a two-layer component-based architecture for heterogeneous
embedded systems. The detailed CPU–GPU information of the system is abstracted at a high-layer by
compacting connected components into single units that behave as regular components. The allocator,
based on the compacted information received from the high-level layer, computes, with a decreased
complexity, feasible allocation schemes. In the last part of the paper, the two-layer allocation method
is evaluated using an existing embedded system demonstrator; namely, an underwater robot.

Keywords: embedded systems; software component; component-based development; CBD;
GPU; GPU component; allocation; component allocation; architecture layer

1. Introduction

Nowadays, embedded systems become more and more common in the daily life. Modern
embedded systems, characterized by new and demanding functionalities, deal with huge amount of
information resulted from the interaction with the environment. For instance, the Google autonomous
car ( i.e., the Waymo project) handles 750 MB of data per second that is produced by its sensors
(e.g., LIDAR). The huge amount of information needs to be processed with a particular performance,
in order to satisfy the system requirements. For example, the autonomous Google car needs to process
its captured data in real-time in order to detect various objects and pedestrians, to avoid accidents.
One solution to enhance the processing capacity of embedded systems comes from the usage of
embedded boards with Graphics Processing Units (GPUs). A GPU is a processing unit that is equipped
with hundreds of computation threads, excelling in parallel data-processing.

Although, on one side, the use of GPU increases the system (parallel-processing) performance,
on the other side it increases the complexity of the system design. In particular, the software-to-
hardware allocation is already not an easy task: when having several processing units of different
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kinds and with different capabilities, a major design challenge will then be in finding an optimal
allocation of software artifacts (e.g., components) onto the processing units in a way that system
constraints are also met and not violated. For allocating a set of n software artifacts onto m processing
units, a total number of mn combinations are to be considered [1]. The challenge, as mentioned, is then
to find, from all combinations, a single permutation as an optimal allocation scheme with respect to the
constraints and characteristics of the system. With the GPU in the landscape, the allocation becomes
even more complicated and challenging. The software is characterized now, besides the properties
regarding the CPU resources, with properties that refer to GPU such as the GPU memory usage or the
execution performance on the GPU. Similarly, the platform also has characteristics regarding the CPU
but also the GPU hardware. Hence, the allocation challenge is increased due to the extra application
properties and hardware characteristics that must be considered. In short, the challenge of finding
optimal allocations of software artifacts to hardware has increasingly attracted attention, especially
with the advent and growing prevalence of heterogeneous hardware platforms and increasing use of
software in mission-critical applications. In [2], for instance, Baruah has discussed the challenge of
allocating a set of recurring tasks in real-time systems onto processing units of different kinds while
respecting all timing constraints, and has identified this to be an NP-hard problem. One way to relieve
the allocation challenge and cope with its complexity is by managing the amount of information that is
fed to the allocator to make allocation decisions. This is the main topic and solution that we introduce
and investigate in this paper. In other words, in this current work we do not focus mainly on how to
derive and what will be an optimal allocation scheme for a system (which is the main focus in [1,3]),
but rather how the burden on the allocator can be relieved to relax the complexity of the allocation
process in general.

In this work, we use the component-based development (CBD) to construct embedded systems
with GPUs. In general, this software engineering methodology promotes the construction of
applications by composing existing software units called software components. CBD is used and
promoted in industry to construct embedded systems; such as in AUTOSAR [4] which is now the
de-facto standard in automotive industry, and IEC 61131 [5] used to develop programmable logic
controllers (PLCs). In the context of component-based embedded systems with GPUs, we focus on
the component-to-hardware allocation, proposing a semi-automatic allocation method. When using
platforms with GPUs, the allocation challenge increases even more due to the (higher) complexity
of the software and hardware. The software in such systems is composed of: (i) (traditional)
components that have requirements on common resources (e.g., CPU load, RAM memory usage),
and (ii) (GPU-specialized) components that have GPU requirements (e.g., number of GPU threads
usage). These GPU-specialized components, although they contain small CPU functionality
(e.g., activities to trigger execution on GPU), are seen as components with only GPU computation.
Having a pool of (CPU and GPU-based) components, many alternatives with the same functionality
may result. For example, a vision system may have two alternatives, where one alternative contains
only components with CPU functionally, while the other alternative contains only components with
GPU computations. Regarding the hardware, the platform encloses, besides the traditional CPU,
the GPU that has different characteristics such as the available GPU memory.

The aim of our work is to alleviate the allocation challenge by mitigating the increased amount
of (software and hardware) information. In the context of applications with multiple alternatives,
and CPU–GPU hardware, the allocator does not need to take in consideration all the system information.
For instance, the information that describes the component communication from inside the alternatives
may be neglected. An implicit constraint considered in this work is, due to the closely connected
nature of the GPU to the CPU, the allocator needs to deploy a (entire) variant that has GPU
computations, onto a CPU–GPU processing node. Enforcing this requirement improves the overall
system performance.
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As a solution, we propose a two-layer architecture to decrease the allocation effort. Both layers
describe a same system that has GPU computation; the difference resides in the level of information
that characterize each layer. The first layer, seen as regular description of the architecture, encloses
all information (e.g., component communication links) of all alternatives. The second layer compacts
different alternatives with the same functionality into single components with multiple variants.
Each of the variants of the resulted components, is characterized by a set of properties that reflect the
requirements of all components contained by its corresponding alternative.

To abstract certain information, the allocator uses the first layer description and selects a suitable
component alternative. Once the allocation scheme is computed, the selected alternative is unfolded
with the corresponding structure from the second layer. The core idea of a two-layer allocation method
is to decrease the information load and constraints that may increase the overhead of the allocator.
Another benefit of our solution is the increased scalability characteristic, where our allocator may
handle more complex systems (e.g., characterized by a high number of components) due to the decrease
of the information and constraints load.

In this work, we use in the evaluation section an already existing (constraint-based) allocator that
we constructed in a previous work [3]. Our approach is independent of what allocator is used or how
it is implemented. By proposing the two-layer allocation design, we improve the scalability of the
allocator used for heterogeneous CPU–GPU systems, and decrease its burden.

The remaining of the paper is organized as follows. Section 2 introduces the context details of
this work. Furthermore, the section presents a running example, and, based on it, a way to develop
component-based systems for heterogeneous embedded systems. The overview of our method is
described in Section 3 while Section 4 evaluates our method using the introduced running example.
Related work is covered by Section 5 followed by conclusions and future work in Section 6.

2. Component-Based Design for Heterogeneous CPU–GPU Architectures

The growing complexity and size of embedded systems emphasizes the use of appropriate
development methods that can cope with these issues and scale well. Component-Based Development
(CBD) is a promising approach in this regard which promotes building a system out of already
existing components, as opposed to building it from scratch. In other words, CBD enables reusability
in software development by building a system as an assembly of components [6,7] selected from
a repository of verified existing components. Considering the constraints of embedded systems in
terms of available resources, how software components are allocated onto the hardware platform can
play an important role in the performance of the system and optimal use of the resources. This is,
however, not a trivial task and as the number of software components as well as processing units
and computing nodes on the hardware platform increases, different combinatorial allocation schemes
need to be evaluated in order to determine an appropriate one. For this reason, having an automated
solution for evaluation of allocation schemes is necessary. One aspect that adds to the challenge of
allocating software components onto hardware platforms is the move towards the use of heterogeneous
hardware architectures such as multi-core CPU and GPU. Use of GPUs along with CPUs is particularly
interesting as it can provide increased computation power and diversity due to the parallel processing
capability of GPUs. This brings along additional constraints that need to be taken into account for
allocation of software components to hardware. For instance, a GPU cannot be used independently of
a CPU, and it is the CPU that triggers all GPU specific operations such as data transfer between the
main memory unit (i.e., RAM) and the GPU memory system. Therefore, there is constant and high
communication between these two processing units.

From the perspective of the processing unit, software components can be categorized as: (i) those
that require only CPU for their functionality (ii) components that use GPU (in addition to CPU) to
fulfill their functionality. For the rest of the paper, these types of components will be referred to as
GPU components. A specific functionality may be implemented as any of these component types.
Therefore, in the component repository both types of components may exist as different implementation
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versions of a specific function. For instance, for an image processing component we may have three
different implementation versions in the repository; one that uses CPU only (type i), and two others
as GPU-based implementations that require GPU as well (type ii). Each of these three versions can
have different properties and characteristics in terms of resource usage and utilization. For example,
the two GPU-based component implementations can have different resource usage properties with
respect to GPU memory and GPU computation threads.

In the next paragraphs, we introduce a case study that will be used to present our solution.
The case study is an underwater robot [8] that autonomously navigates under water and executes
various missions such as finding buoys. The robot is a typical embedded system that contains
sensors (e.g., cameras), an embedded board with an incorporated GPU, and actuators (e.g., thrusters).
An interesting part of the robot is the vision part which is described in Figure 1. The vision
(sub-)system is developed with a state-of-practice component model i.e., the Rubus component
model [9]. This particular component model follows a pipe-and-filter interaction style, where each
component computes its received data and sends it to the next connected component(s). The vision
system consists of six components as follows. The first two components (i.e., Camera1 and Camera2)
receive raw data from two camera sensors, convert it into readable color (i.e., RGB) frames and forward
it to the MergeAndEnhance component. After the two frames are merged into a single RGB frame and
its noise is reduced, the ConvertGrayscale component converts it into a grayscale format and sends it
to the EdgeDetection component. This component converts the frame into a black-and-white frame,
where the white lines delimit the objects from the frame. Finally, the ObjectDetection component detects
a particular object, such a buoys.

 Camera1

Camera2

Merge
And

Enhance

Convert
Grayscale

Edge
Detection

Object
Detection

Sync
Sensor

Camera1

Sensor
Camera2

…

Figure 1. The vision system of an underwater robot.

Due to the fact that several components (i.e., MergeAndEnhance, ConvertGrayscale, EdgeDetection
and ObjectDetection) have functionalities (i.e., image processing) that can be executed on the GPU,
the vision system may have different alternatives. Figure 2 presents possible alternatives of the vision
system. Assuming that we have a repository with ten components where there are components with
the same behavior but constructed to be executed on different processing units (i.e., either on CPU or
GPU). For instance, there is the EdgeDetection(GPU) component that is constructed to be executed on
the GPU and there is EdgeDetection(CPU) that has the same behaviour but it requires to be executed on
the CPU. The total amount of alternatives that can be constructed by using the repository components
is six, as illustrated in the figure. The first alternative, where all components are executed on the
CPU, has a low performance but also zero-demand on the GPU. This alternative can be selected to
be used in a system that is not equipped with a GPU or in a system that possesses a GPU but it is
used by a different part of the system. The last alternative, containing four components that need to
be executed on the GPU, has the highest performance compared to the rest of the alternatives but
it also has high GPU requirements (e.g., GPU memory and computation threads usage). The other
four possible alternatives contain variations of components with different requirements on the CPU
and GPU.

In this context where there are several alternatives and each one contains different components
versions characterized by distinct characteristics, the information load on the allocator is much,



Designs 2019, 3, 6 5 of 14

influencing, in a negative way, the allocation efficiency. Furthermore, because of the tight connection
between CPU and GPU, the components executed on a GPU are desired to be placed, alongside
with their connected CPU-based components, on the same CPU–GPU chip. In the opposite case,
placing a GPU-component on a different CPU–GPU chip than its connected CPU-component brings
additional communication overhead which negativly influences the system performance. In general,
the allocation complexity is directly influenced by the number of considered alternatives and by the
number of the components and their versions included in the alternatives.
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Figure 2. The vision system alternatives. GPU, graphics processing units; CPU, central processing unit.

3. Solution Overview

To diminish the burden of the allocation process, we introduce a two-layer allocation method.
The layers correspond to a two-layer architecture view of the system, where the bottom layer
describes a detailed system (i.e., composition of different component versions), while the top
layer abstracts the complexity of the detailed system, by compacting the resulting alternatives into
units (i.e., multi-variant units) that behave as regular components. The resulted components are
characterized by different alternatives, where an alternative contains the properties that correspond to
all its enclosed components.

Figure 3 depicts the vision system alternatives compacted into a multi-variant component where
each alternative is characterized by set of properties. These properties are derived from the properties of
the enclosed components. For instance, the alternative 6 where there are four GPU-based components,
is characterized by a GPU memory property that describes the GPU memory usage of the enclosed
components. This property is derived by e.g., summing the GPU memory usage of all four GPU-based
components. As the GPU threads are highly reusable between GPU-based components, the alternative
property that describes the number of GPU threads usage is the highest value of threads usage among
the four GPU-based components. Furthermore, some attributes may be abstracted away. For example,
due to the fact that connected (CPU- and GPU-based) components are enclosed together into single
units and implicitly they will be allocated on the same CPU–GPU chip, the bandwidth property
required for data transfer between two connected components, is abstracted away.

Figure 4 illustrates the overview description of our solution, that contains six stages as follows:

1. The first stage refers to the component pool from which the system developer constructs the
application. The components from the repository may be provided by a 3rd-party or developed
in-house. The repository contains regular (CPU-based) components but also components with
GPU capability. For instance, there are two component versions (i.e., C2 GPU and C2 CPU) with
the same behaviour but different (hardware) requirements.
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2. Using the available components from the repository, the system architect composes them in
different alternative systems, as described in the second stage. For example, while the first
alternative uses C1 GPU, the second system alternative contains C1 CPU. All the system
alternatives have the same behavior and different requirements. For example, while the first
alternative requires GPU memory for two components, the second alternative has only one
component with GPU requirement.

3. The third stage compacts all the component variants into multi-variant components. For example,
the several alternatives that contain three components are grouped into a unit with different
alternatives. These alternatives have the same functionality but with different (CPU and
GPU) requirements. This is a simplified system architecture in which we abstracted away
some information.

4. The information from the previous stage is forwarded to an allocator which we assume it already
exists. Our approach is independent of how the allocator itself is implemented and based on
which solver. Other information is fed to the allocator such as the description of the platform
or different system constraints. In this stage, the allocator computes component-to-hardware
allocation schemes where each component is mapped to a single processing unit.

5. The fifth stage describes the system architecture based on the result computed by the allocator.
The architecture contains only (single-variant) components, that is each component has a single
set of requirements and is allocated to a particular processing unit.

6. The last stage contains a fully detailed system architecture where the (single-variant) components
from the previous stage are unfolded (when it is possible). The figure illustrates the detailed
system architecture where the alternative selected by the allocator is unfolded into three connected
components, i.e., C1 GPU, C2 GPU and C3 CPU.

6
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Figure 3. A multi-variant vision component.

In general, using a simplified version of the system architecture decreases the amount of
information forwarded to the allocator, and hence, the allocation complexity. The simplified version is
obtained by applying a high-level layer on top of the detailed architecture layer. Instead of describing
each component by a set of requirements as it is done in the detailed layer, connected components are
grouped into units with the same functionality, that behave as regular components, and are described by
a condensed number of properties as it is achieved in the high-lever layer. Furthermore, some desired
allocation constraints may be automatically taken care of and provided as a by-product of our method.
For example, instead of specifically requesting that connected CPU–GPU components to be allocated
together onto the same CPU–GPU chip units (e.g., to improve the system performance), our method
implicitly introduces this request by compressing the components into single (component-like) units.



Designs 2019, 3, 6 7 of 14

We construct our solution around an existing allocator. The (mathematically defined) model of the
allocator is based on constraints and optimization goals. The constraints assure that the allocator does
not use more than existing hardware resources such as the memory required by all the components
placed on a platform does not exceed the available physical memory. The optimization goals allow the
user to determine essential features of the system such as performance. The actual allocation is done
by using a constraint solver, the details of which we have described in a previous paper [3].
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Figure 4. The overview description of our solution.

4. Evaluation

In this section, we analyze our solution in two parts. In the first part, we look into the feasibility
aspect where the proposed solution is implemented using an existing system. The second part analyzes
the scalability aspect of the solution.

4.1. Feasibility

To analyze the feasibility of our solution, we apply our allocation method on the underwater
robot, partially introduced in Section 2. The robot contains two connected embedded controller boards:
(i) a System-on-Chip board that contains a CPU–GPU chipset, and (ii) a regular board with a one-core
ARM CPU. The boards communicate via a Controller Area Network (CAN) bus, and are connected to
various sensors (e.g., cameras, pressure sensor) and actuators (e.g., thrusters). We characterize each
board by a set of properties as follows:

• availMem represents the available memory of the board, and is measured in megabyte (MB).
• availCpu represents the available load of the CPU and its value is compared to a reference unit

(e.g., 1 Cpu load unit is a particular amount of work over a period of time).
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• availGpu represents capacity of a GPU. As a metric we use the amount of threads a GPU
has. Although it is not an accurate description, we use this measurement unit to characterize,
at a high-level, the GPU power.

A high-level model of the underwater robot is presented in the right-hand side of Figure 5.
We notice that for the board that has only a (one-core) CPU, the GPU-related property (i.e., availGpu) is
set to zero.

The robot is equipped with two vision systems, the front system using two from cameras
and the bottom system using a single bottom camera. For both vision systems we constructed
different CPU- and GPU-based components as follows. The front vision functionality merges two
RGB frames, converts the merged frame into the grayscale format, applies an edge-detection filter
and detects the objects from the frame (for more details see Section 2). To construct the functionality,
we developed: (i) six CPU-based components (i.e., Camera1, Camera2, MergeAndEnhance CPU,
ConvertGrayscale CPU, EdgeDetection CPU and ObjectDetection GPU), and (ii) four GPU-based
components (i.e., MergeAndEnhance GPU, ConvertGrayscale GPU, EdgeDetection GPU and
ObjectDetection GPU).

The bottom vision has a similar functionality. Due to the fact that there is only one camera, there
is no need to merge frames. Therefore, to construct the bottom vision functionality, we reused four of
the components developed for the front vision. In this case, there are: (i) four CPU-based components
(i.e., Camera1, ConvertGrayscale CPU, EdgeDetection CPU and ObjectDetection GPU), and (ii) three
GPU-based components (i.e., ConvertGrayscale GPU, EdgeDetection GPU and ObjectDetection GPU).

Besides the vision systems, five more CPU-based components are also needed. The VisionManager
component takes vision decisions based on the data received from the front and bottom vision systems.
DecisionCenter is the brain of the system which controls, based on the information received from
VisionManager, the system settings (e.g., water pressure) and selects between the robot missions
(e.g., find red buoys). The robot thrusters are managed by the MovementNavigation component that
maneuvers the underwater robot using the data received from the DecisionCenter component.

Each component is characterized by the following properties:

• reqMem characterizes the memory usage requirement of a component and is measured in MB.
• reqCpu presents the CPU usage requirement of a component.
• reqGpu describes the component GPU usage requirement and is measured in number of threads.
• Exec is related to the performance of the component and describes the execution time expressed

in milliseconds.

These components, constructed by the component developer, are placed into a Component
repository which is illustrated in the upper part of Figure 5. The system developer uses the available
components and constructs the system architecture. The (front and bottom) vision systems have
multiple alternatives as illustrated in Figure 5. Each alternative has a distinct set of properties and
when all alternatives are combined into a single multi-variant component, the properties are described
as a sequence of values. Each value of the sequence represents the resource usage of the corresponding
variant. For example, the FrontVision multi-variant component requires, for its first alternative
(i.e., all CPU-based components), 6 MB of memory, 0.6 CPU load, 0 GPU threads and has an execution
time of 22 ms.

Our solution is constructed around an existing allocator. In the following paragraphs,
we introduce the formal model of the allocator. It contains three parts, i.e., the input, the constraints
and the optimization function, as follows.
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1. The input part describes the software components and the platform. Let be C a set of n software
components, and four functions reqMem : C → Q+, reqCpu : C → Q+, reqGpu : C → Q+ and
Exec : C → Q+, where:

reqMem(c) = the required memory of component c

reqCpu(c) = the CPU workload required by component c

reqGpu(c) = the GPU threads required by component c

Exec(c) = the execution time of c

The platform is characterized by a set H of k computation nodes (i.e., either CPU or CPU–GPU
based), and three functions useMem : H → Q+, useCpu : H → Q+ and useGpu : H → Q+, where:

useMem(h) = the usable memory on node h

useCpu(h) = the CPU capacity on node h

useGpu(h) = the available number of GPU threads on node h

2. The constraints are defined in order to ensure a feasible allocation. Given the allocation function
allocation : C → H, we define the following constraints:

• The usable memory of a node h should not be exceeded by the summed required memory of
components placed on h.

∀h ∈ H
(

∑c∈{c|c∈C∧allocation(c)=h} reqMem(c) ≤ useMem(h)
)

• The usable CPU workload of a node h should not be exceeded by the summed required
workload of components placed on h.

∀h ∈ H
(

∑c∈{c|c∈C∧allocation(c)=h} reqCpu(c) ≤ useCpu(h)
)

• The total amount of GPU threads of a node h should not be exceeded by the summed number
of threads required by the components placed on h.

∀h ∈ H
(

∑c∈{c|c∈C∧allocation(c)=h} reqGpu(c) ≤ useGpu(h)
)

3. The optimization function:

P(allocation) = ∑c∈{c|c∈C∧allocation(c)=h} Exec(c)

provides the best performance of the allocation:

minimize (P)

The system properties and the constraints and optimization goal are fed to the allocator that
computes allocation schemes. The allocation model alongside with all its required information
(i.e., system properties, constraints and optimization goals) are translated into the IBM-CPLEX
solver. The advantage of employing a mathematical solver is that the computed solution is optimal.

The front vision is considered the main vision of the robot, while the bottom vision is seen as
a secondary system being activated when e.g., the main vision does not detect any objects. Therefore,
the front vision priority is higher in accessing the GPU resources. The allocator computes allocation
schemes as presented in Figure 5, where both of the vision systems are allocated onto the H1, and the
rest of the system is allocated onto H2. With a higher priority, the front vision accesses more GPU
resources (i.e., threads) than the bottom system.
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Figure 5. The allocation process of the underwater robot.

The optimal result computed by the CPLEX solver is (partially) described in Figure 6 where
the selected front vision alternative contains four GPU-based components and the bottom vision
alternative contains only one GPU-based component. The system description corresponds to the
detailed architecture view, where the selected single-variant components are unfolded.
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Figure 6. The allocation scheme result with unfolded variants.

The computed solution is a feasible system considering the available hardware resources and the
configured optimization goals.
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4.2. Scalability

For the scalability analysis we designed a test system composed of n + 1 chained components.
Each of the first n components has two versions with the same functionality, i.e., one version with
CPU-based functionality and the other with GPU-based functionality. For this part of the evaluation,
we compare two versions of the system, where one version (referred as the naïve system) contains
a chain of n + 1 components, and the other version contains a multi-variant component.

The multi-variant component is constructed from the different alternatives that result from
composing different component versions. For simplicity, we consider only a two-variant component,
where one alternative contains all n components with CPU-based functionality, while the other
alternative contains all n components with GPU-based functionality, as illustrated by Figure 7.
Each individual component is characterized by memory usage, CPU usage, GPU thread usage and
execution time. The multi-variant component is characterized by a set of properties derived from
the enclosed individual component properties, where each property is described as a sequence of the
values (i.e., one for the CPU- and the other for the GPU-based components). For example, one value of
the memory sequence property that characterizes the CPU-based component variant, is computed by
summing the memory usage requirements of all its n CPU-based components.

C1
(CPU)

C2
(CPU)

Cn
(CPU)… C

Figure 7. A system composed of chained components.

To calculate the allocation computation time, we have constructed three systems; the first system
contains 31 components (i.e., n = 30), the second system contains 41 components (i.e., n = 40) and the
last system has 51 components (i.e., n = 50). We randomly provided values for component properties
(i.e., for each CPU- and GPU-based version). For instance, the component memory usage is randomly
assigned a value between 1 and 100. Regarding the hardware, we assume that we have six connected
boards, where only three of them have GPUs. Similarly, we characterized the boards resources in
a random manner. For example, the available memory of a board is randomly assign a value between
100 and 2500.

Using the implemented CPLEX allocator from the previous part, we compute allocation schemes
for our test systems. As optimization goal, we set the allocator to provide the best performance
(i.e., execution time).

The scalability results are presented by Table 1. Using a machine with a 2.6 GHz i7 CPU and
16 GB of memory, we ran the allocation 1000 times for three systems, i.e., a naïve system that
contains CPU-based/GPU-based components, and a system that contains the two-variant component.
The results show that the allocator uses less time to compute results for the system with the two-variant
component. In other words, for the CPU- and GPU-based systems, where there are n + 1 components
and each has its own set of properties, the allocator analyzes a higher number of properties than for
the two-variant system where the two-variant component has one set of properties. Furthermore,
the computation time for the CPU-based system is relatively the same as for the GPU-based system due
to the fact that the analyzed number of properties are the same for the two systems. By proposing the
two-layer allocation design, we show in this part of the evaluation, how the scalability of an allocator
for heterogenous CPU–GPU systems is improved.



Designs 2019, 3, 6 12 of 14

Table 1. The time used to compute allocation schemes.

Average Allocation Time (ms)

n Naïve * Two-Variant **
CPU-Based GPU-Based

30 18.2 18.3 15.4
40 29.1 29.0 24.6
50 49.5 49.7 39.8

* A system with (CPU-based/GPU-based) n + 1 components; ** A system with a two-variant component;
GPU, graphics processing units; CPU, central processing unit.

5. Related work

We introduce in [3] the initial idea of the two-layer allocation method. We extended the initial
work by describing the solution using an existing component model and presenting the overview
using existing components. Furthermore, in the current paper we introduced an existing system and
applied the solution on it to analyze the feasibility aspects. Moreover, the evaluation section analyzes
the scalability aspects, which were not covered by the previous work.

Software-to-hardware allocation and optimization of the allocation mechanism have been the
topic of many research works in the literature. A systematic literature review on the software
architecture optimization methods is provided in [10]. The authors in this work analyzed 188 papers
and identified 30 papers related to the optimization of component-based systems. Of this set of
papers, only 13% (i.e., 4 papers) use exact optimization algorithms (vs. approximate algorithms).
While exact optimization algorithms can provide optimal solutions, their applications poses several
challenges when it comes to adopting them, such as difficulty of formally defining the allocation model,
search-space, and the usually non-linearity of the object functions (and thus being computationally
expensive). The approach we presented in this paper, enabled us to formally define our optimization
model which in turn allows to use exact optimization algorithms and methods. Moreover, one of the
important characteristics of our approach is that, as we demonstrated, it simplifies the search-space
and therefore complexity for allocation optimization.

Consideration of quality attributes and satisfaction of non-functional requirements play
an important role in designing embedded systems due to resource constraints of these systems.
While our proposed approach can address different quality attributes (such as memory, processing
capacity and number of threads, etc.) and is generic in this regard, there are some research in the
literature that target specific quality attributes. For instance, in [11], a detailed optimization model
and framework for energy consumption in component-based distributed systems in Java is provided.
The main goal in this work has been to help system architects make informed decisions such that
the energy consumption is reduced in a designed system. An interesting aspect discussed in this
work is the energy consumption of the communication of components that reside in different Java
Virtual Machines, on the same host. From this perspective, the communication aspect is implicitly
address in our optimization model where connected CPU- and GPU-based components are tried to
be allocated on the same node. Furthermore, in our optimization model, the energy is treated as any
other property in a generic fashion. [12] is another example of works that address energy usage in
heterogeneous multiprocessor embedded systems. In this work, an optimization model using integer
linear programming is introduced that minimizes the system energy usage when the end-to-end time
constraints are given. Moreover, the CPLEX solver is used to compute allocation solutions. It is shown
that, for a system with more than 30 components, the solver computes solutions in up to couple of
minutes. The solution introduced in our work aims at decreasing the allocator burden and we show
that, for a system with 31 components, the allocation computation time is reduced.

Wang et al. in [13] introduce a method to allocate the software components in a design model to a
given platform while meeting multiple platform resource constraints. In the method, different types of
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resources are considered and weights are used to define the importance of each in the allocation process.
The components that require more resources get higher priority getting allocated first. In contract,
in our approach all components have same and equal allocation priority with respect to their resource
requirements. Also using the flexible component concept, we increase the flexibility of the allocation
regarding the component resource requirements. Weight parameters are used in our approach to
define the importance of properties in the allocation process.

For the systems in the automotive domain [14] proposes optimization of software allocation
and deployment to hardware nodes (i.e., ECUs) as a as a bi-objective problem using an evolutionary
algorithm. It considers the reliability of data communications between components as one and the
communications overhead as a second objective.

6. Conclusions

In this paper, we proposed a method to reduce the burden of the allocator and ease the
software-to-hardware allocation in the design of component-based embedded systems. Our solution
works by introducing a two-layer architecture design for heterogeneous CPU–GPU embedded systems,
where detailed component information is abstracted using the two layers to ease allocation decisions.
The work is independent of the employed allocator, i.e., how the allocator itself is implemented and
based on which solver.

To show the feasibility of the approach, we applied it on a underwater robot which we participated
in its development. Additionally, to also demonstrate and evaluate the scalability of the approach,
we analyzed it on three test systems consisting of 31, 41, and 51 components respectively. We compared
the average allocation time for two versions of each of these test systems: (i) containing all components,
(ii) a two-variant component model of the system, based on the two-layer allocation concept. The results
show that the allocator does its computations faster and requires less time for the two-variant
component version. Although CPLEX solver was used in this work, the proposed solution can
be implemented in any mixed-integer non-linear solver. However, the usage of a different solver may
influence the allocation computation time.

In terms of quality attributes and non-functional properties, the proposed two-layer allocation
solution is generic and be be applied in allocation optimization based on any set of properties. From this
perspective, it is property-agnostic. Deriving variant properties (i.e., aggregated from its constituting
components), however, can be less trivial for certain non-functional properties such as energy. In our
case study in this paper, we characterized the system through simple properties such as static memory
or GPU thread usage. Then to derive the multi-variant properties, we simply used addition operation
for these properties. As a future direction, we plan to investigate how energy usage can be derived
for variants, and thus, enable its inclusion and evaluation as part of our proposed solution. Another
extension of this work is to extend the scope of heterogeneity of the approach to include other
processing units such as DSPs and FPGAs as well.
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