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Abstract—This paper presents the first holistic modeling ap-
proach for Time-Sensitive Networking (TSN) communication
that integrates into a model- and component-based software
development framework for distributed embedded systems. Based
on these new models, we also present an end-to-end timing model
for TSN-interconnected distributed embedded systems. Our ap-
proach is expressive enough to model the timing information of
TSN and the timing behaviour of software that communicates
over TSN, hence allowing end-to-end timing analysis. A proof of
concept for the proposed approach is provided by implementing it
for a component model and tool suite used in the vehicle industry.
Moreover, a use case from the vehicle industry is modeled and
analyzed with the proposed approach to demonstrate its usability.

I. INTRODUCTION

The advanced features in modern vehicles can be largely
attributed to the innovation in computer controlled function-
ality [1]. Much of this functionality requires new levels of
computational power, e.g., due to data-intensive sensors such
as video camera, radar and ultrasonic sensors. Moreover, com-
plex coordination among the subsystems and high-bandwidth
communication among the compute units, also called the Elec-
tronic Control Units (ECUs), is needed to realize the advanced
functionality. These requirements are expected to increase
further based on the recent trends in the vehicle industry [2],
[3]. In order to meet these requirements, architectures based
on powerful ECUs that are connected by high-bandwidth low-
latency real-time communication networks emerge [4], [5].

There is a wealth of existing works [3], [6], [7], [8]
that aim at providing model- and component-based software
development techniques for vehicular embedded systems that
are deployed on powerful ECUs, which are connected by
low-bandwidth and low-latency real-time communication net-
works, such as Controller Area Network (CAN) [9]. There is
also emerging work to support the development of vehicular
embedded systems that use high-bandwidth on-board real-
time communication [10], [11], [12], [13]. One particular
example is Audio/Video Bridging (AVB) [14], which is a set of
IEEE standards supporting high-bandwidth (up to 100 Mbit/s)
on-board real-time communication. However, AVB does not
support low-latency communication that is required by time-
sensitive control messages.

In a recent effort to support high-bandwidth, low-latency
and real-time on-board network communication, the IEEE
Time-Sensitive Networking (TSN) task group has developed
a set of standards [15], [16], [17]. The solutions based on
these standards are becoming attractive in various domains

due to the features that support different classes of traffic,
including real-time, low-latency, time-triggered and non-real-
time traffic, resource reservation for the traffic classes, clock
synchronization and traffic shaping. While there are several
works to provide configuration and design optimization [18],
[19], [20], timing analysis for some specific features [21], [22],
[23], [24] and hardware support [25] for TSN, there is no
existing component model, modeling language or approach to
support the modeling of TSN. In order to fully utilize the
potential of the TSN technology, a new approach is needed to
support the modeling of TSN in the software architectures
of distributed embedded systems. The modeling approach
should be expressive enough to model timing properties
and requirements of TSN on the software architectures to
support timing analysis. Moreover, the approach should be
interoperable to allow its integration to the existing model-
and component-based software development frameworks and
component models. We envision such a modeling approach for
TSN to be instrumental for the vehicle industry in developing
the vehicular applications that utilize TSN as the backbone for
on-board network communication.

As the main contribution of this paper we present the
first modeling approach for TSN that allows integration in
a software development environment and allows to analyze
end-to-end delays in distributed embedded systems intercon-
nected with TSN. The proposed approach is integrated to the
existing model- and component-based software development
framework for vehicular distributed embedded systems. The
approach is expressive enough to allow specification of timing
information on the software architectures of these systems. In
this regard, the paper presents a comprehensive end-to-end
timing model augmented by TSN. As a proof of concept, the
proposed approach is implemented in the Rubus Component
Model (RCM) [26] and Rubus-ICE tool suite, which have been
used in the vehicle industry for developing predictable embed-
ded systems for 25 years [27]. The validity of the approach
is demonstrated by modeling and analyzing an automotive-
application use case.

II. BACKGROUND AND RELATED APPROACHES

A. Time Sensitive Networking (TSN)

This paper focuses on two standards in the set of TSN stan-
dards, namely IEEE 802.1Qbv-2015 [15] and IEEE 802.1Qbu-
2016 [16]. These standards include enhancements to support
scheduled traffic and preemption of messages respectively. The
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two standards, which have been included in the IEEE 802.1Q-
2018 standard [28], are very suitable for industrial networks,
where the scheduled traffic and real-time flows have to coexist
on the same network with best-effort transmissions. Moreover,
a credit-based shaper (CBS) algorithm is defined to prevent
the transmission of traffic bursts. This algorithm applies to
only stream reservation classes, namely A and B. Each such
class has an associate credit parameter. Any pending message
in the queue of a traffic class can only be transmitted if the
corresponding credit is zero or higher. During the transmission,
the credit is consumed at a constant rate, known as the
sendSlope. The credit is replenished with a constant rate, called
the idleSlope, in two cases: (i) when the messages in the queue
are pending for transmission, and (ii) when there are no more
pending messages in the queue, but the credit is negative. If
there is no message in the queue and the credit is positive then
the credit is immediately reset to zero.

The IEEE 802.1Qbv-2015 enhancements provide temporal
isolation for the scheduled traffic. In particular, transmission
gates are associated with each queue of a switch port, and
transmission from a queue is only allowed if the relevant gate
is open. The gates operation follows a cyclic table predefined
by the network designer. Preemption support in the IEEE
802.1Qbu-2016 standard introduces express and preemptable
traffic classes. Express traffic can preempt the preemptable
traffic, but it cannot be preempted itself. The preemptable
traffic cannot preempt other classes. Preemption support can
be combined with the CBS and the gate mechanisms. For
instance, the scheduled traffic queue can be set to express,
while all the other queues are preemptable.

B. Related Approaches, Languages and Component Models

The component models and modeling languages that
are based on the principles of Model-Based Engineering
(MBE) [29] and Component-Based Software Engineering
(CBSE) [30] are proving effective in dealing with the complex-
ity of embedded software in vehicular systems. It is estimated
that up to 90% of the software can be reused from the previous
releases of the vehicle or other in-house projects by applying
MBE and CBSE [31]. There are several component models
in the vehicular domain that support modeling of onboard
real-time network communication, such as AUTOSAR [32],
RCM [26], ProCom [33], COMDES [34], CORBA [35], just
to name a few. A majority of existing component models allow
modeling of low-bandwidth real-time onboard networks, e.g.,
CAN. There are very few works such as [13] that support mod-
eling of high-bandwidth onboard networks that are based on
Ethernet; however, only in the academic settings. AUTOSAR,
complemented by the SymTA/S tool1 [36] facilitate modeling
of Ethernet, but the support for modeling TSN is still missing.
Moreover, being a commercial tool, SymTA/S does not expose
any details about the underlying techniques. In [37], a work in
progress is discussed for developing an approach to configure
TSN network and verify its configuration. To the best of our

1SymTA/S is now acquired by Luxoft (https://www.luxoft.com).

knowledge, there is no existing work that supports modeling
of TSN-based communication in the software architectures of
component-based distributed embedded systems.

In this paper, we choose to use RCM for the proof-of-
concept implementation of the proposed modeling approach.
The reasons for selecting RCM include support for explicitly
modeling timing information, pipe-and-filter communication
(most commonly used style supporting interoperability), run-
to-completion semantics of software components (compliant
with various standards like AUTOSAR), aggressively resource
efficient and extremely low run-time and memory footprints.
RCM is complemented by the Rubus real-time operating
system (RTOS), which is a certified RTOS (according to
ISO 262626), and the Rubus-ICE tool suite that consists of
modeling tools, code generators, analysis tools and run-time
infrastructure. Despite being a commercial component model,
RCM and its tool suite disclose the underlying scientific
techniques and analysis methods and make them transparent
to the scientific community [26], [38], [27], [39]. Whereas,
these details are not accessible to the scientific community in
the case of other commercial component models and tools in
the vehicular domain [40].

III. END-TO-END TIMING MODEL AUGMENTED BY TSN

This section first discusses the end-to-end timing model.
Thereafter, the section identifies the missing information from
the model to support TSN and presents augmentation of TSN
to the end-to-end timing model.

A. End-to-end Timing Model

The end-to-end timing model comprises timing properties,
timing requirements and dependencies of all elements in the
nodes and networks within a distributed embedded system.
Such a model is required by the analysis engines to perform
the end-to-end timing analysis [41], [42] as shown in Fig. 1.
The end-to-end timing model is composed of four models:
node timing model, network timing model, system linking
model and timing requirements model as shown in Fig. 1(b). A
distributed embedded system S consists of two or more nodes
(Ei) and one or more networks (Ni). The number of nodes
and networks in the system is represented by |E| and |N |
respectively. In this paper we consider only single-core nodes
for the sake of simplicity and keeping the discussion focused
on the network communication based on TSN. We refer the
reader to [43] for the details of multi-core node model.

1) Node Timing Model: The software architecture in a
node consists of software components (SWCs) and their inter-
actions as shown in Fig. 1(a). A SWC is a design-time entity,
which may correspond to an operating system task at run-
time. We consider a one-to-one mapping between a SWC and
a task, which is often the case in many academic and industrial
component models and supporting RTOSs such as Rubus,
ProCom and COMDES. The node timing model is based on
the transactional task model [44], i.e., each node consists of
one or more transactions Γij . The first subscript, i, denotes
the node ID; whereas, the second subscript, j, denotes the
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Fig. 1: (a) Example of a two-node distributed embedded system, (b) end-to-end timing model, and (c) timing analysis engines.

transaction ID. At the design time, a transaction corresponds to
a chain of software components. A transaction can be time- or
event-triggered with a period or a minimum inter-arrival time
between two consecutive activations respectively, denoted by
Tij . A transaction contains |Γij | number of tasks. A task is
denoted by τijk, where the subscripts i, j and k represent the
node, transaction and task IDs respectively.

Γij := 〈{τijk, . . . , τij|Γij |}, Tij〉 (1)

Each task can be activated periodically or sporadically with
a defined period or minimum inter-arrival time respectively,
denoted by Tijk. Moreover, each task has a worst-case exe-
cution time (WCET) (Cijk), an offset (Oijk), a release jitter
(Jijk), a priority (Pijk), a blocking time (Bijk) and a worst-
case response time (WCRT) (Rijk) as given below.

τijk := 〈Cijk, Tijk, Oijk, Pijk, Jijk, Bijk, Rijk〉 (2)

2) Network Timing Model: This model is based on a
generic real-time network communication model that in-
corporates various in-vehicle networks including CAN [9],
CANopen [45], HCAN [46], AUTOSAR COMM [47] and
Ethernet. This model consists of one or more networks. Each
network, Ni, has a speed, denoted by fi, and a set of messages,
denoted by Mi. In the case of point-to-point networks such as
switched Ethernet, the network has one or more switches and
various traffic classes. There are no switches and traffic classes
in the case of broadcast networks like CAN. Any message
belonging to Mi is represented by mij . The first subscript
in mij denotes the ID of the message set or the ID of the
corresponding network, whereas the second subscript provides
the message ID. Mi is represented by the following tuple.

Mi := 〈{Xij ,Cij ,Fij ,Pij , sij ,T
P
ij ,T

S
ij ,Lij ,

Jij ,Bij ,Rij}, j = 1 . . . |Mi|〉 (3)

Where Xij , Cij , Fij , Pij , sij , TP
ij , TS

ij , Lij , Jij , Bij and Rij

represent the transmission type (periodic, sporadic or mixed),
worst-case transmission time, frame type (standard or extended
CAN frame), priority, data payload, period, minimum inter-
arrival time, a set of links through which mij traverses in the
network, jitter, blocking time and WCRT respectively.

3) System Linking Model: A distributed embedded system
is often modeled with chains of tasks and messages, which
may be distributed over two or more nodes. Fig. 1(a) shows
examples of two chains that are distributed over two nodes.
One chain is initiated by SWC1 in Node1 and terminated by
SWC5 in Node2. The second chain is initiated and terminated
by SWC6 and SWC3 respectively. In many component models
such as RCM, data and control (trigger) flows are clearly
separated as shown in Fig. 1(a). A SWC in the chain can be
activated or triggered for execution by an independent source
(e.g., SWC1 in Node1 is triggered by an independent clock)
or by its predecessor SWC (e.g., SWC2 and SWC5). Any two
neighbouring SWCs in a distributed chain can reside on the
same node or on two different nodes. A message in the chain is
triggered for transmission by the preceding SWC in the chain,
also called the sending SWC (or sending task at runtime),
in the case of passive networks like CAN or Ethernet AVB.
However, a message can also be triggered by the network
itself regardless of the sending task in the active networks like
HaRTES [48]. All the control flow, data flow, mapping and
linking information is included in the system linking model.

4) Timing Requirements Model: This model includes all
the timing requirements in the system that includes (i) timing
requirements on individual tasks, e.g., task deadlines (Dijk),
(ii) timing requirements on individual messages, e.g., message
deadlines (Dij), and (iii) timing constraints specified on the
chains. The timing constraints conform to the timing model of
the AUTOSAR standard [32], which defines eighteen timing
constraints [39]. For example, two of these constraints, namely
the age and reaction, are specified on a distributed chain in
Fig. 1(a). Note that some timing requirements may have single
constraining value, e.g., a task or message deadline has a single
value. Whereas, the other timing requirements may have more
than one constraining value, e.g., minimum and maximum
values of the age constraint, in which case the corresponding
age delay is required to be between the two values.

B. Support for TSN in the End-to-end Timing Model

The end-to-end timing model presented in the previous
section is unable to incorporate TSN due to the new features of
TSN as compared to the existing broadcast and point-to-point
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onboard networks. Consequently, the network timing model,
system linking model and timing requirements model need to
be extended to support TSN.

1) Support for TSN Traffic Classes in the Network Tim-
ing Model: The network timing model needs to incorporate
various types of new traffic classes that are supported by TSN.
Let us denote the traffic class by T . The domain of T is given
as follows:

T := {ST,A,B,X,BE} (4)

Where ST represents the Scheduled Traffic. The two Stream
Reservation (SR) classes are represented by A and B. Class
A has a higher priority than Class B. X denotes the set of
reserved classes, whose priorities are lower than the priority
of class B but higher than the priority of the Best Effort (BE)
class.

2) Support for TSN Switch and Link Models: The TSN
switches are considered to be full-duplex, i.e., the input and
output of a switch port are isolated. The connection between
a node and a switch, as well as the connection between two
switches is defined by a link. A link, denoted by lij , belongs
to the network Ni and has a unique ID j. It is a directional
connection, which means that there are two links associated to
each physical port of the switch, one for the transmission and
the other for the reception. The value of the network speed fi
remains the same in all links in the network. Let the set of
all links and the total number of links in the network Ni be
denoted by Li and |Li| respectively. The set Li is represented
as follows:

Li := {li1 . . . li|L|} (5)

3) Support for Traffic Shaping in the TSN Link Model:
The TSN standards consider various types of traffic shaping
algorithms. In this work we focus on two of these algorithms
(i) the credit-based shaping that applies only to the SR classes
and (ii) the time-aware shaper that affects all traffic classes.
For any SR traffic class A or B on a link lij , the credit
replenishment rate (idleSlope) is denoted by RA

ij or RB
ij

respectively Note that the messages belonging to the BE
class do not undergo the credit-based traffic shaping. The
time-aware shaping opens/closes the transmission gates of the
different queues of a link following a table that specifies, at
each point in time, which gates are open for transmission. The
table is cyclically repeated.

4) Support for Preemption Mode in the TSN Link Model:
The TSN standards allow to specify preemption mode for each
traffic class on each individual link. Hence, each traffic class
can be classified as the express or preemptible on each link.
Let the preemption mode be denoted by H. The domain of H
is given as follows:

H := {Express, Preemptible} (6)

In order to support the preemption mode for each traffic class
as well as the idleSlope in the SR traffic, the model of each
link lij in Eq. 5 is represented as follows.

lij := 〈HST
ij ,HA

ij ,HB
ij ,HX

ij ,HBE
ij ,RA

ij ,R
B
ij〉 (7)

5) Extending the Message Model to Support TSN: The
message set in Eq. 3 needs to be updated to support several
properties that are specific to TSN. Cij represents the worst-
case transmission time of message mij , which depends on the
message size and network speed. The header of each message
is a constant value and is independent of the traffic class.
A message may cross several links; the set of links that the
message mij traverses is specified by Lij . The links in the set
are ordered based on the order of message transmission, e.g.,
Lij = {l12, l11} means that mij crosses first link l12 (link 2
in network 1) and then l11 (link 1 in network 1) between the
sender and receiver nodes. Each message belongs to one of the
traffic classes shown in Eq. 4. Hence, the model of a message
mij in Eq. 3 should be updated with the Tij parameter. Offsets
are used to accommodate ST messages in the transmission
schedule. The offset for each ST message is defined per link
and the set of offsets for all links that mij traverses is specified
in the set Oij , which contains offset-link pairs for the message.
Let |Oij | represent the size of this set. Oij can be represented
as follows:

Oij := {(Oij1, li1) . . . (Oij|Lij |, li|Lij |)} (8)

where Oij1 denotes the offset of mij on the first link (li1)
along its path from its source to destination. Note that there
is no offset defined for SR and BE traffic; hence, Oij is an
empty set for the messages that belong to these traffic classes.

6) Extending the Timing Requirements Model with De-
composed Message Deadlines: The message deadline, de-
noted by Dij , defined in the timing requirements model
corresponds to the constraint on the time interval from the
queuing of the message in the network interface by the sending
task to the delivery of the message at the network interface
of the destination node. However, a message may traverse
through several links in the case of TSN. Thus, the deadline
decomposition per link for mij is required, which can be
achieved either by dividing Dij by the number of links that
mij traverses or by distributing Dij according to the load
in each link. Let the per-link deadline of a message mij be
denoted by dij . Then Dij can be represented as follows:

Dij := {(dij1, li1) . . . (dij|Lij |, li|Lij |)} (9)

IV. MODELING APPROACH FOR TSN COMMUNICATION

This section presents an approach to support modeling of
TSN communication in distributed embedded systems. The ap-
proach comprises modeling of necessary hierarchical elements
and TSN-specific network information, which any component
model for distributed embedded systems should incorporate to
support TSN. As a proof of concept, we extend an existing
industrial component model, namely RCM, by implementing
the proposed approach.

A. Required Elements in a Component Model to Support TSN

We identify several first-class structural elements, which
are needed in any component model for vehicular distributed
embedded systems to support modeling of TSN-based com-
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munication and specification of corresponding timing informa-
tion. Fig. 2 depicts these elements in a top-down hierarchical
fashion. The top-level hierarchical element is the model of a
distributed embedded system, e.g., X-by-wire system and anti-
lock braking system. The system model consists of one or
more models of each node and network. The node represents
a unique run-time environment for one or more software
applications. Each software application contains the software
architecture that consists of SWCs and their interconnections.
A SWC communicates with another SWC on the same or
different node via its interface. Each SWC contains one or
more behaviors, which are enriched with timing properties
(e.g., WCET) and other resource requirements. Although there
can be other elements within the structure hierarchy of the
node in a component model such as cores, partitions, modes,
assemblies and composites, the node-level elements shown in
Fig. 2 are the basic elements required to model a node in a
distributed embedded system.

System
Node + Network +

Message + 

Signal +

Switch * 
Ports +

Network Specification +
o Broadcast Networks

- Controller Area Network (CAN)
- CANopen, HCAN, MilCAN
- AUTOSAR COMM

o Point-to-point Networks
- Ethernet 
- Audio/Video Bridging (AVB)
- Time Sensitive Networking (TSN)

Software 
Application +

Behavior +

Interface +

Software 
Component +

Links +

Fig. 2: Necessary structural hierarchy in a component model
for distributed embedded systems to support modeling of TSN.

The network model consists of one or more Network Spec-
ification (NS) elements as shown in Fig. 2. The NS element
is generic in the sense that it is able to incorporate many in-
vehicle network protocols, including the broadcast networks
like CAN, CANopen, HCAN, MilCAN, AUTOSAR COMM,
and point-to-point networks like Switched Ethernet, AVB and
TSN. The NS element includes the protocol-specific proper-
ties, configuration and corresponding timing information as
discussed in Section III-A2. The network model also contains
one or more messages. Each message further contains one or
more signals. The signal-to-message mapping is specifiable
in the NS element. In order to support the point-to-point
networks, the network model contains one or more switches.
The model of a switch is able to incorporate the properties of
any switched Ethernet protocol including TSN. Each switch
model is linked to a traffic shaper (discussed in the previous
section), which is defined in the NS element. The switch
model contains a set of ports and a set of links to support
communication with the nodes and other switches.

B. Modeling of TSN Communication and a Proof of Concept

In this subsection we present an approach to explicitly
model all the information discussed in Section III-B, including

the timing information , which is required to model the TSN
communication. In order to show a proof of concept for
the proposed modeling approach, we extend the structural
hierarchy of RCM by introducing/extending the missing
elements and their properties, including the NS, message,
switch and link elements. The extended network model in
RCM to support TSN is shown in Figure 3(a). The properties
of the network that can be defined by the user are shown
in Figure 4(a). Note that each element modeled in RCM
has a unique ID denoted by Unique Identifier.
The user-specified properties of the network model
include Network Type, Name, Network ID, and
Network Speed. The Network Type property allows
the user to select TSN or any other network protocol such
as AVB and CAN. The Name and Network ID properties
are unique. The model of a TSN switch in RCM and
its user-specified properties are shown in Figure 3(b) and
Figure 4(b) respectively. The user is able to select the type of
switch such as TSN, AVB or general Ethernet switch using
the Switch Type property. Moreover, the user can also
specify the number of ports in the switch.

22

Unique Identifier 2f8ba1ef
Name Msg1
Message Type Periodic
Frame Type N.A
Priority 1
Size of Data Payload 20 Bytes
Period 10ms
Min Inter-arrival Time N.A
Traffic Class ST
Deadline 10 ms
Set of Offsets (2ms, L11),(5ms, L12),(0, L12)

Message

(a) (c)(b) (d)

Fig. 3: RCM models of (a) TSN network, (b) TSN switch, (c)
TSN message and (d) TSN link.
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(a) (b)

Unique Identifier 

NetworkP2PEthernetTSN

bede46ae

Name
Network ID 
Network Speed

TSN-Network1
1
100 Mbit/s

Network Type TSN Unique Identifier 

SwitchTSN

f35caeff

Name TSN-Switch11
4Number of Ports

Switch Type TSN

Fig. 4: Properties of TSN (a) network model, (b) switch model.

The extended model of the message in RCM and corre-
sponding user-defined properties are shown in Figure 3(c)
and Figure 5 respectively. The message model is indepen-
dent of the type of Ethernet protocol. In fact, the properties
of the message model are quite generic as they can sup-
port a message belonging to any broadcast or peer-to-peer
onboard network protocol. For instance, the Frame Type
property is specific to CAN and its higher-level protocols.
This property is set to Not Applicable (N.A) in Figure 5,
which represents the properties of a TSN message. Moreover,
as the Transmission Type property is selected to be
Periodic, the message can only have a period. Intuitively, the
Min Inter-arrival Time property is set to N.A. In the
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message model, the user can also specify an offset for each
link which the ST class message traverses between its source
and destination. Furthermore, there is an optional support for
the user to specify per-link deadline of the message belonging
to the ST class. If this information is not specified, the NS
object automatically assigns the per-link deadlines according
to the method discussed in Section III-B6.

Finally, the new link model in RCM and its user-defined
properties are depicted in Figure 3(d) and Figure 6 respec-
tively. The traditional onboard network protocols do not re-
quire any special properties for the links. However, in the case
of TSN, the links not only provide connections between the
nodes and switches or between switches, but also influence
traffic shaping and message preemption modes as discussed
in Section III-B. The traffic shaping in class A and B are
supported by specifying the desired bandwidth (in Mbit/s) in
the Idle Slope Class A and Idle Slope Class B
properties respectively. Whereas, the preemption mode for
each class in the link model is specified by selecting the
desired mode (Express, Preemptable or Not set) in the
Preemption Mode property of the corresponding class.
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Message

Unique Identifier 2f8ba1ef

Name Msg1

Transmission Type Periodic

Frame Type N.A

Priority 1

Size of Data Payload 20 Bytes

Period 10ms

Min Inter-arrival Time N.A

Traffic Class ST

Deadline 10 ms

Deadline/Link (optional) (3ms,L11),(5ms,L12),(2ms,L12)

Offset/Link (ST only) (2ms, L11),(5ms, L12),(0, L12)

Fig. 5: Modeling of various properties of a TSN message.
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Unique Identifier f83ac467
Name Link11
Idle Slope Class A 0.4
Idle Slope Class B 0.3
Preemption Mode ST Express
Preemption Mode A Not set
Preemption Mode B Preemptible
Preemption Mode BE Preemptible

LinkEthernetTSN

Unique Identifier 
Name
Idle Slope Class A 
Idle Slope Class B
Preemption Mode ST
Preemption Mode A
Preemption Mode B
Preemption Mode BE

LinkEthernetTSN

f83ac467
Link11
60 Mbit/s
40 Mbit/s
Express
Not set
Preemptible
Preemptible

Fig. 6: Modeling of various properties of a TSN link.

V. VEHICULAR APPLICATION USE CASE

This section validates the usability of the proposed modeling
approach by modeling an industrial use case with extended
RCM. Moreover, the sections conduct a partial end-to-end
timing analysis of the modeled system.

A. Use Case Description

The use case considered in this paper is inspired by an
industrial prototype system, which was originally developed by
the BMW group [49] to show the possibility of using switched
Ethernet as the backbone network in vehicles. The topology
of the use case is depicted in Fig. 7. The topology consists of
two networks, including a switched Ethernet network based on
TSN standards and a legacy CAN network. The two networks
are connected via a gateway ECU, which translates the CAN
frames into Ethernet frames and vice versa. The TSN network
is a multi-hop network as it consists of two interconnected
TSN switches, one mounted in the front of the vehicle
(Switch 1) and the other is mounted in the rear of the vehicle
(Switch 2). A camera (CAM) is mounted on the vehicle that
sends video frames and the GPS signals to the main processing
ECU, known as the Head Unit. Moreover, a Proximity Sensor
Handler (PSH) node is used to send proximity information to
the Head Unit. There are three control nodes (Control 1-3),
where one of them is connected to the TSN network, whereas
the other two are connected to the CAN bus. The control
nodes periodically send control messages with very small data
payload to the Head Unit. The network speeds of TSN and
CAN are set to 100 Mbit/s and 500 Kbit/s respectively.

PSH Control 1
Head Unit

CAM

CAN bus

Gateway

Control 3

Control 2

Switch 1 Switch 2

TSN Network

Fig. 7: Industrial use case: A vehicular distributed embedded
system with heterogeneous networks.

Table I presents the traffic characteristics in the use case.
The camera sends two different messages, i.e., the video
frames and the GPS signals, thus the former is categorized as
class A, while the latter is categorized as class B. The control
and PSH messages are classified as ST class. Moreover, we
consider the ST messages to be express, while the other traffic
classes to be preemptible, e.g., the control and PSH messages
can preempt the video (class A) and GPS (class B) messages.
Furthermore, the idle slopes for classes A and B in all TSN
links are set to 60 Mbit/s and 40 Mbit/s respectively. The CAN
messages are assigned priorities (smaller the number, higher
the priority) and once they enter the TSN network, they are
converted to Ethernet messages and assigned the ST class by
the gateway node.
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Message Source Desti- Size Period Class/
name nation Bytes ms Priority

Msg1 Eth CAM Head Unit 3144 20 A
Msg2 Eth CAM Head Unit 500 50 B
Msg3 Eth Control1 Head Unit 8 10 ST
Msg4 Eth PSH Head Unit 20 10 ST
Msg5 Eth Gateway Head Unit 8 10 ST
Msg6 Eth Gateway Head Unit 8 10 ST

Msg1 CAN Control2 Gateway 8 10 1
Msg2 CAN Control3 Gateway 8 10 2

TABLE I: Traffic characteristics in the case study.

B. Modeling of the Use Case with Extended RCM

The system-level software architecture of the use case is
modeled with seven models of nodes, one model of TSN
network, one model of CAN network, and interconnections
among them using the extended RCM and Rubus-ICE tools
suite, as depicted in Fig. 8. The internal model of the TSN net-
work in RCM is shown in Fig. 9, which consists of two models
of TSN switches and seven models of TSN links, identified as
L11. . . L17. The properties of the links are specified according
to the information presented in Section V-A. The internal
software architectures of all nodes together with the modeled
timing information in RCM are depicted in Fig. 10. The PSH
node and each of the three control nodes, namely Control1,
Control2 and Control3 include the model of only one SWC.
The WCET of each of these SWCs is 500 µs. The SWCs
in Control1 and PSH nodes send the ST messages Msg3 Eth
and Msg4 Eth respectively. Whereas, the SWCs in Control2
and Control3 nodes send the CAN messages Msg1 CAN and
Msg2 CAN respectively.

Fig. 8: System-level software architecture of the use case.

There are two SWCs in the CAM node, which send two
Ethernet messages Msg1 Eth and Msg2 Eth. As SWC1 in
this node performs heavy computations to process the video
feed compared to SWC2 that processes GPS signals, SWC1
is assigned higher priority than SWC2. The WCETs of SWC1
and SWC2 in the CAM node are 2 ms and 500 µs respectively.
The Gateway node also contains two SWCs, which receive
the two CAN messages. In this node, the priority of SWC1 is
higher than SWC2 because SWC1 receives and processes the
higher priority message Msg1 CAN. The WCET of the two
SWCs are 1 ms each. The Head Unit node also contains two

SWCs. In this node, SWC1 receives and processes two Ether-
net messages: Msg1 Eth and Msg2 Eth. Whereas, the SWC2
receives and processes four Ethernet messages: Msg3 Eth to
Msg6 Eth. There are 12 timing constraints (6 of each Age
and Reaction constraints) specified on 6 distributed chains in
Fig. 10. Note that there are start and end objects associated
to each timing constraint, defining the span of the constraint
on the respective chain. The values of each Age and Reaction
constraint are 20 ms and 30 ms respectively. The distributed
chains and the values of their constraints are shown in Fig. 11.

Fig. 9: Internal model of TSN network in the use case.

C. Partial End-to-end Timing Analysis of the Use Case

Although the focus of this paper is to provide a modeling
technique for TSN and integrate it to the end-to-end modeling
framework for distributed embedded systems, we take one
step further by conducting a partial end-to-end timing analysis
of the modeled use case. The analysis is performed using
the timing analysis engines of Rubus-ICE tool suite, which
implement the state-of-the-art timing analysis [41], [38]. The
term “partial” means that the timing analysis can only be
performed on the subsystem that includes the CAN network.
Hence, only Chain1 and Chain2 shown in Fig. 11 are analyzed
and the analysis results are shown in Table II. The calculated
WCRT of each CAN message is equal to 1080 µs. It can
be observed in Table II that the calculated Age and Reaction
delays are smaller than the corresponding Age and Reaction
constraints; hence, the timing constraints specified on Chain1
and Chain2 are satisfied.

Chain Age Calculated Reaction Calculated
name Constraint Age Delay Constraint Reaction Delay

Chain1 20 ms 12580 µs 30 ms 22580 µs
Chain2 20 ms 13580 µs 30 ms 23580 µs

TABLE II: Timing analysis results of the partial use case.

The remaining four chains that are part of the TSN network
cannot be analyzed for two reasons: (i) the existing response-
time analysis for TSN is not yet mature despite several
ongoing works in this regard [50], [51], and (ii) there is no
existing technique to compute the end-to-end age and reaction
delays in TSN-CAN heterogeneous networks.

VI. CONCLUSION

This paper has introduced a new modeling approach for
TSN communication and integrated it within the model- and
component-based software engineering framework for vehic-
ular distributed embedded systems. The proposed approach
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Fig. 10: Software architectures of the nodes along with the timing constraints specified on six distributed chains in RCM.

Chain1: SWC1_Control2_Node6 à Msg1_CAN à SWC1_Gateway_Node5

Chain2: SWC1_Control3_Node7 à Msg2_CAN à SWC2_Gateway_Node5

Chain3: SWC1_Control1_Node3 à Msg3_Eth à SWC2_HeadUnit_Node4

Chain4: SWC1_PSH_Node2 à Msg4_Eth à SWC2_HeadUnit_Node4

Chain5: SWC1_CAM_Node1 à Msg1_Eth à SWC1_HeadUnit_Node4

Chain6: SWC2_CAM_Node1 à Msg2_Eth à SWC1_HeadUnit_Node4

Age Constraint 1= 20ms; Reaction Constraint 1 = 30ms

Age Constraint 2= 20ms; Reaction Constraint 2 = 30ms

Age Constraint 3= 20ms; Reaction Constraint 3 = 30ms

Age Constraint 4= 20ms; Reaction Constraint 4 = 30ms

Age Constraint 5= 20ms; Reaction Constraint 5 = 30ms

Age Constraint 6= 20ms; Reaction Constraint 6 = 30ms

Fig. 11: Time-constrained distributed chains in the use case.

explicitly models the timing properties and requirements of
TSN-based communication. The paper has also presented an
end-to-end timing model that is augmented by the timing
information of TSN. This model is required by the analysis
engines to perform end-to-end timing analysis of the system.
As a proof of concept, the proposed approach is implemented
in an existing industrial component model, namely RCM, by
introducing new first-class modeling elements and extending
several existing elements. The new and existing modeling
elements are backward compatible with the existing structure
of the component model to support modeling of legacy com-
munication protocols such as CAN. The proposed approach is
generic enough to be integrated to any component model for
distributed embedded systems that uses a pipe-and-filter style

for communication between its software components.
In order to provide validation and show usability of the

proposed approach, a use case from the vehicle industry is
modeled with the extended RCM. The use case consists of
a distributed embedded system with heterogeneous networks,
including TSN and CAN. The paper also performs the end-
to-end timing analysis of a sub-system of the use case that
includes the nodes with CAN network. The subsystem that in-
cludes TSN cannot be analyzed because the existing response-
time analysis for TSN is not yet mature and there is no existing
end-to-end timing analysis framework for distributed embed-
ded systems that contain TSN-CAN heterogeneous networks.
The future work includes developing a method to extract
timing models from the software architectures of distributed
embedded systems modeled with the proposed approach.
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