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Abstract—Knowing about dependencies and similarities be-
tween test cases is beneficial for prioritizing them for cost-
effective test execution. This holds especially true for the time
consuming, manual execution of integration test cases written in
natural language. Test case dependencies are typically derived
from requirements and design artifacts. However, such artifacts
are not always available, and the derivation process can be very
time-consuming. In this paper, we propose, apply and evaluate a
novel approach that derives test cases’ similarities and functional
dependencies directly from the test specification documents writ-
ten in natural language, without requiring any other data source.
Our approach uses an implementation of Doc2Vec algorithm
to detect text-semantic similarities between test cases and then
groups them using two clustering algorithms HDBSCAN and
FCM. The correlation between test case text-semantic similarities
and their functional dependencies is evaluated in the context of an
on-board train control system from Bombardier Transportation
AB in Sweden. For this system, the dependencies between the test
cases were previously derived and are compared to the results
of our approach. The results show that of the two evaluated
clustering algorithms, HDBSCAN has better performance than
FCM or a dummy classifier. The classification methods’ results
are of reasonable quality and especially useful from an industrial
point of view. Finally, performing a random undersampling
approach to correct the imbalanced data distribution results in an
F1 score of up to 75% when applying the HDBSCAN clustering
algorithm.

Index Terms—Software Testing, Paragraph Vectors, Test Case
Dependency, Clustering, Doc2Vec, HDBSCAN, FCM

I. INTRODUCTION

Software testing phase has been a target of optimization
in several studies and several models for the test process
improvement have been proposed [1]. Most recently, new
techniques in the areas of deep learning, machine learning and
natural language processing (NLP), as well as the combination
of them, have begun to impact agility in software development
life cycle (SDLC) phases. According to our experience, several
large enterprises, especially in the embedded systems domain,
still struggle to increase test productivity and reduce testing
costs [2]. There is a strong need to improve quality while at the
same time reduce costs, driven by the fast pace of technology
change and increased market competition. Software testing
phase is naturally the target of many optimization efforts. In our
continued collaboration with Bombardier Transportation AB

ECSEL & VINNOVA (through projects MegaM@RT2 & TESTOMAT) and
the Swedish Knowledge Foundation (through the projects TOCSYC (20130085)
and TestMine (20160139)) have supported this work.

(BT) in Sweden, a large enterprise working in the railway trans-
portation domain, we previously identified the problem of test
optimization as a multi-criteria decision making problem, where
a set of criteria such as dependencies and similarities between
test cases, requirement coverage and test cases’ execution time
need to be satisfied for minimizing testing cost and maximizing
testing coverage [2]–[4]. Our special focus has been on several
levels of system integration (referred to as integration testing
for simplicity purpose) where the interaction between two (or
more) software modules is tested and the modules increasingly
interdepend on input/output signals through different interfaces
for meeting different functionalities. Consequently, the resulting
test cases are more complex (as compared to unit tests) and
can be dependent on each other to test the inter-module
dependencies which are essential for integration testing. This
increased test complexity is not helped by manually executing
integration tests, as is the case in our context. In order to
automatically measure the impact of one of the mentioned
criteria on manual integration test cases (i.e. dependencies
between test cases), this paper adopts a set of new techniques
inspired from NLP and deep learning. A manual integration
test case textually describes what functionality needs to be
tested and how. It usually consists of a set of pre-conditions,
initial state, testing procedure, and post-conditions. Sometimes
in the integration testing, several test cases are designed to test
one function and sometimes the interaction between two (or
more) functions can be tested by just one test case. Moreover,
some test cases require the same system setup, installation
and initial states. Since all mentioned elements (pre- and post-
conditions, testing procedure, system setup, etc.) are described
textually in a manual test case specification, performing NLP-
based approaches can help us recognize similar test cases.
Since manual test cases are written in natural text, the concept
of semantic similarity [5] will be used in this paper. However,
determining the semantic similarity between test cases is a
challenging task, due to the variability of natural language
expressions, where the semantic similarity can be measured at
document level, term level or sentence level. Several approaches
have been proposed for determining the semantic similarity
such as edge-counting measures [6], information content-based
measures [5], hybrid measures [7] and also feature-based
measures [8].

There are several methods proposed for dependency detection
on test cases (see e.g. [9] and [3]) but most of them are
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Figure 1: Example of functional dependencies between test

cases (TC) based on requirements (Req), modules, and internal

signals. Inspired by the TCMS platform.

manual and resource consuming. We believe that automating the
gathering of important criteria and utilizing them for providing
critical decision support at the integration testing phase has a
great potential in reducing testing costs. In addition, previous
studies have indicated that ignoring dependencies between
integration test cases leads to redundant test executions and
unnecessary test failures, increasing the testing efforts [2], [9].
It is also important to note that there is a set of independent
test cases in all testing projects. These can be executed at
any time in the testing process, meaning that their execution
results do not impact the execution of other test cases. Having
a general overview of the dependent and independent test
cases can thus help test managers schedule the test cases
for execution at an early stage of the testing process. In an
efficient test schedule, the dependent test cases should be
executed at the same time and the independent test cases can
be executed at any time during the testing cycle. The cost
of re-executing a failed test case is a sum of several factors
such as troubleshooting cost, execution cost and installation
cost. For instance, the re-execution cost for the failed test
cases in Bombardier Transportation (BT) is almost 8 times
higher than the execution cost [2]. Therefore, scheduling test
cases for execution based on their dependencies reduces the
risk of unnecessarily failure between integration test cases.
Furthermore, the installation and system setup costs can be
decreased if the similar test cases (requiring, e.g., the same
initial state) are executed at the same time. The purpose of this
paper is to introduce, apply and evaluate a deep learning, NLP-
based approach for automatic test case dependency detection.
The approach is based on text semantic similarity detection
from test case specifications written in natural language. We
strive to automatically find dependencies based only on the
test specifications, in contrast to finding this information from
other sources such as testing records, requirements specification
and the internal signals between software modules [2], [3],
[10]. Moreover, out of several possible dependencies that can
exist, we limit our investigation to functional dependencies.
This paper makes the following contributions: (i) clustering
dependent test cases into dependency-disjunctive clusters, as
well as identifying independent test cases, (ii) the approach is
capable of analyzing manual integration test cases written in
natural language for a wide range of systems where test case
dependencies are a common occurrence, and (iii) evaluation of
the approach for a large project in the railway domain at BT
using two different clustering algorithms (a hierarchical and a

soft clustering), against an independent baseline of precomputed
test case dependencies.

II. BACKGROUND

The dependency between test cases can be categorized
into functional dependency, temporal dependency, abstract
dependency and causal dependency [11]. In the present work,
we aim to automatically detect the functional dependency
between manual integration test cases from their natural
language test specifications. Let us define the functional
dependency between two test cases, within our context, adapted
from [11]:

Definition 1. Test cases TC1 and TC2 are functionally
dependent if they are designed to test different parts of function
F1 or if they are testing the interaction between functions F1

and F2.

For instance, given two functions F1 and F2 of the same
system, let the function F2 be allowed to execute if its required
conditions are already enabled by function F1. Thus, function
F2 is dependent on function F1. Consequently, all test cases
which are designed to test F2 should be executed any time
after the assigned test cases for testing F1. Detecting functional
dependencies between test cases can lead to a more efficient
use of testing resources by means of [2]:

• avoiding redundant execution,
• parallel execution for independent test cases,
• simultaneous execution of test cases that test the same

functionality, or
• any combination of the previous options.

However, if the direction of the dependencies between
test cases is not detectable, test cases can be categorized
into independent and dependent test cases. Splitting all test
cases into two main classes can also lead to a more efficient
test scheduling in such a way that independent test cases
can be executed at any time and also parallel with each
other and dependent test cases need be executed at the same
time. Previously, we proposed an approach for detecting the
functional dependencies between test cases by analyzing the
internal signal communications between software modules at
BT [10] using the requirement specifications and test case
specifications. Fig. 1 provides an overview of the scope of
the functional dependency detection by illustrating a part of
the train control and management system (TCMS) platform at
BT. Fig. 1 shows three software modules from three different
sub-systems’ functional groups: high voltage, brake system,
and doors system. As one can see in Fig. 1, module 1 and
module 2 communicate with each other through an internal
signal, while they are not communicating with module 3.
Thus, module 2 is functionally dependent on module 1 and
should be tested after it, and module 3 is independent of
both other modules in this example. Thereby, all assigned
requirements and test cases for module 2 are functionally
dependent on the assigned requirements and test cases for
module 1. Fig. 1 also shows the relationships between the
assigned requirements and designed test cases to the software
modules. Based on Definition 1, we can see that TC1 and
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Figure 2: The steps of the proposed approach.

TC2 are functionally dependent due to shared requirement
Req1 as it implies that they test different aspects of the
same function. They are also dependent on TC3, TC4, and
TC5 by means of testing the interaction between different
functions realized as modules 1 and 2. Since there is no internal
signal communication to module 3, TC6 is an example of an
independent test case that tests only one function. Later in this
paper, the presented concept of functional dependency between
test cases, illustrated in Fig. 1, is utilized as a ground truth
(a baseline for comparison) to evaluate the feasibility of the
proposed approach in this paper. We need to consider that Fig. 1
represents a part of a bigger figure presented in [10]. However,
the utilized inputs (signal information and the requirement
specifications) for deriving Fig. 1 are not always available in all
testing environments or sometimes the relationships between the
software modules, requirements and the test cases are missing
due to lack of traceability. Only the manually written test
cases are consistently available. Thus, it is beneficial to detect
functionally dependent test cases by analyzing the available
test case specifications.

III. RELATED WORK

Bates and Horwitz [12] identify components in a modified
program testable using old test suite thereby avoiding unpro-
ductive testing of unaffected components. The identification of
the components is done through program dependence graphs
and slicing with test adequacy data. A similar approach to
identify changed def.-use pairs for regression testing is taken
by Rothermel and Harrold [13]. Our approach presented in
this paper is based on different input artifacts. Ryser and
Glinz [14] show the importance of managing dependencies and
interrelations between scenarios for thorough system testing.
They derive test cases by traversing paths in the dependency
chart, taking into account data and resource annotations and
other specified conditions. A form of directed graph for
functionally dependent test cases is proposed by Haidry and
Miller [11]. According to this approach, the functionally
dependent test cases can be prioritized based on different
forms of the graph coverage values. The independent test cases,
however, can be executed randomly. The authors remarked
that other critical criteria related to test cases should also
be considered for test prioritization. The logical dependency
between structured requirements is exploited by Arlt et al. [9]
to automatically detect redundant test cases. The main goal of
their approach is reducing test suites, based on the results of
executed test cases, in such a way that a dependent test case gets

failed if a corresponding independent test case fails. Acharya
et al. [15] proposed a greedy approach for prioritizing test
cases in component-based software development environment.
From an object interaction graph, which is generated from the
UML sequence diagrams for interdependent components, the
value of an objective function is evaluated when selecting the
test cases for execution. Applying the NLP, machine learning,
and big data techniques in the software testing domain is
gaining momentum. Specification mining and requirement
engineering can be considered as two main applications of
NLP in software testing [16]. Research papers exist on the
application of text similarity techniques for test selection [17],
test prioritization [18] and prioritization of test automation [19].
Furthermore, Ahsan et al. [20] have summarized papers using
NLP techniques to generate automated test cases. Sharifi and
Hemmati [16] have proposed a NLP-based approach for failure
prediction of manual system-level test cases, which can be
utilized for test case selection, prioritization and also test suite
reduction. Doc2vec, proposed by Le and Mikolov [21] is
an extension of Word2Vec [22] for embeddings from words
to word sequences. Empirical evaluations of the quality of
document embeddings learnt by Doc2vec has shown its
robustness [23] and has shown promising results in applications
such as intrusion detection [24], e-commerce [25] and news
classification [26].

Figure 3: Clustered test cases using the HDBSCAN algorithm,

each color-shape represent a cluster of test cases, the gray

circles represent independent test cases.
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IV. THE PROPOSED APPROACH

From observing the test case specifications provided by
BT, we have noticed that functionally dependent test cases
often have similar structure, sometimes common setup and
teardown routines, with the relevant modules being adjusted
for the specific test cases. This meant that within the context
of test case specifications, references to functionally dependent
elements are likely to occur in similar contexts. We call such
test cases as being semantically similar. Thus, in our context,
semantic similarity between test case specifications correlates
with functional dependency between the test cases. This
section presents our novel approach for functional dependency
detection from natural language test case specifications. Fig. 2
shows the stages of the proposed approach. In the first stage,
we derive the feature vectors1 from the test specifications. The
main characteristic of these feature vectors is that semantically
similar documents have similar vectors according to some
similarity function. In the next stage, the vectors are clustered
using that similarity function, forming clusters of feature
vectors corresponding to clusters of test cases. Even though
this approach does not detect the direction of functional
dependencies, it makes it feasible to manually reconstruct
them by reducing the problem scope to elements of clusters
instead of the entire set.

A. Feature Vector Generation

We have applied the Doc2Vec2 algorithm to generate
document embeddings of the test specifications. Document
(word) embedding generally represents a set of language
modeling techniques in the area of NLP. The embedding models
map words, sentences, paragraphs or phrases to vectors of real
numbers [28]. The Doc2Vec and the other similar methods
employ a single layer neural network (neural embeddings) [27]
to construct embeddings. Basically, Doc2Vec is trained to
reconstruct linguistic contexts of words for each document.
It takes, as its input, a large corpus of text, in our context
test case specifications written in English, and produces a
vector space, typically of several hundred dimensions, with
each unique word and document in the corpus being assigned a
corresponding vector in the space [29]. One way to utilize the
document embeddings of Doc2Vec is to compute the cosine
similarity3 between them which corresponds to the semantic
similarity of the documents in question. For instance, in the
provided example in Fig. 1, the test cases are designed to
test the interaction between the high voltage and the brake
system. Thus, a set of common keywords and similar features
are repeated in the texts of TC1 to TC5, which describes
the functionality of high voltage and the brake system. The
Doc2Vec algorithm computes the feature vector for TC1, TC2,
TC3, TC4, TC5 and TC6, and those test cases which are more

1A feature vector is required for a numerical representation of symbolic
features in the test specification document.

2Doc2Vec, also known as Paragraph Vectors, is an unsupervised
algorithm that generates feature vectors for sentences, paragraphs or docu-
ments [27].

3Cosine similarity between two vectors is a measure which calculates the
cosine of the angle between the vectors [27].

similar to each other, have a greater cosine similarity between
their vectors.

B. Clustering Feature Vectors
Clustering is a method for classifying a number of objects

which have several attributes within different classes [30]. The
main goal of clustering is sorting the most similar objects into
the same class and therefore the members of different clusters
are dissimilar. Clustering high dimensional data points is still
a significant challenge in the field of data mining [31]. As
mentioned before, after running the Doc2Vec algorithm, a set
of high-dimensional vectors (representing feature vectors of
each test case) is generated. Our goal is to categorize together
similar feature vectors (test cases), where similarity is expressed
as higher cosine similarity. Since each vector is representing a
test case, a set of clusters containing test cases can be proposed
for execution. All test cases are not necessarily dependent or
similar to each other, meaning that a set of independent test
cases can exist in testing projects. As outlined in Section II, it
is equally important to ensure that independent test cases are
identified. On the other hand, the dependent test cases can be
divided into several dependency groups, for instance test case
TC4 in Fig. 1 belongs to two clusters, cluster 1 which contains
the designed test cases for testing module 1 and also cluster
2 that contains the designed test cases for testing module 2.
This kind of classification is called soft clustering, where each
data point can potentially belong to multiple clusters [32]. In
essence, we need a fast and robust clustering algorithm, which
can handle the high dimensionality of data in our context. The
clustering algorithm should be able to propose a set of non-
clusterable data points (independent test cases) and also data
points for soft clustering. In this paper, we apply and evaluate
two clustering algorithms: HDBSCAN (Hierarchical Density-
Based Spatial Clustering of Applications with Noise) and FCM
(Fuzzy c-means). The essential reason for utilizing HDBSCAN
is its ability to dealing with the high dimensional data. However,
the FCM considers each object a member of every cluster,
with a variable degree of membership [33], which make sense
in the testing domain. In other word, each test case can be
dependent to more than one test case. Later in this paper, the
performance of clustering algorithms is evaluated by comparing
with the ground truth. The HDBSCAN algorithm measures
the distance between the vectors and provides automatically
number of clusters, the cluster themselves, and also a set of non-
clusterable vectors (noise) [34]. Other clustering algorithms
are designed to cluster every vector to some clusters, which
indicates their inability to handle outliers, corrupt data and
noise in the clustering process. The non-clusterable vectors
provided by the HDBSCAN can be interpreted as independent
test cases, to be executed in no particular order. This hypothesis
is analyzed and discussed further in Section VI. In addition,
each cluster consists of a set of test cases which are dependent
and must be tested together. The FCM algorithm provides a set
of clusters where each data point can belong to multiple clusters.
The FCM assigns a membership grade to each cluster for each
data point, where each membership grade represents the extent
to which a data point belongs to a specific cluster [33]. In the
upcoming sections, both HDBSCAN and FCM are applied on
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an industrial testing project at BT and their performance is
compared with the ground truth.

V. EMPIRICAL EVALUATION

This section presents an empirical evaluation of the proposed
approach. The following research question is addressed in the
empirical evaluation:

RQ. What is the performance of the proposed test dependency
detection approach in comparison with the ground truth when
clustered using HDBSCAN and FCM?

A. Industrial Case Study

The feasibility of the proposed approach has been evaluated
by studying an ongoing testing project for the underground
subway train in Stockholm, called BR4904 project, at BT [35].
The units of analysis in this case study are test cases (test spec-
ifications) at the integration testing level for the BR490 project.
A total of 1748 test cases, which are designed for testing
different functional groups (e.g. brake system, air conditioning,
doors system, battery power supply), have been extracted
from the DOORS (Dynamic Object-Oriented Requirements
System) database at BT. The extracted test cases are converted
into vectors using paragraph-vectors implementation [36] of
the Doc2Vec model, and then the test cases are clustered
by applying the HDBSCAN and FCM [34] algorithms. As
highlighted earlier, the Doc2Vec algorithm generates a set
of data points in the n-dimensional space. Using t-SNE (t-
distributed stochastic neighbor embedding [37]) for dimension-
ality reduction and visualization helped us to create an overview
of the density range of the generated data points. Fig. 3
shows the results of clustering using the HDBSCAN and FCM
algorithms, respectively. HDBSCAN automatically determined
that there are 393 clusters (with different cardinality) for
dependent test cases, illustrated in Fig. 3. Moreover, 526
data points are detected as non-clusterable data points (the
gray circles in Fig. 3). Since there is no known optimal
number of clusters when applying unsupervised learning, the
problem formulation can specify the number of clusters. The
FCM clustering algorithm requires determining the number of
clusters in advance. Note that our final goal is comparing the
performance accuracy of the proposed clustering algorithms,
therefore we have set the FCM to group all data points into
393 clusters. This resulted in 171 clusters with more than
zero elements and 222 empty clusters, that have been removed
from the samples. However, the FCM does not report any data
points as non-clusterable, noise or outliers. Since executing
FCM results in a set of probabilities for each point belonging
to each cluster, we assigned each point to the cluster with
the highest probability. In practice, we have used the default
behavior of the algorithm as much as possible. The main
decision was to set the number of dimensions for feature
vector generation to 128 in order to improve the performance
of the approach. The rest of the parameters used were 100
training epochs, batch size of 32, 2 noise words to sample
from the noise distribution and learning rate of 0.001. Since

4The BR490 series is an electric rail car specifically for the S-Bahn Hamburg
GmbH network in production at Bombardier Hennigsdorf facility.

our implementations of HDBSCAN and FCM use Euclidean
distances instead of cosine similarity, we have approximated
the cosine similarity by applying L2-normalization on the entire
vector space. HDBSCAN was used with minimum cluster size
of 2 and FCM was used with array exponentiation coefficient
of 2, stopping error criterion of 0.005 and maximum of 1000
iterations. The source code of our work can be found online
at [38], together with anonymized feature vectors and a test-
case requirement graph. As the result of this approach we have
determined clusters of similar test cases (Fig. 3). Within the
clusters, the similarity can be based on any combination of the
similarity between preconditions, test steps, or postconditions.

B. Ground Truth

As explained earlier, the dependency between test cases has
been detected by applying different methods and using several
testing artifacts such as internal signals [10], requirement
specifications, test records [2] and also questionnaire-based
studies [3]In [10], we analyzed the BR490 project’s internal
signals to the implemented modules (see Fig. 1) for detecting
dependencies between requirements and thereby identifying
the functional dependencies between test cases. By using this
information, we have derived a graph for dependencies between
requirements and test cases in the BR490 project at BT. The
empirical evidence in [10] is used in this work as the ground
truth. In the derived dependency graph each test case depends
on zero or more requirements. Each of the requirements, in
turn, can depend on zero or more other requirements. Moreover,
multiple test cases can depend on the same requirement. A total
of 3938 requirements and 1748 test cases from 17 different
sub-level function groups are present in our ground truth. Since
our method produces clusters of test cases, it was necessary
to find a unified measure for comparison of the dependency
graph and the set of clusters. We achieved this by considering
all test cases and requirements as nodes in a graph, with the
edges of this graph being dependencies between the test cases
and requirements.

(a) Distance 2 (b) Distance 4

Figure 4: Examples of test case to test case distances. Red

circles are test cases, and blue squares are requirements.

We computed the shortest path between any two test cases
that passes through other test cases or requirements (Fig. 4).
Thus, if the test cases TCA and TCB have a distance of 2, then
they share a common requirement, as illustrated in Fig. 4a,
and Fig. 5. The distance of two is the most significant for the
industrial applications since it clearly defines the test cases
that commonly operate on the same interfaces and thus are
suitable for optimization of the testing schedule. Fig. 5 is
extracted from Fig. 3 as an example of two test cases which
are located in the same cluster. As we can see, Fig. 5 represents
a part of two test specifications (exterior access safe
006 and exterior access safe 001) which both test
different parts of the same function, as shown by the presence
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HDBSCAN FCM Random Ground Truth
D TP TN FP FN TP TN FP FN TP TN FP FN Indep. Dep.
2 390 1524482 1758 248 247 1444805 81435 391 338 763456 762784 300 1526240 638
3 393 1523710 1755 1020 358 1444141 81324 1055 712 763055 762410 701 1525465 1413
4 493 1520076 1655 4654 1095 1441144 80587 4052 2562 761171 760560 2585 1521731 5147
5 498 1515925 1650 8805 1780 1437673 79902 7523 4627 759080 758495 4676 1517575 9303
6 522 1506980 1626 17750 3238 1430162 78444 15034 9124 754608 753998 9148 1508606 18272
7 532 1499037 1616 25693 4385 1423356 77297 21840 13038 750569 750084 13187 1500653 26225
8 538 1486471 1610 38259 6163 1412562 75519 32634 19378 744337 743744 19419 1488081 38797
9 549 1475985 1599 48745 7346 1403248 74336 41948 24565 739027 738557 24729 1477584 49294
10 562 1462104 1586 62626 8675 1390683 73007 54513 31486 732054 731636 31702 1463690 63188

Table I: Comparison of detected dependencies from HDBSCAN clusters, FCM clusters, and random assignments with the

ground truth based on 1526878 test case pairs. TP: True Positive, TN: True Negative, FP: False Positive and FN: False Negative.

of the same requirement (sr-C30-srs-safe-req-226).
Note that even though the requirements are present in the
ground truth, they were removed before application of our
method to simulate the conditions where such information is
completely unavailable.

Exterior_access-SAFE006

sr_c30_srs_safe-req-226 
sr_c30_srs_safe-req-307

Exterior_access-SAFE001

sr_c30_srs_safe-req-226 
sr_c30_srs_safe-req-312 
sr_c30_srs_safe-req-395 
sr_c30_srs_safe-req-396 
sr_c30_srs_safe-req-401 
sr_c30_srs_safe-req-408 
sr_c30_srs_safe-req-409

Initial state: 
Ready to run from un-coupled cab, leading trainset. Logged in as Driver. MSTO
mode. Multiple operation. Coupled A2 to A1. 

Train standstill at platform with doors on left side to be opened. 

Force Door enable in CCU-O Run train in to a platform with doors on left side to
be opened In un-coupled cab in leading trainset, open doors in central operation
with button on door pillar 

Make sure NSSS has enabled doors on left side: 
NSSS door enable left = TRUE 
NSSS door enable right = FALSE Remove card from cardholder to deactivate
cab un-coupled cab, leading trainset 

As user authorized to drive the train, log in and press Körklar-button on drivers

Initial state: 
MSTO mode active. Ready to drive 

Force Door enable in CCU-O Run the train to platform with doors on left side to
be opened 

Make sure NSSS has not enabled any door on any side: 
NSSS door enable left = FALSE 
NSSS door enable right = FALSE Stop train at platform 

Open doors on left side with button on door pillar in active cab 

Make sure NSSS enables doors on left side: 
NSSS door enable left = TRUE 
NSSS door enable right = FALSE Open left cab door and close exterior
passenger doors with button on door pillar, active cab 

Figure 5: Example of two test cases with a common require-

ment.

VI. RESULTS

We compared the independency and dependency results
between test cases grouped into clusters in Fig. 3 with the
ground truth results.

A. Comparing the Clustering Results with the Ground Truth

In order to compare the results achieved by the clustering
algorithms with the ground truth, we established a pairwise
comparison between each two test cases. Given the total number
of 1748 test cases, there are

(
1748
2

)
= 1526 878 test case pairs.

For each test case pair, we calculated the distance between
the test cases within the ground truth dependency graph. By
varying the maximum distance (D) for which we consider two
test cases to be interdependent, we generated a number of
interpretations of the ground truth. The number of dependent
(True) and independent (False) test case pairs for each distance
D from 2 to 10 is shown in Table I. If the maximum distance
is set to 1 or lower, all test cases become fully independent,
while the maximum found distance is 22. For distances from
2 to 10, Table I compares dependency detection quality of
the HDBSCAN and FCM clusters. Moreover, the performance
measurement results of the proposed clustering algorithms
(HDBSCAN and FCM) are compared with three baseline
approaches (i) a random classifier, (ii) a classifier that always

claims dependency (All-Dep), and (iii) a classifier that always
claims that there is no dependency (No-Dep). The results follow
similar trends for D > 10 and remain unchanged after D = 22
due to lack of larger distances in the ground truth dependency
graph. The results for 11 ≤ D ≤ 22 have been omitted from
the presented results. The distance 2 means that, for the ground
truth, if two test cases are to be considered dependent, they
have to be dependent on the same requirement (as illustrated
in Fig. 4a). If the shortest path between two test cases is 3 or
more, the test cases are considered independent of each other.

B. Performance Metric Selection
Choosing suitable performance metrics is critical and also

influences the measured performance of our approach. The
performance metric used is dependent on the intended use as
well as the balance between positive and negative instances.
A pairwise approach, as is used in this paper, exacerbates the
already relative sparseness of dependent test cases and thus
the imbalance of the data set. It is well known that using
accuracy as the performance metric for imbalanced data sets
can result in misleading results [39]. Therefore, we have opted
to primarily measure the performance of our proposed approach
using Precision, Recall, F1 Score, and Cohen’s Kappa [40].
The mentioned performance metrics are selected based on the
following considerations: (i) identifying independent test cases
(true negative) is as important as identifying dependent ones,
(ii) the number of missing dependencies between test cases
outweighs the number of dependencies. Precision and Recall
are commonly used metrics to measure the accuracy of a binary
prediction system, F1 Score is a measure of a test’s accuracy,
which is defined as the harmonic mean of Precision and Recall
and does not directly include true negatives (independent test
cases). Cohen’s Kappa is a measure of agreement between two
observers and it is less than or equal to 1. Values of 0 or less
imply a useless classifier [41]. Table II shows the computed
results of the mentioned performance metrics, where the best
results for each metric are highlighted.

C. Metric Comparison
In this subsection we examine each of the metrics shown in

Table II individually.
a) Precision: represents the number of correctly detected

dependencies over the total number of detected dependencies
by the proposed approach. The HDBSCAN has continuously
the highest value followed by the FCM method. 0.1816 of
the identified dependencies by the HDBSCAN are detected
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Precision Recall F1 Score Cohen’s Kappa
D HDB FCM RND All-Dep HDB FCM RND HDB FCM RND All-Dep HDB FCM RND
2 0.1816 0.0030 0.0004 0.0004 0.6113 0.3871 0.5298 0.2800 0.0060 0.0009 0.0008 0.2795 0.0052 0.0001
3 0.1830 0.0044 0.0009 0.0009 0.2781 0.2534 0.5039 0.2207 0.0086 0.0019 0.0018 0.2199 0.0068 0.0000
4 0.2295 0.0134 0.0034 0.0034 0.0958 0.2127 0.4978 0.1352 0.0252 0.0067 0.0067 0.1334 0.0190 0.0000
5 0.2318 0.0218 0.0061 0.0061 0.0535 0.1913 0.4974 0.0870 0.0391 0.0120 0.0121 0.0849 0.0285 −0.0001
6 0.2430 0.0396 0.0120 0.0120 0.0286 0.1772 0.4993 0.0511 0.0648 0.0234 0.0237 0.0487 0.0461 0.0000
7 0.2477 0.0537 0.0171 0.0172 0.0203 0.1672 0.4972 0.0375 0.0813 0.0330 0.0338 0.0350 0.0567 −0.0002
8 0.2505 0.0755 0.0254 0.0254 0.0139 0.1589 0.4995 0.0263 0.1023 0.0483 0.0496 0.0237 0.0703 0.0000
9 0.2556 0.0899 0.0322 0.0323 0.0111 0.1490 0.4983 0.0213 0.1122 0.0605 0.0625 0.0187 0.0749 −0.0002

10 0.2616 0.1062 0.0413 0.0414 0.0089 0.1373 0.4983 0.0172 0.1198 0.0762 0.0795 0.0145 0.0767 −0.0002

Table II: Precision, Recall, F1 Score, and Cohen’s Kappa metrics based on the data from Table I. The best results are highlighted.

All values are between −1 and 1, HDB and RND are abbreviation for HDBSCAN and Random classifier.

HDBSCAN FCM
D Precision Recall Accuracy F1 Score Precision Recall Accuracy F1 Score
2 0.9981 0.6113 0.8050 0.7582 0.8789 0.3871 0.6668 0.5375
3 0.9959 0.2781 0.6385 0.4348 0.8275 0.2534 0.6002 0.3879
4 0.9891 0.0958 0.5474 0.1747 0.8021 0.2127 0.5801 0.3363
5 0.9804 0.0535 0.5262 0.1015 0.7845 0.1913 0.5694 0.3076
6 0.9628 0.0286 0.5137 0.0555 0.7727 0.1772 0.5625 0.2883
7 0.9476 0.0203 0.5096 0.0397 0.7653 0.1672 0.5580 0.2745
8 0.9287 0.0139 0.5064 0.0273 0.7583 0.1589 0.5541 0.2627
9 0.9104 0.0111 0.5050 0.0220 0.7477 0.1490 0.5494 0.2485
10 0.8913 0.0089 0.5039 0.0176 0.7340 0.1373 0.5438 0.2313

Table III: The averages across 100 observations of performance metrics after random undersampling to a 50 : 50 ratio.

correctly. For No-Dep method, Precision always results in 0
and thus has been omitted from Table II.

b) Recall: is the number of correctly detected dependen-
cies over the total number of existing dependencies. For the
All-Dep approach Recall is always equal to 1 and for the No-
Dep approach it is always 0 and therefore have been omitted
from Table II. For D = 2, the HDBSCAN outperforms all
other shown approaches and this correlates with the previous
conclusion that the distance D = 2 is the most industrially
applicable interpretation of the ground truth.

c) F1 Score: is a harmonic average of Precision and
Recall and is used as compound measurement. Its best value
is 1 equating to the perfect Precision and Recall. According to
Table II the highest F1 Score value is archived for D = 2 using
the HDBSCAN algorithm, however, our alternative clustering
approach, FCM, outperforms it at D = 6. Moreover, both
proposed clustering algorithms reach a better value for F1 Score,
compared to the random, All-Dep, and No-Dep classifier.

d) Cohen’s Kappa: can be considered as a robust mea-
surement of classifiers with imbalanced data sets [42]. As
we can see in Table II using the HDBSCAN algorithm for
clustering leads to the largest value of Cohen’s Kappa, 0.2795,
compared to FCM and random approach [41]. We need to
consider that All-Dep and No-Dep approaches result in Kappa
value of 0 and therefore they have been omitted from Table II.

Comparing the performance measurement results of the
proposed clustering algorithms with each other and with the
ground truth shows that the HDBSCAN generally provides
better results for clustering in terms of functional dependencies
between test cases. The primary reason for this result is
HDBSCAN’s ability for identifying non-clusterable data points.
Even though the classification methods are only fairly good,
they are still sufficient to make improvements in industrial
settings, by identifying the functional dependencies.

D. Random Undersampling strategy for imbalanced datasets

The ratio of dependent and independent test case pairs in the
ground truth is highly biased towards the independent pairs. It
varies depending on the observed maximum dependency depth,
from 99.96% for distance 2 to 92.79% for distance 22. This
imbalance does not affect the training of our system since the
ground truth is not used for the training.

However, two popular evaluation metrics F1 Score and
Accuracy are tailored towards balanced data [42] and thus
we present these metrics for re-balanced data set. We randomly
undersampled the majority class (independent test case pairs)
to a 50 : 50 post sampling class distribution. To avoid random
sampling bias, we have sampled each group 100 times and
computed averages and standard deviations. Table III shows
that the average of F1 Score metric across 100 observations is
0.7582 and 0.5375 for the HDBSCAN and FCM algorithms
respectively at D = 2, which is a significant improvement
compared with the results before random undersampling.
Standard deviations are less than 0.02.

VII. CONCLUSION

In this paper, we proposed a deep-learning based natural
language processing approach to analyze the correlation
between test case text semantic similarities and their functional
dependencies. The test cases are interpreted as a set of vectors
in n- dimensional space using Doc2Vec algorithm. Two
clustering algorithms (HDBSCAN and FCM) were applied
on the generated vectors in order to classify the dependent test
cases into clusters. The proposed approach has been applied to
an industrial use case at Bombardier Transportation AB. The
performance of the proposed clustering algorithms (HDBSCAN
and FCM) is compared with a random classifier, a classifier
that always claims dependency and also a classifier that always
claims that there is no dependency. Moreover, Precision, Recall,
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F1 Score, and Cohen’s Kappa are selected as the performance
metrics. In order to deal with imbalanced data sets distribution,
random undersampling is applied on the results. We have re-
measured Precision, Recall, and F1 Score metrics together
with the Accuracy metric on the randomly undersampled data
sets. The results indicate that, using the HDBSCAN algorithm
obtains the accuracy level around 80% and the F1 Score of up
to 75%. The results of the empirical evaluation show that the
proposed approach has a more accurate performance with the
HDBSCAN clustering algorithm.
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