
Speeding Up the Response-Time Analysis
of Tasks with Offsets

Jukka Mäki-Turja Mikael Nolin
MRTC-Report 154

Mälardalen Real-Time Research Centre (MRTC)
Västerås, Sweden

jukka.maki-turja@mdh.se

February 2004

Abstract

We present a method that enables an efficient implementationof the approximative
response-time analysis for tasks with offsets presented byTindell [11] and Palencia Gutierrez
et al. [6].

The method allows for significantly faster implementationsof schedulability tools. To
have fast calculations of response-times is paramount in optimising tools that perform au-
tomatic configuration of systems, e.g., allocating tasks toCPUs in distributed systems, or
assigning priorities to tasks on one CPU. In such tools response-times are calculated repeat-
edly to evaluate different configurations during optimisation. Besides the increased usability
in off-line tools, reducing computation time, from tens of seconds to just a few milliseconds,
as we will show, is a step towards on-line RTA in for example admission control systems.

We formally prove that our reformulation of earlier presented equations is correct and al-
low us to statically represent parts of the equation (lessening the need for calculations during
response-time analysis). We show by simulations that the speed-up when using our method
is substantial. When task sets grow beyond a trivial number of tasks and/or transactions a
speed-up of more than 100 times (10 transactions and 10 tasks/transaction) compared to the
original analysis can be obtained.

1 Introduction

A powerful and well established schedulability analysis technique is theResponse-Time Analysis
(RTA) [1]. RTA is applicable to systems where tasks are scheduled in strict priority order which
is the predominant scheduling technique used in real-time operating systems today. In this paper,

1

we present a method that enables an efficient implementationof the approximative RTA for tasks
with offsets presented by Tindell [11] and Palencia Gutierrezet al. [6].

RTA is a method to calculate worst-case response-times for tasks in hard real-time systems.
Hence, RTA can be used to perform schedulability tests, i.e.testing whether tasks in a system
will meet their deadlines. Traditionally, industrial use of schedulability tests has been limited.
However, with recent advancements in software developmentand synthesis tools, such as UML-
based tools [2, 8, 10], schedulability tests can be integrated in the normal workflow and tool-
chains used by real-time engineers.

This kind of tools can be used, for instance, to perform automatic allocation of tasks to nodes
in a distributed real-time system or to automatically derive task priorities (priority assignment)
so that task deadlines are guaranteed to be met. To be able perform such allocation and/or as-
signment tasks, tools need to be able to perform schedulability tests. Typically, such automatic
allocation/assignment methods are based on optimisation or search techniques, during which nu-
merous possible configurations are evaluated. (There can easily be tens or hundreds of thousands
of possible configurations even for small systems.) For eachconfiguration a schedulability test
is performed in order to evaluate different solutions. Hence, schedulability tests must be quick,
taking no more than a fraction of a second, in order to be suitable in practice, for such systems.

Dynamic real-time systems, with on-line admission controlof real-time tasks, needs to be able to
quickly evaluate, to keep run-time overhead to a minimum, whether a dynamically arriving task
can be admitted to the system. In these cases the tolerance for delays in the scheduling analysis
is even less than in the case of software engineering tools. Decisions needs to be made within a
few tens or hundreds of microseconds, further stressing theneed for faster schedulability analysis
techniques.

Accounting for offsets between tasks gives significantly tighter analysis results than using the
traditional notion of a critical instant where all tasks in asystem are considered to be released at
the same time [4]. Hence, tools for automatic configuration of real-time systems would benefit
from using this extension, in the sense that they can easier find feasible configurations (indeed,
many systems that will be deemed infeasible by RTA without offsets will be feasible when taking
offsets into account). However, the price of taking offsetsinto account is increased execution
time of the analysis. Existing methods for RTA with offsets have all been focused on modelling
capabilities while ignoring issues of computational complexity, e.g., [11, 6, 7, 9].

The first RTA for tasks with offsets was presented by Tindell.He provided an exact algorithm for
calculating response time for tasks with offsets. However,this algorithm becomes computation-
ally intractable for anything but small task sets due to its exponential time complexity [6, 11]. In
order to deal with this problem, Tindell also provided an approximation algorithm that is polyno-
mial in time and give pessimistic but safe1 results. Later, Palencia Gutierrezet al. [6] formalised,
generalised and improved Tindell’s work.

In this paper we present a method that enables an efficient implementation of the approximative
offset analysis given by Tindell [11] and Palencia Gutierrez et al. [6]. The correctness of our

1In the context of scheduling analysis,safeimplies that no underestimation is made.

2

method is formally proven, in the sense that we prove algebraic equivalence with the original
methods. The method significantly speeds up the calculationof response times, as we will show
by simulations.

Paper Outline: In section 2 we revisit and restate the original offset RTA presented by [6] and
[11]. In section 3 we present our new method. Section 4 presents evaluations of our method, and
finally, section 5 concludes the paper and outlines future work.

2 Existing offset RTA

This section revisits the existing response-time analysisfor tasks with offsets [6, 11] and illus-
trates the intuition behind the analysis and the formulas.

2.1 System model

The system model used is as follows: The system,Γ, consists of a set ofk transactionsΓ1, . . . , Γk.
Each transactionΓi is activated by a periodic sequence of events with periodTi.2 The activating
events are mutually independent, i.e., phasing between them is arbitrary.3 A transaction,Γi, con-
tains|Γi| tasks, and each task is activated (released for execution) when a relative time,offset,
elapses after the arrival of the external event.

We useτij to denote a task. The first subscript denotes which transaction the task belongs to,
and the second subscript denotes the number of the task within the transaction. A task,τij , is
defined by a worst case execution time (Cij), an offset (Oij), a deadline (Dij), maximum jitter
(Jij), maximum blocking from lower priority tasks (Bij), and a priority (Pij). The system model
is formally expressed as follows:

Γ :={Γ1, . . . , Γk}

Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉

τij :=〈Cij, Oij, Dij , Jij, Bij, Pij〉

There are no restrictions placed on offset, deadline or jitter, i.e., they can all be either smaller
or greater than the period. Parameters for an example transaction (Γi) with two tasks (τia, τib) is
visualised in figure 1 on the following page. The offset denotes the earliest release time of a task
relative to the start of its transaction and jitter denotes the variability in the release of the task.
(In figure 1 the jitter is not graphically visualised.)

2Events does not have to be periodic as long as the time betweentwo consequitve events (minimum interarrival
time) is bounded. In this case the minimum interarrival timeis treated as the period (Ti).

3This is a pessimistic assumption, if there is dependencies among the events, RTA still provides a valid upper
bound for the response-times.

3

1 2 3 4 5 6 7 8 9 100

Oia=2

Cia=2

Oib=5

Ti=10

Jib=1

Cib=1

Jia=8

Time

Figure 1: An example transactionΓi

2.2 Response-time analysis

The goal of RTA is to facilitate a schedulability test for each task in the system by calculating an
upper bound on its worst case response-time. We useτua (taska, belonging to transactionΓu) to
denote thetask under analysis, i.e., the task who’s response time we are currently calculating.

In the classical RTA (without offsets) thecritical instantfor τua is when it is released at the same
time as all higher (or equal) priority tasks [4, 3]. In a task model with offsets this assumption
yields pessimistic response-times since some tasks can notbe released simultaneously due to
offset relations. Therefore Tindell [11] redefined (relaxed) the notion of critical instant to be:

At least one task in every transaction is to be released at thecritical instant. (Only
tasks with priority higher or equal toτua are considered.)

Since it is not known which task that coincides with (is released at) the critical instant, every task
in a transaction must be treated as acandidateto coincide with the critical instant.

Tindell’s exact RTA tries every possible combination of candidates among all transactions in the
system. This, however, becomes computationally intractable for anything but small task sets (the
number of possible combinations of candidates ismn for a system withn transactions and with
m tasks per transaction). Therefore Tindell provided an approximative RTA that still gives good
results but uses one single approximation function for eachtransaction. Palencia Gutierrezet
al. [6] formalised and generalised Tindells work. We will in this paper use the more general
formalism of Palencia Gutierrezet al., although our proposed method is equally applicable to
Tindell’s original algorithm.

2.3 Interference function

Central to RTA is to capture the interference a higher or equal priority task (τij) imposes on the
task under analysis (τua) during an interval of timet. Since a task can interfere withτua multiple
times duringt we have to consider interference from possibly severalinstances. The interfering
instances ofτij can be classified into two sets:

4

Set1 Activations that occur before or at the critical instant andthat can be delayed by jitter so
that they coincide with the critical instant.

Set2 Activations that occur after the critical instant

When studying the interference from an entire transactionΓi, we will consider each task,τic ∈
Γi, as acandidatefor coinciding with the critical instant.

RTA of tasks with offsets is based on two fundamental theorems [6, 11]:

1. The worst case interference a taskτij imposes onτua is whenSet1 activations are delayed
by an amount of jitter such that they all occur at the criticalinstant and the activations in
Set2 have zero jitter.

2. The task ofΓi that coincide with the critical instant (denotedτic), will do so after experi-
encing its worst case jitter delay.

The phasing between a task,τij , and a critical instant candidate,τic, becomes (slightly reformu-
lated compared to [6], see Appendix A):

Φijc = (Oij − (Oic + Jic)) mod Ti (1)

From the second theorem we get thatτic will coincide with the critical instant after having experi-
enced its worst case jitter delay (i.e., the critical instant will occur at(Oic+Jic) mod Ti, relative
to the start ofΓi). From this, the definition ofΦijc follows in order to keep the relative offset
relations among tasks withinΓi. An implication of this is that depending on the value ofΦijc,
different interfering instances will either belong toSet1 or Set2. For example, the first instance
of a taskτij in Set2 will be released atΦijc time units after the critical instant, and subsequent
releases will occur periodically everyTi.

Figure 2 on the next page illustrates the four differentΦijc-s that are possible for our example
transaction in figure 1 on the preceding page. The upward arrows denote task releases (the height
of the corresponding arrow denotes amount of execution released, i.e.,Cia or Cib respectively).
Figure 2(a) shows the phasing betweenτia (2) andτib (5) whenτia acts as the candidate critical
instant. One can see, for every task in the transaction, whenthe first invocation inSet2 is re-
leased, in the case thatτia coincides with the critical instant. Figure 2(b) shows the corresponding
situation ifτib happens to coincide with the critical instant.

Given the two sets of task instances (Set1 andSet2) and the corresponding phase relative to the
critical instant (Φijc), the interference imposed by taskτij can be divided into two parts:

1. the part imposed by instances inSet1 (which is independent of the timet), ISet1
ijc , and

2. the part imposed by instances inSet2 (which is a function of the considered time inter-
val t), ISet2

ijc (t).

5

1 2 3 4 5 6 7 8 90 10

ibτiaτiaτ
2=Φiaa

5=Φiba

(a) τic = τia

1 2 3 4 5 6 7 8 90 10

6=Φiab

9=Φ ibb

iaτ
ibτ ibτiaτ

(b) τic = τib

Figure 2:Φ-s for the two candidates inΓi

These are defined as follows:

ISet1
ijc =

⌊
Jij + Φijc

Ti

⌋

Cij

ISet2
ijc (t) =

⌈
t − Φijc

Ti

⌉

Cij

(2)

The interference transactionΓi poses onτua, during a time intervalt, when candidateτic coin-
cides with the critical instant, is:

Wic(τua, t) =
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)

(3)

Wherehpi(τua) denotes tasks belonging to transactionΓi, with priority higher or equal to the
priority of τua.

2.4 Approximation function

Since we beforehand cannot know which task in each transaction coincides with the critical in-
stant, the exact analysis tries every possible combination[6, 11]. However, since this is compu-
tationally intractable for anything but small task sets theapproximative analysis given by [6, 11]
defines one single, upward approximated, function for the interference caused by transactionΓi:

W ∗
i (τua, t) = max

∀c∈hpi(τua)
Wic(τua, t) (4)

6

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

1 2 3 4 5 6 7 8 90

2

4

6

10 1 2 3 4 5 6 7 8 90

2

4

6

10

*
iW

iaW

ibia WW &

ibW

t t

tt

Figure 3: Interference- and approximation-functions

That is,W ∗
i (τua, t) simply takes the maximum of each interferance function (foreach candidate

τic).

As an example consider again transactionΓi depicted in figure 1 on page 4. Figure 3 shows the
interference function for the two candidates (Wia andWib), and it shows howW ∗

i is derived from
them by taking the maximum of the two functions at everyt.

Given the interference (W ∗
i) each transaction imposes on the task under analysis (τua), during

a time interval of lengtht, its response time (Rua) can be calculated. Appendix A shows how
to perform these response-time calculations. However, when calculatingRua the bulk of the
execution time is spent calculatingW ∗

i (τua, t) for many different values oft. We will in section 3
show how the calculation ofW ∗

i (τua, t) can be made more efficient. In section 4 we demonstrate
the impact of using our more efficient calculation by comparing the two methods in a simulation
study.

3 Fast offset RTA

When calculating response times, the functionW ∗
i (τua, t) (equation 4 on the page before) will be

evaluated repeatedly. For each task and transaction pair (τua andΓi) many different time-values,
t, will be used during the fix-point calculations. However, sinceW ∗

i (τua, t) has a pattern that is
repeated everyTi time units (see theorem 2 below), we could save a lot of computational effort

7

by representing the interference function statically, andduring response-time calculation use a
simple lookup function to obtain its value. We will in this section show how the approxima-
tion function changes using such precomputed information and how to calculate and store that
information.

3.1 Approximation function with lookup

The key to make a static representation ofW ∗
i (τua, t) is to recognise that it contains two parts:

• A jitter induced part, denotedJ ind
i (τua). This part corresponds to the task instances be-

longing toSet1. Note that the amount of interference of these instances does not depend
on t.

• A time induced part, denotedT ind
i (τua, t). This corresponds to task instances inSet2. The

time induced part has a cyclic pattern that repeats itself every Ti units of time (as we will
prove below).

We redefine equation 4 using our new notation as:

W ∗
i (τua, t) = J ind

i (τua) + T ind
i (τua, t) (5)

This partitioning ofW ∗
i (τua, t) is visualised in figure 4 on the following page.J ind

i (τua) is
the maximum starting value of each of theWic(τua, t) functions (i.e. max ofWic(τua, 0), see
equation 3) which is calculated by:

J ind
i (τua) = max

∀c∈hpi(τua)

∑

∀j∈hpi(τua)

ISet1
ijc (6)

The time induced part,T ind
i (τua, t), represents the maximum interference of tasks activated after

the critical instant. AlgebraicallyT ind
i (τua, t) is defined as:

T ind
i (τua, t) = max

∀c∈hpi(τua)
W+

ic (τua, t) (7)

where
W+

ic (τua, t) =
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)
− J ind

i (τua) (8)

The correctness of our method requires that our new definition of W ∗
i (τua, t) in equation 5 is

functionally equivalent to the definition in equation 4.

Theorem 1 W ∗
i (τua, t) as defined in equation 4 andW ∗

i (τua, t) as defined in equation 5 are
equivalent.

8

1 2 3 4 5 6 7 8 90

2

4

6

10

ind
iT

t

J
ind

i

*
iW

Figure 4:W ∗
i (τua, t) partitioned intoJ ind

i (τua) andT ind
i (τua, t)

Proof The theorem is proved by algebraic equivalence in Appendix B.

Further, in order to be able to make a static representation of W ∗
i (τua, t), we need to ensure that

we store enough information to correctly reproduceW ∗
i (τua, t) for arbitrary large values oft.

SinceT ind
i (τua, t) is the only part ofW ∗

i (τua, t) that is dependent ont, the following theorem
gives that it is enough to store information for the firstTi time units:

Theorem 2 Assumet = k ∗ Ti + t′ (wherek ∈ N and0 ≤ t′ < Ti), then

T ind
i (τua, t) = k ∗ T ind

i (τua, Ti) + T ind
i (τua, t

′)

Proof The theorem is proved by algebraic equivalence in Appendix B.

We representT ind
i (τua, t) for the firstTi time units using the concave corners of the function

T ind
i (τua, t) (marked with crosses in figure 4). The representation uses two arraysT c

i andT t
i .

T c
i [x] represents the maximum amount of time induced interferenceΓi will pose on a lower

priority task during interval lengths up toT t
i [x] (x ∈ 1 . . . |T c

i |). Using these two arrays we
redefineT ind

i (τua, t) as follows:

T ind
i (τua, t) =k ∗ T c

i [|T c
i |] + T c

i [x]

k =t div Ti

t′ =t remTi

x =min{y : t′ ≤ T t
i [y]}

(9)

9

For our example transaction, the time induced interference(represented in figure 4 on the pre-
ceding page by crosses) is stored in the arraysT c

i andT t
i as follows:

T c
i = [0, 1, 2, 3]

T t
i = [2, 5, 9, 10]

Using equation 5 and equation 9 instead of equation 4 to compute W ∗
i (τua, t) will significantly

reduce the time to compute response times as we will show in section 4.

3.2 Precomputing T c

i
and T t

i

To computeT c
i andT t

i we will first calculate the pattern for eachW+
ic (τua, t) from which we

will later extract the maximum. Hence, we have to consider each taskτic in Γi as a candidate
to coincide with the critical instant. For each candidate task, τic, we define a set of pointspic.
Each pointpic[k] has anx and andy coordinate, describing how the time induced interference
grows over time if the correspondingτic coincides with the critical instant. The points inpic

corresponds to the convex corners ofW+
ic (τua, t) of equation 7.W+

ia andW+
ib , for our example

transaction, are depicted in figure 5 and the correspondingpia andpib are illustrated by black and
white circles respectively.

2

4

10

+
ibW

t
5

+
iaW

Figure 5: Visual representation ofpic sets

To calculate the setpic, we (without loss of generality) assume that tasks are enumerated accord-
ing to their first activation after the critical instant, i.e., according toΦijc values. The following

10

equations define the arraypic:

pic[1].x =0

pic[1].y =
∑

∀j∈hpi(τua)

ISet1
ijc − J ind

i (τua)

pic[k].x =Φikc

pic[k].y =pic[k − 1].y + Cik

k ∈2 . . . |Γi|

Eachpic set represents how the time induced interference grows, forcritical instant candidateτic,
during one period (Ti). For our example transaction of figure 1 on page 4, we get the follow-
ing two pic-s (corresponding to the black and white circles respectively in figure 5 on the page
before):

pia = [〈0,−1〉, 〈2, 1〉, 〈5, 2〉] black circles
pib = [〈0, 0〉, 〈6, 2〉, 〈9, 3〉] white circles

Now, we have the information generated by allW+
ic (τua, t)-functions, stored in thepic-sets.

These stepwise functions are represented by one point per step. In order to get a representa-
tion of T ind

i (τua, t) in equation 7, we extract the points that representation themaximum of all
W+

ic (τua, t)-s. Thus, we will obtain the convex corners ofT ind
i (τua, t).

We calculate the set of points,pi, as the union of allpic-s:

pi =
⋃

τic∈Γi

pic

Next, remove frompi the points that do not corresponds the the convex corners ofT ind
i (τua, t).

This is done by the following algorithm:

sort pi by increasing x-values;
/* If multiple points has the same

x-value, keep the one with the
highest y-value */

delete each pi[j] where
∃k : pi[j].x == pi[k].x ∧ pi[j].y ≤ pi[k].y;

/* Keep points so that y-values
grows strict monotonically with
increasing x-values */

delete each pi[j + k] where pi[j + k].y ≤ pi[k].y;

This algorithm is illustrated in figure 6 on the following page where all points in the shaded area
are to be removed ifpi[k] (visualised by a black dot) is to be kept. White circles refers to example

11

x

y

pi[k]

Figure 6: Removing points frompi

points to be removed by the first rule, whereas crosses refer to example points to be removed by
the second rule.

Now,pi contains the convex corners of the functionT ind
i (τua, t). For our example transaction we

now have:
pi = [〈0, 0〉, 〈2, 1〉, 〈5, 2〉, 〈9, 3〉]

All we have to do now is to find the concave corners (illustrated by crosses in figure 5 on page 10)
and store them in the arraysT c

i andT t
i . This is done by the following algorithm:

for k := 1 to |pi| do
T c

i [k] := pi[k].y
if k < |pi| then

T t
i [k] := pi[k + 1].x

else
T t

i [k] := Ti

done

For our example transaction this gives the followingT c
i andT t

i (corresponding to crosses in
figure 5 on page 10):

T c
i = [0, 1, 2, 3]

T t
i = [2, 5, 9, 10]

In the special case that some task ofΓi has no jitter (i.e.∃j∈Γi
Jij = 0) the first element ofT c

i

will not be zero. However, sinceT ind
i (0) = 0 we need to have at least one element inT c

i that
is zero. In such cases we prepend both the arraysT c

i andT t
i with a zero (this will ensure that

T ind
i (0) = 0). The interpretation of this is that there will be 0 time induced interference for any

time interval of lengths up to 0).

12

4 Evaluation

In order to evaluate the effectiveness of our method we have implemented the response-time
equations in appendix A, using both the original defintion ofW ∗

i from section 2 (Old RTA)
and our faster version ofW ∗

i from section 3 (Fast RTA). Using these implementations and a
synthetic task-generator we have performed an evaluation,by simulations, of both approaches
by calculatig the response times for all tasks in the system.

4.1 Description of Simulation

In our simulator we generate task sets that are used as input to the different RTA implementations.
The task-set generator takes the following parameters:

• Total system load (in % of total CPU utilisation),

• the number of transactions to generate, and

• the number of tasks per transaction to generate.

Using these parameters a task set with the following properties is generated:

• The total system load is proportionally distributed over all transactions in the system.

• Transaction periods (Ti) are randomly distributed in the range 1.000 to 1.000.000 (uniform
distribution).

• Each offset (Oij) is randomly distributed within the transaction period (uniform distribu-
tion).

• The execution times (Cij) are chosen as a fraction of the time between two consecutive
offsets in the transaction. The fraction is the same throughout one transaction. The fraction
is selected so that the the transaction load (as defined by thefirst property) is obtained.

• The jitter (Jij) is randomly distributed between zero and 1.2 times the transaction period
(0..1.2Ti, uniform distribution).

• Blocking (Bij) is set to zero.

• The priorities are assigned in rate monotonic order [4].

We have measured execution times for performing RTA (for alltasks in the system) using both
methods (Old RTA and Fast RTA). The execution times are obtained from a laptop with a Pentium
III CPU. For Fast RTA the execution times include the time to calculateT c

i andT t
i . The results

in section 4.2 have been obtained by taking the mean values of50 simulated task-sets for each
point in each graph.

13

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

S
ec

on
ds

No. Tasks/Transaction

No. Transactions = 10, Load = 90%

Fast RTA
Old RTA

Figure 7: Execution time

4.2 Simulation Results

Figure 7 shows how the average (although difficult to see, dueto their size, 95% confidence inter-
vals are shown) execution times of Fast RTA and Old RTA when the number of tasks/transaction
is varied from 1 to 10 (while keeping the system load at 90% andthe number of transactions at
10). When the number of tasks/transaction is 10, the execution time is about 0.40 seconds for
Fast RTA, and about 20 seconds for Old RTA. This amounts to a speedup of 50 times. Similar
execution times are obtained both when varying the number oftransactions between 1 and 10,
and when varying load between 10% and 90%.

Figure 8 on the following page shows the relative performance of Fast RTA compared to Old
RTA. The relative performance is calculated as how large fraction Fast RTA is of Old RTA (cal-
culated by1− (tOld− tFast)/tOld, wheretFast is the execution time for Fast RTA andtOld for Old
RTA), e.g., when the relative performance is 1 Fast RTA and Old RTA have the same execution
time, and when the relative performance is 0.1 Fast RTA takes0.1 times the time of Old RTA
(i.e. it is 10 times faster).

Figure 8(a) illustrates when the number of tasks/transaction is varied between 3 and 10. When
the number of tasks/transaction is 1 the relative performance is 0.58 and it rapidly increases to
the values visible in the graph.

Figure 8(b) illustrates when the number of transactions is varied between 2 and 10. When the
number of transactions is 1, the relative performance is 1.01, which means that Fast RTA isslower
than Old RTA. When performing RTA for a single transaction, the overhead of precomputingT c

i

andT t
i outweighs the benefits obtained during the RTA (the pre-computedW ∗

i is never used).
However, as seen in the graph, when the number of transactions is higher than 1, the overhead
is well justified since the total RTA is significantly faster.For larger task sets, about 0.3% of the

14

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1 2 3 4 5 6 7 8 9 10

F
as

t R
T

A
 a

s
a

fr
ac

tio
n

of
 O

ld
 R

T
A

No. Tasks/Transaction

(a) No. Transactions = 10, Load = 90%

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1 2 3 4 5 6 7 8 9 10

F
as

t R
T

A
 a

s
a

fr
ac

tio
n

of
 O

ld
 R

T
A

No. Transactions

(b) No. Tasks/Transaction = 10, Load = 90%

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
as

t R
T

A
 a

s
a

fr
ac

tio
n

of
 O

ld
 R

T
A

Load

(c) No. Transactions = 10, No. Tasks/Transaction = 10

Figure 8: Relative performance

15

total time of Fast RTA, is spent on precomputingT c
i andT t

i .

Figure 8(c) illustrates when the load is varied between 10% and 90%. In this graph we see that
the relative performance is not highly dependent on the system load, only a small increase in
relative performance is obtained as the system load grows.

In order to compare Old RTA and Fast RTA, in the context of on-line admission control, we
generated a task sets with 90% load, 10 transactions with 10 tasks/transaction and performed the
RTA for a single task (corresponding to one arriving dynamically to the system) at lowest priority.
We generated 100 different tasks sets using execution timesfor the single task between 1000 and
6000. The result was that the average execution time for FastRTA was 0.33ms and 44ms for
Old RTA, which corresponds to a speedup of 130 times. It is noticeable that the speedup is far
greater than in the previous simulations, this is due to the fact that only interference from tasks in
other transactions needs to be considered (since the new task is the only task in its transaction).
This means that basically onlyW ∗

i is computed (which is the only part of the RTA addressed by
our method). Furthermore one can see that actual execution time is reduced from some 1/100’s
of seconds to the microsecond range, which makes Fast RTA a viable method to use for on-line
scheduling algorithms, e.g., those performing admission control with RTA.

Our conclusions for this simulation study are that: (1) FastRTA performs significantly better
than Old RTA. For anything but trivially small task sets the increased performance is at least in
the order of a magnitude, (2) Fast RTA brings down execution times for whole scenarios from the
order of seconds to fractions of seconds, and (3) Fast RTA brings down execution times for single
tasks from the order of some 100ms to the microsecond range. This decrease is important in order
to make RTA a feasible technique to include in, e.g., on-linescheduling algorithms performing
RTA on-line (admission control being an example) and optimizing allocation or configuration
tools.

5 Conclusions and Future Work

In this paper we have presented a novel method that allows foran efficient implementation of the
approximative Response-Time Analysis (RTA) for tasks withoffsets presented by Tindell [11]
and Palencia Gutierrezet al. [6].

We have, by simulations, shown that the speedup for our method compared to [6] is substantial.
For realistically sized task sets (100 tasks), when performing schedulability analysis of the entire
task set, the speedup is about 50 times. And from our evaluation we can conjecture that the rela-
tive improvement will be even higher for larger task sets. When using our method for admission
control of a single task we see that the relative improvementof our method is even higher, with a
speedup of more than 100 times. The time for Fast RTA, in the microsecond range, Enables RTA
to be used for on-line calculations of RTS, one example beingon-line admission conttrol based
sceduling algorithms.

In the simulations we showed that our method is reducing the computational effort from tens of

16

seconds to the millisecond range, which have some positive practical implications: (1) Engineer-
ing tools (such as those for task allocation and priority assignment) can feasible rely on RTA and
use the task model with offsets, and (2) on-line scheduling algorithms, e.g. those performing
admission control, can use accurate on-line schedulability tests based on RTA (which are less
pessimistic compared to for example tests based on utilisation bounds). The actual speed up
is more tan 130 times, but more significantly, the actual execution time lies aroutd 330 micro
seconds.

The main consideration in performing RTA for tasks with offsets is to calculate how higher
(or equal) priority tasks interfere with a task under analysis. The essence of our method is to
calculate and store this information statically and duringresponse time calculations (fix-point
iteration), use a simple table lookup. We have formally proved that the RTA-equations can be
reformulated to allow such static representation of task interference.

We have earlier provided a tighter version of the RTA for tasks with offsets [5]. Our next step is to
extend our method of static representation of task interference to our tighter RTA, yielding a RTA
that is significantly faster and provides less pessimistic response times than previous techniques.
Further, we are currently starting a project where RTA for tasks with offsets will be used in
software engineering tools. The RTA will be used both to perform schedulability tests and for
automatic allocation of software to nodes in a distributed system.

17

References

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings. Fixed Priority Pre-Emptive Scheduling:
An Historical Perspective.Real-Time Systems, 8(2/3):129–154, 1995.

[2] I-Logix. Rhapsody. http://www.ilogix.com/products/rhapsody.
[3] M. Joseph and P. Pandya. Finding Response Times in a Real-Time System.The Computer Journal,

29(5):390–395, 1986.
[4] C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Envi-

ronment.Journal of the ACM, 20(1):46–61, 1973.
[5] J. Mäki-Turja and M. Sjödin. Improved Analysis for Real-Time Tasks With Offsets – Advanced

Model. Technical Report MRTC no. 101, Mälardalen Real-TimeResearch Centre (MRTC), May
2003.

[6] J. Palencia Gutierrez and M. Gonzalez Harbour. Schedulability Analysis for Tasks with Static and
Dynamic Offsets. InProc. 19th IEEE Real-Time Systems Symposium (RTSS), December 1998.

[7] J. Palencia Gutierrez and M. Gonzalez Harbour. Exploiting Precedence Relations in the Schedulabil-
ity Analysis of Distributed Real-Time Systems. InProc. 20th IEEE Real-Time Systems Symposium
(RTSS), pages 328–339, December 1999.

[8] Rational. Rational Rose RealTime. http://www.rational.com/products/rosert.
[9] O. Redell. Response time analysis for implementation of distributed control systems. PhD thesis,

KTH, Department of Machine Design, 2003. Series: TRITA-MMK2003:17.
[10] TeleLogic. Telelogic tau. http://www.telelogic.com/products/tau.
[11] K. Tindell. Using Offset Information to Analyse StaticPriority Pre-emptively Scheduled Task Sets.

Technical Report YCS-182, Dept. of Computer Science, University of York, England, 1992. Avail-
able at ftp://ftp.cs.york.ac.uk/pub/realtime/papers/YCS182_[12].ps.Z.

18

A Complete RTA formulas

In this appendix we provide the complete set of formulas to calculate the worst case response
time,Rua, for a task under analysis,τua, as presented in Palencia Gutierrezet al. [6].

The interference transactionΓi poses on a lower priority task,τua, if τic coincides with the critical
instant, is defined by (see equation 3 in this paper):

Wic(τua, t) =
∑

∀j∈hpi(τua)

(⌊
Jij + Φijc

Ti

⌋

+

⌈
t − Φijc

Ti

⌉)

∗ Cij (26 in [6])

where the phase between taskτij and the candidate critical instant taskτic is defined as (see
equation 1 in this paper):

Φijc = Ti − (Oic + Jic − Oij) mod Ti (17 in [6])

The approximation function for transactionΓi which considers all candidateτic-s simultaneously,
is defined by (see equation 4 in this paper):

W ∗
i (τua, w) = max

∀c∈hpi(τua)
Wic(τua, w) (27 in [6])

The length of a busy period, forτua, assumingτuc is the candidate critical instant, is defined as
(Note that the approximation function is not used forΓu):

Luac =Bua + (p − p0,uac + 1)Cua+

Wuc(τua, Luac) +
∑

∀i6=u

W ∗
i (τua, Luac) (30 in [6])

wherep0,uac denotes the first, andpL,uac the last, task instance, ofτua, activated within the busy
period. They are defined as:

p0,uac = −

⌊
Jua + Φuac

Tu

⌋

+ 1 (29 in [6])

and

pL,uac =

⌈
Luac − Φuac

Tu

⌉

(31 in [6])

In order to get the worst case response time forτua, we need to check the response time for every
instance,p ∈ p0,uac . . . pL,uac, in the busy period. Completion time of thep’th instance is given
by:

wuac(p) =Bua + (p − p0,uac + 1)Cua

+ Wuc(τua, wuac(p) +
∑

∀i6=u

W ∗
i (τua, wuac(p)) (28 in [6])

19

The corresponding response time (for instancep) is then:

Ruac(p) = wuac(p) − Φuac − (p − 1)Tu + Oua (32 in [6])

To obtain the worst case response time,Rua, for τua, we need to consider every candidate critical
instant ,τuc (includingτua itself), and for each such candidate every possible instance,p, of τua:

Rua = max
∀c∈hpu(τua)∪a

[max
p=p0,uac,...,pL,uac

(Ruac(p))] (33 in [6])

20

B Proofs of Theorems

In this appendix we provide proofs of theorems 1 and 2. We willperform all proofs by algebraic ma-
nipulation and use braces (

︸︷︷︸
) to highlight the expression that is manipulated in each step. We also

annotate braces with the equations, properties, lemmas, orassumptions referred to when performing some
manipulations.

When performing the manipulations we will, e.g., rely on thefollowing properties:

(max) Themaxv operator allows terms that are constant with respect to the maximisation variable (v) to
be moved outside the maximisation operation:

max
v

(Xv + Y) = max
v

(Xv) + Y.

(sum) Summation over a set of terms can be divided into two separatesummations:
∑

v

(Xv + Yv) =
∑

v

Xv +
∑

v

Yv

(ceil) When taking the ceiling (d e) of a set of terms, terms that are known to be integers can be moved
outside of the ceiling expression:

dX + Y e ∧ X ∈ N ⇒ X + dY e

Theorem 1 W ∗
i (τua, t) as defined in equation 4 andW ∗

i (τua, t) as defined in equation 5 are
equivalent.

Proof 1

W ∗
i (τua, t)

︸ ︷︷ ︸

Eq.5

(1) =J ind
i (τua) + T ind

i (τua, t)
︸ ︷︷ ︸

Eq.7

(2) =J ind
i (τua) + max

∀c∈hpi(τua)
W+

ic (τua, t)
︸ ︷︷ ︸

Eq.7

(3) =J ind
i (τua) + max

∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)
− J ind

i (τua)
)

︸ ︷︷ ︸

(max)

(4) =J ind
i (τua)

︸ ︷︷ ︸
+ max

∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
))

− J ind
i (τua)

︸ ︷︷ ︸

(5) = max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
)

︸ ︷︷ ︸

Eq.3

(6) = max
∀c∈hpi(τua)

Wic(τua, t)

︸ ︷︷ ︸

Eq.4

(7) =W ∗
i (τua, t)

�

21

Before prooving theorem 2 we need to establish some lemmas.

Lemma 1 Regardless of candidate critical instantc: ISet2
ijc (Ti) = Cij

Proof of Lemma 1
ISet2
ijc (Ti)

︸ ︷︷ ︸

Eq.2

(1) =

⌈
Ti − Φijc

Ti

⌉

︸ ︷︷ ︸

0 ≤ Φijc < Ti (Eq.1)

Cij

(2) = 1Cij
︸︷︷︸

(3) = Cij

�

Lemma 2 Assumet = k ∗Ti + t′ (wherek ∈ N and0 ≤ t′ < Ti), thenISet2
ijc (t) = k ∗ ISet2

ijc (Ti)+
ISet2
ijc (t′)

Proof of Lemma 2

ISet2
ijc (t)

︸ ︷︷ ︸

Eq.2

?
= k ∗ ISet2

ijc (Ti)
︸ ︷︷ ︸

Lem.1

+ ISet2
ijc (t′)

︸ ︷︷ ︸

Eq.2

(1)

⌈
t − Φijc

Ti

⌉

︸ ︷︷ ︸

Assumption

Cij
?
= kCij +

⌈
t′ − Φijc

Ti

⌉

Cij

(2)

⌈
k ∗ Ti + t′ − Φijc

Ti

⌉

︸ ︷︷ ︸

Cij
?
= kCij +

⌈
t′ − Φijc

Ti

⌉

Cij

(3)

⌈
k ∗ Ti

Ti

+
t′ − Φijc

Ti

⌉

︸ ︷︷ ︸

(ceil)∧k ∈ N

Cij
?
= kCij +

⌈
t′ − Φijc

Ti

⌉

Cij

(4)

(

k +

⌈
t′ − Φijc

Ti

⌉)

Cij

︸ ︷︷ ︸

?
= kCij +

⌈
t′ − Φijc

Ti

⌉

Cij

(5) kCij +

⌈
t′ − Φijc

Ti

⌉

Cij = kCij +

⌈
t′ − Φijc

Ti

⌉

Cij

�

22

Lemma 3 T ind
i (τua, Ti) =

∑

∀j∈hpi(τua)

Cij

Proof of Lemma 3

T ind
i (τua, Ti)

︸ ︷︷ ︸

Eq.7

(1) = max
∀c∈hpi(τua)

W+
ic (τua, Ti)

︸ ︷︷ ︸

Eq.8

(2) = max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (Ti)
)

︸ ︷︷ ︸

(sum)

−J ind
i (τua)

)

(3) = max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

ISet1
ijc +

∑

∀j∈hpi(τua)

ISet2
ijc (Ti)

︸ ︷︷ ︸

Lem.1

−J ind
i (τua)

)

(4) = max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

ISet1
ijc +

∑

∀j∈hpi(τua)

Cij − J ind
i (τua)

)

︸ ︷︷ ︸

(max)

(5) =
∑

∀j∈hpi(τua)

Cij + max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

ISet1
ijc − J ind

i (τua)
)

︸ ︷︷ ︸

(max)

(6) =
∑

∀j∈hpi(τua)

Cij + max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

ISet1
ijc

︸ ︷︷ ︸

Eq.6

−J ind
i (τua)

(7) =
∑

∀j∈hpi(τua)

Cij + J ind
i (τua) − J ind

i (τua)
︸ ︷︷ ︸

(8) =
∑

∀j∈hpi(τua)

Cij

�

23

Theorem 2 Assumet = k ∗ Ti + t′ (wherek ∈ N and0 ≤ t′ < Ti), then

T ind
i (τua, t) = k ∗ T ind

i (τua, Ti) + T ind
i (τua, t

′)

Proof 2

T ind
i (τua, t)

︸ ︷︷ ︸

Eq.7

(1) = max
∀c∈hpi(τua)

W+
ic (τua, t)

︸ ︷︷ ︸

Eq.8

(2) = max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t)
︸ ︷︷ ︸

Lem.2

)
− J ind

i (τua)

(3) = max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + k ∗ ISet2

ijc (Ti)
︸ ︷︷ ︸

Lem.1

+ISet2
ijc (t′)

)
− J ind

i (τua)

(4) = max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + kCij + ISet2

ijc (t′)
)
− J ind

i (τua)

︸ ︷︷ ︸

(sum)

(5) = max
∀c∈hpi(τua)

(∑

∀j∈hpi(τua)

kCij +
∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)
− J ind

i (τua)
)

︸ ︷︷ ︸

(max)

(6) =
∑

∀j∈hpi(τua)

kCij

︸ ︷︷ ︸

+ max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)
− J ind

i (τua)

(7) =k ∗
∑

∀j∈hpi(τua)

Cij

︸ ︷︷ ︸

Lem.3

+ max
∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)
− J ind

i (τua)

(8) =k ∗ T ind
i (τua, Ti) + max

∀c∈hpi(τua)

∑

∀j∈hpi(τua)

(
ISet1
ijc + ISet2

ijc (t′)
)
− J ind

i (τua)

︸ ︷︷ ︸

Eq.8

(9) =k ∗ T ind
i (τua, Ti) + max

∀c∈hpi(τua)
W+

ic (τua, t
′)

︸ ︷︷ ︸

Eq.7

(10) =k ∗ T ind
i (τua, Ti) + T ind

i (τua, t
′)

�

24

	Abstract
	1 Introduction
	2 Existing offset RTA
	2.1 System model
	2.2 Response-time analysis
	2.3 Interference function
	2.4 Approximation function

	3 Fast offset RTA
	3.1 Approximation function with lookup
	3.2 Precomputing Tc and Tt

	4 Evaluation
	4.1 Description of Simulation
	4.2 Simulation Results

	5 Conclusions and FutureWork
	References
	A Complete RTA formulas
	B Proofs of Theorems

