
Optimized Allocation of Fault-tolerant Embedded
Software with End-to-end Timing Constraints

Nesredin Mahmuda,c,d,∗, Guillermo Rodriguez-Navasa, Hamid Reza
Faragardib, Saad Mubeena, Cristina Seceleanua

aMälardalen Real-Time Research Center, Sweden
bKTH Royal Institute of Technology, Sweden

cMälardalen University, Box 883, 72123, Väster̊as, Sweden
dNorra Skjutbanegatan 18A, 72339, Väster̊as, Sweden

Abstract

It is desirable to optimize power consumption of distributed safety-critical soft-
ware that realize fault tolerance and maximize reliability as a result, to support
the increasing complexity of software functionality in safety-critical embedded
systems. Likewise, safety-critical applications that are required to meet end-
to-end timing constraints may require additional computing resources. In this
paper, we propose a scalable software-to-hardware allocation based on hybrid
particle-swarm optimization with hill-climbing and differential algorithms to ef-
ficiently map software components to a network of heterogeneous computing
nodes while meeting the timing and reliability constraints. The approach as-
sumes fixed-priority preemptive scheduling, and delay analysis that value fresh-
ness of data, which is typical in control software applications.

Our proposed solution is evaluated on a range of software applications, which
are synthesized from a real-world automotive AUTOSAR benchmark. The eval-
uation makes comparative analysis of the different algorithms, and a solution
based on integer-linear programming, which is an exact method. The results
show that the hybrid with the hill-climbing algorithms return very close solu-
tions to the exact method and outperformed the hybrid with the differential
algorithm, though consumes more time. The hybrid with the stochastic hill-
climbing algorithm scales better and its optimality can be deemed acceptable.

Keywords: real time system, safety critical system, software allocation, fault
tolerance, end to end delay, AUTOSAR
2010 MSC: 00-01, 99-00

IArchSyn tool download link: https://bitbucket.org/nasmdh/archsyn/src/master/
∗Corresponding Author: +46(0)73 370 7510
Email address: nesredin.mahmud@mdh.se (Nesredin Mahmud)

Preprint submitted to Elsevier April 30, 2019

1. Introduction

The automotive electrical/electronic system executes several safety-critical
software functions (or software applications), e.g.,throttle control, brake-by-wire
control, traction control, etc. Moreover, it is a distributed architecture, thus
executes some applications on multiple electronic control nodes (ECU). The au-
tomotive functionality is getting complex, e.g., modern cars support hundreds
of software applications and executes millions of lines of codes, therefore, effi-
cient partitioning of the distributed software functionality is crucial to ensure
software extensibility, that is to support current and future software growth.
In this regard, the main concern in embedded system design includes the op-
timization of power and energy, which has been researched at different levels,
such as electronic circuit design [1, 2], dynamic power and energy manage-
ment [3], software/hardware partitioning [4, 5, 6]. In this paper, we propose
power-efficient allocation of distributed software applications on heterogeneous
computing nodes, which are ECUs with different power-consumption specifica-
tions, processor speed and failure rates.

In distributed computing, the risk of software functionality failure is greater
due to higher transient and permanent faults, thus maximizing reliability of
the distributed system is desirable. In the safety-critical design, the software
applications are required to meet reliability goals in order to assure correct op-
eration of the software over some period of time. The most common way to
maximize reliability is by applying fault tolerance, that is via redundant soft-
ware and hardware components. However, fault tolerance requires additional
computation resources, and consumes more power and energy. Therefore, the
software allocation should consider meeting the reliability goals besides optimiz-
ing the power consumption of distributed software applications, since different
software allocation satisfying the reliability goals could deliver different power
consumption.

Software allocation is a well-researched area in the domain of embedded sys-
tems, including in hardware/software co-design [7], platform-based system de-
sign [8] and the Y-chart design [9] approaches. It is a type of job-shop problem
with constraints, and therefore finding an optimal solution, in the general case,
is NP-hard [10]. The methods to solve such problems can be exact or heuris-
tic. The exact methods, e.g., branch and bound, dynamic programming, etc.,
guarantee optimal solutions, nevertheless, they do not scale to large-scale prob-
lems [11]. Moreover, applying exact methods on non linear problems, which are
prevalent in practice, is prohibitively expensive. Our previous work on solving
the software allocation problem [12], we demonstrate the limitation of integer-
linear programming (ILP) [13] using exact method by the CPLEX solver. Simi-
larly, the scalability issues of exact methods on software allocation is indicated
in several works [11]. In contrast, heuristic methods device a working technique
to solve practical problems, which are usually large-scale, non-linear, without
guarantee of optimality [14, 15]. A particular type of heuristic is metaheuristics
which can be defined as “an iterative generation process which guides a subor-
dinate heuristic by combining intelligently different concepts for exploring and

2

exploiting the search space, learning strategies are used to structure information
in order to find efficiently near-optimal solutions” [16].

Metaheuristics has found wide applications in many domains, e.g., cellu-
lar networks, cloud computing, software design, etc [17]. Many of the existing
meta-heuristic algorithms are nature inspired, e.g., genetic algorithm, evolution-
ary algorithms, simulated annehealing, ant colony, particle-swarm optimization,
etc. Applications of metaheuristics on the software allocation of real-time sys-
tems are in the early stages, nevertheless, there exist some works, such as by
Qin-Ma et al. [18] on maximizing reliability of distributed computing systems
using honybee algorithm, and maximizing reliability of distributed systems us-
ing hill-climbing particle-swarm optimization by Yin et al. [19]. In this work,
we apply differential evolution and hybrid particle-swarm optimization algo-
rithms on fault-tolerant distributed software applications to optimize the to-
tal power consumption of a distributed system. The software applications are
developed using the AUTOSAR software components that are implemented
by periodically activated runnables. Sequences of runnables deployed on the
same unit or network of nodes realize end-to-end functionality, also known as
cause-effect chains. The chains are triggered by different sampling rates, also
known as multirate [20]. The propagation of signals over multirate chains result
in undersampling/oversampling effects, which makes end-to-end timing anal-
ysis difficult [21]. In order to maximize software applications reliability and
meet their reliability goals, we implement fault tolerance. The contributions
of our work are: (i) an allocation mechanism to maximize reliability of a dis-
tributed safety-critical software via replication of software components, which
are mapped to different computing nodes, (ii) a hybrid particle optimization to
efficiently map a fault-tolerant safety-critical software on a network of hetero-
geneous computing nodes, considering exact timing and reliability models, with
respect minimization of power consumption, (iii) an approximation algorithm
to minimize the overhead of replication on the calculation of end-to-end age
delay, (iv) performance analysis of various meta-heuristic algorithms such as
differential evolution, particle-swarm optimization and the latter’s hybrids with
differential-evolution, hill-climbing and stochastic hill-climbing algorithms, and
an exact method based on integer-linear programming.

Our approach is evaluated on synthetic automotive applications that are gen-
erated according to the real-world automotive benchmark proposed by Kramer
et al. [22]. In the evaluation, we show comparative performance of the var-
ious optimization algorithms in terms of quality of solutions (or optimality),
computation time, and stability of the algorithms, for small and large software
allocation problems. The tool applied in the evaluation is publicly accessible
from BitBucket1.

The rest of the paper is organized as follows: Section 2 provides a brief
overview of AUTOSAR, emphasizing on end-to-end timing and reliability mod-
eling, and software allocation, Section 3 describes the AUTOSAR system model,

1https://bitbucket.org/nasmdh/archsynapp/src/master/

3

including timing analysis, reliability and power-consumption assumptions. For-
mulation of the software allocation problems is presented in Section 4, which
consist of the timing and reliability constraints and minimization of the total
power consumption, followed by formulation of the optimization problem. We
show how to solve the optimization problem using metaheuristics in Section 5.
The evaluation of our proposed methods are demonstrated in Section 6 using
the automotive benchmark. Our work is compared to related works in Section 7.
Finally, we conclude the paper in Section 8, and outline the possible future work.

2. AUTOSAR

The AUTomotive Open System ARchitecture (AUTOSAR) partnership has
defined the open standard AUTOSAR for automotive software architecture that
enables manufacturers, suppliers, and tool developers to adopt shared develop-
ment specifications, while allowing sufficient space for competitiveness. The
specifications state standards and development methodologies on how to man-
age the growing complexity of Electronic/Electrical (E/E) systems, which take
into account the flexibility of software development, portability of software appli-
cations, dependability, efficiency, etc., of automotive solutions. The conceptual
separation of software applications from their infrastructure (or execution plat-
form) is an important attribute of AUTOSAR and is realized through different
functional abstractions [23].

2.1. Software Application

According to AUTOSAR, software applications are realized on different func-
tional abstractions. The top-most functional abstraction, that is the Virtual
Function Bus (VFB), defines a software application over a virtual communica-
tion bus using software components that communicate with each other via stan-
dard interfaces of various communication semantics. The behavior of a software
component is realized by one or more atomic programs known as Runnables,
which are entities that are scheduled for execution by the operating system and
provide abstraction to operating system tasks, essentially enabling behavioral
analysis of a software application at the VFB level. The runnables are mapped to
tasks, and subsequently are scheduled by the AUTOSAR operating system [24].
The Runtime Time Environment (RTE), which is the lower-level abstraction,
realizes the communication between Runnables via RTE Application Program-
ming Interface (API) calls that respond to events, e.g., timing. Furthermore,
the RTE implementation provides software components with the access to basic
software services, e.g., communication, micro-controller and ECU abstractions,
etc., which are defined in the Basic Software (BSW) abstraction [23].

2.2. Timing and Reliability of Applications

The timing information of applications is a crucial input to the software
allocation process. Among other extensions, the AUTOSAR Timing Exten-
sion specification [25] states the timing descriptions and constraints that can be

4

imposed at the system-level via the SystemTiming element. The timing con-
straints realize the timing requirements on the observable occurrence of events
of type Timing Events, e.g., Runnables execution time, and Event Chains, also
referred to as Cause-effect Chains that denote the causal nature of the chain.
In this work, we consider periodic events and cause-effect chains with different
rates of execution (or activation patterns).

Although the importance of reliability is indicated in various AUTOSAR
specifications via best practices, the lack of a comprehensive reliability design
recommendations has opened an opportunity for flexible yet not standardized
development approaches. In this paper, we consider application reliability as a
user requirement and, in the allocation process, we aim at meeting the require-
ment via optimal placement and replication of software components.

3. System Model

Figure 1 illustrates the system model in consideration which consists of AU-
TOSAR software applications A = {ai : i = 1, . . . ,nA} partitioned on an
execution platform 〈N ,B〉, where N = {nh : h = 1, . . . ,nN } are the computing
node, B is the shared network bus. Each application has user-defined require-
ment (RL,EE,CL), where the tuple elements respectively refer to the reliability
goals (or requirement), end-to-end timing requirements and criticality levels.
And each computing node has provisions (or capabilities) (HZ,PW,FR), where
the tuple elements respectively refer to the processor speed, power-consumption
specifications and failure rates.

 a1 ak a2

 n1 n2 nh

B (CAN Bus)

(RL,EE,CL)

(HZ,PW,FR)

HZ - processor speed
PW - power consumption
FR - failure rate

RL - reliability requirement
EE - end-to-end requirements
CL - criticality level

mapping
communication

c1 c2 c3

VBF

ports

Figure 1: System model.

Notations. For easy reading, we introduce the main notations used throught
the paper as shown in Table 1.

5

Notation Description

• Related to software applications
A = {ai : i = 1, . . . ,nA} AUTOSAR software applications*
ak = 〈V ,E,w〉 a software application, modeled as directed

acyclic graph of runnables
V(ak) ∈ Ri, E(ak) nodes and links of ak, respectively
Γ = {Γi : i = 1, . . . ,nΓ} paths of ak and denote end-to-end chains

• Related to software components
C = {ci : i = 1, . . . ,nC} software-component types used in a ∈ A**
Qi = {qi,j : j = 1, . . . ,nQi} component replicas of type ci
Ri = {ri,j : j = 1, . . . ,nRi} runnables of ci

• Related to the execution platform
N = {ni : i = 1, . . . ,nN} computation (or computing) nodes
B the shared network bus

• Related to the mapping
x = {xAk : i = 1, . . . ,nx} a mapping vector from QAk to N

xkij the mapping of ci to nl, where l = xkij
bk a software application, modeled as directed

acyclic graph of tasks, refines ak
Ti = {τi,j : j = 1, . . . ,nTi} tasks mapped to ci

• Related to the optimization
Power(x) total power consumption of A in x
Reliabilitya(x) application reliability of a ∈ A in x
ResponseT imeτ (x) response time of τ ∈ V (gτ)(x)
Delayγ(x) age delay of γ ∈ ΓAk in x

Table 1: The Main Notations Used Throughout the Paper.
* Note: the total elements in a set S is denoted by nS , e.g., nA denotes the number of appli-
cations in the set A, essentially it refers to cardinality of the set.
** Throughout the paper the superscript is Ak is removed, e.g., from CAk to improve readabil-
ity. However, it is used whenever it is needed, e.g., to calculate the total power consumption
of all applications.

3.1. Software Applications

A software application represents an independent and self-contained user-
defined software functionality, e.g., x-by-wire, electronic throttle control, and
flight control. In AUTOSAR, software applications are developed using AU-
TOSAR Software Component (SWC), which is a design-time concept that rep-
resents the lowest-level hierarchical element in the software architecture of the
application, therefore, a software component is atomic, hence is mapped to a
single computing node. The software component is implemented by the AU-
TOSAR runnables and contains the timing specifications and computation re-
sources needed by the runnables. We formally represent the AUTOSAR software
application as follows:

6

 r
ak

1

 r
ak

3
 r

ak

2

 r
ak

5
 r

ak

4
 r

ak

6

Figure 2: Software application example,
modeled as DAG of runnables.

ci rj (Eh, P = D) ≺ ri [i]

1 1 (0.1, 10) 2
2 2 (0.1, 20)
2 3 (0.1, 15)
2 4 (0.1, 8)
3 5 (0.1, 12)
3 6 (0.1, 6)

Table 2: Timing specifications of the
runnables from Figure 2

Definition 1 (AUTOSAR Software Application2). We represent the AU-
TOSAR software application as a directed acyclic vertex-weighted graph
〈V ,L,w〉 of periodic runnables, where V denotes runnable nodes, aij ∈ L a
data-dependency link from ri to rj , where i 6= j. The assignment function
w : V → (Ei, D, P, N) sets each runnable nodes the computation cost such as
worst-case execution times (WCET) E = {Eh : h = 1, ...,nN}, deadline D and
period P, where Eh ∈ E is the WCET of r on the computing node nh ∈ N .

A path in the graph Γl = ri →, ...,→, rj represents a cause-effect chain,
where ri, rj ∈ V(ak) are source and sink of the chain, e.g., in the application a1

in Figure 2, r1 → r3 → r5 is the chain, and r1, r5, respectively are the source
and the sink of the chain. A chain is a subfunctionality of the application
that is triggered by a stimulus (or stimuli), e.g., pressing a brake pedal, and
the corresponding response to actuate the vehicle braking to the desired speed
level. It usually has a user-defined timing requirement, known as end-to-end
timing requirement (EE), which puts an upper-bound on the duration between
the stimulus and the corresponding response of executing the chain. The set
of chains are represented as Γ = {Γi : i = 1, . . . ,nΓ} . Note: each runnable is
subscribed to at least one chain.

3.2. Scheduling Software Applications

We assume software applications share the execution platform such as the
computing nodes and the on-board network bus, following the mixed-criticality
design [26]. Thus, software applications with different software criticality should
be isolated in order to prevent interference of lower-criticality applications on
the higher-critical applications. For example the brake-by-wire system realizes a
safety-criticality functionality, and is distributed over multiple computing nodes.
Another application with infotainment functionality also shares the nodes. The
mixed-criticality design ensures that both applications are schedulable during
absence of errors, however, the braking application must also be schedulable in
cases of overrun due to errors, e.g., by degrading or halting the infotainment
application. There are several techniques in the literature that deal with the
scheduling of mixed-criticality applications on uniprocessor systems [26]. In
this work, we consider the partitioned criticality (PC) (or criticality-as-priority

7

 τ
bk

1

 τ
bk

2

 τ
bk

3
 τ

bk

4

Figure 3: A Software application modeled as
Directed Acyclic Graph.

τi
⋃
rj (Eh, P = D)

1 1,2 (0.2, 10)
2 3 (0.1, 15)
3 4 (0.1, 8)
4 5,6 (0.1, 6)

Figure 4: Tasks timing specifications after
merging.

assignment, CAPA) technique to schedule the mixed-criticality applications,
which prioritizes applications based on criticality, rather than deadline as used
by the deadline monotonic assignment [27]. In contrast to other techniques,
CAPA is easy to implement and does not require runtime monitoring, e.g.,
using servers [28, 29, 30], though not efficient3. Thus, the software applications
are schedulable according to CAPA if the runnables, messages, and chains in the
applications are schedulable, that is, they meet their corresponding deadlines.

Next, we explain the mapping rules applied in this work.

3.2.1. Runnables-to-Tasks Mapping/Transformation

In the mapping process, one or more runnables can be merged to optimize
the runtime execution by reducing the number of tasks scheduled by the OS. In
this work, we merge the runnables a, b ∈ V(ak) into the task v ∈ V(bk) if the
following two conditions are satisfied: (i) (a, b) ∈ E(ak) is a link in the graph,
(ii) the period of a is a factor of b, or vice versa, otherwise, each runnable is
mapped to a separate task, inheriting the timing specifications of the runnable.
If the merging conditions are met, the timing specifications of v are set as follows:
(i) the WCET of the task is set to the sum of the WCET of the runnables, i.e.,
Evh =Eah+Ebh, for all h : 1, ...,nN , (ii) the period and deadline of the task is set
to the minimum of the runnables’ periods, Pv=Dv = min(Pa,Pb)

The AUTOSAR software applications is shedulable if and only if its task
graph is schedulable, that is each task node meets its deadline, each commu-
nication between task nodes (that is, the message) meets its deadline, and the
chain meets end-to-end requirement. The schedulability analysis of the tasks,
messages and chains used in this work are explained next.

3.2.2. Scheduling of Tasks and Messages

Following the CAPA scheduling technique, the tasks in the distributed sys-
tem are assigned priorities according to their criticality, thus the higher the

3Note: scheduling techniques other than the PA technique can be used with our approach
to schedule the applications.

8

application’s criticality, the higher the priority that its tasks acquire

cri(bi) > cri(bj) =⇒ ∀τ1,∈ V (bi)∀τ2 ∈ V (bj) Pri(τ1) > Pri(τ2),

where ∀i, j : 1, ...,nA ∧ i 6= j, cri and pri are predicates which determine the
criticality and priority of tasks τ1, τ2, respectively; V(bi)andV(bj) return the
tasks of bi and aj , respectively.

The tasks are scheduled using the fixed-priority preemptive scheduling pol-
icy (FPPS) [31], and the schedulability analysis is conducted via the classical
response-time analysis (RTA) as shown by Equation (1) [27]. The task τ is
schedulable if the response time of a task δτ is less than or equal to its deadline
DL, i.e., tasks a δτ ≤ DLτ . The

Rτ = Cτ +
∑

j∈hp(τ)

⌈Rτ
Pj

⌉
Cj , (1)

where Cτ ,Cj are execution times of the lower and higher priority tasks, respec-
tively; hp(τ) is the predicate that returns the higher-priority tasks than cτ .

The messages in the CAN bus are scheduled using the fixed, non-preemptive
scheduling policy. Similar to the tasks, the priority of messages follows the
CAPA technique to achieve the mixed-criticality requirement. This can easily
be achieved by inheriting the priority of each sender task communicating over
the bus pri(m) to the successor message suc(τ), that is pri(m) = pri(τ)|τ =
suc(m). The schedulability of messages is checked using the classical response-
time analysis of the CAN network using Equation (2), as presented by Rob
Davis et. al [32]. The worst-case response time of a message is computed as
the sum of its jitter (that is, the time taken by the sender task to queue for
transmission) Jm, the interference time (that is, the message delay in the queue)
wm, and its transmission time (that is, the longest time for the message to be
transmitted) cm over the network.

Rm = Jm + wm + cm (2)

wm = Bm +
∑

∀k∈hp(m)

⌈wm + τbit
Pk

⌉
ck (3)

Bm = max
∀k∈lp(m)

(ck), (4)

Note: we assume no jitter, therefore, the interference formula is reduced as
shown in Equation (3), where Bm is the blocking time caused by the lower-
priority messages using the CAN bus (since it is non-preemptive) and is com-
puted by Equation (4); hp(m) finds the set of higher-priority messages, which
interfere with the transmission of the message m.

9

n2

P=20

Bn1

τ1 m1

τ2

τ3

P=5

m2

P=10

R

RR

R

OR

IR
IR Input Register

OR Output Register

R Register

Figure 5: A Cause-effect chain, mapped on nodes n1 and n2.

3.2.3. Scheduling Cause-effect Chains

The chain consists of independently clocked tasks, which results in under-
sampling/oversampling effects. As a result, a data that propagates across the
chain is characterized by having various delays, which are discussed in detail
by Feiertag et al. [33] in the context of single-register buffer communication,
which is a common practice in control systems design, e.g., automotive software
applications [34]. In this work, we demonstrate the two widely used semantics
in the automotive domain: age delay and reaction delay, and consider only the
age delay in the analysis. The age delay is the time elapsed between the data
arriving a the input register (which is the stimulus) and its corresponding lat-
est, non-overwritten output (response) at the output register. And, the reaction
delay is the earliest time the system takes to respond to a stimulus that “just
missed” the read access at the input of the chain.

Consider the chain τ1 → τ2 → τ4 in the task graph from Figure 2. Assume
the chain is mapped to the computing nodes n1 and n2 as illustrated in Figure 5,
and that the tasks in the chain communicate using the single-register buffers.
The tasks τ1 and τ4 execute on node n1, whereas, task τ2 executes on node n2.
The input data can arrive at any time in the input register IR.

The execution behavior of the chain is illustrated in Figure 6 over two hyper-
periods. Note that, the message between τ2 and τ3 is not shown in the figure for
simplicity. The red inverted arrows in the figure represent the reading of data
from the input register, whereas the dashed-line arrows represent the timed
paths through which the data propagates from the input to the output of the
chain. Thus, the age delay is the time elapsed between the 3rd instance of τ1 and
the 10th instance of τ3. The timing constraint corresponding to the age delay
is frequently used in the control systems where freshness of data is paramount,
e.g., braking a car over a bounded time. Assume that data arrives just after the
start of the 1st instance of τ1 execution. The data corresponding to this event
is not read by the current instance of τ1. In fact, the data will be read by the
2nd instance of τ1. The earliest effect of this data at the output of the chain
will appear at the 7th instance of τ3, which represents the reaction delay. This
delay is useful in the body-electronics domain where first reaction to events is
important, e.g., in the button-to-reaction applications. For detailed discussion
of the different delay semantics, we direct the reader to check research work by
Mubeen et al. [35].

10

Age Delay
Reaction Delay

0 5 10 15 20 25 30 35 40 45 50

τ3

τ2

τ1

Hyper-period 1
data arrives
at input register

1st

1st

1st

Hyper-period 2

Figure 6: Reaction and age delays in the cause-effect chain, shown in Figure 5.

Thus, if the chain is mapped to a single computing node, the age delay ∆sub

is computed using Equation (5), that is by taking the difference between the
activation of the sink and the source tasks, plus the response-time of the sink
task. Otherwise, if it is mapped to multiple nodes and the bus, the delay ∆
is computed compositionally by identifying the subchains using Equation (6).
In the latter case, the response-time of messages δmsg, and the “just missed”
case that is by adding the period of the successor task Psuc(j) are taken into
consideration.

∆sub(γ) = α(sin(γ))− α(src(γ)) + δ(sink(γ)) single node (5)

∆(γ) =
∑
i∈Iγ

∆sub(i) +
∑
j∈Jγ

[δmsg(j) + Psuc(j)], multiple nodes (6)

where α(τ) computes the activation of the task τ , based on the age-delay se-
mantics.

3.3. Reliability of Software Applications

In this context, software application reliability refers to the probability that a
software application functions correctly by the time t, or within the time interval
[0, t] [36]. Redundancy is the most common way of implementing fault tolerance
and increasing the reliability of a system. Redundancy can be implemented
according to different schemes such as hot stand-by, cold stand-by, etc. [37],
which differ on the number of replicas that are active as well as the methods
for detection and compensation of faulty replicas. In our system model, we
consider the hot-standby scheme, where replicated components maintain the
same state, but only one replica (the so-called primary) effectively acts on the
environment, for instance to issue an input. In the software application Ak, the
primary software component is denoted as qi,1, whereas the secondary software
component, which is in the stand-by is identified, by qi,2.

In this work the details of the redundancy scheme are abstracted away under
the following assumptions:

11

n1 n2 n3

q1,1 q2,1

q3,1

(a) Without Replication.

n1 n2 n3

q1,1 q2,1 q2,2

q3,1 q1,2 q3,2

(b) With Replication.

Table 3: Allocation of the software components.

(i) Software does not contain design errors. This has two implications: first,
that hardware elements, i.e. computing nodes and communication buses,
are the only causes of failure and, second, that introduction of N-version
programming is not required. Different replicas of the same software com-
ponent execute exactly the same program.

(ii) Hot stand-by redundancy (also known as Primary/backup) is used for
detection and replacement of failed components.

(iii) Software components need to be replicated only if the application’s relia-
bility requirement is not met without replication, otherwise they are not
replicated.

(iv) The time needed to detect and replace a faulty component is considered
negligible and will not be taken into account in the response time analysis
of tasks and the delay calculation of cause-effect chains;

(v) Because of its simplicity, the mechanism for detection and replacement of
faulty components will be considered fault-free, and therefore, it will not
be included in the reliability calculations.

Note that, under these assumptions, the reliability of a software application
is equivalent to the reliability of the platform on which it is deployed. The
reliability of a computing node (and of the bus) can be easily calculated as eλt,
where λ is an exponentially distributed failure-rate. However, calculating the
reliability of the whole execution platform is not trivial for the case with replica-
tion. In particular, the traditional series-parallel reliability approach cannot be
applied because of the functional inter-dependencies created between computing
nodes as the result of replication and allocation. To illustrate the complexity, let
us assume a software application Ak, having component configurations without
and with replication as shown in Table 3a and 3b, respectively, where qi,j is the
jth software component replica of software component type ci ∈ Ci. Note: the
superscript k is not used for sake of readability.

The reliability of the software application without replication forms a series
path, indicated by the reliability block diagram (RBD) of Figure 7a. Hence, it
is computed as a product of the reliability of n1,n2 and B. However, with repli-
cation, two computing nodes can form series and parallel to service the software
application, e.g., due to q1,1 and q2,2 or q3,2, n1 and n3 making series, and due
to q3,1 and q3,2, the nodes make parallel, to realize a partial functionality of
the application. In this case, the series-parallel diagram depicted in Figure 7b

12

(a) Without replication. (b) With replication.

 A1

n1

λ1

B

λB

n2

λ2

n3

λ3

A1

n1

λ1

B

λB

n2

λ2

Figure 7: Reliability Block Diagrams (RBD) of the software application.

does not accurately capture the reliability calculation of the application with
replication. Note that, the red-line arrows between n1 and n3 indicates the pos-
sibility of the computing nodes becoming series. To overcome this problem, we
will use an exact technique for reliability calculation based on the enumeration
of the different failure states of the computing nodes. That is, the different
failure states of the execution platform are enumerated exhaustively, and sub-
sequently, the total probability the software application functions is computed.
This technique will be discussed in great detail in Subsection 4.5.

4. Software-to-Hardware Allocation Problem

The software applications are allocated to the execution platform by map-
ping the software-component replicas (or software components) QAki to the
computing nodes N . The software-to-hardware allocation problem is to find
the mapping x : QAki → N that satisfies the user-defined requirements of the
software applications, but also minimize the total power consumption of the
applications, where x is a possible mapping matrix, and xkij represents the map-

ping of the software component qAki,j to the computing node nh, where h = xkij ,
of the application Ak.

4.1. Total Power Consumption

The total power consumption of the applications Ptotal(x) is computed as the
sum of the power consumption of the computing nodes to which the applications
are allocated. The power consumption of a node is computed according to the
linear model proposed by Fan et al. [38] as shown by Equation (7), which is
directly proportional to its load (or utilization) and is inductively formulated
from experimental results.

P(u) = Pidle + (Pbusy − Pidle) ∗ u, (7)

where u is the utilization of a computing node, Pidle and Pbusy, respectively
refer to the power consumption measured at minimum and maximum processor

13

load. The parameters of the model can be obtained by running performance
benchmark suits, e.g., MiBench [39], AutoBench [40], etc.

The utilization of a computing node is computed as a sum of the utilization
of the tasks mapped to it Tnh , which are identified by traversing the mapping
elements-wise xkij as shown in Equation (8), where Ti refers to the tasks imple-

menting the component type cAki .

Tnh = {TAki |∀kij h = xkij} forall h = 1, ...,nN (8)

Then, the utilization of the nodes, indicated by the vector (u1, ...,unN), is

(u1, ...,unN)(x) =
∑
τ∈Tnh

U(τ ,nh), for all h = 1, ..,nN ,

where U(τ ,n) = WCETτ ,n/Pτ computes utilization of the task τ on the node
n. Thus, the total power consumption of the applications is formulated as

Ptotal(x) =

nN∑
h=1

P(uh(x)) for all h = 1, ..,nN , (9)

4.2. Tasks and Messages Timing Constraints

The tasks timing constraints ensure that the tasks in the distributed system
meet their respective deadlines, that is ∀τ ∈ Tnh ResponseT imeτ (x) ≤ DLτ
for all h = 1, ...,nN , following Equation (8). Similarly, the messages timing
constraints ensure that the response time of message in the CAN bus meet their
respective deadlines.

The set of messages in the bus is determined by traversing the edges of the
tasks graphs. If the edge relates tasks located on different nodes, a message is
used to communicate across the bus, otherwise, no message is used.

However, due to replication, the edge may represent a set of subedges, where
each subedge relates tasks replicas on both sides of the edge. Consider Rbkτ =
{(τ ,n) ∈ τ × NAk

τ } is the set of the replicas of type τ ∈ V(bk), now assume
(t1, t2) ∈ E(bk) is an edge in the task graph and Rbkt2 ,Rbkt2 are the replicas of

type t1 and t2, respectively. The set of subedges between t1 and t2 is Rbkt2×R
bk
t2 ,

and the set of messages in these subedges are where the latter relates tasks
replicas located on different nodes. By extension, the set of message in the bus
is determined as,

M = {mi,j |∀(t1, t2) ∈ EE(bk(x))∀(i, j) ∈ RLbkt1 × RLbkt2 ni 6= nj}, (10)

where (i, j) is a sub-link of (t1, t2), mij is the message that the replica i uses to
communicate with the replica j, ni,nj ∈ N .

We assume the messages inherit the timing and criticality specifications of
the sending tasks, thus Pmi = Pt1, CLmi = CLt1.

14

4.3. End-to-end Timing Constraints

The end-to-end timing constraints over x ensure that the delays of the chains
meet their respective end-to-end requirements, that is ∀γ ∈ ΓAk Delayγ(x) ≤
EEAkγ for all k = 1, ...,nA. Note that, end-to-end constraints implicitly assumes
the tasks and messages constraints are satisfied.

The delay calculation of a chain Γ is multiplicity Γ∗ due to replication.
Consider the chain Γ = (τ1, ..., τl). The set of chains with replication is a
cartesian product of the tasks replicas (or the tasks nodes mapping to computing
nodes according to x in the chain, that is Γ∗(x) = Rbkτ1×, ...,×Rbkτl , where l is
the chain length. Assume that we want to calculate the age delay of the chain
γ ∈ Γ∗ compositionally, where γ = (ti)

l
i=1 = (t1, ..., tl): first we identify the

subchains I and messages J in the chain. The subchains I are subsets of the
chain γ where the communication between the sender and receiver tasks of the
chain use a network bus. That is, if ti is the sender task, and its receiver task ti+1

is mapped to a different node, i.e., nti 6= nti+1
, then (th)ih=i′ ∈ I is a subchain of

γ and mti ∈ J is the message used by the subchain, where 0 ≤ i′ ≤ i, captured
by the expression (I; J) = {(ti)l−1

i=0;mti |nti 6= nti+1}.
Thus, the delay ∆γ(x) for a mapping x is computed as the sum of the age

delays of its subchains and the response-times of the messages,

∆γ(x) =
∑

i∈Iγ(x)

∆sub
i (x) +

∑
j∈Jγ(x)

[
δmsgj (x) + Psuc(j)

]
,

according to the age-delay formula shown in Equation (6), where ∆sub, δmsg are
the functions that compute the age delay of i subchain, and the response-time
of j message, respectively.

Thus, the chains timing constraints are formulated for a mapping x is:

∀γ ∈ Γ∗(x)Ak ∆Ak
γ (x) ≤ EEAkγ , (11)

Example 1 (Delay Calculation). Consider the chain Γ = τ1 → τ2 → τ4
from Figure 3 where τ1 and τ2 realize the component types c1, and τ4 realizes c2.
The mapping of the components is shown in Figure 3 (b), i.e., with replication.
Thus, the nodes to which τ1 and τ2 are mapped are Rbkτl = Rbkτ2 = {n1,n2},
and τ4 to Rbkτ4 = {n2,n3}, by infering the mappings of respective components.
Table 4 illustrates how to compute the chains, considering replication of degree
2, which is Γ∗ = Rbkτ1 × R

bk
τ2 × R

bk
τ4 , and also how to compute the subchains

and messages of each chain γ ∈ Γ∗. The delays of the subchains is computed
according to the age-delay semantics demonstrated in Subsection 3.2.3.

4.4. Approximation of Age Delay Calculation

Due to the replication, the number of chains with replication per chain Γ
grows exponentially as the degree of the replication D linearly increases, |Γ|D.
Likewise, the length of the chain has a polynomial effect on the number of
replicated chains. Moreover, the age delay calculation is an exhaustive search as

15

γ ∈ Γ∗ i ∈ Iγ j ∈ Jγ
(τ1,n1)→ (τ2,n1)→ (τ4,n2) (τ1,n1)→ (τ2,n1), (τ4,n2) m(τ2,n1),(τ4,n2)

(τ1,n1)→ (τ2,n1)→ (τ4,n3) (τ1,n1)→ (τ2,n1), (τ4,n3) m(τ2,n1),(τ4,n3)

(τ1,n2)→ (τ2,n2)→ (τ4,n2) (τ1,n2)→ (τ2,n2)→ (τ4,n2) ∅
(τ1,n2)→ (τ2,n2)→ (τ4,n3) (τ1,n2)→ (τ2,n2), (τ4,n3) m(τ2,n2),(τ4,n3)

Table 4: Chains with replication of degree 2 for the chain Γ = τ1 → τ2 → τ4, its subchains I
and messages J .

demonstrated in Subsection 3.2.3. For these reasons, the age delay computation
is sometimes prohibitively expensive considering the meta-heuristic algorithms,
which compute large-space candidate solutions over thousands of iterations.

Therefore, we propose an approximation algorithm to efficiently compute
the delays. In the case that the chain is mapped to a single node, the delay
δsub∗ is calculated as the sum of the response time of each task in the chain,
i.e.g, δsub∗ = δ. However, if the chain is mapped to multiple nodes, the delay is
computed compositionally as explained in Equation (6) of Subsection 3.2.3.

∆approx =
∑

i∈subch(γ)

δsub∗(i) +
∑

j∈Jγ(x)

[
δmsgj (x) + Psuc(j)(x)

]
, (12)

where subch() computes subchains of the the chain γ in the case that chain is
mapped to multiple nodes. The predicate suc(j) determines the receiver task
of the message mj .

4.5. Software-Applications Reliability Constraints

The applications reliability constraints ensure the mapping x satisfies the
user-defined reliability requirements, that is ReliabilityAk(x) ≤ RLAk , for all
k = 1...nA. The reliability of each application is computed over t period of time
from the computing nodes NAk and the shared network bus B, where NAk

hosts ak. The reliability is computed assuming exponentially distributed and
constant failure rates of the nodes λnh as well as the network bus λB . Thus,
the reliability of an application is computed as a product of the reliability of the
nodes and the network bus as shown in Equation (13). Note that, if application
does not use the shared bus, then ReliabilityB = 1. Equation (14) finds the
nodes NAk that the application akuses by traversing the partition x in linear
time.

Reliabilityak(x) = ReliabilityNAk (x) ∗ReliabilityB (13)

NAk = {e ∈ N|∀ij e = mh}, where h = xkij (14)

We assume applications are mutually exclusive, i.e., no shared components exist
between any two applications. Therefore, we can safety calculate the reliability
of applications independently. Consequently, to increase readability, we remove
the superscript (Ak) in the rest of this subsection.

16

The reliability of the nodes is ReliabilityN (x) = e−λN (x)t, where λN (x) is
the failure rate of an N -node system over the partition x . The system failure-
rate is computed using the state enumeration as shown in [41], which is an exact
technique to calculate reliability, as opposed to using series-parallel technique
motivated in Subsection 3.3. By applying the state enumeration technique, the
system failure-rate can be defined as the probability a software application fails
in the probability space 〈Ω, ξ, p, f〉.

• Ω = {0, 1} are the possible outcomes (or states) of a computing node. As-
sume the Boolean variable sh → Ω, which indicates the state of nh, then
sh = 0 indicates nh fails and sh = 0 indicates nh operates. Thus, for com-
puting nodes N = {n1, ..,nnN }, the states of the nodes (or configuration)
is indicated by the N -cardinality set S = {s1, ..., snN }.

• ξ = ΩS are elementary events that correspond to the possible config-
urations of the nodes N , therefore, the events are mutually exclusive.
Consider N = {n1,n2,n3}, Table 5 shows the possible configurations ξ.
Assume the configuration s ∈ ξ = {0, 1, 0}, it shows n1 and n3 fail as
indicated by s1 = 0, s3 = 0, respectively, and n2 operates as indicated by
s2 = 1.

• p : ξ → [0, 1] assigns the configurations probabilities using

∀s ∈ ξ ps =

nN∏
h=1

λnh ∗ (1− sh) + (1− λnh) ∗ sh

where λnh is the failure-rate of nh. The probability ps is the product of
the probability of having the state sh, which is λnh if nh fails, otherwise,
(1− λnh) if nh operates.

• f : ξ → {0, 1} determines the status of the application in each state s ∈ ξ,
that is fs = 0 means the application fails, otherwise, fs = 1 means the
application operates at the sate s.

Definition 2 (Software Application Failure). A software application fails
in the configuration s ∈ ξ if there exists a component type ci where all of
its replicas Qi fail, otherwise, it functions, as shown in Equation (15). The
component replica qi, j ∈ Qi of type ci fails if nh fails, that is sh = 0.

fs(x) =

{
0 if ∃i ci|∀j sh = 0

1 otherwise
where h = xij (15)

Thus, the failure rate of the N -node system λN (x) is the sum of the proba-
bilities in which the application fails, that is

λN (x) =
∑

s∈ξ|fs(x)=0

ps(x)

17

nodes Config. Probability Comonent Status Application Status
s ∈ ξ ps ∀i sci fs

{0, 0, 0} 0.0000000000 {0, 0, 0} 0
{0, 0, 1} 0.0000000099 {0, 0, 1} 0
{0, 1, 0} 0.0000000099 {1, 0, 0} 0
{0, 1, 1} 0.0000999800 {1, 1, 1} 1
{1, 0, 0} 0.0000000099 {1, 0, 1} 0
{1, 0, 1} 0.0000999800 {1, 1, 1} 1
{1, 1, 0} 0.0000999800 {1, 1, 1} 1
{1, 1, 1} 0.9997000299 {1, 1, 1} 1

Table 5: Example of the application reliability calculation using state enumeration over 10-
year operational lifetime: an application with component types C = {c1, c2, c3}, replicas
Q = {c1,1, c1,2; c2,1, c2,2; c3,1, c3,2} partitioned on N = {n1,n2,n3} according to Figure 3, the
variable sci ∈ {0, 1} indicates if the replicas of type ci fails or functions, respectively.

Example 2 (Reliability Calculation). Let us assume we want to calculate
the reliability of the application in Table 5 over a 10-year (or 87600h) operational
lifetime. The reliability of the nodes is ReliabilityN = e−λN t = 0.99736671,
where λN = p1 +p2 +p3 +p5 = 0.0000000301. Assume λB = 0.00000001, hence
ReliabilityB = e−λBt = 0.99912438. Then, the reliability of the application is
ReliabilityN ∗ReliabilityB = 0.99649339932.

4.6. Software Allocation Optimization

The software allocation is defined as a single-objective optimization prob-
lem. The objective function P(x) is a cost function which minimizes the total
power consumption of the software applications as deployed in the heteroge-
neous computing nodes, where x is the decision variable (or solution) of the
optimization. The cost function is formulated in Equation 16, with inequality
constraints shown by Equation (17, 18,19). The constraints ensure the solu-
tion meet the reliability requirements, the tasks deadlines, and the end-to-end
requirements of the chains.

min
x∈X

Ptotal(x) subjected to: (16)

ReliabilityAk(x) ≤ RLAk forall k = 1, ...,nA (17)

∀i ∈ Tmh ResponseT imeAiτi (x) ≤ DLAiτi forall h = 1, ...,nN (18)

∀γ ∈ Γ∗Ak DelayAkγ (x) ≤ EEAkγ forall k = 1, ...,nA (19)

where X is the search space of the problem, x ∈ X is a feasible solution, and
xkij ∈ x is a mapping of a component qAki,j to the node mh, where h = xkij In
the next section, we discuss our proposed method to address the considered
optimization problem.

18

5. Solution using Hybrid Particle Swarm Optimization (PSO)

When ILP is used to optimize the problem discussed in Section 3, the CPLEX

solver returned optimal solutions to problems in the small and medium range
applications, where the small problem refers to a software application with soft-
ware components less than 10 and chains less than 30. Whereas, the medium
problem refers to applications with components less than 15 and chains less than
40. The specifications are stipulated from the real automotive benchmark pro-
posed by Kramel et al. [22]. However, the ILP approach, as also shown for similar
problems, suffers from the scalability problem, that does not return solutions
for large-scale software allocation problems. In this section, we propose multi-
ple meta-heuristic algorithms based on the particle-swarm optimization (PSO),
evolutionary differential evolution (DE), hybrid PSO with DE, hill-climbing and
stochastic hill-climbing.

Metaheuristics does not guarantee optimal solutions, nevertheless, the so-
lutions can be good enough (or acceptable) in practice, that is, although the
power consumption of the applications may not be optimal, the solution can be
deemed acceptable. In fact, PSO and DE are used together for improved per-
formance in several optimization problems [42, 43], likewise, PSO is used with
local search techniques such as Hill climbing to intensify the search [19]. Finally,
we evaluate the different meta-heuristic methods based on solution quality and
computation time for different software allocation problems.

5.1. Particle Swarm Optimization

PSO is a population-based technique proposed by Eberhart and Kennedy
in 1995 to study social behavior, as inspired by natural swarm intelligence ob-
served from the flocking of birds and schooling of fishes [44]. Since then, it is
extended in order to address various metaheuristic optimization challenges, such
as intensification, diversification, convergence analysis, local optima, parameter
tuning and computation time [42]. It is successfully applied on several complex
real-world problems, e.g., diagnosis and classification of diseases, efficient engi-
neering designs, tuning control design parameters and scheduling problems [45].

In PSO, the population (or swarm) PN = {p1, p2, , pN} is a collection of
particles, organized according to a certain population topology [46]. A particle
has a position p and a velocity v. PSO is memory-based in the sense that it
remembers the best position of a particle, identified by pbst. Moreover, it re-
members the best position of the swarm, z. The particle moves to the global
optima guided by its current velocity and its attraction vectors known as the
cognitive and the social components as shown by Equation 20. The cognitive
component (pbst−p) attracts the particle towards its best position whereas the
social component (z − p) attracts the particle towards the swarm’s best posi-
tion. In fact, the next velocity of the particle is the resultant of the attraction
components and the current velocity. Thus, the next position of the particle is
the resultant of its current position and its next velocity as shown by Equation

19

1 0 0
0 1 0
1 1 0

 0 1 0
0 0 1
0 0 1

Figure 8: Binary (0-1) representation.

1 2
2 3
1 3

Figure 9: Integer representation.

Figure 10: Solution representations for components {c1, c2, c3} Mapped to computing nodes
{n1,n2,n3} based on Table 3b.

(21).

v← ωv + c1Rand() ◦ (pbst − p) + c2Rand() ◦ (z− p) (20)

p← p + v, (21)

where ω is the weight of the velocity, also known as inertia coefficient and
controls the convergence of the algorithm. The c1, c2 constants are acceleration
coefficients and control the weight of attraction towards the cognitive and social
components, respectively. Rand() ∈ U(0, 1) is a random function along the
acceleration coefficients, which is element-wise multiplied with the components
to improve diversity of the search by introducing stochastic behavior.

5.2. Solution Representation

The software allocation is a discrete problem, as such, the solutions are
discrete values. The PSO was originally proposed for continuous problem, nev-
ertheless, it is applied to discrete problems successfully as well, e.g., to the sales
man problem [47]. There are two commonly used solution representations of
PSO for discrete problems: the binary (0-1) and integer representations, which
are demonstrated in Figure 10 using the example provided in Figure 3. In the
latter, the variable indicate the computing-node identifier to which the compo-
nent is allocated. The two representations are interchangeable.

In this work, we consider the integer representation due to efficient encoding
(much fewer variables) as can be observed from Figure 9, and it is computation-
ally more efficient considering our problem. Following the integer-representation
approach, the solution is discretized by approximating its constituents into the
nearest integer values, that is x← [x], where x= p.

The solution to the allocation problem of the applications A is represented
by a vector of nCAk × D matrices x = {xAk : i = 1, . . . ,nx} , where xAk as
shown by Equation (22) is the solution of ak, and xkij= h ∈ {1, ,nN} denotes

the mapping of the software-component replica qki,j to the computing node nh.

xk =

xk11 xk12 . . . xk1K
xk21 xk22 . . . xk2K

...
...

. . .
...

xkNc1 xkNc2 · · · xkNcK

 (22)

20

5.3. Fitness Function

The fitness function f : x → R is a type of objective function that summa-
rizes the contributions of the decision variables via real numbers. The fitness
value is used to compare feasible solutions, i.e., the higher the fitness the better
it is (for minimization problem as in our case, a lower fitness value is bet-
ter). In the context of metaheuristics, it is highly desirable to integrate the
goal function and all constraints into one function that can be used as a fitness
function [48, 14]. Thus, it combines the objective function (i.e., the power-
consumption minimization) with the reliability and timing constraints into a
single function (i.e., fitness function) by using penalty functions.

The benefit of using a single function, including all penalty functions, is to
provide a metric to distinguish between two unfeasible solutions. For example,
let us assume that x1 and x2 are two different solutions for the allocation prob-
lem while both violate some constraints of the problem. Let us also assume
that solution x1 slightly violates only one constraint, whereas solution x2 signif-
icantly violates multiple constraints. If the heuristic algorithm can perceive the
difference between x1 and x2 in terms of being far away from a feasible solution,
the fitness function guides the search toward a feasible solution more efficiently
in comparison with the case in which the heuristic algorithm only knows that
they are both infeasible. solution.

Consequently, the original constrained optimization problem is transformed
into unconstrained optimization problem by extending the objective function
Ptotal(x) with the constrains, which are represented by a set of penalty func-
tions {φrel(x),φddl(x), φe2e(x)}. The first penalty function (Equation (23) cor-
responds to the reliability constraint which returns 0 if the reliability constrain
is not violated, otherwise returns a positive number denoting how far the relia-
bility constraint is violated. The further the violation, the higher the value of
the penalty function. Similarly, the φddl(x) Equation (24) and φe2e(x) Equa-
tion (25) penalty functions returns the violation due to missing deadlines and
missing end-to-end requirements, respectively, that is 0 no violations otherwise
return the magnitude of the violations.

φrel(x) =

nA∑
k=1

max {0,ReliabilityAk(x)− RLAk} (23)

φddl(x) =
∑

∀τ∈Tmh

max{0,ResponseT imeτ (x)− DLτ} (24)

φe2e(x) =
∑
∀γ∈ΓAk

max{0,Delayγ(x)− EEγ} (25)

Thus, the fitness function can be written as follows.

min
x∈X

f(x) = Ptotal(x) + β1φrel(x) + β2φddl(x) + β3φe2e(x), (26)

where β1,β2 and β3 are penalty coefficients used to tune the weights of the

21

penalty functions regarding the range of the objective function. In Section 5.4,
the proper values of the penalty coefficients are discussed in more details.

5.4. Penalty Coefficients

To calculate the values of the penalty coefficients β1,β2 and β3, we use
the analytical approach similar to the one proposed in [49], where the value
of each penalty coefficient is determined separately with respect to the relative
proportion of the range of the penalty function to the range of the objective
function, which is P(x) in our problem. Indeed, the penalty coefficients should
be determined such that all the feasible solutions have a lower fitness value in
comparison to the infeasible solutions, meaning that all the feasible solutions
are always preferred to infeasible solutions [14]. On the other hand, the penalty
coefficients should not be extremely large since it hinders the search algorithm to
search among infeasible solutions to find a way to reach the global optimum [48].

To calculate the minimum value of β1 we consider two solutions for the
problem. Solution 1 has the best power consumption (denoted by Pmin), while
it just infinitesimally violates the reliability constraint. Solution 2 has the worst
possible value of Ptotal(x) (denoted by Pmax), while it satisfies the reliability
constraint. We expect that Solution 2 (which is a feasible solution) has a better
(lower) fitness value than that of solution 1 (which is an infeasible solution).
Accordingly,

Pmin + β1 ×min{PenaltyV alue} > Pmax + 0

Let us assume that (i) Pmin = 0, (ii) Pmax is set equal to the to-
tal power consumption of all nodes when they are fully utilized, and (iii)
min{PenaltyV alue} = 10−8, which is the minimum value of φreliability in an
infeasible solution. Hence,

β1 > 108 × Pmax

The experimental evaluation discussed in the next section verifies this dis-
cussion. We observed that when β1 = 108Pmax, we always converge to a feasible
solution and when it is set to a lower value, in some experiments, we converge
to an infeasible solution. We also observed that when β1 is set to a significantly
higher value, the deviation from the best fitness value found in multiple experi-
ments goes up, and the average fitness value is increased, thereby, the quality of
the solutions is decreased. Similarly, for the other penalty coefficients, we use
similar calculations, which result in β2 > 1 × Pmax and β3 > 1 × Pmax. Note
that, the minimum violation of φddl and φe2e is one each.

5.5. Hybrid Particle Swarm Optimization

The canonical PSO technique uses the constriction factors to balance ex-
ploitation and exploration of the search space to get closer to the global optima,
hence improving solution quality. Nevertheless, it still suffers from premature
convergence or local minima especially when applied on complex and large prob-
lems [50]. Its hybridization is proven to perform better in many cases [42]. In

22

particular, it is shown to perform better in the tasks assignment problem, that
is when hybridized with, e.g., the genetic algorithm [51], the hill-climbing [19],
simulated annealing [52], differential evolution [53]. As compared to the hy-
bridization with genetic, the hybridization with hill-climbing HCPSO is shown
to perform better by Yin et al. [19] for the tasks allocation problem to maximize
reliability of distributed systems.

In this work, we apply HCPSO to the problem at hand, and to tackle its
stagnation when applied to large problems. Moreover, we hybridize PSO with
the differential evolution technique, DEPSO, to improve diversification by ap-
plying the mutation and cross-over operators of the differential evolution. Al-
gorithm 1 show the pseudocode of the hybrid PSO. Line 3 and 4 compute the
personal best and the swarm best solutions, respectively. For each particle in
the swarm, the velocity and position is computed in Lines 5-8. Lines 9-13 ap-
ply the hybridization based on the choice of the algorithm, i.e., DE, HCPSO

and SHPSO intermittently, i.e., whenever the interval criterion condition is met.

input : PSOparameters, DEparameters
output: Software allocation solution sBest.x

1 Particles P ← initPSO();

2 while termination criteria do
3 pbst ←ComputePersonalBest(P);
4 z←ComputeSwarmBest(P);

5 foreach p ∈ P do
6 computeParticleVelocity(p) according to Equation (20);
7 computeParticlePosition(p) according to Equation (21);

8 end
9 if interval criteria then

10 P ← optimizeUsingDE(P);
11 // P ← optimizeUsingHC(P)
12 // P ← optimizeUsingSHC(P)

13 end

14 end

Algorithm 1: Hybrid PSO pseudocode.

5.6. Differential Evolution

Similar to PSO, the differential evolution technique [54, 55] is a population-
based meta-heuristic algorithm and employs a fixed set of particles (or agents)
to traverse the search space. Similar to the genetic algorithm, it uses muta-
tion, crossover and selection operators unlike PSO. It creates each agent x a
mutant v out of three other random agents from the population, a,b,c, and
differential weight F ∈ [0, 2], as shown in Equation (27). The mutant undergoes
the crossover process as indicated by Equation (28), where CF ∈ [0, 1] is the
crossover probability, which creates solution u. If the solution u performs better

23

than the agent, it is selected thus replaces the agent x as shown in Equation (29).

v← a + F ◦ (b− c) (27)

u← crossOver(v, x,CF ,F) (28)

x←

{
u if f(u) < f(x) functions

x otherwise
(29)

The hybridization with DE helps PSO escape local minima due to the addi-
tional stochastic behavior introduced by the differential evolution operators.

5.6.1. Stochastic Hill-climbing PSO

Hill-climbing is a popular local search algorithm based on the notion of
neighborhood, that is, the candidate solution (or neighbor) that performs bet-
ter is selected iteratively until no improvements can be made. The software
allocation solution x is neighbor to x' if x = x' except ∃i, j| xij 6= x′ij , that
is, a single mapping is different. In every iteration, the best neighbor is se-
lected, which subsequently replaces the current candidate solution if it performs
better and continues until the maximum iteration. This variant is known as
steepest-descent hill-climbing (SHC).

Since SHC exhaustively checks all neighbors before moving to the next it-
eration, the time complexity is high especially for high-dimensional problems.
To offset this problem, we apply the stochastic version of Hill-climbing. In the
later case, the neighbor is selected randomly, first by selecting the dimension,
that is the component cij , where i = U(1, I) and j = U(1,K), second, selecting
the value, that is the node nj , where j = U(1, J). If the neighbor improves the
current candidate solution sufficiently, the search moves to the next iteration,
which is until no more improvements can be made.

6. Evaluation

In this section, we evaluate our proposed hybrid PSO algorithms for the
allocation of software applications to heterogeneous computing nodes, which
conform to the system model presented in Section 3. The algorithms are eval-
uated against different specifications of automotive software applications and
execution platforms with regard to effectiveness, stability and scalability. The
software-application specifications consist of the number of software components
c, runnables r, tasks t and cause-effect chains g. The specifications are synthe-
sized from the automotive benchmark proposed by Kramel et al. [22]. The
benchmark indicates a strong correlation between runnables and cause-effect
chains in terms of timing and activation patterns. It shows the timing specifica-
tions of runnables and their shares in an engine management system. Moreover,
it shows the activation patterns of cause-effect chains, the runnables per acti-
vation and their shares in the system. The engine management system is one
of the most complex automotive systems in the vehicular electrical/electronic
execution platform.

24

Parameter Spec.-I Spec.-II Spec.-III Spec.-IV

Components c ≤ 10 ≤ 15 ≤ 20 ≤ 80
Runnables r ≤ 50 ≤ 100 ≤ 500 ≤ 1000
Tasks t ≤ 30 ≤ 60 ≤ 80 ≤ 100
Cause-effect chains g ≤ 30 ≤ 40 ≤ 60 ≤ 100

Activation-pattern {2, 3, 4}

share of activation-patterns {0.7, 0.2, 0.1}

Table 6: Specification of the applications for evaluation.

Parameter Range

EE 100nΓ

RL 0.99999999
CL {A,B,C,D}

Table 7: Ranges of values for applica-
tions requirements.

Parameter Range

Nodes nN [4, 10]
Pidle (Watt) [10, 200]
Pbusy (Watt) [20, 500]
λn,λB (h−1) [10−8, 10−6]
Hz processor speed*

Table 8: Ranges of values for execution platforms.
Note: * is reflected in the worst-case execution time.

Software Applications Benchmark. Based on our experience in the automotive
industry, the benchmark results are extrapolated to characterize different classes
of automotive software application specifications, that is by varying the param-
eters related to the software components, runnables, and cause-effect chains.
The different classes of specifications range from Spec-I to Spec-V as shown
in Table 6. The specification classes are useful to evaluate and discuss the ef-
fectiveness and scalability of the different optimization algorithms. The first
specification class Spec-I encompasses small software applications with number
of components less than 10, runnables less than 50, tasks 30, cause-effect chains
less than 30. The Spec-I and Spec-II classes represent medium and large soft-
ware applications, and the last specification class is introduced to stretch the
performance analysis.

Execution Platform Specifications. Likewise, the specifications for an execution
platform consist of the processor speed, power specifications and failure rates of
computing nodes. The values of these parameters are shown in Table 8.

Applications Requirements Specifications. Table 7 shows the range of values
used in our experiments to specify the requirements of software applications,
that include the end-to-end timing requirements (EE) of chains, the reliability
requirement (RL) and the criticality level (CL). The end-to-end requirements are
assumed as a function of length of the chain nΓ, i.e., the longer the chain the
higher the number. The reliability range of a typical safety-critical automotive
application is usually given in higher degree of 9, for operation of over a long
period of time, which implies almost no failure during the specified duration.

25

Algorithm Parameters Settings

PSO Particle Swarm Optimization: learning factors c1 = c2 = 1.49445 ∈
[0, 4], number of particles 40, iterations 5000

DE Differential Evolution: crossover CR = 0.5 ∈ [0, 1], scale factor F =
0.7 ∈ [0, 2]

PF Penalty Function: β1 = Pmax, β2 = Pmax,β3 = 108Pmax, where
Pmax =

∑
i∈N Pbusyi

Table 9: Parameters settings of the metaheuristic optimization.

Evaluation Setup. The evaluation is conducted on a MacBook Pro laptop com-
puter, with hardware specifications as follows: Intel Core i7 processor type,
2.6.GHz processor speed, 6 Cores , 9 MB L3 cache, and 16 GB memory.

6.1. Results

We conducted two experiments: i) the first experiment is designed to com-
pare the performance such as the convergence time, computation time, optimal-
ity (or quality of solutions) and stability of the meta-heuristic algorithms used
in this paper, ii) the second experiment is designed to evaluate the overhead of
increasing replication on the optimization especially due to the computation of
end-to-end delays, and also to evaluate the effect of the approximation algorithm
proposed in Subsection 4.4 to reduce the overhead.

Experiment 1. Based on the ranges specifications presented in Table 7, Table 6
and Table 8, we synthesized six optimization problems as shown in Table 10.
The problems emulate the software allocation of safety-critical distributed au-
tomotive applications on heterogeneous computing nodes with respect to pro-
cessor speed, failure rate and power consumption. The problems are identified
by handlers of type 〈cigjni〉 for readability, where the c, g,n variables denote
number of components, cause-effect chains and computing nodes, respectively.
The c6g10n4 and c8g20n6 problems correspond to Spec-I, thus represent the
allocation of small size software applications. The c10g20n8 problem is based
on Spec-II, thus denote the allocation of medium size software applications,
and the c20g30n10, c50g40n20 and c80g60n20 are based on Spec-III, thus denote
the allocation of large size software applications. The optimization problems
are executed each 30× using our ILP method proposed in [12] and the meta-
heuristic algorithms presented in Section 5. The optimization parameters such
as the penalty function coefficients and the meta-heuristic parameters control
the optimization, and their settings are shown in Table 9. The optimization
parameter values are obtained from literature as well as from our experimenta-
tion. Subsequently, we recorded the computation time, fitness values and power
consumption delivered by each algorithm.

Experiment 2. Usually the replication exerts heavy computation over the calcu-
lations of the cause-effect delay due its combinatorial nature. The approxima-
tion technique, which is presented in Subsection 4.4 optimizes the calculations of

26

Identifier Components c Runnables r Chains g Nodes n

c6g10n4 6 60 10 4
c8g20n6 8 80 20 6
c10g20n8 10 100 20 8
c20g30n10 20 200 30 10
c50g40n20 50 500 60 20
c80g60n20 80 800 60 20

Table 10: Specifications of optimization problems.

Identifier Chains g Replication d Problem Id.

g30d2 30 2 c50g40n20

g30d3 30 3 c50g40n20

g30d2 60 2 c80g60n20

g30d3 60 3 c80g60n20

Table 11: Specifications of chains g and degrees of replication d, used in Experiment 2.

the cause-effect chain delay in the presence of replication. We executed the op-
timization problems c50g40n20 and c80g60n20 with 2 and 3 degrees of replication,
and also with and without the approximation technique applied according to
the specification in Table 11. The degree of replication indicates the multiplicity
of each component in the software applications.

6.2. Analysis of Experiment 1

Table 12 shows a summary of the evaluation results from executing Exper-
iment 1 such as the average and standard deviation of the computation times
and fitness values, and the quality of solutions. The latter is calculated as a
percentage of solution deviation from the best solution per optimization prob-
lem, which is indicated by the boldface type. In the first three optimization
problems, the ILP method returns the best (or optimal) solution. The SHPSO

algorithm returns the best solution for the c20g30n10 and c50g40n20 problems,
and SHPSO for the last problem c80g60n20. We analyze the results over three
matrices: solution quality, computation time, and stability.

Solution Quality. In the c6g10n4 optimization, all except DEPSO and PSO re-
turned the optimal power consumption 227KW. DEPSO and PSO returned near
optimal solutions, with > 99% quality measures (or optimality) as compared
to ILP. In the c8g20n6 optimization, ILP, HCPSO and SHPSOreturned optimal
solutions. Whereas DE, LPSO and DEPSO performed worse than ILPby 1% but
better than PSO by 2%. In the c10g20n8 optimization, only ILPreturned optimal
solution whereas the hybrid algorithms returned worse and PSOand DEreturned
the worst. In the last three optimization problems c20g30n10, c50g40n20 and
c80g60n20, ILPdid not return solutions due to extremely large computation time,

27

Problem Algorithm Fitness Time (ms) Quality

Mean SD Mean SD

c6g10n4 ILP 227.88 0 309 57.74 100.00
PSO 229.11 2.38 0.12 0.34 99.46
DE 227.88 0 0.01 0 100.00
DEPSO 228.07 0.31 0.09 0.01 99.92
LPSO 227.88 0 0.02 0.02 100.00
HCPSO 227.88 0 0.03 0 100.00
SHPSO 227.88 0 0.13 0.03 100.00

c8g20n6 ILP 406.6 0 4148.3 95.77 100.00
PSO 415.15 12.4 0.07 0.15 97.94
DE 407.42 1.05 0.03 0.02 99.80
DEPSO 409.65 8.8 0.17 0.01 99.26
LPSO 407.18 0.53 0.32 0.73 99.86
HCPSO 406.6 0 0.13 0.06 100.00
SHPSO 406.6 0 0.29 0.14 100.00

c10g20n8 ILP 442.37 0 14049.1 150.84 100.00
PSO 448.79 12.61 0.79 1.37 98.57
DE 451.55 17.72 0.23 0.41 97.97
DEPSO 442.44 0.19 1021.46 2263.76 99.98
LPSO 442.49 0.17 1062.51 2338.73 99.97
HCPSO 442.67 0.21 7.57 22.68 99.93
SHPSO 442.46 0.19 10.73 61.31 99.98

c20g30n10 ILP NA NA NA NA NA
PSO 64595.28 9544.82 11.27 9.73 65.74
DE 53655.73 4134.84 22.15 7.95 79.14
DEPSO 44055.97 4237.81 192.95 230.83 96.38
LPSO 58603.42 6617.49 19.83 6.98 72.46
HCPSO 42462.38 1643.71 247.05 104.36 100.00
SHPSO 42558.2 2770.52 114.52 102.41 99.77

c50g60n20 ILP NA NA NA NA NA
PSO 1298680.85 38557.68 1753.43 776.16 98.26
DE 1460553.62 34599.66 571.43 248.46 87.37
DEPSO 1384474.66 32550.41 4925.97 4809.57 92.17
LPSO 1430847.88 32045.32 640.86 320.33 89.18
HCPSO 1276036.05 65320.02 17445.87 15796.87 100.00
SHPSO 1336679.78 98051.36 1074.4 339.83 95.46

c80g60n20 ILP NA NA NA NA NA
PSO 2692638.14 46015.42 324.95 103.66 91.60
DE 2737416.39 23780.06 716.97 207.19 90.10
DEPSO 2604249.6 46945.89 4018.55 12.37 94.71
LPSO 2650992.23 35813.35 1005.74 375.25 93.04
HCPSO NA NA NA NA NA
SHPSO 2466535.41 89380.36 2147.79 357.58 100.00

Table 12: Fitness and allocation time of the ILP and the metaheuristic techniques, for the
increasing Sizes of the software allocation problem.

28

as a result, it was terminated manually. However, the hybrid algorithms based
on hill-climbing such as HCPSO and SHPSO performed well, which is followed
by DEPSO in the c20g30n10 and c80g60n20 optimization. HCPSO failed to return
solution in the largest optimization problem c80g60n20, however, the stochastic
version of the hill-climbing algorithm SHPSO returned a near optimal solution.

c6m4g10 c8m4g10 c10m8g20 c20m10g30 c50m20g40 c80m20g60
ILP 157,88 316,60 282,37 0,00
PSO 159,11 323,15 294,79 2080,29 8666,85 9271,47
DE 157,88 317,42 304,55 2150,73 9497,62 10733,05
DEPSO 158,07 318,65 282,44 2025,97 9427,66 10899,60
LPSO 157,88 317,18 282,49 2096,42 8812,88 10992,23
HCPSO 157,88 316,60 282,67 1927,38 7105,49 0,00
SHPSO 157,88 316,60 282,46 2038,20 6609,78 6522,07

0,00

2000,00

4000,00

6000,00

8000,00

10000,00

12000,00

14000,00
Power Consumption (kW)

ILP PSO DE DEPSO LPSO HCPSO SHPSO

c6m4g10 c8m4g10 c10m8g20 c20m10g30 c50m20g40 c80m20g60
ILP 157,88 316,60 282,37 0,00
PSO 159,11 323,15 294,79 2080,29 8666,85 9271,47
DE 157,88 317,42 304,55 2150,73 9497,62 10733,05
DEPSO 158,07 318,65 282,44 2025,97 9427,66 10899,60
LPSO 157,88 317,18 282,49 2096,42 8812,88 10992,23
HCPSO 157,88 316,60 282,67 1927,38 7105,49 0,00
SHPSO 157,88 316,60 282,46 2038,20 6609,78 6522,07

0,00

2000,00

4000,00

6000,00

8000,00

10000,00

12000,00

14000,00
Power Consumption (kW)

ILP PSO DE DEPSO LPSO HCPSO SHPSO

Computation Time. In this context, the computation time is the elapsed time
between the start of the optimization and the time at which the fitness value
becomes steady, and evaluated for 5000 iterations (or generations). In a way, the
computation time also indicates the convergence speed of the best solution. Fig-
ure 11 summarizes the computation time of the algorithms for the optimization
problems listed in Table 11. The computation time of ILPis extremely higher
than the rest, which is in the scale of milliseconds for the c6g10n4 sample, and
in seconds for the c8g20n6 and c10g20n8. In the case of the non-hybrid meta-
heuristic algorithms, the computation time is in the scale of milliseconds in all
of the optimization problems. The computation time of the hybrid PSO with
the hill-climbing algorithm HCPSO got exponential in c50g20n40 and returns no
solution in the next largest problem. However, the stochastic version of the
hill-climbing algorithm returned near optimal solution in 2sec while perform-
ing better than the hybrid PSO with the differential algorithm DEPSO, which
returned in ≤ 6sec.

Solutions Stability. The PSO and DE are characterized by random search that
facilitates exploration of the search space. However, the randomness also in-
troduces instability of the solutions, that is when the algorithms are executed
for the same input, the solutions vary. Such variations are depends on the na-
ture of the algorithms as well as on the optimization problems at hand. In this

29

c6m4g10 c8m4g10 c10m8g20 c20m10g30 c50m20g40 c80m20g60
ILP 309,00 4148,30 14049,10
PSO 0,12 0,07 0,79 11,27 1753,43 324,95
DE 0,01 0,03 0,23 22,15 571,43 716,97
DEPSO 0,09 0,17 1021,46 192,95 4925,97 4018,55
LPSO 0,02 0,32 1062,51 19,83 640,86 1005,74
HCPSO 0,03 0,13 7,57 247,05 17445,87
SHPSO 0,13 0,29 10,73 114,52 1074,40 2147,79

0,00

2000,00

4000,00

6000,00

8000,00

10000,00

12000,00

14000,00

16000,00

18000,00
Computation Time (ms)

ILP
PSO
DE
DEPSO
LPSO
HCPSO
SHPSO

Figure 11: Computation time of the various algorithms for solving different instances of the
software allocation problem. Color print should be used!

work, we use the standard deviation to measure the degree of stability, of the
meta-heuristic algorithms. Figure 12 and Figure ?? show the deviation of each
algorithms from the (near) optimal solutions for the different samples.

Regarding quality of the solutions, the results showed that HCPSO is more
stable in the first three optimization problems, similarly DE and LPSO in the
first problem. However, as the problem size increases to g10d20n8, the HCPSO

performed worse while PSO and others improve. Regarding computation time,
the algorithms become less stable as the problem size increased uniformly for
PSO, DE, HCPSO and SHPSO, however, it is not the case for rest of algorithms.

6.3. Analysis of Experiment 2

Figure 12 shows results of executing experiment 2, which shows improve-
ments of the computation time by applying the approximation algorithm in-
stead of the exact approach. In the case of the approximation, the delays are
exhaustively calculated in the presence of replication. However, the quality of
the solutions are degraded as expected due to the approximation. Specifically,
the results show 61% − 81% computation time improvement over the exact
method while facing quality degradation only for samples g30d3 and g60d2. The
improvements are in seconds, which implies for a single usage (or run) of the
meta-heuristic optimization algorithms, it is not significant. However, consid-
ering practical systems design process, which requires several iterations, the
commutative effect of the algorithms can negatively impact the responsiveness
to engineers. Thus, the improvements can be in trade-off with optimality of the
solutions.

30

-80%

-81%

-61%

-75%

-5%

30%

8%

-28%

-100% -80% -60% -40% -20% 0% 20% 40%

2
3

2
3

re
pl

ic
.

30
30

60
60

ch
ai

ns

Improvements

Power Consumption Computation Time

Figure 12: Effect of approximate algorithm over delay calculations with replication. Color
print should be used!

6.4. Discussion

The presented software allocation problem considers the complex AUTOSAR
system model, which contains AUTOSAR software applications and a network
of heterogeneous computing nodes with respect to power consumption, failure
rate and processor speed. The software applications have end-to-end timing
and reliability requirements, which are satisfied by effectively and efficiently
mapping the software components of the applications to the computing nodes.
We assume the worst-case response time analysis to check the schedulability of
the tasks, and age delay analysis to check the schedulability of chains.

The allocation problem is even more complex since we apply fault tolerance
to maximize and subsequently meet the reliability requirements of the applica-
tions. The fault tolerance, which is realized by replicating software components,
imposes heavy computation on the age delay of the chains. The reliability is
computed using state enumeration, which is an exact method, as compared to
series-parallel method due to functional inter-dependency of computing nodes.

Considering the complexity of the system model, the exact method based on
the integer-linear programming is limited only to small and medium software
allocation problems as shown in Experiment 1. Although, the meta-heuristic
algorithms did not always return the optimal solutions, the results are actually
very close to the results obtained from ILP, and the computation time is quite
low as compared to the ILP results.

In terms of optimality, the stochastic hill-climbing performed best next to
ILP which is attributed to the intensive local search of the algorithm. However,
it felt short to return near optimal solutions in the largest optimization problem,
which is not the case for its stochastic version. Thus, the hybrid PSO with the
stochastic hill-climbing algorithm relatively more robust, effective and scales
well as compared to the rest of the hybridization algorithms.

31

7. Related Work

In this section, we discuss related work on the software allocation in the
context of resource consumption and improving reliability of distributed real-
time systems. In a heterogeneous distributed system where computing nodes
and communications links could have different failure rates, a reliability-aware
allocation of tasks to nodes, and using nodes with the lowest failure rates can
noticeably improve the system reliability [56][18][19][57]. Interleaving real-time
constraints into the problem adds more complexity to reliability-aware task
allocation in distributed systems [58].

In the AUTOSAR environment, many authors proposed mapping of
runnables to nodes [58, 59, 60]. In contrast, but similar to [61, 62, 63], we
propose mappings of software components, which give better scalability since
multiple runnables that are co-hosted in a single component are always mapped
to a single node, hence less decision variables in the optimization problem. Like-
wise, Svagor et al. [63] propose a genetic algorithm for a multi-criteria allocation
of software components onto heterogeneous nodes that consist of CPUs, GPUs
and FPGAs, however, the approach does not consider task level timing speci-
fications. In contrast, our software components mapping strategy utilizes the
timing specifications of tasks to improve accuracy of the allocation.

Different cost functions are considered in several software allocation prob-
lems, e.g., Assayad et al [64] propose a heuristic algorithm to maximize reliability
of a distributed system using task replication while minimizing the makespan
of the given taskset, likewise, Wenhao et al. [63] a Genetic algorithm to multi-
ple metaheuristic algorithms to minimize a weighted value of the communica-
tion overhead and CPU utilization, Zheng et al [62] a heuristic algorithm (i.e.,
Clustering Algorithm based on Traffic) to minimize communication overhead
of runnables while meeting timing constraints, Yin et al. [19] hybrid particle
swarm optimization to maximize reliability. In this work, we minimize power
consumption while meeting reliability and timing constraints with applications
with different criticality. Some related work consider end-to-end timing analysis
using the holistic response time analysis, however, if freshness of data is consid-
ered, the sort of delay semantics such as the age delay should give exact results.
In contrast to the work by Assayad et al. [64], which use the Minimal Cut Sets
method, i.e., an approximate algorithm, to calculate reliability of a system, we
apply an exact method based using state enumeration, albeit exhaustive. As
opposed to [59][11], we assume that software applications are multi-rate, i.e.,
the tasks execute with different sampling rates, and triggering patters per chain
consist of one more independently triggered tasks, which increase the difficulty
of software allocation due the complexity of their timing analysis.

In contrast to other related work, we consider software component alloca-
tion by efficiently utilizing low level timing information both at tasks level and
end-to-end chains of tasks. In the case of end-to-end delay calculation, we use
a more accurate semantics, i.e., the age delay, which is more accurate especially
if freshness of data is required, which is the case in many control applications,
in communications that use single-buffer register schemes. To solve the soft-

32

ware allocation problem, we propose several meta-heuristic algorithms such as
differential evolution, particle swarm optimization and its hybrids with the for-
mer and with other local search algorithms such as hill-climbing and stochastic
hill-climbing algorithms. The results from meta-heuristic algorithms, i.e., for
small and medium optimization problems, are compared to results from the
ILP approach, which is introduced in our previous work [12]. The evaluation
of our proposed solutions are validated on specifications that are extrapolated
from the engine management system automotive benchmark, which consist of
realistic/industrial data from Bosch.

8. Conclusions and Future Work

We presented safety-critical software allocation on a network of heteroge-
neous computing nodes, with respect to failure rate, processor speed and power
specification. The applications are developed according to the AUTOSAR stan-
dard and possess timing and reliability requirements. We assume worst-case
response time analysis and age delay analysis to compute the schedulability
of tasks and chains, respectively, which are exact but complex timing analysis
techniques. Furthermore, the allocation considers maximization of reliability
to meet the reliability requirements of the safety-critical applications via fault
tolerance. The latter exerts computational overhead especially on the delay cal-
culation, and requires more computational resources and consumes more power.

We proposed hybrid particle-swarm optimization algorithms to optimize the
power total consumption of the distributed safety-critical software applications
while meeting the requirements. The hybridization algorithms comprise differ-
ential evolution, hill climbing and stochastic hill climbing. For comparison, we
also included differential evolution and local particle-swarm optimization algo-
rithms. The result of the algorithms are compared to ILP results in the small
and medium software allocations. In general, the the hybridization with the
hill-climbing algorithms performed better than the other meta-heuristic algo-
rithms. The hybridization with the stochastic hill-climbing performed well in
the largest optimization problem.

In future work, we plan to consider a complex power model that relates load
to heat dissipation and the effect on reliability over a long run. The current
work is limited to offline configuration, however, it can be extended to address
the need for re-configurable distributed system, e.g., in the case of software
evolution, system failures .

Acknowledgement

This work is supported by the Swedish Governmental Agency for Innovation
Systems (Vinnova) through the VeriSpec project, and the Swedish Knowledge
Foundation (KKS) through the projects HERO and DPAC.

33

References

[1] S. Devadas, S. Malik, A survey of optimization techniques targeting low
power VLSI circuits, in: Proceedings of the 32nd ACM/IEEE conference
on Design automation conference - DAC ’95, ACM Press, New York, New
York, USA, 1995, pp. 242–247. doi:10.1145/217474.217536.
URL http://portal.acm.org/citation.cfm?doid=217474.217536

[2] B. Moyer, Low-power design for embedded processors, Proceedings of the
IEEE 89 (11) (2001) 1576–1587. doi:10.1109/5.964439.
URL http://ieeexplore.ieee.org/document/964439/

[3] X. Wang, I. Khemaissia, M. Khalgui, Z. Li, O. Mosbahi, M. Zhou, Dynamic
Low-power Reconfiguration of Real-time Systems with Periodic and Proba-
bilistic Tasks, IEEE Transactions on Automation Science and Engineering
12 (1) (2015) 258–271.

[4] B. P. Dave, G. Lakshminarayana, N. K. Jha, COSYN, in: Proceed-
ings of the 34th annual conference on Design automation conference -
DAC ’97, ACM Press, New York, New York, USA, 1997, pp. 703–708.
doi:10.1145/266021.266341.
URL http://portal.acm.org/citation.cfm?doid=266021.266341

[5] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha, F. Zhao,
Energy-optimal software partitioning in heterogeneous multiprocessor em-
bedded systems, in: Proceedings of the 45th annual conference on Design
automation - DAC ’08, ACM Press, New York, New York, USA, 2008, p.
191. doi:10.1145/1391469.1391518.
URL http://portal.acm.org/citation.cfm?doid=1391469.1391518

[6] J. Wu, T. Srikanthan, C. Yan,
, Mathematics and Computers in Simulation 79 (4) (2008) 1204–1215.
doi:10.1016/J.MATCOM.2007.09.003.
URL https://www.sciencedirect.com/science/article/pii/

S0378475407002534?via%3Dihub

[7] W. Wolf, A Decade of Hardware/ Software Codesign, Computer 36 (4)
(2003) 38–43. doi:10.1109/MC.2003.1193227.

[8] A. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis, M. Sgroi, Bene-
fits and Challenges for Platform-based Design, in: Proceedings of the 41st
annual conference on Design automation - DAC ’04, ACM Press, New York,
USA, 2004, p. 409. doi:10.1145/996566.996684.

[9] B. Kienhuis, E. F. Deprettere, P. van der Wolf, K. Vissers, A Methodol-
ogy to Design Programmable Embedded Systems, in: Embedded Processor
Design Challenges: Systems, Architectures, Modeling, and Simulation —
SAMOS, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 18–37.
doi:10.1007/3-540-45874-3 2.

34

[10] D. Fernández-Baca, Allocating Modules to Processors in a Distributed Sys-
tem, IEEE Transactions on Software Engineering 15 (11) (1989) 1427–1436.
doi:10.1109/32.41334.

[11] S. E. Saidi, S. Cotard, K. Chaaban, K. Marteil, An ILP Approach for Map-
ping AUTOSAR Runnables on Multi-core Architectures, in: Proceedings
of the 2015 Workshop on Rapid Simulation and Performance Evaluation
Methods and Tools - RAPIDO ’15, ACM Press, New York, USA, 2015, pp.
1–8. doi:10.1145/2693433.2693439.

[12] N. Mahmud, G. Rodriguez-Navas, H. R. Faragardi, S. Mubeen, C. Se-
celeanu, Power-aware Allocation of Fault-tolerant Multi-rate AUTOSAR
Applications, in: 25th Asia-Pacific Software Engineering Conference, 2018.
URL http://www.es.mdh.se/publications/5222-

[13] H. Bradley, Applied Mathematical Programming, Addison-Wesley, 1977.
doi:http://agecon2.tamu.edu/people/faculty/mccarl-bruce/books.htm.

[14] H. R. faragardi, B. Lisper, K. Sandström, T. Nolte, A Resource Ef-
ficient Framework to Run Automotive Embedded Software on Multi-
core ECUs, Journal of Systems and Software 139 (2018) 64–83.
doi:10.1016/j.jss.2018.01.040.

[15] A. Bucaioni, L. Addazi, A. Cicchetti, F. Ciccozzi, R. Eramo,
S. Mubeen, M. Sjodin, MoVES: A Model-driven Methodology for
Vehicular Embedded Systems, IEEE Access 6 (2018) 6424–6445.
doi:10.1109/ACCESS.2018.2789400.

[16] I. H. Osman, G. Laporte, Metaheuristics: A bibliography, Annals of Oper-
ations Researchdoi:10.1007/bf02125421.

[17] Handbook of Metaheuristics, 2006. arXiv:0102188v1, doi:10.1007/b101874.

[18] S. Kartik, C. S. R. Murthy, Task Allocation Algorithms for Maximizing
Reliability of Distributed Computing Systems, IEEE Transactions on com-
puters 46 (6) (1997) 719–724.

[19] P. Y. Yin, S. S. Yu, P. P. Wang, Y. T. Wang, Task allocation for max-
imizing reliability of a distributed system using hybrid particle swarm
optimization, Journal of Systems and Software 80 (5) (2007) 724–735.
doi:10.1016/j.jss.2006.08.005.

[20] L. Vinet, A. Zhedanov, A ”Missing” Family of Classical Orthogo-
nal Polynomials, Computers as Components (2010) 528doi:10.1088/1751-
8113/44/8/085201.
URL http://arxiv.org/abs/1011.1669http://dx.doi.org/10.1088/

1751-8113/44/8/085201

35

[21] S. Mubeen, J. Mäki-Turja, M. Sjödin, Support for End-to-end Response-
time and Delay Analysis in the Industrial Tool Suite: Issues, Experiences
and A Case Study, Computer Science and Information Systems 10 (1)
(2013) 453–482.

[22] S. Kramer, D. Ziegenbein, A. Hamann, Real World Automotive Bench-
marks for Free, in: 6th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2015.

[23] N. Naumann, AUTOSAR Runtime Environment and Virtual Function Bus,
Hasso-Plattner-Institut, Tech. Rep.

[24] AUTOSAR, Specification of Operating System AUTOSAR Release 4.2.2,
Tech. rep., AUTOSAR (2018).
URL https://www.autosar.org/fileadmin/user_upload/standards/

classic/4-2/AUTOSAR_SWS_OS.pdf

[25] AUTOSAR, Specification of Timing Extensions, Tech. rep., AUTOSAR
(2017).
URL https://www.autosar.org/fileadmin/user_upload/standards/

classic/4-3/AUTOSAR_TPS_TimingExtensions.pdf

[26] S. Vestal, Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance, in: Proceedings - Real-Time Systems
Symposium, 2007. doi:10.1109/RTSS.2007.47.

[27] S. K. Baruah, A. Burns, R. I. Davis, Response-time analysis for mixed
criticality systems, in: Proceedings - Real-Time Systems Symposium, 2011.
doi:10.1109/RTSS.2011.12.

[28] L. Abeni, G. Buttazzo, Integrating multimedia applications in hard
real-time systems, in: Proceedings 19th IEEE Real-Time Systems
Symposium (Cat. No.98CB36279), IEEE Comput. Soc, pp. 4–13.
doi:10.1109/REAL.1998.739726.
URL http://ieeexplore.ieee.org/document/739726/

[29] M. Ashjaei, N. Khalilzad, S. Mubeen, M. Behnam, I. Sander, L. Almeida,
T. Nolte, Designing end-to-end resource reservations in predictable dis-
tributed embedded systems, Real-Time Systemsdoi:10.1007/s11241-017-
9283-6.

[30] R. Inam, N. Mahmud, M. Behnam, T. Nolte, M. Sjödin, The Multi-
Resource Server for predictable execution on multi-core platforms, in: Real-
Time Technology and Applications - Proceedings, Vol. 2014-Octob, 2014.
doi:10.1109/RTAS.2014.6925986.

[31] L. Sha, T. Abdelzaher, K. E. Årzén, A. Cervin, T. Baker, A. Burns, G. But-
tazzo, M. Caccamo, J. Lehoczky, A. K. Mok, Real time scheduling theory:
A historical perspective (2004). doi:10.1023/B:TIME.0000045315.61234.1e.

36

[32] R. I. Davis, A. Burns, R. J. Bril, J. J. Lukkien, Controller Area Net-
work (CAN) schedulability analysis: Refuted, revisited and revised (2007).
doi:10.1007/s11241-007-9012-7.

[33] N. Feiertag, K. Richter, J. Nordlander, J. Jonsson, A Compositional Frame-
work for End-to-end Path Delay Calculation of Automotive Systems un-
der Different Path Semantics, in: IEEE Real-Time Systems Symposium:
30/11/2009-03/12/2009, IEEE Communications Society, 2009.

[34] M. Becker, D. Dasari, S. Mubeen, M. Behnam, T. Nolte, End-to-end timing
analysis of cause-effect chains in automotive embedded systems, Journal of
Systems Architecturedoi:10.1016/j.sysarc.2017.09.004.

[35] S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck, K.-L. Lundbäck, Support-
ing timing analysis of vehicular embedded systems through the refinement
of timing constraints, Software & Systems Modeling 18 (1) (2019) 39–69.
doi:10.1007/s10270-017-0579-8.
URL http://link.springer.com/10.1007/s10270-017-0579-8

[36] A. Goel, Software Reliability Models: Assumptions, Limitations, and Ap-
plicability, IEEE Transactions on Software Engineering SE-11 (12) (1985)
1411–1423. doi:10.1109/TSE.1985.232177.

[37] E. Dubrova, Fault-Tolerant Design, Springer New York, New York, NY,
2013. doi:10.1007/978-1-4614-2113-9.

[38] X. Fan, W.-D. Weber, L. A. Barroso, Power Provisioning for a Warehouse-
sized Computer, ACM SIGARCH Computer Architecture News 35 (2)
(2007) 13. doi:10.1145/1273440.1250665.

[39] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
R. B. Brown, MiBench: A Free, Commercially Representative Em-
bedded Bbenchmark Suite, in: 2001 IEEE International Work-
shop on Workload Characterization, WWC 2001, 2001, pp. 3–14.
doi:10.1109/WWC.2001.990739.

[40] EMBC, AutoBench 2.0 - Performance Suite for Multicore Automotive Pro-
cessors (2018).

[41] C. Lucet, J.-F. Manouvrier, Exact Methods to Compute Network Reli-
ability, in: Statistical and Probabilistic Models in Reliability, Birkhäuser
Boston, Boston, MA, 1999, pp. 279–294. doi:10.1007/978-1-4612-1782-4 20.

[42] S. Sengupta, S. Basak, R. Alan, P. Ii, Particle Swarm Optimization: A sur-
vey of historical and recent developments with hybridization perspectives,
arXiv:1804.05319doi:10.20944/preprints201809.0007.v1.

[43] S. Mirjalili, Particle swarm optimisation, in: Studies in Computational
Intelligence, 2019. arXiv:0510023v1, doi:10.1007/978-3-319-93025-1 2.

37

[44] J. Kennedy, R. Eberhart, C. A. C. Coello, G. T. Pulido, M. S.
Lechuga, J. Kennedy, R. Eberhart, C. A. C. Coello, G. T. Pulido,
M. S. Lechuga, F. Scholarpedia, Particle swarm optimization, Neu-
ral Networks, 1995. Proceedings., IEEE International Conference on-
doi:10.1109/ICNN.1995.488968.

[45] R. Poli, An Analysis of Publications on Particle Swarm Optimisa-
tion Applications, Journal of Artificial Evolution and Applications-
doi:10.1155/2008/685175.

[46] Q. Liu, W. Wei, H. Yuan, Z. H. Zhan, Y. Li, Topology selection for particle
swarm optimization, Information Sciencesdoi:10.1016/j.ins.2016.04.050.

[47] M. Clerc, Discrete particle swarm optimization, illustrated by the traveling
salesman problem, in: New optimization techniques in engineering, 2000.
doi:10.1007/978-3-540-39930-8 8.

[48] E. G. Talbi, Metaheuristics: From Design to Implementation, 2009.
doi:10.1002/9780470496916.

[49] H. R. Faragardi, M. Vahabi, H. Fotouhi, T. Nolte, T. Fahringer, An efficient
placement of sinks and SDN controller nodes for optimizing the design cost
of industrial IoT systems, in: Software - Practice and Experience, 2018.
doi:10.1002/spe.2593.

[50] D. P. Rini, S. M. Shamsuddin, Particle Swarm Optimization: Tech-
nique, System and Challenges, International Journal of Applied Informa-
tion Systemsdoi:10.5120/ijais-3651.

[51] A. Sailer, S. Schmidhuber, M. Deubzer, M. Alfranseder, M. Mucha, J. Mot-
tok, Optimizing the Task Allocation Step for Multi-Core Processors within
AUTOSAR, in: 2013 INTERNATIONAL CONFERENCE ON APPLIED
ELECTRONICS (AE), 2013.

[52] F. Zhao, Y. Hong, D. Yu, Y. Yang, Q. Zhang, H. Yi, A hybrid algorithm
based on particle swarm optimization and simulated annealing to holon
task allocation for holonic manufacturing system, International Journal of
Advanced Manufacturing Technologydoi:10.1007/s00170-006-0418-5.

[53] M. F. Tasgetiren, M. Sevkli, Y.-C. Liang, M. M. Yenisey, A particle swarm
optimization and differential evolution algorithms for job shop scheduling
problem, International Journal of Operations Research 3 (2) (2006) 120–
135.

[54] R. Storn, K. Price, Differential Evolution - A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces, Journal of Global Opti-
mizationdoi:10.1023/A:1008202821328.

38

[55] S. Das, S. S. Mullick, P. Suganthan, Recent advances in differential
evolution An updated survey, Swarm and Evolutionary Computation 27
(2016) 1–30. doi:10.1016/J.SWEVO.2016.01.004.
URL https://www.sciencedirect.com/science/article/pii/

S2210650216000146

[56] S. M. Shatz, J.-P. Wang, M. Goto, Task Allocation for Maximizing Relia-
bility of Distributed Computer Systems, IEEE Transactions on Computers
41 (9) (1992) 1156–1168.

[57] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, K. Li, Maximizing Reliability
with Energy Conservation for Parallel Task Scheduling in a Heterogeneous
Cluster, Information Sciences 319 (2015) 113–131.

[58] H. R. Faragardi, R. Shojaee, M. A. Keshtkar, H. Tabani, Optimal Task Al-
location for Maximizing Reliability in Distributed Real-time Systems, in:
Computer and Information Science (ICIS), 2013 IEEE/ACIS 12th Interna-
tional Conference On, IEEE, 2013, pp. 513–519.

[59] E. Wozniak, A. Mehiaoui, C. Mraidha, S. Tucci-Piergiovanni, S. Gerard,
An Optimization Approach for the Synthesis of AUTOSAR Architectures,
in: IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA, 2013. doi:10.1109/ETFA.2013.6647952.

[60] W. Wang, S. Cotard, F. Gravez, Y. Chambrin, B. Miramond, Optimizing
Application Distribution on Multi-Core Systems within AUTOSAR.
URL https://hal.archives-ouvertes.fr/hal-01289485

[61] J. Kim, G. Bhatia, R. R. Rajkumar, M. Jochim, An Autosar-compliant
Automotive Platform for Mmeeting Reliability and Timing Constraints,
Tech. rep., SAE Technical Paper (2011).

[62] Z. Ran, H. Yan, H. Zhang, Y. Li, Approximate optimal AUTOSAR soft-
ware components deploying approach for automotive E/E system, In-
ternational Journal of Automotive Technology 18 (6) (2017) 1109–1119.
doi:10.1007/s12239-017-0108-3.
URL http://link.springer.com/10.1007/s12239-017-0108-3

[63] I. Švogor, I. Crnkovic, N. Vrcek, An Extended Model for Multi-Criteria
Software Component Allocation on a Heterogeneous Embedded Platform,
Journal of computing and information technology 21 (4) (2014) 211–222.

[64] I. Assayad, A. Girault, H. Kalla, A Bi-criteria Scheduling Heuristic for Dis-
tributed Embedded Systems under Reliability and Real-time Constraints,
in: Dependable Systems and Networks, 2004 International Conference on,
IEEE, 2004, pp. 347–356.

39

