
Prediction of Undetected Faults in Safety-Critical
Software

Johan Sundell∗, Richard Torkar†, Kristina Lundqvist∗, and Håkan Forsberg∗
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Abstract—Safety-critical software systems need to meet excep-
tionally strict standards in terms of dependability. Best practice
to achieve this is to follow and develop the software according
to domain specific standards. These standards give guidelines on
development and testing activities. The challenge is that even if
you follow the steps of the appropriate standard you have no
quantification of the amount of faults potentially still lingering
in the system. This paper presents a way to statistically estimate
the amount of undetected faults, based on test results.

Index Terms—software, safety-critical, test, fault prediction.

I. INTRODUCTION

More and more decisions and responsibilities are being

handled by increasingly powerful computer based systems that

need to be extremely reliable, this could for example be an

electronic flight control system. One problem is that it is

difficult to predict the failure rate of software-based systems

prior to release [1]. This is of special concern when it comes

to safety-critical systems, where a failure may result in severe

consequences, e.g., loss of life or environmental damage. The

required target failure rates of such systems are typically so

low that they can not be proven [1, 2]. For example, a fly-by-

wire flight control system in an aircraft is commonly required

to have a failure rate of less than 10-9/flight hour [3], i.e., less

than 1 failure in 100,000 years, which in a complex system is

hard or impossible to prove both in practice and theory.

Currently, the best practice, and the only acceptable way to

claim such level of reliability is to adhere to a development

standard. Provided that all activities and steps, as defined by

the standard, are followed, it is assumed that the target level

failure rate is reached. Examples of such standards are DO-178

(Software Considerations in Airborne Systems and Equipment

Certification) [3] used in the aviation industry, and the main

standard for functional safety IEC 61508 (Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-related

Systems) [4]. IEC 61508 is considered an ”umbrella” and

has been applied by safety-critical industries. ISO 26262

(Road vehicles—Functional safety) [5], and IEC 61513 (Nu-

clear power plants—Instrumentation and control important to

safety—General requirements for systems) [6] can both be

seen as extensions of IEC 61508.

Such standards, as the above, define a rigorous process

for the development of safety-critical systems. A number

of aspects are covered such as, necessary documentation,

the organization of test teams, and required test coverage.

However, by following the standards one has not proven that

the system has actually reached the target level of failure rate.

The gap between the claimed and the proven failure rate is

sometimes referred to as the ‘prediction gap’ [1]. Closing this

gap is difficult as exhaustive testing is almost never an option.

This paper presents a way to use results from random testing

to statistically predict the total amount of both detected and

undetected faults that remain in the software. The main idea

is to execute tests with more than 1,000 random samples.

The actual number of samples is an important input to the

prediction formula. The analysis of the test result will give

the total number of failures that have been triggered by the

test cases. As this concerns safety-critical software all failures

have to be analyzed to determine their causes (i.e., conducting

root cause analysis). The root cause analysis will provide

information about how many faults in the software have caused

the failures that were encountered. This data, i.e., the number

of test cases, number of encountered failures, and number of

unique causes (faults), is sufficient to calculate an estimate of

the sum of the undetected faults. Moreover, all this data are

available from the test process. In the end, such an estimate can

then be used as a quality metric of the software that provides

input to decision-making during the development process, e.g.,

ready for deployment or not.

This paper is organized as follows. Next we introduce

related work. This is followed by the assumptions we apply

to our approach, and the rationale behind those assumptions.

Thereafter (Sect IV), we present concepts and definitions that

have been used. The results are summarized in section (Sect. V

which is followed by an analysis and discussion (Sects. VI–

VII). The paper ends with some concluding remarks.

II. RELATED WORK

Research specifically focused on testing of safety-critical

software is limited and often proves its inadequateness and

infeasibility. The verification of the most strict failure rate
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requirements was early on identified as very challenging, if

not a futile task [2, 7–9].

Parnas et al. [2] states “Because of the large number of

states (and the lack of regularity in its structure), the number

of states that would have to be tested to assure that software

is correct is preposterous.”

The stringent requirements on reliability and failure rate for

safety-critical software leads to a ‘prediction gap’ [5] between

what is required (and subsequently claimed by the industry)

and what actually can be proven during testing. Moreover, the

strict requirements inevitably make many accepted methods

unfeasible to apply [7–9]. Reliability growth models, size and

complexity metrics etc., cannot be relied upon in this context,

as they do not provide sufficient accuracy or would require

too much time and resources to be of use [8, 10].

However, if testing reveals no failures the reliability can

still be estimated. One example is Voas et al. [11] work,

that describe methods for estimating reliability, even if the

operational profile differs from the input distribution used

during testing.

Concerning random testing Arcuri et al. [12] define tight

lower bounds for the expected number of test cases sampled by

random testing to cover predefined targets. The development

standards typically mandate different coverage criteria, e.g.,

MC/DC, statement or branch coverage. The more critical the

software is the stricter the requirements. However, the effect

of such criteria on fault detection is debated [13, 14]. There

are indications that there is no strong association between such

criteria and effectiveness in terms of fault detection. In short,

this could indicate that it is the additional testing in itself

that detects more faults and subsequently results in a more

reliable software, indicating that there exists a mathematical

relationship between the amount of undetected faults and the

number of executed test cases.

Another interesting area that is related to the work presented

in this paper is combinatorial testing [15]. Aspects of this field

help to explain some of the dynamics of fault detection in rela-

tion to test coverage and number of parameters. Additionally,

it gives ideas on how to quantify the required variation of the

test cases (this will be further elaborated on in Sect. VII).

The work presented in this paper is disjoint from and

complimentary to above works. It does not require all faults to

be detected and is in fact only applicable when failures have

been encountered. The principle of the suggested method is

to take a ‘sufficiently’ large number random test cases and

calculate the corresponding failure densities. The method is

intended to be applied on software versions throughout the

software development process. The ultimate aim of this paper

is to present a way to quantify and predict what remains

undetected based on the results from testing, i.e., we want

to predict both the current amount of faults and what remains

undetected.

III. ASSUMPTIONS AND RATIONALE

The below assumptions concern development of safety-

critical systems in accordance with standards, e.g., ISO 26262

and DO-178.

A. Assumptions

For this work the following assumptions are made:

1) The input and state space of the system is reachable.

2) All parameters are defined at runtime.

3) The system has a deterministic behavior.

4) Uniform sampling of the input space is used.

5) More than 1,000 test cases are generated.

6) More than 50 faults are present in the system prior to

testing.

These assumptions may not hold for software systems in

general and may require further elaboration. Therefore, their

rationale, are further discussed below.

B. Rationale

For many practitioners in the software development field

some of the assumptions might appear unrealistic. However,

safety-critical software is different compared to other software

in many aspects.

1) The input and state space of the system is reachable. The

first assumption is the reachability (of all states). A key

characteristic is to make the safety-critical software ‘ver-

ifiable’, meaning that it can be checked for correctness

by a person or a tool. Moreover, there are requirements

on removal of ‘dead code’ and ‘deactivated code’. If

the code cannot be reached during testing it should be

removed. The standard DO-178C (the current DO-178

version), which is widely used in the aviation industry,

uses the following definitions:

a) Dead code. Executable Object Code (or data)

which exists as a result of a software development

error but cannot be executed (code) or used (data)

in any operational configuration of the target com-

puter environment. It is not traceable to a system

or software requirement.

b) Deactivated code. Executable Object Code (or

data) that is traceable to a requirement and, by

design, is either (i) not intended to be executed

(code) or used (data), for example, a part of a

previously developed software component such as

unused legacy code, unused library functions, or

future growth code; or (ii) is only executed (code)

or used (data) in certain configurations of the target

computer environment for example, code that is

enabled by a hardware pin selection or software

programmed options.

Other standards applicable to safety-critical software

development take a similar stance, e.g., ISO 26262

(Road vehicles—Functional safety) requires a rationale

for why any dead code is acceptable. The main idea

is that unreachable code, executable or not, should be

removed.

2) All variables are defined at runtime. The initialization of

variables when starting the system is required in order

to guarantee determinism, see rationale 3 below.
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3) The system has a deterministic behavior. As a rule,

safety-critical software need to be deterministic, i.e., it

should always behave the same way under the same

circumstances. The same input must always give the

same output. This is the basis for why a successful

test can be used as an argument for the safety-critical

aspects of the software. The deterministic behavior of

the safety-critical software is strengthened by the use of

so called defensive programming. This refers to tech-

niques and practices that may be used to prevent code

from executing unintended or unpredictable operations

by constraining the use of structures, constructs, and

practices that have the potential to introduce failures in

operation and faults in the code.

4) Uniform sampling of the input space is used. The full

range of all input parameters is sampled with the same

probability. No consideration is given to what is seen

as more likely in a real operational environment. It is

important to include out-of-range values as well as other

deviations like timing delays. Sensor values and other

inputs are typically checked for validity before they

can be used. Sampling the entire input space leads to

sampling of the entire state space of the system (by

Assumptions 2–3).

It is not a question of exhaustively cover the input space

but to allow a sampling of it. The uniform distribution

gives predictability and a possibility to quantify the

process of fault detection. Any other sampling dis-

tribution than uniform raises questions about validity.

For example, if a certain operational input profile has

been identified and is used during testing then this

profile might change if the system is used under other

environmental conditions, or if other operators use it. A

real life example could be an aircraft that is deployed

overseas and used in different conditions than what was

originally intended.

Note, that if only normal range values are chosen as in-

put the estimate does not consider the (often substantial)

parts of the code that handle out-of-range-values.

5) More than 1,000 test cases are generated. The focus

and aim of this paper is to quantify the fault finding

and failure triggering of longer test series, typically

randomly generated. In this context 1,000 is a relatively

modest number. The assumption of 1,000 test cases

or more is a somewhat crude way of avoiding (or

postponing) the question of the actual number of tests

that are required to calculate a reliable estimate.

6) More than 50 faults are present in the system prior

to testing. According to a study funded by the UK

MoD of the transport aircraft C130J software, it was

determined to have 1.4 safety-critical faults per 1,000

lines of code [16]. McDermid and Kelly [1] states that

“There is a general consensus in some areas of the

safety-critical systems community that a fault density

of about 1 per KLoC is world class.”

IV. PREDICTING RESIDUAL UNDETECTED

FAULTS—CONCEPTS AND DEFINITIONS

During the development of safety-critical software all faults

that are found during testing need to be removed (or dealt

with by operational limitations). For good reasons this type

of software cannot be delivered with a ‘known bugs list’.

However, removing all detected faults does not mean the

software is fault free. The danger comes from the undetected

faults that remain in the system. The concept of prediction of

what is undetected may require some further elaboration on

the concepts and definitions.

A. Failure Density versus Failure Rate

In this paper, the failure density is defined as the relative

part of the input space that cause failures. Or put in a more

formal way, the sum of all partitions that trigger a failure at

runtime, as a percentage of the entire input space. This is a

strictly combinatorial approach and has nothing to do with how

likely a given combination of inputs would be in operation.

A one parameter example can be a Boolean input that results

in a failure of the system whenever it is FALSE. This would

give a failure density of 0.5. Three input parameters, integers

a, b, and c, each with a range of [0, . . . , 9], that trigger a failure

if they all have the value 4, would add 0.001 to the overall

failure density.

Unless the operational profile is equal to a random (uniform)

sampling of the input space, the failure rate �= failure density.

However, the following conclusions can still be drawn; a

failure density of 0 results in no failures and consequently

1 would mean that the system always fails. Moreover, a lower

failure density would, on average, mean a lower failure rate.

B. Distribution of Fault Probabilities

A software system is assumed to enter the testing phase

with a number of faults (Assumption 6). Each individual fault

is triggered by a combination of different input parameters.

According to a study, 97–98% of all software failures are

caused by three parameters or less. No failures are caused

by more than six parameters [15].

There is a certain range of each parameter that contribute

to the triggering of the fault. When these ranges are added

up, the fault can be seen to constitute a partition of the input

space. Each fault in the system has its own unique partition. 1

The simulation model used in this analysis corresponds

with what Littlewood and Strigini [8] propose regarding a

conceptual model of the software failure process:

Different faults contribute differently to the overall

unreliability of the program: some are ‘larger’ than

others, i.e., they would show themselves (if not

removed) at a larger rate. Thus different faults have

different rates of occurrence.

This concept of ‘size’ is used in this paper, where large

means a large partition of the input space; hence, occurring

1Any overlap can only be counted once as the risk of encountering a fault
is not increased if more than one failure is triggered, i.e., if all faults overlap
the risk of triggering any fault is significantly reduced.

298



at a relatively large rate during random sampling. Below is a

description of how the model works in the form of the classical

urn problem.

C. Urn Model

In statistics, problems are often described as urn models,

where balls of different colors are drawn from an urn. In this

case, the way the model works can be described as follows.

Assume an urn with x white and y black marbles. Further-

more, assume that the black marbles can be bundled together,

i.e., they express some attribute of stickiness, but that single

black marbles can also be drawn. Now, draw a single marble

from the urn and increment τ . If a black marble, or a cluster

of black marbles, is drawn from the urn, color the marble (or

each marble in the entire cluster) green. Increment υ and ε. If

a green marble/cluster of marbles is drawn increment only ε.
After each draw, put the marble(s) back into the urn.

Since τ � 1, the ratio ε/τ is a good estimate of the

proportion of black marbles in the urn [17]. Additionally, the

relationship between υ and ε provides some information about

the initial aggregation (if any) of black marbles. We assume

that if υ/ε is small, say < 0.05, then we have drawn the same

(large) clusters over and over. On the other hand if υ/ε is large

(> 0.95) then the black marbles are not clustered together.

For example, assume τ � 1 and the scenario where υ/ε <
0.05, e.g., we have drawn the same cluster a 100 times, the

first time as black and the rest as green: υ = 1, ε = 100, υ/ε =
0.01. For the other scenario, υ/ε > 0.95, we have drawn 100

black marbles, one after another: υ = 100, ε = 100, υ/ε = 1.

In the latter case, we have a more dispersed distribution, which

is not dominated by one or a few large bundles. In the former

case, (υ/ε < 0.05), the fault distribution is dominated by one

or a few large bundles.

Ultimately, the above indicates that we have a multinomial

logistic regression, i.e., we have > 2 outcomes (white, black,

and green). If there are K types of events with probabili-

ties p1, . . . , pK , then the probability of observing y1, . . . , yK
events of each type out of n trials is:

Pr(y1, . . . , yK |n, p1, . . . , pK) =
n!∏
i yi!

K∏

i=1

pyi

i

However, designing and interpreting multinomial logistic

regression models is hard, so in order to simplify things we

disregard ‘white’ marbles. After all, the two entities of main

interest are the black and green marbles, and the ratio υ/ε.
This makes it more straightforward, i.e., y ∼ Binomial(n, p).

D. Proposed Approach

During a typical test phase in industry, tests are performed

and test data are gathered. This data holds information regard-

ing encountered failures and the number of tests performed.

Identified failures are typically analyzed, classified, and the

triggering faults removed. By counting the number of failures

detected and by classifying the causing faults as previously

found or not, it is possible to estimate the total sum of the

remaining faults.
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Figure 1. Correlation vs. υ/ε. The plot is cumulative, i.e., 0.5 on the x-axis
includes the correlation for all simulations with a υ/ε ratio less than 0.5.

Let us define the number of tests as τ , detected failures

as ε, and the number of uniquely identified faults as υ. The

undetected failure density, ρ, is then defined as:

ρ = λ× e−λ (1)

where λ = υ2/(ε× τ).
The rate parameter of the exponential function, λ, is reliant

on the factors υ/ε and υ/τ . Where a high value of the first term

indicates that many (in numbers) faults remain undetected.

The υ/ε ratio holds information about the size distribution

of the faults. For a given failure density, a υ/ε value close to 1

indicates a granular size distribution, i.e., many small faults. A

value close to 0 means that one or a few larger faults dominate

in terms of size, thus triggering failures more often.

However, the υ/ε ratio will gradually decrease as the

number of tests increase (the more faults that are found the

fewer remain to detect). This means that the faults already

found are encountered over and over again, i.e., υ/ε→ 0. The

prediction formula renders reliable results when υ/ε > 0.15.

Concerning our second ratio, υ/τ → 0, decreases at an even

faster rate as τ increases.

E. Method

In order to validate our approach we conducted a simulation

study. The model built for this purpose needed to capture the

process of random generation of test cases and validating if

each of these test cases triggered failures or not. Moreover, the

model also needed to allow for flexible generation of faults in

the system, both in terms of fault sizes and number of faults.

Intuitively, it can be understood that larger faults are easier

to find than small ones. If a given failure density, is either

divided in to a few large faults or many smaller, the latter

requires more test cases to detect. The factors that affect the

outcome of the test process are the number of test cases and

the distribution of fault sizes. The model must allow for this

dynamic to be explored.

A model that corresponds to above description was im-

plemented in MATLAB versions R2016b and 2017a. The
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model generates a random distribution of independent faults.

Thereafter, a given number of random test cases are generated.

Each test case is checked to see if it triggers any of the

faults. The individual size of each fault is randomly generated.

However, the number of faults and from which distribution its

size is drawn from, can vary.

The algorithm can be described as follows:

Data: input

Number of test cases (τ ): this is the number of randomly

generated test cases in the simulation.

The total sum of the initial faults prior to testing, in

percent. Example, if 1% is chosen as input it means that

1% of the combinations of the input space trigger a

fault.

Distribution parameters that specifies the granularity and

distribution of the different fault sizes. The parameters

differ depending on which distribution is used, e.g.

N (μ, σ2), Beta(α, β). Additionally, in some cases the

actual number of faults are specified.

while generated test cases ¡ τ do
generate test case;

if fault triggered then
increment ε;
if a new fault found then

increment υ;

end
end

end
Result: Calculate an estimate of ρ
Algorithm 1: Algorithmic description of a simulation

The simulation model keeps track of all faults and knows if

they are triggered or not. Based (only) on the outputs; number

of test cases (τ ), number of test cases that triggered a fault

(ε) and number of detected faults (υ), an estimate of the sum

of the remaining faults is calculated. This calculated estimate

is then compared with the generated ‘true’ value from the

simulation. This step represents the analysis of a test series,

including the root cause analysis which gives υ.

The above model was used to perform a number of simula-

tions with different number of test cases, total initial amount

(size) of and number of faults. The results from the simulations

were used to build a prediction model that gives an estimate

of the sum of the undetected faults using only parameters τ, ε,
and υ.

F. Distribution of Fault Sizes

Software faults are caused by many different sources. They

are, by nature, unintentional and typically stems from a

lack of understanding of the interaction between the code

and the surrounding system, e.g., concerning requirements

(incomplete, ambiguous, incorrect), logic (high complexity can

lead to a lack of transparency), interfaces (timing, resolution,

accuracy, sequencing), design (misinterpretation of require-

ments, erroneous algorithms), and implementation (divide by

Table I
RESULTS—GAUSSIAN FAULT SIZE. FROM LEFT TO RIGHT, NUMBER OF

SIMULATIONS, NUMBER OF TEST CASES, CORRELATION COEFFICIENT,
AND MEAN/VARIANCE.

Simulations Num. test cases Corr. x̄/s2

10024 1000→ 100.000 0.99 −0.28×10−3

/0.025×10−3

102 1000→ 1000.000 0.99 −0.19×10−3

/0.051×10−4

zero, parameter initialization, memory leaks, compilable typos,

functional differences between release and debug mode).

During the development process, the code has undergone

rigorous scrutiny and has been analyzed and reviewed by

many experts and/or tools in accordance with the applicable

standard. These practices will find and eliminate the most

obvious problems. The faults that reach all the way to the

test environment are thus limited in terms of size (partition

of input space). The larger, easy to find faults have been

removed early on. What remains are a number of independent

faults, limited in size and brought on by a number of causes.

The distribution of the fault sizes is not known. No empirical

data, expressed in terms of fault partition size, is available.

However, in this case of ignorance, a Gaussian distribution is

a likely candidate. The limitation of fault size will ensure a

finite variance. Moreover, the Central Limit Theorem states

that sufficiently many samples will tend toward a Gaussian

distribution. In this case we are considering 50 or more faults

(Assumption 6).

V. RESULTS

10,024 independent simulations were performed where the

fault sizes were sampled from a normal distribution. The

following setup was used for the simulations:

• 0% < initial failure density ≤ 2%

• 1,000 ≤ number of test cases ≤ 100,000

• 50 ≤ number of undetected faults from start ≤ 10,000

After each simulation the result, actual sum of undetected

faults, and the estimate, of the same, were compared (see

Fig. 3). The comparison shows a strong overall correlation

(see Fig. 2 and Table I). In cases where the ratio υ
ε < 0.15 the

correlation drops (see Fig. 1). However, the absolute value of

the prediction error is typically low. On average, the prediction

formula underestimates the result with approximately 10%

(see Fig. 4 and Table I).

The blue and red areas combined, in Fig. 3, represent the

sum of all faults prior to testing. The red area is what the

random test cases have triggered and, thus, identified. The blue

area is the remaining undetected faults after the test. This is

ultimately what is being predicted.

VI. ANALYSIS

The aim of the prediction formula is to estimate the failure

density of the software. The expected value is normally

distributed approximately centered around the actual value.

300



0 10 20 30 40 50 60 70 80 90 100
SIMULATION NUMBER

0

1

2

3

4

5

6

7

8

9

S
IZ

E
 O

F 
FA

U
LT

10-3

Figure 2. Estimate and result. The blue line shows the estimate and the red
line shows the result for 100 independent simulations. The y-axis shows the
sum of the size of the undetected faults. The x-axis shows the number of
each simulation.
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Figure 3. Size sorted normally distributed faults. The y-axis shows the fault
size. The x-axis shows the number of each fault. The smaller area to the left
is the detected faults and the blue area the undetected.

We believe it provides an estimate accurate enough to form

an opinion of the quality of the software.

One way to analyze and display how well the estimates

match the results is to draw a histogram of the differences

between the two. In Fig. 4 we see that we have a slight

underestimation.

Another way of analyzing the results is by constructing an

ROC curve (receiver operating characteristic). First we create

a confusion matrix by examining if the estimate is within or

outside a given tolerance, see Table II. In this case, there are

no True Negatives nor False Positives, which gives a recall of

1. The precision is calculated as True Positives divided by the

sum of True Positives and False Negatives. Furthermore, the

threshold is here chosen to be either relative (as a percentage

of the result) or absolute (the overall standard deviation), see

Figs. 5–6. The AUC values (area under the curve) are 0.70

and 0.91 respectively.

A closer look, at the data from all performed simulations,

reveals that the correlation and the relative accuracy of the
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Figure 4. Histogram of the difference in estimation. The offset from zero
indicates a slight underestimation of the result.

Table II
CONFUSION MATRIX

actual
value

estimate outcome

p n total

p′ Estimates
inside

Estimates
outside

P′

n′ Always
0

Always
0

N′

total P N

estimate is lower as the values approach zero. However, as

can be expected, the absolute difference is lower as well.

A. An Example

Assume that an industry project, that develops a safety-

critical software component, decides to perform 5,000 random

tests to reinforce the test process and to be able to predict the

failure density of the software. The result is that 46 failures are

encountered. The subsequent analysis reveals that the failures

are caused by 38 different faults in the software. The faults are

carefully removed in accordance with the stringent procedures

in place (ensuring that no new faults are introduced).

Using the following data: number of tests = 5000, number

of failures encountered = 46, number of unique faults detected

= 38, and remaining (undetected) failure density = ρ, we first

calculate λ:

λ = 382/(46× 5000) (2)

and then estimate ρ:

ρ = λ× e−λ ≈ 0.0063 (3)
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Figure 5. ROC curve of estimate vs. result. Here the threshold for an
acceptable deviation is set as part of the overall standard deviation.
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Figure 6. ROC curve of estimate vs. result. Here the threshold for an
acceptable deviation is set as a percentage of the result.
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Figure 7. Our example case. 5,000 test cases have detected 38 faults (red
area). 120 faults remain undetected (blue area). The blue area is predicted to
be 0.00628 but is in reality 0.00638.

To summarize, after the removal of the 38 identified faults, it

is predicted that the remaining failure density is approximately

0.0063, i.e., execution of 10,000 random samples of the input

vector would result in an estimated 63 failures.

VII. DISCUSSION

Exhaustive testing is not a viable option for larger software

systems. However, it is possible to make predictions, about

the full state space, from the results of many test cases. The

Central Limit Theorem guarantees that, as the number of

test cases is increased the quota ε/τ will converge towards

the failure density of the system. If information about υ
is considered it is also possible to calculate the amount of

undetected faults. This is possible as both the ratios υ/ε and

υ/τ are reliable from the large number of test cases. These

undetected, lingering faults constitute the most interesting part,

as they are potential causes of failures when the software is

deployed. The encountered faults pose less of a threat as they

obviously can be removed.

If a large enough number of test cases are executed (in

the way described), the size of the undetected faults can be

estimated. The resulting τ, ε and υ corresponds to one specific

undetected failure density ρ. Though theoretically possible, in

a large state space it is highly unlikely that the executed test

cases have revealed all faults. Even thousands of tests only

represent a small sample of the full state space. Or vice versa

if the detected faults would be the only faults present in the

system it is very improbable that you would get those ε and

υ for that τ .

The more test cases that are executed the fewer faults can

remain undetected and the better the estimate. However, from

a sufficiently long test series you can early on calculate the

current observed and undetected failure density of the system

and determine if it has reached an acceptable level.

The actual operational profile of a system is not always

known, it is not always static, and it might change over time,

or due to changes in the surrounding environment. Different

operators might use different operational profiles, e.g., high-

gain vs. low-gain pilots who fly the same aircraft differently.

This means that it is difficult to draw conclusions of in-

service-failure-rate from testing. However, a random (uniform)

sampling avoids this asperity by looking at the entire input

space. The results are not related to an assumed operational

profile. Instead the overall failure density is an indication of

the software quality, this aspect is important, especially when

considering safety-critical software. A major advantage with

this approach is its predictability.

The failure density of the entire system correlates with the

failure densities of any subspaces that are used more frequently

during operation. Regardless of which operational profile is

used, sampling from a system with a low failure density will,

on average, result in fewer failures during operation, compared

to a system with a high failure density.

The estimate is calculated from known parameters τ, ε,
and υ. At runtime only τ and ε are known but determining

υ typically requires some degree of analysis, in order to
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understand which part of the code that cause the failure.

The number of test cases until a new fault is found (υ is

incremented) increases as more faults are encountered and

fewer remain to be detected. If these numbers were known

the variance of the estimate could be reduced. However, here

the aim is to find a pragmatic estimate that can be directly

applied in industry.

The presented results are based on that the partition sizes

of the faults are normally distributed. However, the prediction

formula still gives acceptable results as long as the υ/ε ratio

is above 0.15. Several thousands of simulations have been

performed using other distributions, e.g., B, γ,U , etc. The best

results are obtained by assuming uniform fault partition sizes.

The simulation model generates faults that can overlap. This

contributes to the underestimation of the prediction model.

VIII. THREATS TO VALIDITY

The model used in this study describes an ideal system.

It is assumed that the entire input space and state space of

the system is completely reachable, any failures that occur are

detected, there is no dead code, etc. The reality is somewhat

different.

For example, control loops or code that is highly nested

and sequential, and thus is dependent on previous input, can

be very hard to reach. Great care has to be put into the

generation of input to make sure all combinations are as

feasible. Achieving a random (uniform) sampling of the input

space may require some craftsmanship. The main idea is to

randomly exercise all code. If the input parameters are sampled

on [−∞,∞] only the code that handles out-of-range values

will be tested. Instead, the sampling should be made in such

a way that the all the code is evenly exercised.

No empirical data describing the fault size has been found

and used in this paper. Instead, ontological (the approximate

Gaussian distribution is common) and epistemological (if

all we want to say about a distribution is their mean and

variance) arguments were used. If a fault is encountered during

development it is corrected, without further analysis of its size

in terms of failure density. Only if a critical fault is found,

which has already been deployed and put into service, such

an analysis mandated. Due to its sensitive nature such data is

hard to come by.

IX. CONCLUSIONS

The contribution of this paper is a defined prediction for-

mula for calculation of the undetected failure density of the

software. This prediction quantifies the percentage of the input

space that can be expected to cause failures of the software

for a random input. In order to perform this calculation a

sufficiently large number of test cases need to be executed,

typically this is done with random testing. The large number

ensures that the estimates are sufficiently precise. Furthermore,

a root cause analysis need to be performed to identify the

number of detected unique faults.
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