Speeding Up the Response-Time Analysis
of Tasks with Offsets

Jukka Maki-Turja Mikael Nolin
MRTC-Report 154
Malardalen Real-Time Research Centre (MRTC)
Vasteras, Sweden
j ukka. maki -t urj a@mh. se

February 2004

Abstract

We present a method that enables an efficient implementaficghe approximative
response-time analysis for tasks with offsets present&dnulell [11] and Palencia Gutierrez
et al. [6].

The method allows for significantly faster implementatiafischedulability tools. To
have fast calculations of response-times is paramounttimgging tools that perform au-
tomatic configuration of systems, e.g., allocating task€mRiJs in distributed systems, or
assigning priorities to tasks on one CPU. In such tools mespdimes are calculated repeat-
edly to evaluate different configurations during optinimat Besides the increased usability
in off-line tools, reducing computation time, from tens etends to just a few milliseconds,
as we will show, is a step towards on-line RTA in for exampleasion control systems.

We formally prove that our reformulation of earlier presshequations is correct and al-
low us to statically represent parts of the equation (leésgethe need for calculations during
response-time analysis). We show by simulations that teedspip when using our method
is substantial. When task sets grow beyond a trivial numbéaisiks and/or transactions a
speed-up of more than 100 times (10 transactions and 10ttasisaction) compared to the
original analysis can be obtained.

1 Introduction

A powerful and well established schedulability analyschtgque is thdResponse-Time Analysis
(RTA) [1]. RTA is applicable to systems where tasks are sualestin strict priority order which
is the predominant scheduling technique used in real-tjpeeading systems today. In this paper,

we present a method that enables an efficient implementaitibve approximative RTA for tasks
with offsets presented by Tindell [11] and Palencia Guéieet al. [6].

RTA is a method to calculate worst-case response-timesaBkstin hard real-time systems.
Hence, RTA can be used to perform schedulability testsiasting whether tasks in a system
will meet their deadlines. Traditionally, industrial useschedulability tests has been limited.
However, with recent advancements in software developarhsynthesis tools, such as UML-
based tools [2, 8, 10], schedulability tests can be integrat the normal workflow and tool-
chains used by real-time engineers.

This kind of tools can be used, for instance, to perform aatwwrallocation of tasks to nodes
in a distributed real-time system or to automatically deti&sk priorities (priority assignment)
so that task deadlines are guaranteed to be met. To be alidenpesuch allocation and/or as-
signment tasks, tools need to be able to perform schediyateists. Typically, such automatic
allocation/assignment methods are based on optimisatieeewch techniques, during which nu-
merous possible configurations are evaluated. (There iy ba tens or hundreds of thousands
of possible configurations even for small systems.) For eaclfiguration a schedulability test
is performed in order to evaluate different solutions. Herschedulability tests must be quick,
taking no more than a fraction of a second, in order to belskaita practice, for such systems.

Dynamic real-time systems, with on-line admission contfakal-time tasks, needs to be able to
quickly evaluate, to keep run-time overhead to a minimungtiver a dynamically arriving task
can be admitted to the system. In these cases the tolerandel&ys in the scheduling analysis
is even less than in the case of software engineering to@sisidns needs to be made within a
few tens or hundreds of microseconds, further stressingehd for faster schedulability analysis
techniques.

Accounting for offsets between tasks gives significantintier analysis results than using the
traditional notion of a critical instant where all tasks isyestem are considered to be released at
the same time [4]. Hence, tools for automatic configuratibreal-time systems would benefit
from using this extension, in the sense that they can easfdasible configurations (indeed,
many systems that will be deemed infeasible by RTA withofgeat$ will be feasible when taking
offsets into account). However, the price of taking offsate account is increased execution
time of the analysis. Existing methods for RTA with offsetsvé all been focused on modelling
capabilities while ignoring issues of computational coexgl, e.g., [11, 6, 7, 9].

The first RTA for tasks with offsets was presented by Tindd#.provided an exact algorithm for
calculating response time for tasks with offsets. Howetves, algorithm becomes computation-
ally intractable for anything but small task sets due toxgsamential time complexity [6, 11]. In
order to deal with this problem, Tindell also provided anrappmation algorithm that is polyno-
mial in time and give pessimistic but s&fesults. Later, Palencia Gutierretal. [6] formalised,
generalised and improved Tindell's work.

In this paper we present a method that enables an efficiei¢mgmntation of the approximative
offset analysis given by Tindell [11] and Palencia Gutiereg al. [6]. The correctness of our

1In the context of scheduling analysiafeimplies that no underestimation is made.

2

method is formally proven, in the sense that we prove algeleguivalence with the original
methods. The method significantly speeds up the calculafioesponse times, as we will show
by simulations.

Paper Outline: In section 2 we revisit and restate the original offset RTAgented by [6] and
[11]. In section 3 we present our new method. Section 4 ptessaluations of our method, and
finally, section 5 concludes the paper and outlines futunkwo

2 Existing offset RTA

This section revisits the existing response-time analgsisasks with offsets [6, 11] and illus-
trates the intuition behind the analysis and the formulas.

2.1 System model

The system model used is as follows: The systenopnsists of a set dftransaction$’;, ..., I';.
Each transaction; is activated by a periodic sequence of events with peficdThe activating
events are mutually independent, i.e., phasing betweenitharbitrary? A transaction]';, con-
tains|I';| tasks, and each task is activated (released for executibe & relative timeoffset
elapses after the arrival of the external event.

We user;; to denote a task. The first subscript denotes which tramsattie task belongs to,
and the second subscript denotes the number of the taskwit@itransaction. A task;;, is
defined by a worst case execution tindg;j, an offset (;;), a deadline p;;), maximum jitter
(Ji;), maximum blocking from lower priority taskd3(;), and a priority ;). The system model
is formally expressed as follows:

[:={Ty,.... T}
I'; 32({7'@'17 e aTi\Fi\}, Tz‘>
Tij ::<Cijuoij7Diju JijaBij7Pij>

There are no restrictions placed on offset, deadline arjitte., they can all be either smaller
or greater than the period. Parameters for an example ttmsd";) with two tasks €., 7;) IS
visualised in figure 1 on the following page. The offset desdhe earliest release time of a task
relative to the start of its transaction and jitter denotestariability in the release of the task.
(In figure 1 the jitter is not graphically visualised.)

2Events does not have to be periodic as long as the time betweeronsequitve events (minimum interarrival
time) is bounded. In this case the minimum interarrival timgeated as the periody).

3This is a pessimistic assumption, if there is dependencieng the events, RTA still provides a valid upper
bound for the response-times.

Figure 1: An example transactidn

2.2 Response-timeanalysis

The goal of RTA is to facilitate a schedulability test for bdask in the system by calculating an
upper bound on its worst case response-time. We-ys@aska, belonging to transaction,) to
denote theask under analysijs.e., the task who'’s response time we are currently cdicgla

In the classical RTA (without offsets) thegitical instantfor 7, is when it is released at the same
time as all higher (or equal) priority tasks [4, 3]. In a taskdal with offsets this assumption
yields pessimistic response-times since some tasks cabenaleased simultaneously due to
offset relations. Therefore Tindell [11] redefined (reldxthe notion of critical instant to be:

At least one task in every transaction is to be released atritieal instant. (Only
tasks with priority higher or equal tg,, are considered.)

Since itis not known which task that coincides with (is rels@at) the critical instant, every task
in a transaction must be treated assmdidateto coincide with the critical instant.

Tindell's exact RTA tries every possible combination of diaiates among all transactions in the
system. This, however, becomes computationally intrdetao anything but small task sets (the
number of possible combinations of candidates:isfor a system with transactions and with

m tasks per transaction). Therefore Tindell provided an@qprative RTA that still gives good
results but uses one single approximation function for g¢eantnsaction. Palencia Gutierrez

al. [6] formalised and generalised Tindells work. We will ingpaper use the more general
formalism of Palencia Gutierrezt al.,, although our proposed method is equally applicable to
Tindell's original algorithm.

2.3 Interferencefunction

Central to RTA is to capture the interference a higher or eguarity task (r;;) imposes on the
task under analysis(,) during an interval of time. Since a task can interfere witf), multiple
times duringt we have to consider interference from possibly seviestances The interfering
instances of;; can be classified into two sets:

4

Setl Activations that occur before or at the critical instant dnat can be delayed by jitter so
that they coincide with the critical instant.

Set2 Activations that occur after the critical instant

When studying the interference from an entire transadfignve will consider each task;. €
I';, as acandidatefor coinciding with the critical instant.

RTA of tasks with offsets is based on two fundamental thesrfnll]:

1. The worst case interference a tagkmposes orr,, is whenSet1 activations are delayed
by an amount of jitter such that they all occur at the critiogkant and the activations in
Set2 have zero jitter.

2. The task of"; that coincide with the critical instant (denoted), will do so after experi-
encing its worst case jitter delay.

The phasing between a task;, and a critical instant candidate,, becomes (slightly reformu-
lated compared to [6], see Appendix A):

®i5e = (045 — (O + Jic)) mod T; (1)

From the second theorem we get thawill coincide with the critical instant after having experi
enced its worst case jitter delay (i.e., the critical instifl occur at(O,.+ J;.) mod T}, relative

to the start off’;). From this, the definition o®;;. follows in order to keep the relative offset
relations among tasks within,. An implication of this is that depending on the valuedsf.,
different interfering instances will either belong$et1 or Set2. For example, the first instance
of a taskr;; in Set2 will be released af;;. time units after the critical instant, and subsequent
releases will occur periodically evefy.

Figure 2 on the next page illustrates the four differépt-s that are possible for our example
transaction in figure 1 on the preceding page. The upwardvardenote task releases (the height
of the corresponding arrow denotes amount of executiomsels, i.e.(;, or C;;, respectively).
Figure 2(a) shows the phasing between(2) andr;, (5) whenr;, acts as the candidate critical
instant. One can see, for every task in the transaction, whefirst invocation inSet2 is re-
leased, in the case thaf coincides with the critical instant. Figure 2(b) shows tberesponding
situation if 7;;, happens to coincide with the critical instant.

Given the two sets of task instanceé&(1 andSet2) and the corresponding phase relative to the
critical instant ¢;;.), the interference imposed by task can be divided into two parts:

1. the part imposed by instancesSat1 (which is independent of the tinté, Igiﬂ, and
2. the part imposed by instancesSat2 (which is a function of the considered time inter-
valt), I592(t).

v Sigc

¢ cl)iaa:2 s
Tia Z-ia
17 \
| | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
(a) Tic = Tia
Dy =
®,,=6
Z-ia Z-ia
Tip e
| | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
(b) Tic = Tib

Figure 2:®-s for the two candidates in;

These are defined as follows:

ijc

Setl _ Vx‘j + %‘cJ c.,
(2)

ijc

. t— By
1592 (1) = [J w Cij

The interference transactidn poses ormr,,, during a time intervat, when candidate;. coin-
cides with the critical instant, is:

Wieruart) = Y (L5 + I52(1)) (3)
Vi€hpi(Tua)

Where hp;(7,,) denotes tasks belonging to transactignwith priority higher or equal to the
priority of 7,,.

2.4 Approximation function

Since we beforehand cannot know which task in each tramsactiincides with the critical in-
stant, the exact analysis tries every possible combinf®iohl]. However, since this is compu-
tationally intractable for anything but small task setsdpgroximative analysis given by [6, 11]
defines one single, upward approximated, function for theri@rence caused by transaction
Wi (Tya,t) = max Wie(Tya, t) (4)

Veehpi(Tua)

6

R AW
6T 6+
44+ - 44
T |
o | 21
|;t |\t
T 11T 1T 17T 1T T 1T 17 1T 1T 17T 17 T 1T T T°17
0123456 738 910 012 3456 7 8 910
LW, &W, W
6+ 6
A 4"4I—I—,7
t _
0 21
Tt -t

Figure 3: Interference- and approximation-functions

That is,W; (7., t) simply takes the maximum of each interferance function éfch candidate
Tic)-
As an example consider again transacfigrepicted in figure 1 on page 4. Figure 3 shows the

interference function for the two candidatég;{ andV;;), and it shows howV* is derived from
them by taking the maximum of the two functions at every

Given the interferencelX;*) each transaction imposes on the task under analysjs @during

a time interval of length, its response timeH,,) can be calculated. Appendix A shows how
to perform these response-time calculations. HowevernwdadculatingR,,, the bulk of the
execution time is spent calculatim;* (.., t) for many different values of We will in section 3
show how the calculation d¥/; (7., t) can be made more efficient. In section 4 we demonstrate
the impact of using our more efficient calculation by compgithe two methods in a simulation
study.

3 Fast offset RTA

When calculating response times, the functiGf(r,,, t) (equation 4 on the page before) will be
evaluated repeatedly. For each task and transactionpaiargdl’;) many different time-values,
t, will be used during the fix-point calculations. HowevencgW (7., t) has a pattern that is
repeated every; time units (see theorem 2 below), we could save a lot of coatjmural effort

by representing the interference function statically, dndng response-time calculation use a
simple lookup function to obtain its value. We will in thiscé®n show how the approxima-
tion function changes using such precomputed informati@hleow to calculate and store that
information.

3.1 Approximation function with lookup
The key to make a static representatioVigf(r,,, t) is to recognise that it contains two parts:

e A jitter induced part, denoted;"?(r,,). This part corresponds to the task instances be-
longing toSet1. Note that the amount of interference of these instances doedepend
ont.

e Atime induced part, denoteff™¢(r,,, t). This corresponds to task instancesit2. The
time induced part has a cyclic pattern that repeats itselfyel/; units of time (as we will
prove below).

We redefine equation 4 using our new notation as:

Wi (Tuart) = I (Tua) + T (Tua, t) (5)

This partitioning of W (7., t) is visualised in figure 4 on the following pagel!"(t,,) is
the maximum starting value of each of thé.(r,,,?) functions (i.e. max ofV,.(7,,,0), see
equation 3) which is calculated by:

J"(7,.) = max 15t 6
¢ () Ve€hpi(Tua) . Z e ()
vJehpi(Tua)

The time induced parf}’"¢(z,,, t), represents the maximum interference of tasks activated af
the critical instant. Algebraicall§"¢(r,,, t) is defined as:

T (1., 1) = W (Tya t 7
7" (Tuas t) sechax | ie (Tuas 1) (7)
where ‘
VV;_(TW,t) - Z (Ii?iﬂ + Ii?iw(t)) - Jz‘md(Tua) (8)
Vjehpi(Tua)

The correctness of our method requires that our new defndfdV;*(7,.,t) in equation 5 is
functionally equivalent to the definition in equation 4.

Theorem 1 W*(7,,,t) as defined in equation 4 and’*(r,,,t) as defined in equation 5 are
equivalent.

J:nd -I-iindi—%
2 + \l, [————— X
I
—k T T Tt
012 3 456 7 8 910

Figure 4:W; (7,4,) partitioned intoJ"?(7,,) and T (1,)
Proof The theorem is proved by algebraic equivalence in Appendix B

Further, in order to be able to make a static representafidii;gr,,, t), we need to ensure that
we store enough information to correctly reprodu€é(r,,,t) for arbitrary large values of.
SinceT!™4(r,,,t) is the only part ofiV(7,.,t) that is dependent ot the following theorem
gives that it is enough to store information for the fifstime units:

Theorem 2 Assume = k x T; + t' (wherek € Nand0 < t' < T;), then

T;‘ind(Tua; t) = k} * T;‘ind(TUW T;) + T;‘ind(TUW t/)

Proof The theorem is proved by algebraic equivalence in Appendix B

We represent’’"?(r,,,t) for the firstT; time units using the concave corners of the function
Ti"(7,4,t) (marked with crosses in figure 4). The representation usesatvays7 and T}.
T¢[z] represents the maximum amount of time induced interferéhogill pose on a lower
priority task during interval lengths up t6/[z] (z € 1...|T¢|). Using these two arrays we
redefinel;"4(r,q, t) as follows:

,-Z—‘imd(Tuav t) =k x T7(|T7|] + T7 [2]
k =t div T;
t' =t remT,
z=min{y : ¢’ <T{[y]}

(9)

9

For our example transaction, the time induced interferdreq@esented in figure 4 on the pre-
ceding page by crosses) is stored in the arfigyand7} as follows:

Te =[0, 1, 2, 3]
2, 5, 9, 10]

Using equation 5 and equation 9 instead of equation 4 to ctempli(7,,, t) will significantly
reduce the time to compute response times as we will showctioses.

3.2 Precomputing 7} and T}

To computeT¢ and 7! we will first calculate the pattern for ead®! (7,.,t) from which we

will later extract the maximum. Hence, we have to considehdaskr;. in I'; as a candidate

to coincide with the critical instant. For each candidaskia;., we define a set of poinis..
Each pointp;.[k] has anr and andy coordinate, describing how the time induced interference
grows over time if the corresponding. coincides with the critical instant. The points jf.
corresponds to the convex cornersigf’ (., t) of equation 7.1W,; and W, for our example
transaction, are depicted in figure 5 and the correspongdirandp;, are illustrated by black and
white circles respectively.

A +
gL Wa =7
— \/\/ib ------- Q__X
|
2+ o e X
[
bt
o— — —| 5 10

Figure 5: Visual representation pf. sets

To calculate the set,., we (without loss of generality) assume that tasks are ematecaccord-
ing to their first activation after the critical instant,.j.according tod;;. values. The following

10

equations define the array..
pic[1].2 =0
pellly =D 15" = I (Tua)

Vj€hpi(Tua)

pzc[k]x :qukc
pic[k]-y :pic[k - 1].y + Cig
ke2... T

Eachp,. set represents how the time induced interference growsyitaral instant candidate,.,
during one periodq;). For our example transaction of figure 1 on page 4, we getdhen-
ing two p;.-s (corresponding to the black and white circles respdgtivefigure 5 on the page

before):
pia = [(0,—1),(2,1),(5,2)] black circles
pin = 1[(0, 0),(6,2),(9,3)] white circles

Now, we have the information generated by ®lil! (.., t)-functions, stored in the, -sets.
These stepwise functions are represented by one point ger &t order to get a representa-
tion of 7/"(r,,,1) in equation 7, we extract the points that representatiomtagimum of all
Wt (Tua, t)-S. Thus, we will obtain the convex cornersifi(r,,,).

’c

We calculate the set of pointg,, as the union of alp;.-s:

bi = U Dic

Tic€L;

Next, remove fronp; the points that do not corresponds the the convex cornerg'éfr.,,, t).
This is done by the following algorithm:

sort p; by increasing z-val ues;
[* If multiple points has the sane
z-val ue, keep the one with the
hi ghest y-val ue */
del ete each p;[j] where
3k piljl.e == pilk].x A plily < pilkly;
/| * Keep points so that y-val ues
grows strict nonotonically with
I ncreasi ng z-val ues */
del ete each p;[j + k] where p[j + kl.y < pi[k].y;

This algorithm is illustrated in figure 6 on the following gaghere all points in the shaded area
are to be removed #;[k] (visualised by a black dot) is to be kept. White circles referexample

11

Ya

Figure 6: Removing points from

points to be removed by the first rule, whereas crosses @&le points to be removed by
the second rule.

Now, p; contains the convex corners of the functibit’(r,,, t). For our example transaction we
now have:
bi = [<07 O>7 <27 1)? <57 2)? <97 3>]

All we have to do now is to find the concave corners (illustldig crosses in figure 5 on page 10)
and store them in the arra§f¥ and7}. This is done by the following algorithm:

for k :=1to [p;] do

Telk] = pilkly
if k < |p| then
THE] = pilk + 1]z
el se
Tik = T
done

For our example transaction this gives the followifigand 7! (corresponding to crosses in
figure 5 on page 10):
¢ =[]0, 1, 2, 3

2, 5,9, 10]

In the special case that some taskipthas no jitter (i.ed;cr, J;; = 0) the first element of’ ¢
will not be zero. However, sincg™¢(0) = 0 we need to have at least one elemenf jnthat
is zero. In such cases we prepend both the arféyand T with a zero (this will ensure that
Ti"(0) = 0). The interpretation of this is that there will be 0 time iced interference for any
time interval of lengths up to 0).

12

4 Evaluation

In order to evaluate the effectiveness of our method we haygeimented the response-time
equations in appendix A, using both the original defintionligf from section 2 (Old RTA)
and our faster version df;* from section 3 (Fast RTA). Using these implementations and a
synthetic task-generator we have performed an evaludtypsjmulations, of both approaches
by calculatig the response times for all tasks in the system.

4.1 Description of Simulation

In our simulator we generate task sets that are used as g different RTA implementations.
The task-set generator takes the following parameters:

e Total system load (in % of total CPU utilisation),
e the number of transactions to generate, and

e the number of tasks per transaction to generate.
Using these parameters a task set with the following pregseid generated:

e The total system load is proportionally distributed ovétra@insactions in the system.

e Transaction periodd({) are randomly distributed in the range 1.000 to 1.000.00#¢tm
distribution).

e Each offset Q;;) is randomly distributed within the transaction periodifanm distribu-
tion).

e The execution times({;;) are chosen as a fraction of the time between two consecutive
offsets in the transaction. The fraction is the same througbne transaction. The fraction
is selected so that the the transaction load (as defined Byshproperty) is obtained.

e The jitter (J;;) is randomly distributed between zero and 1.2 times thes&retion period
(0..1.27;, uniform distribution).

¢ Blocking (B;;) is set to zero.

e The priorities are assigned in rate monotonic order [4].

We have measured execution times for performing RTA (fotaaks in the system) using both
methods (Old RTA and Fast RTA). The execution times are nbthirom a laptop with a Pentium
Il CPU. For Fast RTA the execution times include the timeatcalate7¢ andT!. The results
in section 4.2 have been obtained by taking the mean valug8 simulated task-sets for each
point in each graph.

13

No. Transactions = 10, Load = 90%

25 , - .
Fast RTA ———
Old RTA i
20
S 15}
c
@] ¥
(&)
(0]
v 10+)
5 B *
0 -y x v ‘ P

1 2 3 4 5 6 7 8 9 10
No. Tasks/Transaction

Figure 7: Execution time

4.2 Simulation Results

Figure 7 shows how the average (although difficult to seetatleeir size, 95% confidence inter-
vals are shown) execution times of Fast RTA and Old RTA whemtimber of tasks/transaction
is varied from 1 to 10 (while keeping the system load at 90%tarchumber of transactions at
10). When the number of tasks/transaction is 10, the exatttne is about 0.40 seconds for
Fast RTA, and about 20 seconds for Old RTA. This amounts teeadyp of 50 times. Similar
execution times are obtained both when varying the numb&aaogactions between 1 and 10,
and when varying load between 10% and 90%.

Figure 8 on the following page shows the relative perforneamicFast RTA compared to Old
RTA. The relative performance is calculated as how largetitva Fast RTA is of Old RTA (cal-
culated byl — (toiqa — trast) /tod, Wheret p, IS the execution time for Fast RTA ang,,; for Old
RTA), e.g., when the relative performance is 1 Fast RTA ardiRJIA have the same execution
time, and when the relative performance is 0.1 Fast RTA t@kedimes the time of Old RTA
(i.e. itis 10 times faster).

Figure 8(a) illustrates when the number of tasks/trangagds varied between 3 and 10. When
the number of tasks/transaction is 1 the relative perfoomas 0.58 and it rapidly increases to
the values visible in the graph.

Figure 8(b) illustrates when the number of transactionsarged between 2 and 10. When the
number of transactions is 1, the relative performance ik, IMich means that Fast RTAs®wer
than Old RTA. When performing RTA for a single transactidrg bverhead of precomputiricf
andT! outweighs the benefits obtained during the RTA (the pre-edegdV;* is never used).
However, as seen in the graph, when the number of transadsdngher than 1, the overhead
is well justified since the total RTA is significantly fast&or larger task sets, about 0.3% of the

14

Fast RTA as a fraction of Old RTA Fast RTA as a fraction of Old RTA

Fast RTA as a fraction of Old RTA

0.12

0.1

0.08

0.06

0.04

0.02

0.12

0.1

0.08

0.06

0.04

0.02

0.12

0.1

0.08

0.06

0.04

0.02

0

(a) No. Transactions = 10, Load = 90%

1 2 3 4 5 6 7 8 9 10
No. Tasks/Transaction
(b) No. Tasks/Transaction = 10, Load = 90%
1 2 3 4 5 6 7 8 9 10

No. Transactions

(c) No. Transactions = 10, No. Tasks/Transaction = 10

01 02 03 04 05 06 07 08 09

Load

Figure 8: Relative performance

15

total time of Fast RTA, is spent on precomputifigand7?.

Figure 8(c) illustrates when the load is varied between 16&30%. In this graph we see that
the relative performance is not highly dependent on theegysdbad, only a small increase in
relative performance is obtained as the system load grows.

In order to compare Old RTA and Fast RTA, in the context of ine-admission control, we
generated a task sets with 90% load, 10 transactions withsk@/Aransaction and performed the
RTA for a single task (corresponding to one arriving dynathyao the system) at lowest priority.
We generated 100 different tasks sets using execution fonése single task between 1000 and
6000. The result was that the average execution time for Re&twas 0.33ms and 44ms for
Old RTA, which corresponds to a speedup of 130 times. It igcaable that the speedup is far
greater than in the previous simulations, this is due todhkethat only interference from tasks in
other transactions needs to be considered (since the nkusttde only task in its transaction).
This means that basically only’* is computed (which is the only part of the RTA addressed by
our method). Furthermore one can see that actual execumeng reduced from some 1/100’s
of seconds to the microsecond range, which makes Fast RTabéevinethod to use for on-line
scheduling algorithms, e.g., those performing admissaorol with RTA.

Our conclusions for this simulation study are that: (1) FRBA performs significantly better
than Old RTA. For anything but trivially small task sets thereased performance is at least in
the order of a magnitude, (2) Fast RTA brings down executioag for whole scenarios from the
order of seconds to fractions of seconds, and (3) Fast RTAybidown execution times for single
tasks from the order of some 100ms to the microsecond rarige d&crease is important in order
to make RTA a feasible technique to include in, e.qg., on4ickeeduling algorithms performing
RTA on-line (admission control being an example) and oping allocation or configuration
tools.

5 Conclusionsand Future Wor k

In this paper we have presented a novel method that allovesfefficient implementation of the
approximative Response-Time Analysis (RTA) for tasks vattsets presented by Tindell [11]
and Palencia Gutierrez al. [6].

We have, by simulations, shown that the speedup for our rdetbmpared to [6] is substantial.
For realistically sized task sets (100 tasks), when peilifagrachedulability analysis of the entire
task set, the speedup is about 50 times. And from our evaluaie can conjecture that the rela-
tive improvement will be even higher for larger task sets.eaWhsing our method for admission
control of a single task we see that the relative improveratatir method is even higher, with a
speedup of more than 100 times. The time for Fast RTA, in tloeasecond range, Enables RTA
to be used for on-line calculations of RTS, one example bem{jne admission conttrol based
sceduling algorithms.

In the simulations we showed that our method is reducing dmepaitational effort from tens of

16

seconds to the millisecond range, which have some positatipal implications: (1) Engineer-

ing tools (such as those for task allocation and prioritygasaent) can feasible rely on RTA and
use the task model with offsets, and (2) on-line schedullggraghms, e.g. those performing

admission control, can use accurate on-line scheduhalbdgts based on RTA (which are less
pessimistic compared to for example tests based on uidiséiounds). The actual speed up
is more tan 130 times, but more significantly, the actual etiec time lies aroutd 330 micro

seconds.

The main consideration in performing RTA for tasks with effsis to calculate how higher
(or equal) priority tasks interfere with a task under anialy§he essence of our method is to
calculate and store this information statically and duniegponse time calculations (fix-point
iteration), use a simple table lookup. We have formally pbthat the RTA-equations can be
reformulated to allow such static representation of tagrfarence.

We have earlier provided a tighter version of the RTA for tasikh offsets [5]. Our next stepisto
extend our method of static representation of task intenfes to our tighter RTA, yielding a RTA
that is significantly faster and provides less pessimisponse times than previous techniques.
Further, we are currently starting a project where RTA faksawith offsets will be used in
software engineering tools. The RTA will be used both to @enf schedulability tests and for
automatic allocation of software to nodes in a distributestesm.

17

References

[1]

[2]
[3]

[4]
[5]

[6]
[7]
[8]
[9]

[10]
[11]

N. Audsley, A. Burns, R. Davis, K. Tindell, and A. WellisgFixed Priority Pre-Emptive Scheduling:
An Historical PerspectiveReal-Time System8(2/3):129-154, 1995.

I-Logix. Rhapsody. http://www.ilogix.com/producteapsody.

M. Joseph and P. Pandya. Finding Response Times in alReal-System.The Computer Journal
29(5):390-395, 1986.

C. Liu and J. Layland. Scheduling Algorithms for Multqramming in a Hard-Real-Time Envi-
ronment.Journal of the ACM20(1):46—61, 1973.

J. Méaki-Turja and M. Sjodin. Improved Analysis for ReEIme Tasks With Offsets — Advanced
Model. Technical Report MRTC no. 101, Mélardalen Real-TiResearch Centre (MRTC), May
2003.

J. Palencia Gutierrez and M. Gonzalez Harbour. SchéditjaAnalysis for Tasks with Static and
Dynamic Offsets. IrProc. 19" IEEE Real-Time Systems Symposium (RT3&)ember 1998.

J. Palencia Gutierrez and M. Gonzalez Harbour. ExpigifPrecedence Relations in the Schedulabil-
ity Analysis of Distributed Real-Time Systems. Pmoc. 20" IEEE Real-Time Systems Symposium
(RTSS)pages 328—-339, December 1999.

Rational. Rational Rose RealTime. http://www.ratiboam/products/rosert.

O. Redell. Response time analysis for implementation of distributattrol systems PhD thesis,
KTH, Department of Machine Design, 2003. Series: TRITA-MMB03:17.

TeleLogic. Telelogic tau. http://www.telelogic.cdpnoducts/tau.

K. Tindell. Using Offset Information to Analyse Stafriority Pre-emptively Scheduled Task Sets.
Technical Report YCS-182, Dept. of Computer Science, Usitseof York, England, 1992. Avail-
able at ftp://ftp.cs.york.ac.uk/pub/realtime/papeSH182_[12].ps.Z.

18

A Complete RTA formulas

In this appendix we provide the complete set of formulas toutate the worst case response
time, R,,, for a task under analysis,,, as presented in Palencia Gutierezal. [6].

The interference transactidiy poses on a lower priority task,,, if 7;. coincides with the critical
instant, is defined by (see equation 3 in this paper):

ij ije — Dyje
Wi(:(Tuaat) = Z < \‘%J + ’Vt T —‘ > * Cij (26 in [6])

Vi€hpi(Tua) v

where the phase between task and the candidate critical instant task is defined as (see
equation 1 in this paper):

Qe =T, — (O + Jic — 0y5) mod T; (17 in[6])

The approximation function for transactibnwhich considers all candidate-s simultaneously,
is defined by (see equation 4 in this paper):

W (Tua,w) = max Wie(Tye, w) (27 in [6])

Veehpi(Tua)

The length of a busy period, fot,,, assumingr,. is the candidate critical instant, is defined as
(Note that the approximation function is not usedIfgj:
Luac :Bua + (p — Po,uac + 1)Cua+
Woe(Tuas Luae) + Y Wi (Tua: Luac) (301in [6])
Vitu

wherep, ... denotes the first, ang, ... the last, task instance, of,, activated within the busy
period. They are defined as:

Jua + CI)uac .
Pouac = — \‘ _J +1 (29 In [6])
Ty
and
Luac - unac .
PLuac = [7% —‘ (31in[6])

In order to get the worst case response time-fprwe need to check the response time for every
instancep € pouac - - - PL.uacs IN the busy period. Completion time of th&h instance is given
by:
wua(:(p) :Bua + (p — Po,uac + 1)Cua
+ Wuc(Tuau wuac(p) + Z VVZ* (Tuau wua(:(p)) (28 In [6])
ViZu

19

The corresponding response time (for instapicis then:

Ruac(p> = wua(:(p) - q)uac - (p - 1)Tu + Oua (32 in [6])

To obtain the worst case response tiRg,, for ., we need to consider every candidate critical
instant 7, (includingr,, itself), and for each such candidate every possible instanof r,,,:

Ry=_max [max (Ruu(p))] (33in [6])

Vthpu(Tua)Ua P=DP0,uac;---» PL,uac

20

B Proofsof Theorems

In this appendix we provide proofs of theorems 1 and 2. We pélform all proofs by algebraic ma-
nipulation and use braces () to highlight the expression that is manipulated in each.ste also
annotate braces with the equations, properties, lemmassamptions referred to when performing some
manipulations.

When performing the manipulations we will, e.g., rely on tbikowing properties:

(max) Themax, operator allows terms that are constant with respect to #hémisation variable«() to
be moved outside the maximisation operation:

max(X, +Y) = max(X,) + Y.
v v

(sum) Summation over a set of terms can be divided into two sepataienations:
BERROES DN
v
(ceil) When taking the ceiling[(]) of a set of terms, terms that are known to be integers can lveano

outside of the ceiling expression:
[X+Y]ANXeN=X+[Y]

Theorem 1 W*(7,,,t) as defined in equation 4 and’*(r,,,t) as defined in equation 5 are
equivalent.

Proof 1
Wi (Tuas t)
——

Eq.5

(1) :Jz’ind(Tua) + Tz'md(Tuaa t)
—_———
Eq.7
(2) =J" (1) + max W (Tuet)
VeERD; (Tua) N—
Eq.7
(3) I+ max (3T (IS IER0) — ()
N ‘ Vi€hpi(Tua) P
(n:;x)
(4 =g max (O (I IEP0)) - S)
—— Vc€hpi(Tua) Vichp(rua) N—_——
5 —]Setl ISet2
R
\Jehpz(Tua) P
Eqs
6 = Ina Wic uay t
() vcehpi(}iua) <T)

Eq.4

(7) =W (Tua, 1)

21

Before prooving theorem 2 we need to establish some lemmas.

Lemma 1l Regardless of candidate critical instant/5"*(T;) = Cj;

ijc

Proof of Lemma 1
[SetQ (T‘z)
N——

ijc

Eq.2

E_q)zc
o= [FF] e

—_——

0< @50 < Ty (Eqd)

2 = 13
-
B = Cij
]

Lemma2 Assume = k«T;+t' (wherek € Nand0 < ¢’ < T;), thenI ¢2(t) = k« I5¢(T;) +
[Set2(t/)

ijc

Proof of Lemma 2

I5E2 (1) LokxISHT) +)
Eq.2 Lem.1 Eq.2
t— Dy 2 t'— Dy |
Assumption _ _
k*ﬂ—l—t/—q)lc ? t/_q)i'c
k*TZ t,—q)l"c ? t/ q)i'c_
(ceil)/:; eN -, -
t— qu jc ? - q)z jc
t'— By t'— By]
(5) kCij + [7 ! w Ci) kC,; + 7 i3 N

22

Lemma3 T/ (7., T}) = Y Cjy

Vi€hpi(Tua)

Proof of Lemma 3

T (Tua, T)
—_————

Eq.7
(1) = max Wi(ru,T)
Ve€hpi (Tua) N——
Eq.8
Sel Set2 ind
@ = (O30 U ERT) —Irn)
e Yjeflpi(’rua) .
(sum)

Setl Set2 ind
® = (Xt S mRm)-sew)
e vjehpi('rua) v]ehpz('rua) LemA

Se ind
W =, (X B 3 G <Tua>)
N e vjehpi('rua) vjehpi('rua) P
(n:;X)
Setl ind
G) = Gyt max (D I3 =)
Vj€hpi(Tua) o viEhpi(Tua))
(f;;()
Setl ind
(6) - iy +VC€I}27Z'1()7('ua) Z Imt —Ji"(Tua)
¥j€hpi(Tua) o UYEirG)
Ea6
(7) = Z Cij + ;]z‘md(Tua) - Jz‘md(Tuaz
Vj€hpi(Tua) e
(8) = > G
Vj€hpi(Tua)

23

Theorem 2 Assumeé = k x T; + ¢’ (wherek € Nand0 < t' < T;), then

Timd(Tua; t) =k % T@'md(Tuaa Tz) + Tz'md(Twl’ t/)

Proof 2
T@'md(Tua;t)
—_——
Eq.7
(1) = max W (Tu,t)
Ve€hpi (Tua) N——r
Eq.8
@) = max 3 (I IEE) — ()
CEMPiT) s hpe(rua) ——~—
(3) = max Y (I ks L) A IEP() — T ()
ce pz(’Tua) Vjehpi(Tua) hl_em,_/.l
4 = max IS L ROy 4+ ISS2(1)) — T (1,
() VCEhpi(Tua)vjefg(T)(J J J ()) ()
(;J:n)
5 — < k’OZ IfS"etl ISetQ t/ . de ”)
() VCEIerL?(}f'ua) v Z]+ ‘ Z (zyc + 1)C ()) 1 (T)
\]ehpi('rua) Vthpi(Tua) P
(n:;X)
© = 2 Kyt max D, (ENHIEHO) - I
Vj€hpi(Tua) i ehpi(Tua)
—_———
M e D Cok g 2, (GTHIEEE) =)
Vj€hpi(Tua) Y ehpi(Tua)
———
Lem.3
(8) =k T T+ max S (LR TEP() = T ()
c€hp;i(Tua) . '
Y]ehpz('rua) ,
Eas
9) =k * T" (700, Ti) + max Wi (7ya,t)
jcehpi(ﬂm) y
Ea7
(10) =k« T (Tua, T3) + T} (Tua, t')

24

	Abstract
	1 Introduction
	2 Existing offset RTA
	2.1 System model
	2.2 Response-time analysis
	2.3 Interference function
	2.4 Approximation function

	3 Fast offset RTA
	3.1 Approximation function with lookup
	3.2 Precomputing Tc and Tt

	4 Evaluation
	4.1 Description of Simulation
	4.2 Simulation Results

	5 Conclusions and FutureWork
	References
	A Complete RTA formulas
	B Proofs of Theorems

