

Requirements dependencies-based test case

prioritization for extra-functional properties

Muhammad Abbas*, Irum Inayat#, Mehrdad Saadatmand*, Naila Jan#
*RISE SICS, Research Institutes of Sweden, Västerås, Sweden {firstname.lastname}@ri.se

#SERL, National University of Computer & Emerging Sciences, Islamabad, Pakistan
irum.inayat@nu.edu.pk, nailaneena@gmail.com

Abstract—The use of requirements’ information in testing

is a well-recognized practice in the software development life

cycle. Literature reveals that existing tests prioritization and

selection approaches neglected vital factors affecting tests

priorities, like interdependencies between requirement

specifications. We believe that models may play a positive role

in specifying these inter-dependencies and prioritizing tests

based on these inter-dependencies. However, till date, few

studies can be found that make use of requirements inter-

dependencies for test case prioritization. This paper uses a

meta-model to aid modeling requirements, their related tests,

and inter-dependencies between them. The instance of this

meta-model is then processed by our modified PageRank

algorithm to prioritize the requirements. The requirement

priorities are then propagated to related test cases in the test

model and test cases are selected based on coverage of extra-

functional properties. We have demonstrated the applicability

of our proposed approach on a small example case.

Keywords—test case prioritization, requirements inter-

dependencies, meta-model

I. INTRODUCTION

Software testing is a time and budget intensive process.
Testing large software systems under strict deadline may
require dropping some of the test cases. Ranking the test
cases and selecting a subset for execution (test case
prioritization and selection) plays an important role in such
cases and in overall software testing process. Testing the
extra-functional or non-functional properties of the software
system may also require testing for some of the functional
requirements since these so-called non-functional properties
could be realized by implementing some of the functional
requirements (for instance, implementing an encryption
function to satisfy security requirements in a system). In
order to be able to test for these extra-functional properties, it
is essential to know what requirements to test for. Currently,
very few ([1][2]) of the test prioritization approaches are
tackling this problem at the requirement-level and most of
the approaches do not take the requirement-level inter-
dependencies into account for test case prioritization. A
study showed that the use of requirement-level information
for test case selection and prioritization can be beneficial [2].

A number of requirements prioritization (RP) techniques
have been proposed so far and were compared with each
other to find the best fit e.g., [3]. For that, the most popular
evolutionary algorithm Genetic Algorithm (GA), is
reportedly being used for prioritizing the requirements (e.g.
[4]). Moreover, Analytic Hierarchy Process (AHP) is widely
discussed in the research community for its accuracy in terms
of RP [5]. Likewise, fuzzy logic-based techniques are also
reportedly being used for prioritization of requirements and
even for model-based trade-off analysis [6][7]. Most of the

existing techniques only focus on prioritizing conflict free
requirements (for instance in [6]) and in many cases,
requirements interdependencies are being ignored (for
instance in [8]).

Test case prioritization and selection is also growing and
an open area of research. The end goal of the prioritization
and selection of test cases is to effectively test the software
system under budget and time constraints or to identify the
test case for regression testing. A study showed that manual
selection of test cases results in selection of more test cases
with low bugs revealing capabilities compared to automated
[9]. A number of test case prioritization and selection
approaches are proposed in the literature e.g., [10][11].
Evolutionary algorithms like GA and Particle Swarm
Optimization (PSO) are also being used for optimization of
test case prioritization and selection process e.g., [12].
Likewise, fuzzy logic-based techniques are investigated for
test case prioritization and selection [1]. Interested readers
can refer to the comprehensive systematic literature review
on test case prioritization and selection techniques [13].

In this paper, we address the problem of test prioritization
and selection at requirement-level. The contributions of this
paper are (i) a meta-model to aid modeling and visualization
of requirements and their related tests, (ii) a modified page-
rank algorithm for RP, and iii) an approach for prioritizing
and selecting test cases for extra-functional properties based
on requirement-level information. The meta-model is based
on the existing concepts derived from literature for instance
stakeholder, requirements and their relationships [14]. Our
meta-model is capable of modeling requirements along with
the interdependencies between them and other factors (like
risk, cost, time to develop and business value) that are
significant for RP. For RP we have used a modified Page-
Rank algorithm [15]. iii) Last but not the least, we have
demonstrated the applicability of our proposed approach on a
small example case. The future work includes the evaluation
of the proposed approach on cases from our industrial
partners. The rest of the paper is structured as: Section II
discusses our proposed model-based RP approach and it also
discusses how the requirements priorities can be propagated
to test cases as initial test priorities. Section III demonstrates
the applicability of our proposed approach, and Section IV
discusses our future work and concludes the paper.

II. PROPOSED APPROACH

In this study, a model-based approach is used for

requirements and tests prioritization. The approach allows

modeling of requirements and test related information and

their relationships (e.g. depends conflicts, derives, defines,

refines, realizes and tested by), stakeholder affiliation (e.g.

primary, secondary), stakeholder’s assigned priority (must

have, should have etc.), risk (from 1 to 10 presenting the

risk level of requirements), cost (from 1 to 10), time to

develop/ expected development time (from 1 to 10 value

representing the time required for development), and

business value (from 1 to 10 presenting the value being

added to the project by the requirement). Our meta-model

paves way for requirements-level test prioritization and

selection. The inter-dependencies modeled in our proposed

meta-model are later used by our modified Page-Rank

algorithm for requirements prioritization (later used for test-

case prioritization) along with other factors like risk, cost,

and business value. Initial priority

(StakeHolderPriority) is assigned to the requirements

(optionally by requirements analyst) using MoSCoW

technique (Must have, Should have, Could have and Would

have) [16] priorities. The optional StakeHolderPriority

also contributes to the requirements prioritization in an

ordinal fashion as per the MoSCoW [16]. For instance, a

MustHave adds 9.0, ShouldHave adds 6.0, CouldHave

adds 3.0, and WouldHave (no value literal being assigned)

adds 1.0 to the priority. The initial (optional)

StakeHolderPriority adds the stakeholder’s say to the

final priorities. The mbrpPriority is a property that we

use to capture automated priority calculation by Page-Rank

algorithm. A set of test cases required to test each

requirement can also modeled in our meta-model. It is

important to note that at this stage only test case IDs are

required from the test model and the meta-model is

independent of the testing profile being used. Fig. 1 shows

our meta-model developed in Ecore1. Note that our meta-
model is still evolving and in future we will be extending it

to support modeling of the non-functional requirements in

more comprehensive manner. As of now it facilitates our

approach for requirements-level test case prioritization and

selection.

Fig. 1 Meta-model for requirements and test case prioritization

Visualization of our meta-model is aided by a Sirius2

based concrete syntax. At the moment, we have created just

one representation for our meta-model but since we have

chosen a viewpoint driven representation approach,

visualization can be extended for integration of risk

analysis, work break-down, and even for validation plan.

Our tool allows drag & drop facility for the creation of

requirements, addition of stakeholders, and other relevant

concepts like drawing relationships with the stakeholders

and in between the requirements and test cases.

RP and test case prioritization based on requirements-

level information is done by following the below-mentioned

steps:

(i) Assigning an initial rank to each requirement (as per

the equation (1)) that is added to overall priority of each

requirement. Note that after execution of this step each

requirement will have the same initial rank:

 Rank initial = (Total requirements * (Total requirements *0.555)) /
Total requirements ()

 (ii) Then cost of requirements is calculated using
equation (2). Cost of a requirement contributes to its priority
value:

 Cost contribution = Business Value req / Cost req ()

 The contribution of risk is also essential and is calculated
automatically by calculating the ratio of risk and business
value. The contribution of risk in our case is calculated as per
equation (3) and is also being used for calculation of
Risk/Reward in different forms in the literature.:

 RiskContribution req = Business Value req / Risk req ()

 The risk, cost, and MoSCoW contributions are calculated
(as per the equations) for each requirement and are added to
the overall priority of each requirement. Note that the cost,
business value, and risk of each requirement (in the
equations) are supposed to be modeled by the requirement
analyst and are optional. If information related to risk, cost
and business value is not available, it will result in purely
dependencies-based prioritization (since equation 2 and 3
will just increment the priority by one).

 iii) In this step, the algorithm extracts all the

dependencies among inter-dependent requirements. Each

inter-requirement edge (incoming) is weighted by dividing

the current priority of the source requirement (of the link)

equally among all links except for the conflict links. The

link’s contribution to the priority is calculated as per

equation (4).

 Link Contribution target req. = (Current Priority src. req. / No. of
out-going Edges src. req) ()

 The link contribution is added to the overall priority if the
edge is not representing a conflict. For conflict edges, half of
the link contribution value is contributed to the priority of the
target requirement if the priorities of the source and target
requirements are equal. In case the current priority of the
source requirement is higher than the target requirement the
link contribution is subtracted from the priority of the target
requirement.

 iv) Information about test cases such as IDs from the test
model and the coverage they provide to requirements (source
requirement(s) of the test case represents this) are modeled.
Each requirement is tested by a set of test cases and this can
be model using <tested by> link in our instance model
(see Fig. 2). The priorities are propagated from the source
requirement to the target test cases, by dividing the priority
of source requirement equally into the linked test cases. Test
cases providing coverage to more requirements are likely to
have higher priority in our case. This step of our approach
produces an ordered list of test cases based on the
requirements priorities.

 v) The last step of our proposed approach is the selection
of test cases based on several criteria. Currently, the
approach allows the selection of test cases based on extra-
functional properties (for instance selection of test cases for
performance, safety etc.). In our small example, we listed the
results obtained from selection of test cases for security
requirements. The approach also allows the selection of test
cases based on coverage provided by the test cases to the
requirements.

III. DEMONSTRATION OF APPLICABILITY

For demonstration, we have considered a small example

case shown in Fig. 2 (instance of our meta-model). We took

four inter-linked functional and non-functional requirements

associated with six test cases. As shown, F1 and F2 are

realizing S1 (an extra-functional security requirement).

Fig. 2 Example case (Instance Model)

The S1 is tested when t1 and t2 are executed. The t2 test
case also provides some coverage to the F3 functional
requirement. Using the instance model in Fig. 2 (with no risk
business value and cost at this point and with initial priority
of MustHave), we have shown the results of applying first

three steps of our proposed approach in TABLE I.

TABLE I Prioritized list from PageRank

ID
Requirements Data

Rank sk Rank 1 Rank 2 Rank 3 Rank final

S1 9.0 11.22 12.22 13.22 39.66

F2 9.0 11.22 12.22 13.22 26.44

F1 9.0 11.22 12.22 13.22 13.22

F3 9.0 11.22 12.22 13.22 13.22

 The Ranksk column of TABLE I shows the
StakeHolderPriority (MustHave, 9 in our example

case). After execution of equation (1), we ended up adding
2.22 as initial rank to all the requirements. As for this
example case we did not modeled the cost, risk and business
values, our approach increments the priorities by one for
each equation in step ii. Thus, after execution of equation (2)
and (3) our approach produces 13.22 as priority for each
requirement. The step iii of our approach uses PageRank
algorithm for dependencies-based ranking. Each edge in the
requirements model is weighted by dividing its source
requirement’s priority equally in all the sibling edges. For
our example case, the edge between F1 and S1 is weighted
as: F1’s priority/number of out-going edges from F1
(13.22/1 = 13.22). The weight of the edge between F1 and

S1 results in an increment of 13.22 in S1’s priority. Note that
as of now S1 has a total priority of 26.44. The edge between
F2 and S1 results in an increment of 13.22 in the priority of
S1. For this example, our approach produced 39.66 as final
priority for S1 (as shown in Rank final column of TABLE I).
The edge between F3 and F2 also contributes (13.22) to the

final priority of F2 as explained in this section above.

 For the step iv) of our approach, the priorities from
source requirements were propagated to associated test cases
which produces ordered list of test cases (shown in TABLE II).
Our approach ranks the test cases by weighting the edges
between requirements and test cases and finally incrementing
the test cases’ priorities by the weight of the links. For our
example, t5 and t6 got their priorities as: F1’s priority / no.
of related tests of F1 (13.22/2 = 6.61). The t2, t3, and t4
gets 4.40 priority contributions from F3. Test cases t2 and
t3 also get an increment of 19.83 and 26.44 to its priorities
from S1 and F2 respectively. Test case t1 only gets 19.83 1“EMF.”, Available: https://www.eclipse.org/modeling/emf

2“Sirius”, Available: https://www.eclipse.org/sirius/overview.html

https://www.eclipse.org/modeling/emf
https://www.eclipse.org/sirius/overview.html

priority from the S1. The final ranks of test cases are shown

in Rank column of TABLE II.

 For the last step of our proposed approach, the extra-
functional property (security) was used as criterion for
selecting test cases. Note that in our approach a tester can
select any extra-functional property (available in our meta-
model) to be targeted for test case selection. The ordered list
of test cases is shown in TABLE II. Test cases IDs ending with
a “*” represents that these test cases were selected by our
approach for the selected criterion.

TABLE II Ordered list of Test Cases

ID
Test Cases

Type of linked requirement(s) Rank
Linked

Requirements

t3* Functional Requirement 30.85 2

t2*
Security Requirement &

Functional Requirement
24.24 2

t1 Security Requirement 19.83 1

t5 Functional Requirement 6.61 1

t6 Functional Requirement 6.61 1

t4 Functional 4.40 1

A. Results and Discussion

TABLE I and TABLE II show the results obtained after
applying our approach to the small example case. The
evaluation of our approach is planned two-fold. One side of
the evaluation is focused on the applicability of our approach
in RP and other side of the evaluation will be focused on the
evaluation of the applicability of the test case selection for
extra-functional properties. We verified the results on
another 104 requirements’ dataset from local industry of a
smart home application as a pilot experiment. The list had
identified dependencies (derives, depends, conflicts and
refines) among different requirements. The dataset was
prioritized by 30 graduate students enrolled in the course of
Advanced Requirements Engineering in spring 2018 at a
private sector university. The students already covered the
topic of requirements prioritization in their lecturing hours
Each student had an experience of working on at least one
real-world project. An hour of the training session was
organized before the experiment was conducted and the
students were briefed about the dataset and job needed to be
done. This experiment was a graded activity for the students
and each submission (prioritized list) was manually
evaluated by two authors of this paper. The submitted
prioritized lists from students were evaluated based on the
known top seven requirements (high-priority) to be in the top
20 of the prioritized lists submitted by the students. Two
submissions were not complete and were not included in the
final set of submissions. Total of 28 submissions were
considered for this experiment. Average priorities of the 28
submissions were considered as the baseline for this
experiment. To test the effectiveness of the modified
PageRank algorithm in RP, we checked the normality of the
prioritized lists obtained from modified PageRank. The data
was not normal and we applied the Wilcoxon signed-rank
test to compare the list with the base-line. The null
hypothesis was rejected with the p-value 0.004. The Cohen’s
D effect size in our case was 0.1. Based on these results we
can conclude that the modified PageRank algorithm
effectively prioritized a set of requirements.

TABLE II shows the ordered list of test cases. After
selecting the test cases for extra-functional security property,
only t2 and t3 were selected. Currently, we were unable to
validate the test case prioritization and selection results of
our proposed approach on real-world case study (we plan to
do this in future).

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduced an approach for test case
prioritization based on requirements inter-dependencies. We
reported i) a meta-model for modeling requirements and their
related tests, ii) a modified Page-Rank algorithm for
requirements prioritization and used dependencies-based
priorities in test case prioritization and selection, and iii) the
applicability of our proposed approach on a small example
case. Our modeling tool helps to visualize requirements
model, keeping in view the interdependency factor in-
between the interdependent requirements and test cases. We
used a modified PageRank algorithm for prioritization of
extra-functional properties based on their relationships with
other requirements. We then propagated the requirements
priorities into test cases and selected test cases for testing
extra-functional properties of the system. We evaluated our
modified Page-Rank algorithm on a dataset of 104
requirements. For comparison, we also got the same list of
requirements prioritized by 28 graduate students, called base-
line.

Close at hand, we aim to validate the applicability of our
proposed approach on a real-world case study. As another
future work, we will also investigate the generality of our
proposed approach for both functional and extra-functional
properties (especially when the selection of test cases from a
huge list is to be done for more than one extra-functional
property). We are also planning to empirically evaluate our
proposed approach in comparison with state-of-the-art in RP
and test case prioritization and selection approaches. We are
also planning to tailor our proposed approach to support test
case prioritization and selection of variant intensive software
systems.

ACKNOWLEDGMENT

This work has been supported by and received funding from

the XIVT project (https://itea3.org/project/xivt.html).

REFERENCES

[1] C. Hettiarachchi, H. Do, and B. Choi, “Risk-based test case

prioritization using a fuzzy expert system,” Inf. Softw. Technol.,

vol. 69, pp. 1–15, 2016.

[2] J. Badwal and H. Raperia, “Test Case Prioritization using

Clustering,” 2013 IEEE Sixth Int. Conf. Softw. Testing, Verif.

Valid., pp. 488–492, 2013.

[3] N. Misaghian and H. Motameni, “An approach for requirements

prioritization based on tensor decomposition,” Requir. Eng., vol.

23, no. 2, pp. 169–188, Jun. 2018.

[4] H. Ahuja, Sujata, and U. Batra, “Performance Enhancement in

Requirement Prioritization by Using Least-Squares-Based

Random Genetic Algorithm,” Stud. Comput. Intell., vol. 713, pp.

251–263, 2018.

[5] M. Sadiq, J. Ahmed, M. Asim, A. Qureshi, and R. Suman, “More

on elicitation of software requirements and prioritization using

AHP,” DSDE 2010 - Int. Conf. Data Storage Data Eng., pp. 230–

https://itea3.org/project/xivt.html

234, 2010.

[6] F. Shao, R. Peng, H. Lai, and B. Wang, “DRank: A semi-

automated requirements prioritization method based on

preferences and dependencies,” J. Syst. Softw., vol. 126, pp. 141–

156, 2017.

[7] M. Saadatmand and S. Tahvili, “A Fuzzy Decision Support

Approach for Model-Based Tradeoff Analysis of Non-functional

Requirements,” Proc. - 12th Int. Conf. Inf. Technol. New Gener.

ITNG 2015, pp. 112–121, 2015.

[8] A. Chindapornsopit and T. Samanchuen, “Requirement

Prioritization for Software Release Planning Based on Customer

Value with Analytic Hierarchy Process,” ITMSOC Trans. Innov.

Bus. Eng., vol. 01, pp. 21–27, 2016.

[9] M. Gligoric, S. Negara, O. Legunsen, and D. Marinov, “An

Empirical Evaluation and Comparison of Manual and Automated

Test Selection,” in Proceedings of the 29th ACM/IEEE

international conference on Automated software engineering,

2014.

[10] A. Arrieta, S. Wang, G. Sagardui, and L. Etxeberria, “Search-

Based test case prioritization for simulation-Based testing of

cyber-Physical system product lines,” J. Syst. Softw., vol. 149,

pp. 1–34, 2019.

[11] S. Y. Shin, S. Nejati, M. Sabetzadeh, L. C. Briand, and F.

Zimmer, “Test Case Prioritization for Acceptance Testing of

Cyber Physical Systems: A Multi-objective Search-based

Approach,” in Proceedings of the 27th ACM SIGSOFT

International Symposium on Software Testing and Analysis,

2018, pp. 49–60.

[12] M. Tyagi and S. Malhotra, “Test Case Prioritization using Multi

Objective Particle Swarm Optimizer,” in International

Conference on Signal Propagation and Computer Technology

(ICSPCT 2014), 2014, pp. 390–395.

[13] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, and R. Tumeng,

“Test case prioritization approaches in regression testing : A

systematic literature review,” Inf. Softw. Technol., vol. 93, pp.

74–93, 2018.

[14] A. Goknil and M. A. Peraldi-Frati, “A DSL for specifying timing

requirements,” 2012 2nd IEEE Int. Work. Model. Requir. Eng.

MoDRE 2012 - Proc., pp. 49–57, 2012.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank

Citation Ranking: Bringing Order to the Web,” World Wide Web

Internet Web Inf. Syst., vol. 54, no. 1999–66, pp. 1–17, 1998.

[16] D. Clegg and R. Barker, Case Method Fast-Track: A Rad

Approach. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 1994.

	I. Introduction
	II. Proposed Approach
	III. Demonstration of Applicability
	A. Results and Discussion

	IV. Conclusion and Future Work
	Acknowledgment
	Referen ces

