
Mälardalen University Doctoral Thesis
No.292

Automated Approaches for
Formal Verification of

Embedded Systems Artifacts

Predrag Filipovikj

June 2019

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden

Copyright c© Predrag Filipovikj, 2019
ISSN 1651-4238
ISBN 978-91-7485-429-9
Printed by E-Print AB, Stockholm, Sweden
Distribution: Mälardalen University Press

Abstract

Modern embedded software is so large and complex that creating the neces-
sary artifacts, including system requirements specifications and design-time
models, as well as assuring their correctness have become difficult to man-
age. One challenge stems from the high number and intricacy of system re-
quirements that combine functional and possibly timing or other types of con-
straints, which make them hard to analyze. Another challenge is the quality
assurance of various design-time models developed using Simulink as the de
facto standard model-based development tool in the automotive domain, avion-
ics domain, etc. Currently, the industrial state-of-practice resorts to simulation
of Simulink models, which gives insight in the system’s behavior yet does not
provide a high degree of assurance that the model behaves correctly. A poten-
tial way to address the aforementioned challenges is to apply computer-aided,
mathematically-rigorous methods for specification, analysis and verification
already at the requirements specification stage, but also at later development
stages.

In this thesis, we propose a set of approaches for the formal specification,
analysis and verification of system requirement specifications and design-time
Simulink models, with particular focus on the automotive industry. Our contri-
butions are as follows: first, we assess the expressiveness of an existing pattern-
based technique for the formal requirements specification on an operational
system. Based on the positive findings, we deem the technique expressive
enough to capture systems requirements in controlled natural language, from
which formal counterparts can be automatically generated. To bring the ap-
proach closer to the practitioners we propose a tool, called PROPAS. Next,
we propose an automated consistency analysis approach based on Satisfiability
Modulo Theories for the system requirements specifications formally encoded
as temporal logic formulas. The approach is implemented in our PROPAS tool

i

ii

and is suitable to analyze the lack of logical contradictions within the sys-
tem specification, at early system development phases. Our next contribution
addresses the formal analysis and verification of large Simulink models. First,
we propose a pattern-based and execution-order-preserving approach for trans-
forming Simulink models into networks of stochastic timed automata, which
can be analyzed using the UPPAAL SMC tool that returns the probability that a
property is satisfied by the model. For the automated generation of the analy-
sis model, we propose the SIMPPAAL tool. Our second approach is based on
bounded model checking and is suitable for checking invariance properties of
Simulink models. Compared to the statistical model checking approach, the
invariance checking is reduced to a satisfiability problem. In case of property
violation, the procedure generates a counter-example execution trace, which
can be used for refining the model. In the same work we show that there exist
commonly-used design patterns in Simulink models, for which the verification
result is complete. The approach is supported by our SYMC tool.

For validation of the specification patterns, and the PROPAS tool we per-
form a case-study evaluation with practitioners, in collaboration with our in-
dustrial partner Scania. The results show that the pattern-based approach and
the PROPAS tool can be practically useful in industrial settings. We apply the
statistical model-checking approach and the SIMPPAAL tool on two industrial
use cases, namely Brake-by-Wire and Adjustable Speed Limiter from Volvo
Group Trucks Technology, which yields encouraging results. Finally, we val-
idate the bounded invariance-checking approach and the SYMC tool on the
Brake-by-Wire system, where we demonstrate both complete and incomplete
verification of invariance properties.

Sammanfattning

Modern inbyggd mjukvara är ofta så stor och komplex att det blivit svårt att
skapa nödvändiga artefakter, inklusive systemkravspecifikationer och design-
modeller, samt att säkerställa att de är korrekta. En utmaning kommer från det
stora antalet komplicerade systemkrav som kombinerar funktionalitet med tid-
skrav eller andra typer av begränsningar, vilket gör dem svåra att analysera. En
annan utmaning är kvalitetssäkringen av olika designmodeller som utvecklats
med Simulink, ett modellbaserat utvecklingsverktyg som är de facto-standard
inom bland annat fordons- och flygindustrin. För närvarande förlitar sig in-
dustrin till stor del på simulering av Simulink-modeller, vilket ger insikt i sys-
temets beteende men inte någon hög grad av försäkran att modellen beter sig
korrekt. Ett möjligt sätt att ta itu med dessa utmaningar är att använda da-
torstödda, matematiskt rigorösa metoder för specifikation, analys och verifika-
tion redan vid kravspecifikationen, men också under senare utvecklingsstadier.

I denna avhandling föreslår vi en uppsättning metoder för formell speci-
fikation, analys och verifikation av systemkravspecifikationer och Simulink-
modeller, med särskild inriktning på bilindustrin. Våra bidrag är följande:
För det första bedömer vi uttryckskraften hos en befintlig mönsterbaserad
teknik för formell kravspecifikation på ett operativsystem. Baserat på de pos-
itiva resultaten bedömer vi att tekniken är tillräckligt uttrycksfull för att fånga
systemkrav i kontrollerat naturligt språk, från vilka formella motsvarigheter
kan genereras automatiskt. För att få tillvägagångssättet närmare utövarna
har vi utvecklat verktyget PROPAS. Därefter föreslår vi en automatis-
erad analysmetoder för konsistens, baserat på Satisfiability Modulo Theories,
för systemkravspecifikationer formellt kodade som temporala logikformler.
Tillvägagångssättet implementeras i vårt PROPAS-verktyg och är lämpligt för
att analysera bristen på logiska motsättningar inom systemspecifikationer un-
der tidiga systemutvecklingsfaser. Vårt nästa bidrag rör formell analys och ver-

iii

iv

ifiering av stora Simulink-modeller. För det första föreslår vi ett mönsterbaserat
och exekveringsordningsbevarande sätt att omvandla Simulink-modeller till
nätverk av stokastisk tidsautomater, som kan analyseras med hjälp av UPPAAL
SMC-verktyget som returnerar sannolikheten att modellen uppfyller en viss
egenskap. För den automatiska genereringen av analysmodellen har vi utveck-
lat SIMPPAAL-verktyget. Vårt andra tillvägagångssätt är baserat på begränsad
modellkontroll och är lämplig för att kontrollera invariansegenskaper hos
Simulink-modeller. Jämfört med den statistiska kontrollmetoden reduceras in-
variantkontrollen till ett satisfierbarhetsproblem. Om egenskapen inte är upp-
fylld genererar metoden ett motexempel som kan användas för att förbättra
modellen. I samma arbete visar vi att det finns vanligt förekommande de-
signmönster i Simulink-modeller, för vilka verifieringsresultatet är fullständigt.
Tillvägagångssättet stöds av vårt SYMC-verktyg.

För validering av specifikationsmönstren och PROPAS-verktyget utför vi en
fallstudieutvärdering i samarbete med vår industriella partner Scania. Resul-
taten visar att det mönsterbaserade tillvägagångssättet och PROPAS-verktyget
kan vara praktiskt användbara i industrin. Vi tillämpar den statistiska model-
lkontrollmetoden och SIMPPAAL-verktyget på två industriella användningsfall,
nämligen Brake-by-Wire och Adjustable Speed Limiter från Volvo Group
Trucks Technology, med goda resultat. Slutligen validerar vi den begränsade
invariantkontrollmetoden och SYMC-verktyget på Brake-by-Wire-systemet,
där vi demonstrerar både fullständig och ofullständig verifiering av invari-
ansegenskaper.

To my parents

“Leave it be
It was meant for me

Soul sacrifice
Forgot the advice

Lost track of time
In a flurry of smoke

Waiting anxiety
For a fair judgement deserved”

A Fair Judgement, Opeth

Acknowledgements

“Mom, you know, if I ever decide to move abroad, I would only consider mov-
ing to Sweden.” - sixteen year old me, with absolutely no idea or vision about
future. Around fifteen years down the road, here I am, sitting in my office
writing the acknowledgements for my doctoral thesis. In Sweden.

My time as a PhD student has been everything but a smooth sail. If I think
more, it can be probably best described as a roller-coaster ride full of glorious
ups and downfalls of epic proportions. Luckily, I was never alone. My parents
were always there for me, without excuses. No matter what. Always there!
Mom, Dad, thank you for everything that you have done for me. Without you I
would not have made it. You were always there to believe in me when no one
else did. I am very sorry that I had to leave home to pursue my dream, but I
dared to go this far only because I knew that you will always have my back.
I dedicate all of my current and future achievements to you, because without
you I am nothing!

First, I would like to thank my advisors. The biggest token of appreciation
goes to my main advisor, Associate Professor Cristina Seceleanu. Thank you
for giving me the opportunity to become a PhD student. You have been an
excellent advisor who have taught me many invaluable lessons, both in research
and in life in general. This thesis, at least in this shape and form, would not
have been possible without you. Many thanks to my co-advisor, Dr. Guillermo
Rodriguez-Navas for the collaboration that we had during the years. I learned
a lot from you, especially how to stay positive in the darkest of times. I would
like to thank my industrial co-advisor Professor Mattias Nyberg. You always
had faith in me and my work, and for that I am very grateful. Last but not least,
I would like to thank Professor Hans Hansson. Even though you were my main
advisor for only one year, it was a pleasure and honor to be your student.

Pursuing a PhD within a project that is an academic-industrial cooperation

ix

x

is an amazing but also challenging experience. I would like to thank all the
people from our industrial partners, Scania AB CV and Volvo Group Trucks
Technology who were involved in the VeriSpec project in one way or another.
Special thanks goes to Oscar Ljungkrantz and Henrik Lönn from Volvo and
Jon Andersson from Scania. I will never forget the interview with Jon at the
Scania Technology Center in the cabin of a test truck.

I would like to express my gratitude to the faculty examiner, Professor
Jim Woodcock and the grading committee members: Professor Kim Larsen,
Associate Professor Luigia Petre, and Associate Professor Christian Berger,
for kindly accepting our invitation and dedicating part of their valuable time
to review my work. I am truly honored to have you as the committee who
validates my work.

I would also like to thank Associate Professor Alessandro Papadopoulos
for providing feedback on an earlier version of the thesis, and Professor Jan
Carlson for helping with the Swedish version of the abstract.

During the fall of 2017, I had the privilege to visit the Chair for Software
Modeling and Verification (MOVES) at Aachen University in Germany led
by Professor Joost-Pieter Katoen where I had the opportunity to be a part of
an amazing group of researchers. When I look back, it was probably one of
the most inspiring times of my doctoral studies. Thank you Joost-Pieter for
accepting me as a guest researcher, and to all of the students, researchers and
chair stuff members for the wonderful treatment while I was there. You made
Aachen and MOVES feel like home.

Research is only one aspect of the graduate education in Sweden. Taking
courses (quite a few of them!) and teaching are two other aspects that play
crucial role in the education and development of a doctoral student in Sweden.
I am using this opportunity to thank all the incredible professors and lectures at
the university whose courses I had the pleasure to take. Regarding my teaching
duties, I had the privilege to be a teaching assistant for three amazing teachers
from the department: Professor Ivica Crnkovic, Professor Jan Carlson and Dr.
Severine Sentilles. It was a great pleasure to work with each one of you. I
would like to emphasize that Ivica is the main reason why I chose academia.
I have always admired your work ethics, professionalism, and above all how
nice human being you are. You are such an inspiration and a role model!

The IDT department at Mälardalen Univerisity, where I have spent most
of the past five years of my life is an amazing place. It is not amazing be-
cause of the fancy offices equipped with perfect air-conditioning and heating,
but because of the people who work there. I would like to express my deepest
appreciation to all of the senior research and academic staff, the ladies from

xi

the administrative department and especially the fellow PhD students for mak-
ing the time spent at the department joyful. My special shout-out goes to the
espresso gang: Alessandro, Matthias (now at KTH), Mirgita, and Saad. The
coffee trips to the espresso machine located at the Software Engineering di-
vision have always been the highlights of my working days. Of course, that
would not have been possible without Radu Dobrin, the leader of the Software
Engineering division, who was courageous enough to buy espresso machines
so that people can enjoy a nice cup of coffee. Thank you Radu, from the bot-
tom of my heart! Raluca and Eddie, you were not only a great colleagues and
coauthors, but also great friends. Thanks for all the fun times we had together.
Finally, I would like to specially thank my academic sister Aida for all the nice
things that she has done for me during the past six years. Our relationship has
gone through many phases, starting from you being my master’s thesis super-
visor, then a colleague, and eventually becoming a dear friend. I always felt
you truly cared for me, and for that I am forever indebted to you.

There are some people personally close to me that throughout the years
have influenced me in many ways. To my cousins, Emilija and Zoran. I never
considered you as cousins, but rather as my siblings. Despite being a sin-
gle child you never let me feel alone, and you always took good care of me.
Thanks for always being there, no matter the circumstances. Another very in-
fluential person in my life was my grandmother Gorka, who always wanted me
to become an engineer. Sadly, she passed away before I became one. Being
where I am now, there is some inexplicable joy and satisfaction in the fact that
I did not let her down.

To Dragana, Dimitar, and Jani. Life was a bit unfair when we scattered
around the world, but despite the distance, we managed to keep the friendship
alive. You are truly special people, and I feel very privileged to have you as my
friends.

Predrag Filipovikj
Västerås, April, 2019

List of publications

Publications Included in the Thesis1

Paper A Reassessing the Pattern-Based Approach for Formalizing Require-
ments in the Automotive Domain. Predrag Filipovikj, Mattias Nyberg,
Guillermo Rodriguez-Navas. In the Proceedings of the 22nd IEEE In-
ternational Requirements Engineering Conference (RE’14), pages 444-
450. Karlskrona, Sweden. August, 2014. IEEE Computer Society.

Paper B Automated SMT-based Consistency Analysis of Industrial Criti-
cal System Requirements.B Predrag Filipovikj, Guillermo Rodriguez-
Navas, Mattias Nyberg, Cristina Seceleanu. ACM SIGAPP Journal of
Applied Computing Review, pages 15 – 27. Volume 17, Number 4. De-
cember, 2017. ACM.
BThis article is an extended version of the following conference paper: SMT-
based Consistency Analysis of Industrial Systems Requirements. Predrag Fil-
ipovikj, Guillermo Rodriguez-Navas, Mattias Nyberg, Cristina Seceleanu. In
the Proceedings of the 32nd ACM Symposium On Applied Computing (SAC
2017), pages 1272 – 1279. Best Paper Award. Marrakesh, Morocco. April,
2017. ACM.

Paper C SIMPPAAL - A Framework For Statistical Model Checking of In-
dustrial Simulink Models.K Predrag Filipovikj, Nesredin Mahmud,
Raluca Marinescu, Guillermo Rodriguez-Navas, Cristina Seceleanu, Os-
car Ljungkrantz , Henrik Lönn. ACM Journal of Transactions on Soft-
ware Engineering and Methdology. Revisions required. Submitted in
November, 2018.

1The included publications are reformatted to comply with the thesis printing format.

xiii

xiv

KThis article is an extended version of the following conference paper: Simulink
to UPPAAL Statistical Model Checker: Analyzing Automotive Industrial Systems.
Predrag Filipovikj, Nesredin Mahmud, Raluca Marinescu, Cristina Seceleanu,
Oscar Ljungkrantz, Henrik Lönn. In the Proceedings of the 21st International
Symposium on Formal Methods (FM2016), pages 748–756. Limassol, Cyprus.
November, 2016. Springer, LNCS.

Paper D Bounded Invariance Checking of Simulink Models. Predrag Fil-
ipovikj, Guillermo Rodriguez-Navas, Cristina Seceleanu. In the Pro-
ceedings of the 34th ACM Symposium of Applied Computing (SAC’19),
pages 2155–2164. Limassol, Cyprus. April, 2019. ACM.

Paper E Specifying Industrial System Requirements using Specification Pat-
terns: A Case Study of Evaluation with Practitioners. Predrag Fil-
ipovikj and Cristina Seceleanu. In the Proceedings of the 14th Interna-
tional Conference on Evaluation of Novel Approaches to Software En-
gineering (ENASE 2019). Heraklion, Crete. May, 2019. SciTePress
Digital Library (Science and Technology Publications, Lda).

xv

Additional Publications not Included in the Thesis2

1. Bounded Verification of Simulink Models. Predrag Filipovikj,
Guillermo Rodriguez-Navas, Cristina Seceleanu. Mälardalen Real-Time
Research Center, Mälardalen University. December, 2018.

2. Model-Checking-based vs. SMT-based Consistency Analysis of Indus-
trial Embedded Systems Requirements: Application and Experience.
Predrag Filipovikj, Guillermo Rodriguez-Navas, Cristina Seceleanu.
Journal of Electronic Communications of the EASST, Vol. 75. Octo-
ber, 2018.

3. An Energy-aware Mutation Testing Framework for EAST-ADL Archi-
tectural Models. Raluca Marinescu, Predrag Filipovikj, Eduard Paul
Enoiu, Jonatan Larsson , Cristina Seceleanu. The 29th Nordic Workshop
on Programming Theory (NWPT’17). October, 2017.

4. Analyzing Industrial Simulink Models by Statistical Model Checking.
Predrag Filipovikj, Nesredin Mahmud, Raluca Marinescu, Guillermo
Rodriguez-Navas, Cristina Seceleanu, Oscar Ljungkrantz , Henrik Lönn.
MRTC Report, Mälardalen Real-Time Research Center, Mälardalen
University. March, 2017.

5. SMT-based Consistency Analysis of Industrial Systems Requirements.
Predrag Filipovikj, Guillermo Rodriguez-Navas, Mattias Nyberg,
Cristina Seceleanu. In the Proceedings of the 32nd ACM Symposium
On Applied Computing (SAC 2017), pages 1272 – 1279. Best Paper
Award. Marrakesh, Morocco. April, 2017. ACM.

6. Increasing Embedded Systems Quality through Automated Specification
and Analysis of Requirements and Behavioral Models. Predrag Fil-
ipovikj. The 43rd International Conference on Current Trends in Theory
and Practice of Computer Science (SOFSEM2017), Student Research
Forum. Best Student Research Proposal Award. Limerick, Ireland.
January, 2017. Springer, LNCS.

7. Simulink to UPPAAL Statistical Model Checker: Analyzing Automo-
tive Industrial Systems. Predrag Filipovikj, Nesredin Mahmud, Raluca
Marinescu, Cristina Seceleanu, Oscar Ljungkrantz, Henrik Lönn. In the

2The publications are listed in reverse chronological order.

xvi

Proceedings of the 21st International Symposium on Formal Methods
(FM2016), , pages 748 – 756. Limassol, Cyprus. November, 2016.
Springer, LNCS.

8. Integrating Pattern-based Formal Requirements Specification in an In-
dustrial Tool-chain. Predrag Filipovikj, Trevor Jagerfield, Mattias Ny-
berg, Guillermo Rodriguez-Navas, Cristina Seceleanu. In the Proceed-
ings of the 10th IEEE International Workshop on Quality Oriented Reuse
of Software (QUORS’16), collocated with COMPSAC 2016, pages 167
– 173, Volume 2. Atlanta, USA. June, 2016. IEEE Computer Society.

Contents

I Thesis 1

1 Introduction 3
1.1 Thesis overview . 7

2 Background 13
2.1 Model-based Development 13
2.2 Specification Patterns . 15
2.3 Sanity Checking of System Specifications 17
2.4 MATLAB Simulink . 18
2.5 Formal Modeling and Verification 20

2.5.1 Satisfiability Modulo Theories and Z3 21
2.5.2 Model Checking . 22
2.5.3 Statistical Model Checking 23
2.5.4 UPPAAL Statistical Model Checker 26
2.5.5 Bounded Model Checking 29

3 Research Methodology 33

4 Research Problem 37
4.1 Problem Statement . 37
4.2 Research Goals Definition 39

5 Thesis Contributions 41
5.1 Pattern-based Formal Specification and Automated Consis-

tency Checking of Embedded Systems Requirements 41

xvii

xviii Contents

5.2 Formal Analysis of Simulink Models by Statistical Model
Checking . 45

5.3 Bounded Invariance Checking of Simulink Models 50
5.4 Assessing the practical usefulness and scalability of the pro-

posed approaches on industrial models 52

6 Related Work 57

7 Conclusions and Future Work 65

Bibliography 71

II Included Papers 83

8 Paper A:
Reassessing the Pattern-Based Approach for Formalizing Require-
ments in the Automotive Domain 85
8.1 Introduction . 87
8.2 Description and setup of the case study 90

8.2.1 Real Time Specification Patterns 90
8.2.2 Requirements gathering 91
8.2.3 Requirements patterning 92

8.3 Analysis of the results . 93
8.3.1 Pattern expressiveness 93
8.3.2 Pattern frequency . 98

8.4 Reflection on the experience 99
8.5 Conclusion . 100
Bibliography . 101

9 Paper B:
Automated SMT-based Consistency Analysis of Industrial Critical
System Requirements 105
9.1 Introduction . 107
9.2 Preliminaries . 108

9.2.1 (Timed) Computational Tree Logic 109
9.2.2 Specification Patterns 110
9.2.3 Formal Definition of Consistency 110
9.2.4 Satisfiability Modulo Theories, SMT-LIB and Z3 . . . 111

9.3 Motivating Example . 112

Contents xix

9.4 SMT-based Methodology for Consistency Analysis of Re-
quirements . 114
9.4.1 Step 1: Text to TCTL 115
9.4.2 Step 2: TCTL to FOL 117
9.4.3 Step 3: Encoding in SMT-LIB Language 120

9.5 Tool Support: PROPAS . 124
9.5.1 The SMTLIBREQ Library 124

9.6 Consistency Analysis of FLD Requirements Using Z3 129
9.7 Discussion . 132
9.8 Related Work . 133
9.9 Conclusions and Future Work 135
Bibliography . 135

10 Paper C:
SIMPPAAL - A Framework For Statistical Model Checking of In-
dustrial Simulink Models 139
10.1 Introduction and Motivation 141
10.2 Preliminaries . 143

10.2.1 Simulink . 143
10.2.2 UPPAAL SMC . 146
10.2.3 Dafny . 147

10.3 Simulink to UPPAAL SMC: Approach 148
10.3.1 Formal definitions 149
10.3.2 STA Patterns . 152
10.3.3 Flattening Algorithm for Preserving the Block Execu-

tion Order . 154
10.3.4 Proof of Transformation Soundness 155

10.4 SIMPPAAL Tool . 158
10.4.1 SIMPPAAL Architecture 158
10.4.2 SIMPPAAL work flow 160
10.4.3 Scope of Application 163

10.5 Application on Industrial Use Cases 164
10.5.1 The Brake-By-Wire Use Case 164
10.5.2 The Adjustable Speed Limiter Use Case 167

10.6 Discussion on the Approach 171
10.7 Related Work . 172
10.8 Conclusions and Future Work 175
Bibliography . 176

xx Contents

11 Paper D:
Bounded Invariance Checking of Simulink Models 183
11.1 Introduction . 185
11.2 Preliminaries . 186

11.2.1 Simulink . 187
11.2.2 Formal Semantics of Simulink 188
11.2.3 Satisfiability Modulo Theories and Z3 190
11.2.4 Bounded Model Checking 191

11.3 Industrial Use Cases . 193
11.4 Common blocks and compositions 194

11.4.1 Identified Block Types 194
11.4.2 Identified Compositions 196
11.4.3 Completeness of Bounded Invariance Checking for

Identified Compositions 198
11.5 SMT-based Bounded Invariance Checking: Method and Tool . 202
11.6 Application . 204

11.6.1 Transformation of BBW 205
11.6.2 Application results 205

11.7 Related Work . 206
11.8 Conclusions . 208
Bibliography . 209

12 Paper E:
Specifying Industrial System Requirements using Specification
Patterns: A Case Study of Evaluation with Practitioners 213
12.1 Introduction . 215
12.2 Specification Patterns and PROPAS tool 216

12.2.1 Specification patterns 217
12.2.2 ProPaS tool . 218

12.3 Research Method . 220
12.4 Case Study Planning and Execution 222

12.4.1 Case Study Design 222
12.4.2 Data collection preparation 224
12.4.3 Data collection . 225
12.4.4 Data interpretation and analysis 226

12.5 Results . 227
12.5.1 Quantitative data analysis 227
12.5.2 Qualitative data analysis 228
12.5.3 Threats to Validity 230

Contents xxi

12.6 Discussion . 231
12.7 Related Work . 233
12.8 Conclusions . 234
Bibliography . 236

I

Thesis

1

Chapter 1

Introduction

Using embedded software to perform highly complex functions has been en-
abled by the ever-increasing computational power and memory capacity of the
embedded hardware. The automotive industry is one of the many industries
that have been profoundly impacted by the rise of embedded systems. With the
“x-by-wire” technology that was introduced almost three decades ago, the mod-
ern vehicles have come a long way to become software intensive systems [1,2],
in which even the core features such as the engine control and management,
braking, steering, etc., are implemented in software. The pinnacle of this trend
is made by the advanced driver assistance systems intended to either assist the
drivers or to completely autonomously operate vehicles in a safer and more ef-
ficient manner. The embedded hardware in vehicles consists of distributed em-
bedded computers called electrical control units (ECU). A modern premium
car runs several tens of millions lines of code distributed over more than 70
independent ECU [3].

The increase in size and complexity of automotive software functions im-
pacts all the phases of system development and the produced artifacts, includ-
ing the system’s specification, design and architecture, as well as the integra-
tion and testing phases [4]. Moreover, many of these functions are classified
as safety critical [5], meaning that their malfunction can result in damages to
the environment or potentially endanger human lives. Consequently, in order
to increase the safety of the vehicles, the new ISO26262 standard [6] for au-
tomotive safety highly recommends using rigorous verification techniques for
establishing the correctness of automotive functions. In this thesis, we show
how to apply techniques for the rigorous verification of embedded software,

3

4 Chapter 1. Introduction

with specific focus on the design-time artifacts created during the embedded
software development, which include system specifications and behavioral sys-
tem models, with particular focus on the automotive domain. We assume that
the complete set of characteristics and functionalities of an embedded software
are determined during the design phase, and once deployed into operation they
cannot be changed [7, 8].

Motivation. The predominant way of specifying requirements of automotive
embedded software is by using free-text natural language. The requirements
are usually organized in requirements specification documents called system
specifications, which are created and managed mostly by using general pur-
pose text editing software or in some cases specialized tools such as IBM Ra-
tional Doors [9]. The main advantage of systems specifications specified in
natural language is that they are easy to read and interpret by various stake-
holders in the system’s development process, provided that the stakeholders
have sufficient domain knowledge. However, despite enabling high versatility,
such a way of specifying requirements suffers from several drawbacks. The
most obvious one is the potential ambiguity of the specifications, which stems
from the inherent ambiguity of the natural language itself. Consequently, there
might be situations of the same requirement being interpreted in various ways.
As such, the natural language ambiguity might affect the quality of the system
specifications negatively. One such quality attribute is the consistency of the
system specification, that is, the lack of internal logical contradiction between
requirements.

The current industrial state-of-practice relies on manual peer-review as the
predominant technique for assessing the quality of system specifications [10].
In this case, the combination of ambiguity of the natural language and the sheer
size of the specifications might potentially render the quality assurance through
manual peer-review of requirements ineffective. Under such circumstances,
possible inconsistencies (logical contradictions) could escape the reviewer’s
eye, especially in cases of large specifications. A promising way to prevent
the ambiguity of system requirements specification and to improve their an-
alyzability is to employ rigorous computer-aided analysis and verification of
requirements, enabled by formal techniques and specification patterns for for-
malization [11, 12]. Even though the feasibility of formal techniques has been
demonstrated on industrial systems [13,14], their actual adoption in the indus-
trial development of embedded systems is hindered by the difficulty of produc-
ing formal system specifications.

The model-based development (MBD) paradigm has started to gain mo-

5

mentum in the automotive industry as the models provide a good way of
abstracting the problem and documenting the design. As such, MATLAB
Simulink [15] is the de facto standard MBD tool in the domain. The Simulink-
based development revolves around producing behavioral models, which are
treated as executable system specifications that can also be used as an input
into specialized commercial tools, such as Simulink Coder [16] to automat-
ically generate the code that is deployed in vehicles. For assuring the cor-
rectness of the Simulink models, the current state-of-practice techniques rely
predominantly on simulation, which gives insight in the system’s behavior yet
does not provide a high degree of assurance that the model behaves correctly.

For the structural analysis of Simulink models using automated and rigor-
ous techniques, the state-of-practice tool is Simulink Design Verifier [17], with
its scope and applicability being limited to detecting errors such as buffer over-
flow, division by zero, array access violations, etc. By exploring the literature
and discussing with practitioners, we have come to the conclusion that rigor-
ous quality assurance of the industrial-size Simulink models against high-level
properties such as invariance, timeliness, reachability etc., is actually lacking.

Contributions. Given the above motivation and mentioned gaps, in this the-
sis we propose a set of industrially-attractive approaches for the formal speci-
fication, analysis and verification of system requirements, and design-time be-
havioral models of embedded systems. The contributions follow two lines of
research: i) formal specification and analysis of system requirements specifica-
tions, and ii) formal analysis and verification of Simulink models. For clarity,
we divide the contributions into four major parts, as follows. As the first con-
tribution, we propose methods and tools for the formal system specification
via specification patterns, and automated consistency analysis of requirements
modeled in temporal logic. For that purpose, we first assess the suitability
and expressiveness of specification patterns [11,12,18] for formalizing system
requirements in the automotive domain [19]. Our results show that the spec-
ification patterns are expressive enough to encode most of the requirements
of complex automotive systems from Scania, Sweden. To make specification
patterns attractive to industrial practitioners, we develop specialized tool sup-
port by proposing the SESAMM SPECIFIER tool [20], which is intended to
aid the practitioners when using patterns. As the second part of the first con-
tribution, we propose a consistency analysis approach based on satisfiability
modulo theories (SMT) [21], intended to ensure that a system specification en-
coded as a set of temporal formulas is free of logical contradictions [22]. For
full automation of our consistency analysis approach, we propose the PROPAS

6 Chapter 1. Introduction

tool [22], which is an extension of our SESAMM SPECIFIER tool that includes
the SMTLIBREQ library [22] for the automated consistency analysis.

The second contribution of the thesis is an automated approach for the
formal analysis of Simulink models based on statistical model checking [23],
which uses the UPPAAL Statistical Model Checker [24] as the underlying anal-
ysis engine [25]. The core of our approach is a template-based and execution-
order-preserving transformation of Simulink models into networks of stochas-
tic timed automata [24]. To enable such a transformation, we first propose a
semantic definition of Simulink blocks and their composition, as timed tran-
sition systems, based on the informal (execution) semantics documented by
MathWorks, the vendor of the MATLAB Simulink tool. Our approach is
suitable for analysis of both discrete-time and hybrid (models composed of
discrete- and continuous-time blocks) Simulink models. For automation, we
propose the SIMPPAAL tool [25] that generates the resulting formal model au-
tomatically. Since statistical model checking does not perform an exhaustive
exploration of the model’s state space, but instead checks the property based
on a number of simulations of the model, it does not encounter the infamous
state-space-explosion and thus has the potential to scale with the size and com-
plexity of industrial Simulink models. Despite the fact that the approach is not
exhaustive, it provides rigorous probabilistic guarantees of the correctness of
a given Simulink model, with respect to invariance, reachability and certain
liveness properties.

In order to remove encoding the Simulink model into a stochastic formal
framework, as the third contribution, we propose an alternative approach for
the formal verification of Simulink models based on bounded model check-
ing [26]. The main use-case for the approach is the analysis of an under-
lying Simulink model with respect to invariance properties. Due to the fact
that in general only a portion of the reachable state-space of the model is ex-
plored, the approach is not exhaustive, however it provides a full guarantee
that a given property is satisfied by the bounded, reachable state-space of the
model while overcoming the state-space-explosion problem. Compared to the
statistical model checking, in case of property violation, one can generate a
counter-example that can be used for improving the model. Additionally, we
show that there are certain Simulink designs for which the bounded invariance
checking is complete, thus the verification represents a full guarantee that the
model satisfies a given invariance property. The approach is automated by our
SYMC tool [26] that we propose in this thesis.

As the fourth and final contribution that we also propose in this thesis, we
carry out validation of each of the proposed approaches over system specifica-

1.1 Thesis overview 7

tions and Simulink models provided by our industrial partners, namely Scania
and Volvo Group Trucks Technology (VGTT), both from Sweden. To assess
the practical usefulness of the PROPAS tool for the various industrial stake-
holders of the embedded software development process, we perform a case
study evaluation with practitioners in collaboration with Scania [27]. For vali-
dation of our consistency analysis approach, we apply the PROPAS tool on the
system specification of an operational system from Scania [22]. We validate
the SIMPPAAL and the statistical model checking approach on two industrial
Simulink models, namely, of a Brake-by-Wire (BBW) system prototype, and of
Adjustable Speed Limiter (ASL), both from VGTT [25], whereas the SYMC
tool and the bounded model checking are validated on one Simulink model
only, that is, the Simulink model of the BBW system from VGTT [26].

1.1 Thesis overview

The thesis is divided into two main parts. The first part is an overall summary
of the thesis, organized as follows. In Chapter 2, we give an overview of the
background concepts that are used in the thesis. In Chapter 3, we present the re-
search methodology that we apply to conduct the presented research, followed
by the definition of the research goals in Chapter 4. In Chapter 5, we present
a compact and more technical description of the thesis contributions and show
their mapping to the previously defined research goals. The overview of and
comparison to related work is given in Chapter 6, followed by conclusions and
directions for future work in Chapter 7 that concludes the first part of the thesis.

The second part is given as a collection of five publications that encompass
all thesis contributions. The included papers are the following:

Paper A. Reassessing the Pattern-Based Approach for Formalizing Re-
quirements in the Automotive Domain. Predrag Filipovikj, Mattias Nyberg,
Guillermo Rodriguez-Navas. In Proceedings of the 22nd IEEE International
Requirements Engineering Conference (RE’14), pages 444-450. Karlskrona,
Sweden, August, 2014, IEEE CS.

Abstract. The importance of using formal methods and techniques for verifi-
cation of requirements in the automotive industry has been greatly emphasized
with the introduction of the new ISO26262 standard for road vehicles func-
tional safety. The lack of support for formal modeling of requirements still
represents an obstacle for the adoption of the formal methods in industry. This

8 Chapter 1. Introduction

paper presents a case study that has been conducted in order to evaluate the dif-
ficulties inherent to the process of transforming the system requirements from
their traditional written form into semi-formal notation. The case study focuses
on a set of non-structured functional requirements for the Electrical and Elec-
tronic (E/E) systems inside heavy road vehicles, written in natural language,
and reassesses the applicability of the extended Specification Pattern System
(SPS) represented in a restricted English grammar. Correlating this experience
with former studies, we observe that, as previously claimed, the concept of
patterns is likely to be generally applicable for the automotive domain. Ad-
ditionally, we have identified some potential difficulties in the transformation
process, which were not reported by the previous studies and will be used as a
basis for further research.

Contributions. I was the main driver of the paper. I have performed most of
the activities related to the case study, including the requirements gathering and
extraction, applying the patterns and drawing conclusions. I also wrote most of
the paper. Guillermo Rodriguez-Navas and Mattias Nyberg participated in dis-
cussions and contributed with ideas and comments on the patterning process.

Paper B. Automated SMT-based Consistency Analysis of Industrial Critical
System RequirementsB. Predrag Filipovikj, Guillermo Rodriguez-Navas,
Mattias Nyberg, Cristina Seceleanu. ACM SIGAPP Journal of Applied
Computing Review, pages 15 – 27. Volume 17, Number 4. December, 2017.
ACM.
BThis article is an extended version of the following conference paper: SMT-based
Consistency Analysis of Industrial Systems Requirements. Predrag Filipovikj,
Guillermo Rodriguez-Navas, Mattias Nyberg, Cristina Seceleanu. In the Proceedings
of the 32nd ACM SIGAPP Symposium On Applied Computing (SAC 2017), pages
1272 – 1279. Best Paper Award. Marrakesh, Morocco. April, 2017. ACM.

Abstract. With the ever-increasing size, complexity and intricacy of system re-
quirements specifications, it becomes difficult to ensure their correctness with
respect to certain criteria such as consistency. Automated formal techniques
for consistency checking of requirements, mostly by means of model check-
ing, have been proposed in academia. Sometimes such techniques incur a high
modeling cost or analysis time, or are not applicable. To address such prob-
lems, in this paper we propose an automated consistency analysis technique of
requirements that are formalized based on patterns, and checked using state-
of-the-art Satisfiability Modulo Theories solvers. Our method assumes several

1.1 Thesis overview 9

transformation steps, from textual requirements to formal logic, and next into
the format suited for the SMT tool. To automate such steps, we propose a tool,
called PROPAS, that does not require any user intervention during the trans-
formation and analysis phases, thus making the consistency analysis usable by
non-expert practitioners. For validation, we apply our method on a set of timed
computation tree logic requirements of an industrial automotive system called
the Fuel Level Display.

Contributions. I was the main driver of the paper. I collected the require-
ments which were included in the case study. I also performed the require-
ments formalization and extracted the used patterns. I wrote the structured
derivations for the patterns from TCTL into first-order-logic and their encod-
ing in Z3. I developed the PROPAS tool which was used in the case study. I
wrote the complete paper. Cristina Seceleanu and Guillermo Rodrigues-Navas
contributed with useful comments for the structured derivations and the overall
structure of the paper. Mattias Nyberg provided feedback on the formalization
of the requirements from the FLD system.

Paper C. SIMPPAAL - A Framework For Statistical Model Checking of
Industrial Simulink ModelsK. Predrag Filipovikj, Nesredin Mahmud,
Raluca Marinescu, Guillermo Rodriguez-Navas, Cristina Seceleanu, Oscar
Ljungkrantz, Henrik Lönn. Submitted to the ACM Transactions on Software
Engineering and Methodology (TOSEM) Journal. Revisions required. Sub-
mitted in November, 2018.
KThis article is an extended version of the following conference paper: Simulink
to UPPAAL Statistical Model Checker: Analyzing Automotive Industrial Systems.
Predrag Filipovikj, Nesredin Mahmud, Raluca Marinescu, Cristina Seceleanu, Oscar
Ljungkrantz, Henrik Lönn. In the Proceedings of the 21st International Symposium
on Formal Methods (FM2016), pages 748–756. Limassol, Cyprus. November, 2016.
Springer, LNCS.

Abstract. Nowadays, electronic brains control dozens of functions in vehicles,
like braking, cruising, etc. Model-based design approaches, in environments
such as MATLAB Simulink, seem to help in addressing the ever-increasing
need to enhance quality, and manage system complexity, by supporting func-
tional design from a set of block libraries that can be simulated and analyzed
for hidden errors, but also used for code generation. Since such implementa-
tions are at most as correct as the models that they are generated from, pro-
viding assurance that Simulink models fulfill given functional and timing re-

10 Chapter 1. Introduction

quirements is desirable. Exhaustive verification methods like model checking
might easily encounter the state-space explosion problem for large Simulink
descriptions. To tackle such problem, in this paper, we propose a pattern-based,
execution-order preserving automatic transformation of atomic and composite
Simulink blocks into stochastic timed automata that can be formally analyzed
with UPPAAL Statistical Model Checker. The latter employs scalable yet statis-
tical methods for reasoning, rather than exhaustive ones. To enable the formal
analysis, we first define the formal syntax and semantics of Simulink blocks
and their composition, and show that the proposed transformation is provably
correct for a certain class of Simulink models. Our method is supported by
the SIMPPAAL tool, which we introduce and apply on two industrial Simulink
models, of a prototype called the Brake-by-Wire system, and of an operational
Adjustable Speed Limiter system. This work enables the formal analysis of
industrial Simulink models, by automatically generating their stochastic timed
automata counterparts.

Contributions. I was the main driver of the paper and main contributor to-
gether with Nesredin Mahmud, with whom we developed the template-based
transformation of Simulink blocks into a network of stochastic timed automata.
In addition, I designed and implemented the SIMPPAAL tool as well as a sub-
set of the plug-ins for generating the block routines. I wrote three complete
sections and three additional subsections in the paper. Further on, I applied the
SIMPPAAL tool on the Brake-by-Wire Simulink model to generate the network
of stochastic timed automata. Raluca Marinescu validated the correctness of
the generated Brake-by-Wire UPPAAL network of stochastic timed automata
model and performed the SMC analysis of the model. Nesredin Mahmud de-
veloped a subset of the block routine plug-ins and co-wrote all the sections re-
lated to the ASL system. Cristina Seceleanu wrote the proof of correctness for
the transformation and one additional section of the paper. She also provided
useful comments. Guillermo Rodriguez-Navas wrote the related work section
and provided useful comments for the rest of the paper. Oscar Ljungkrantz and
Henrik Lönn provided valuable feedback both on the approach and the final
version of the paper. Myself and Cristina Seceleanu were the main responsible
for polishing the manuscript and submitting it for review.

Paper D. Bounded Invariance Checking of Simulink Models. Predrag Fil-
ipovikj, Guillermo Rodriguez-Navas, Cristina Seceleanu. In the Proceedings
of the 34th ACM Symposium of Applied Computing (SAC’19), April 8-12,

1.1 Thesis overview 11

2019, Limassol, Cyprus. ACM.

Abstract. Currently, Simulink models can be verified rigorously against design
errors or statistical properties. In this paper, we show how Simulink models can
be formally analyzed for invariance properties using bounded model-checking
reduced to satisfiability modulo theories solving. In its basic form, the tech-
nique provides means for rigorous verification of an underlying model over
bounded traces, however, in general the procedure is incomplete. We identify
common Simulink block types and compositions by analyzing selected indus-
trial models, and we show that for some of them the set of non-repeating states
(reachability diameter) can be visited with a finite set of paths of finite length,
yielding the verification complete. We complement our approach with a tool,
called SYMC that automates the following: i) calculation of the reachability
diameter size for some of the designs, ii) generation of finite (bounded) paths
of the underlying Simulink model and their encoding into SMT-LIB format,
and iii) checking invariance properties using the Z3 SMT solver. To show
the applicability of our approach, we formally analyze the Simulink model of
a prototype industrial system, namely the Brake-by-Wire system from Volvo
Group Trucks Technology, Sweden.

Contributions. I was the main driver for this work. I proposed the approach
and implemented the SYMC tool. I performed the analysis of the industrial
use-case models to identify the commonly-used compositions of blocks. I pro-
posed all the definitions, theorems, and the necessary proofs. I wrote the com-
plete paper. Cristina Seceleanu and Guillermo Rodriguez-Navas contributed
through useful discussions on the approach, mostly on the completeness of
the bounded model checking for the identified compositions. Additionally,
Cristina provided a valuable feedback on the final draft of the paper.

Paper E. Specifying Industrial System Requirements using Specification
Patterns: A Case Study of Evaluation with Practitioners. Predrag Filipovikj
and Cristina Seceleanu. In the proceedings of the 14th International Confer-
ence on Evaluation of Novel Approaches to Software Engineering (ENASE
2019), May 4-5, 2019, Heraklion, Crete. SciTePress Digital Library (Science
and Technology Publications, Lda).

Abstract. With the ever-increasing size and complexity of the industrial soft-
ware systems there is an imperative need for an automated, systematic and

12 Chapter 1. Introduction

exhaustive verification of various software artifacts, such as system specifica-
tions, models, code, etc. A potential remedy for this need might lie in a pool
of techniques for computer-aided verification of software related artifacts, in-
cluding system specifications. The Achilles’ heel of these techniques, and the
main hinder for their wider adoption in industrial development process are the
complexity and the specialized skill-set required for the formal encoding of
specifications. To alleviate this problem, Specification Patterns that are based
on the observation that the system specifications are framed within reoccurring
solutions have been proposed. The approach has been shown to be expressive
enough for capturing requirements in the automotive domain, however, there is
a lack of empirical data that can be used to judge its practical usefulness. In this
paper, we involve an existing specification-patterns-based tool, and propose a
small-size evaluation of the approach with practitioners, on a case study con-
ducted in cooperation with Scania, one of the world’s leading manufacturers
of heavy-load vehicles. Our results show that the specification patterns that are
supported by an adequate tooling have the potential for adoption in industrial
practice.

Contributions. I was the main driver for this work. I performed all phases of
the case study, including the case study planning, setup, execution and report-
ing. During the case study setup phase, I selected the subset of requirements
that are used in the case study and redesigned the PROPAS tool specifically for
this study, including adjustments to the user interface and implementing the
features such as the timer that automatically keeps track of the time spent per
requirement. Then, I proposed the group of case study subjects and personally
contacted each of them to ensure their participation in the study. I prepared the
tutorial used by the case study subjects. During the case study execution phase,
I met with each of them at their workspace at Scania in Södertälje, Sweden. Fi-
nally, I did the data analysis and drew the conclusions. I wrote the complete
paper. Cristina Seceleanu contributed through useful discussions especially for
the development of the survey, mostly on defining the questions and the set
of possible options for the expressing the degree of satisfaction. Additionally,
Cristina provided valuable feedback on the final draft of the paper.

Chapter 2

Background

In this chapter, we introduce the technical concepts that are used throughout
the thesis. First, in Section 2.1, we present a brief overview of the model-based
development paradigm. Next, in Section 2.2 we describe specification patterns
for formal system specification, followed by an overview of some state-of-
the-art techniques for consistency analysis of the formally encoded specifica-
tions, in Section 2.3. After that, in Section 2.4, we present the MATLAB
Simulink environment. Finally, in Section 2.5, we give a short overview of the
formal techniques for modeling and verification of embedded systems, which
we employ in our work, namely satisfiability modulo theories, statistical model
checking and bounded model checking.

2.1 Model-based Development

Managing complexity of artifacts is one of the fundamental problems in all
engineering disciplines. According to Brooks [28], the complexity in systems
engineering stems from at least two sources: i) the inherent complexity of the
engineering problem itself, and ii) the complexity introduced by the tools and
methods that are used for solving the problem. In the domain of software
engineering, model-based development (MBD) has proven to be an effective
paradigm for developing complex software solutions. The main idea of MBD
is to facilitate system modeling through multiple abstractions, corresponding
to the different systems development phases. Ideally, this should enable the
seamless integration of design and analysis techniques and tools throughout

13

14 Chapter 2. Background

the system development.
The process of abstraction focuses on removing the irrelevant details from

the system. By applying abstraction one creates a specific view of the sys-
tem that contains all the essential parts relevant for a specific problem. The
newly obtained abstract view of the system is then more tractable for various
purposes, such as analysis and verification. An abstract version of a system
as observed from a particular point of view is called model. By using MBD
paradigm for software development, the goal is to raise the abstraction level
of both the underlying problem and the proposed (software) solution, and thus
shift the focus from coding to modeling activities. According to Selic [29], in
order for any software model to be practically useful, it should at least exhibit
the following characteristics:

• Abstract - the model should be abstract, which means that it should hide
all the irrelevant details such that the important features stand out;

• Accurate - the model must represent the abstracted system faithfully.
This means that any model must correctly reflect the properties of inter-
est;

• Understandable - the model must convey the information of interest in a
clear and unambiguous way;

• Predictable - the model should behave in the expected way.

A software model that has the aforementioned properties is practically use-
ful for documenting both the problem and the solution. The accuracy and the
predictability features of the models allows one to treat them as executable
specifications. This is possible only if the language used for describing the
model has well-defined semantics, which is the main prerequisite for employ-
ing specialized tools for generating the executable code from the model di-
rectly.

Because of the benefits that it provides, the MBD paradigm has become
the “go-to” way for developing software in the automotive systems domain.
The paradigm has become an enabler for the engineers who are not trained as
software engineers to produce most of the embedded software that is running
in modern vehicles. By using the MBD methods and tools, engineers who
are skilled in various engineering disciplines, but not necessarily in software
engineering, can abstract away the implementation of their solutions, which
lets them model their solutions in easy and intuitive ways. One such tool for

2.2 Specification Patterns 15

modeling, simulation and code generation in industrial settings is MATLAB
Simulink, which we introduce in details later in this chapter.

2.2 Specification Patterns
Writing formal properties for formal verification is a daunting task which re-
quires high proficiency in logic. One way of enabling practitioners who are not
experts in formal techniques to create formal system specifications is to pro-
vide them with methods and tools for a structured and reusable style of speci-
fying requirements, where the structures have precise semantics that define the
relationship between their syntax and the model of computation. Having the
system specifications expressed using such structures facilitates the automatic
generation of the formal systems’ specifications.

To enable the industrial practitioners to write formal specifications, in our
work we adopt the specification patterns system (SPS) approach [11, 18]. The
approach is based on the assumption that systems’ specifications are framed
within reoccurring solutions, from which a set of patterns can be extracted and
saved for future reuse. Each pattern captures some system behavior which
must hold for a certain extent of execution called scope. The patterns are ex-
pressed as a combination of literal and non-literal terminals.

The original SPS catalog proposed by Dwyer et al. [11, 18] is compiled by
analyzing more than 500 examples of property specifications for various sys-
tems. The catalog contains 13 qualitative patterns, which for easier navigation
are divided into two categories: order and occurrence, expressed in different
temporal logics. The occurrence category contains patterns that describe the
occurrence of a given state/event in the system, while the patterns from the
ordering category are used to capture the relative ordering of the occurrence
of multiple events/states during system execution. The catalog also introduced
five different scopes, given as following:

• Globally, the entire program execution;

• Before Q, before the first occurrence of the state/event Q;

• After Q, after the first occurrence of the state/event Q;

• Between Q and R, any part of the program execution between
states/events Q and R;

• After Q until R, similar as Between Q and R, except that the execution
continues even if the second state/event never occurs.

16 Chapter 2. Background

Globally

Before+Q

A.er+Q

Between+Q+and+R

A.er+Q+un5l+R

State/event+sequence Q R Q R Q

Complete+5me?line+of+the+program+execu5on
Extent+of+the+program+execu5on+defined+by+a+scope

Figure 2.1: Specification pattern scopes as defined by Dwyer et al. [18].

The visualization of the five scopes is given in Figure 2.1. The complete
time-line of the program execution is represented by a horizontal line segment.
For simplicity, the figure shows the definition of the scopes based on the occur-
rence of only two different events/states, namely Q and R, which are denoted
with vertical dashed lines. The extent of program execution that is captured by
a particular scope is denoted by one or more gray rectangles.

One of the limitations of the SPS catalog provided by Dwyer et al. [18] is
that it does not contain patterns for specification of real-time properties. For
that purpose, Konrad and Cheng introduced a new category of patterns, called
real-time, suitable for specification of real-time systems. Consequently, the ex-
tended catalog of specification patterns is called real-time specification pattern
system (RTSPS). In the same work, Konrad and Cheng additionally propose
a controlled natural language (CNL) representation on top of the formal no-
tations to increase readability and accessibility of specifications to different
stakeholders. For illustration, let us consider the following pattern, which cap-
tures the bounded response behavior with global scope:

Globally, it is always the case that if P holds, then S holds after at most t
seconds.

The literal terminals in the pattern are given in italic font and they represent
the static part of the pattern, that is, the terminals that are fixed apriori and
cannot be changed by the user. The non-literal terminals, given as regular text

2.3 Sanity Checking of System Specifications 17

in the above pattern can be either Boolean expressions that describe system
properties (denoted as P and S for in the illustrative example), or integer values
that capture timing aspects (denoted as t in the same pattern). The text in bold
denotes the scope of validity of the specified behavior, which is also part of
the user-defined input. Given that the semantics of both the scope (Globally)
and the behavior (bounded response) are formally defined [12, 18], we can
automatically generate the following temporal formula for the given pattern
expressed in TCTL: AG(P ⇒ AF≤tS).

As a necessary aid for applying the specification patterns on realistic sys-
tems, there exists plethora of academic tools [30–34].

2.3 Sanity Checking of System Specifications

Once the system specifications have been formally encoded, one can apply for-
mal analysis and verification techniques in order to reason about their quality,
either with respect to the system model or to establish some properties of the
specification in isolation.

The term sanity checking has been introduced by Kupferman [35] to denote
the process of automatically establishing the quality of formal system specifica-
tions represented as a set of temporal formulas with respect to formally defined
criteria. In the literature, there is a number of sanity checking approaches that
use different sets of formal criteria to assess the quality of the system specifi-
cations [35–39], but in this thesis we focus on consistency, which means the
lack of logically contradicting formulas within a specification. Our aim is to
ensure that a set of formally encoded system properties are consistent, that is,
free of logical contractions.

The type of sanity checking that we are interested in, namely, assessing the
internal consistency of an embedded system specification, does not require a
structural or functional model of the system, hence the name model-free sanity
checking [40]. The benefits of the model-free sanity checking is the possibility
to detect errors in the specifications in the early phases of development, thus
preventing their propagation into the subsequent artifacts.

Most of the existing sanity checking approaches define sanity checking cri-
teria in such a way that it can be automatically checked using model checking.
Despite the benefit of exhaustive sanity checking, such approaches can suf-
fer from number of limitations such as the state-space explosion, or a very
long analysis time in cases of complex specifications. Therefore, for early
assessments of the specifications’ quality, complementary techniques such as

18 Chapter 2. Background

SAT/SMT-based analysis could be beneficial.

2.4 MATLAB Simulink

MATLAB Simulink (commonly referred to as Simulink) is a graphical pro-
gramming environment for modeling and simulation for multi-domain dy-
namic systems. It represents an extension of the MATLAB environment de-
veloped by MathWorks [15]. A Simulink model (or Simulink diagram) is a
hierarchical representation of a system that is composed of blocks that com-
municate via signals. Due to its versatility, Simulink has become the de facto
standard for MBD in many domains, such as the automotive, railways and
avionics domain.

Simulink provides a standard library that contains a number of different
types of atomic and composite blocks. An atomic Simulink block represents a
fundamental modeling unit that models an input-output relationship or another
modeling concept in order to produce an output, either continuously1 or at spe-
cific time points. All of the atomic blocks from the Simulink library have a pre-
defined input-output function, which can be customized via the block specific
parameters. For instance, the Gain Simulink block performs a multiplication of
the value of an input signal by a predefined gain value (scalar or vector). While
the input-output function of the Gain block cannot be changed, the gain value
is user defined and can be changed at both design and run time. The standard
library of blocks as provided by Simulink is not complete. In order to facilitate
the extension of the standard library of atomic blocks, Simulink introduces the
concept of s-function, which allows one to define an atomic Simulink block
by specifying its input-output function in one of the following programming
languages: MATLAB, C, C++, or Fortran. One can additionally apply the
concept of masking by using a special extension called Mask, which defines
the interface of the newly-introduced block and encapsulates its behavior as a
black box.

The composite Simulink blocks are used for modeling the hierarchical
structure of a Simulink diagram. The most commonly used composite block
is the Subsystem, which has multiple variations such as Triggered Subsystem,
Referenced Subsystem, etc. Unlike the atomic ones, the composite Simulink
blocks do not have a predefined input-output functions. Instead, the computa-
tion of the outputs for the composite blocks is modeled through a set of atomic

1These blocks are not continuous per se, instead they model the continuous-time behavior in
numerical simulations.

2.4 MATLAB Simulink 19

(a)

69

1

1 2 3

2
2

4

3

5 6 7 8 9 100

0

+0.5

+1

0.5

1 2 3 4 5 6 7 8 9 10

0

+0.5

+1

0.5

1

continuous-time discrete-time

(b)

Figure 2.2: Sine-Wave Block: (a) Simulink Diagram and (b) Simulation
Result.

blocks. The hierarchical structure of a model is achieved though nesting the
composite blocks. The execution semantics of the composite blocks can be
either virtual or atomic. The virtual composite blocks are used to improve the
readability of the model and as such do not influence the execution order of
the blocks inside the model, whereas the composite blocks that are executed
as atomic units enforce Simulink to treat the set of atomic blocks within their
structure as an atomic unit of execution. The composite blocks with atomic
execution semantics can be conditionally executed based on an external trig-
gering, function call, or enabling input. To facilitate reuse, Simulink allows the
contents of a given subsystem to be saved into a separate model file, commonly
referred to as library.

A Simulink simulation represents a sequential evocation (execution) of the
blocks inside the model for a finite time interval. The engine that produces
the simulations is called solver [41]. Depending on the nature of a Simulink
model, a different solver is used to generate the simulations. The sequential
order at which the blocks are executed during simulation is called sorted order
or slist. Each block has a unique execution order number. The notion of time
of a Simulink simulation is modeled via different types of simulation steps.
In our work, we assume a fixed-step solver, meaning that the size of the sim-
ulation step remains fixed during the entire course of the simulation, and the
following two simulation steps: major and minor. The minor simulation step
represents the fundamental time quanta that is also an integer fraction of the
major simulation step and is used to improve the accuracy of the numerical
computation.

20 Chapter 2. Background

Based on how they update their output during simulation, all blocks, be
they composite or atomic can be classified into two categories: continuous-time
and discrete-time blocks. The continuous-time blocks produce new outputs
at each minor step, whereas the discrete-time blocks produce new outputs at
predefined points in time, determined based on the sampling time of the block.
Another exclusive feature of the discrete-time Simulink blocks is the possibility
to delay the first execution, specified through the offset parameter of the block.
Both the sample time and the offset parameters are expressed as an integer
number of major simulation steps. In case the offset of a given block is greater
than zero, the subsequent outputs are produced relative to the offset period
and not to the beginning of the simulation. Figure 2.2 shows an example of
Sine block as modeled in Simulink (Figure 2.2a) and simulation traces for both
continuous-time and discrete-time behavior of the block (Figure 2.2b).

The capabilities of Simulink are extended by two supportive tools:
Simulink Design Verifier (SLDV) [17] and Simulink Coder [16], both provided
by MathWorks. As advertised by the vendor, the SLDV tool uses formal meth-
ods to detect design errors, such as integer overflow, division by zero, dead
logic, array access violations, etc. The tool can also verify system require-
ments expressed as verification objectives, which are in fact simple Simulink
models. The Simulink Coder is used for automatic generation of executable C
or C++ code.

In this thesis, we focus on two use cases of industrial Simulink models,
namely Brake-by-Wire (BBW) and Adjustable Speed Limiter (ASL), both im-
plemented and provided by our industrial partner Volvo Group Trucks Tech-
nology (VGTT).

2.5 Formal Modeling and Verification

Formal verification is a set of techniques based on mathematics used to rigor-
ously prove the correctness of a system model expressed in a formal notation.
Compared to other verification techniques such as simulation and testing, for-
mal verification techniques are deemed to deliver a higher degree of assurance.
Due to this, formal verification techniques can be used for proving the absence
of certain types of errors. The formal verification techniques in principle can
be divided into two categories: i) deductive, used for proving the correctness
of the system based on a number of axioms and a set of proof rules, and ii) al-
gorithmic or model checking, based on techniques that perform systematic and
exhaustive exploration of the model’s state space in order to determine whether

2.5 Formal Modeling and Verification 21

the system model meets a set of defined logical properties.
The practical difference between the two classes of formal verification tech-

niques boils down to the degree of automation of the verification procedure.
While the model-checking-based verification procedures are fully automated,
the deductive verification techniques require considerable user interaction dur-
ing proof construction. Consequently, the model-checking-based formal veri-
fication techniques are considered much more suitable for formal verification
in industrial settings. In some instances, the model-checking problem can be
reduced to a satisfilability problem [42]. In this thesis, we use Satisfilabil-
ity Modulo Theories [21] for consistency analysis of formalized requirements,
and for the bounded model checking of Simulink models.

2.5.1 Satisfiability Modulo Theories and Z3
The problem of determining whether a set of one or more formulas expressing
constraints has a solution is called constraint satisfiability problem. The most
well-known constraint satisfiability problem is the propositional satisfaction
SAT, where the problem is to decide if a formula over Boolean variables formed
using logical connectives can be made true by choosing false/true values of the
constituent variables.

To express our constraints, in this thesis we use first-order logic (FOL) for-
mulas. A FOL formula is a logical formula formed using logical connectives,
variables, quantifiers and function and predicate symbols. A solution for a set
of FOL formulas is a model, which is an interpretation of all variable, func-
tion and predicate symbols that make the given formula true. In addition to the
FOL constructs, the formulas that we use contain arithmetic operators such as:
{<,≤,=,+,−, ∗,÷}. For checking satisfiability of such formulas that contain
symbols that are interpreted by some background theory (such as the theory of
arithmetic) we use Satisfiability Modulo Theories (SMT) [21].

The decidability for the SAT problem is NP complete [43], which means
that in general case, that is, for all possible interpretations the SAT problem
is undecidable, thus it is not feasible to develop a procedure that can solve
an arbitrary SAT/SMT problem. To make SMT solving practically possible,
most of the decision state-of-art procedures focus on realistic examples and
provide means for efficiently solving problems that occur in practice. The basic
assumption for such procedures is that the satisfaction of the formulas produced
by the verification and analysis tools is due to a small fraction of the formula,
while the rest can be deemed irrelevant. In recent years, thanks to the advances
in the core algorithms, and the optimizations of data structures and heuristics,

22 Chapter 2. Background

there is tremendous progress in problems that can be solved using SAT/SMT
procedures. In addition, a significant role in the advancement is played by the
increasingly mature state-of-art tools.

In our work, we use the Z3 [44] SMT solver and theorem prover developed
and maintained by the Microsoft RiSE group. The advantage of Z3 is that it
has a stable group of developers that maintains the tool, as well as a broad
academic community that is actively using it. The input of the tool is a set of
assertions that can be either declarations or constraints over variables. Origi-
nally, the assertions are specified using the SMT-LIB language [45]. For practi-
cal reasons, Z3 also provides a number of application programmable interfaces
(APIs) for specifying assertions using common programming languages such
as C#, Python, Java, etc.

The set of formulas whose satisfiability is to be checked are stored on the
Z3 internal stack. The command assert adds a new formula to the stack. Once
the set of formulas of interest have been placed on the internal stack, the SMT
decision procedure is initiated by executing the command check-sat, which
checks whether there is a solution for the conjunction of all the assertions on
the stack. If the set of assertions is satisfiable, Z3 returns the result SAT, which
can be accompanied by the model that contains the witness assignment of the
variables. The model is generated using the command get-model. In the op-
posite case, that is, when the set of assertions on the stack is not satisfied, the
tool returns UNSAT. Additionally, the UNSAT can be augmented with a mini-
mal set of inconsistent assertions, which can be generated using the unsat-core
command.

2.5.2 Model Checking
Model checking is a fully automated verification technique that performs a sys-
tematic and exhaustive exploration of the reachable state-space of a model, to
prove whether it satisfies a given property modeled in logic [46]. The model-
checking procedure is automatically performed by a verifier tool called model
checker.

The core of model checking is the verification algorithm performed by the
model checker. The input of a model checker is a system model expressed
in a formal notation and a set of formally specified logical properties. There
are two possible outcomes of the model-checking procedure. In case when the
model satisfies a given property, the model checker returns a positive answer,
which for reachability and some liveness properties (e.g., something good will
eventually happen) comes as a witness trace. In case of encountering violation

2.5 Formal Modeling and Verification 23

of a safety property (a bad thing never happens), the model checker generates a
counter example, which is usually a path (error trace) to the state that violates
the safety property.

Due to its systematic approach and the exhaustiveness of the state-space
exploration, the model checking procedure can handle models with state spaces
up to a certain size, above which there is not enough memory to store new
states. This is known as the state-space explosion problem. The state-of-the-
art model checking tools, such as UPPAAL [47], Spin [48] or NuSVM [49] use
optimal data structures and smart algorithms, thus can be applied on system
models with state spaces up to 10476 states [50].

Despite the drastic improvements in memory efficiency, performing an ex-
haustive state-space exploration on industrial models is likely to result in a
state-space explosion due to the complexity and high intricacy of the industrial
models. In order to avoid this problem for the verification of industrial sys-
tems modeled in Simulink, in this thesis we resort to special types of model
checking, by which we either compute the probability that a model satisfies a
given property using statistical model checking [23] or we exhaustively explore
a subset of the complete reachable state-space of the model using a technique
called bounded model checking [42]. In the following, we present details about
both approaches.

2.5.3 Statistical Model Checking

In this section, we present a more detailed overview of the statistical model
checking (SMC) by presenting the modeling formalism in which the models
can be expressed and the logic that is used to encode the properties of the
model.

The main objective of SMC is to compute the probability that a given prop-
erty is satisfied by a model, based on a finite number of model simulations of
finite length [23]. A high-level overview of SMC is given in Figure 2.3. SMC
uses series of simulation-based techniques to answer two types of questions:

• Qualitative: is the probability of a given property being satisfied by a
random system execution greater or equal than some threshold?

• Quantitative: what is the probability that a random system execution
satisfies a given property?

24 Chapter 2. Background

stascal'
model'checker

logical'
proper$es

formal'
model

Qualita$veQuan$ta$ve

m
od

ify
'th

e'
m
od

el
NoYesProbability'

esmaon

not'sa$sfactory

Figure 2.3: Statistical model checking procedure.

The qualitative properties are also referred to as hypothesis testing, while
the quantitative are called probability estimation. In both cases, the answer
provided by the procedure will be correct up to a certain level of confidence.
Since SMC is less memory intensive than the traditional model checking, it can
be used to statistically verify models with infinite state spaces.

In our work, we use UPPAAL Statistical Model Checker (UPPAAL
SMC) [24] in our approach proposed to formally analyze semantically trans-
formed Simulink models, which we apply on the use cases provided by our
industrial partners. The input of the UPPAAL SMC tool is a network of stochas-
tic timed automata and a set of properties formalized in temporal logic. In the
following, we give a brief overview of the timed automata and stochastic timed
automata frameworks, as well as the temporal logic used for specifying system
properties in UPPAAL SMC.

2.5 Formal Modeling and Verification 25

Timed Automata

Timed automata (TA) [51] represents an extension of finite-state automata with
a set of real-valued variables called clocks, suitable for modeling the behavior
of real-time systems. The clocks are non-negative variables that grow at a fixed
rate to denote the passage of time. The only assignment operation of clocks is
the reset operation, which sets the clock to zero. The formal definition of a
timed automaton (TA) is given as the following tuple:

TA = 〈L, l0, X,Σ, E, I〉 (2.1)

where: L is a finite set of locations, l0 ∈ L is the initial location, X ⊆ Rn is a
finite set of n clocks, Σ is a finite set of actions, including synchronization and
internal actions, E ⊆ L×B(X)×A× 2X × L is a finite set of edges of type
e = (l, g, a, r, l′), where l and l′ are the source and the sink locations of the
edge, respectively, g is a predicate on RX called guard, action label a ∈ Σ, and
r is the set of clocks that are reset when the edge is traversed. I : L→ B(X) is
a function that assigns invariants to locations, which bound the time allowed in
a particular location. An edge is going to be traversed if its guard g evaluates
to true. B(X) represents the set of formulas called clock constrains of the
following form x ./ c, where x ∈ X , c ∈ N and ./ ∈ {<,≤,=,≥, >}. A
clock constraint is downwards closed if ./ ∈ {<,≤,=}.

The operational semantics of a TA are defined over a timed transition sys-
tem (S,→), where S is set of states, and the → is the transition relation that
defines how the system evolves by moving from one state to another. A state
in the system is represented as a pair (l, v), where l is the location and the v
is the valuation of the clocks. A TA evolves by performing a transition, which
can be either a discrete or a delay. By executing a discrete transition the au-
tomaton instantaneously transitions from one location into another without any
time delay, whereas by executing a delay transition the automaton stays in the
same location while allowing time to pass, which is represented by increasing
the value of the clocks. A path (or trace) σ of a TA is an infinite sequence
σ = s0a0s1a1s2a2... of states alternated by transitions, such that si

ai−→ si+1.
The TA modeling framework allows for the systems to be modeled as a set

of communicating components. LetA1, A2, ...An be a set of TA, such that each
of them corresponds to an individual component of the system. A network of
TA (NTA) is simply a parallel composition A1‖A2‖ · · · ‖An of a finite number
of timed automata, where ‖ denotes the parallel composition operator.

26 Chapter 2. Background

Stochastic Timed Automata

The stochastic timed automata (STA) [24, 52] is an extension of TA with a
delay density function (µ) that represents the set of all density delay functions
µs ∈ L×RX , which can be either uniform or exponential distribution, and (γ),
which is the set of all output probability functions (γs) over the Σo output edges
of the automaton. The formal definition of a STA is given by the following
tuple:

STA = 〈TA, µ, γ〉 (2.2)

The stochastic semantics of a timed automaton STA with a corresponding
set of states S is defined based on the probability distributions for both delays
and outputs for each state s = (l, v) ∈ S of the automaton [52]. The delay
density function (µs) over delays in R≥0, is either a uniform or an exponential
distribution depending on the invariant in l. With El we denote the disjunction
of guards g such that e = (l, g, o,−,−) ∈ E for some output o. Then, d(l, v)
denotes the infimum delay before the output is enabled d(l, v) = inf{d ∈
R≥0 : v + d |= El}, whereas D(l, v) = sup{d ∈ R≥0 : v + d |= I(l)}
is the supremum delay. If the supremum delay D(l, v) < ∞, then the delay
density function µs in a given state s is a uniform distribution over the interval
[d(l, v), D(l, v)]. Otherwise, when the upper bound on the delays out of s
does not exist, then µs is an exponential distribution with a rate P (l), where
P : L → R≥0 is an additional distribution rate specified for the automaton.
The output probability function γs for every state s = (l, v) ∈ S is the uniform
distribution over the set {o : (l, g, o,−,−) ∈ E ∧ v |= g}.

The stochastic semantics of a network of STA (NSTA) subsumes indepen-
dence between the components [52]. Each component, based on the delay den-
sity function and the output probability function repeatedly decides on which
output to generate and at which point in time. Consequently, the output will
be determined by the component that has chosen to produce output after the
minimum delay.

2.5.4 UPPAAL Statistical Model Checker
UPPAAL [47] is an integrated development environment for modeling, simula-
tion and verification of real-time systems, developed as a joint research effort
by the Uppsala University and Aalborg University. The tool was initially re-
leased in 1995 and since has been constantly updated with new features. UP-
PAAL Statistical Model Checker (UPPAAL SMC) [53] is an extension of UP-

2.5 Formal Modeling and Verification 27

(a) Timed Automaton (b) Stochastic Timed Automaton

Figure 2.4: UPPAAL timed automaton and stochastic timed automaton.

PAAL model checker for SMC. The input language of the UPPAAL SMC is a
NSTA model. In the following section, we present an illustrative example of a
stochastic timed automata as modeled in UPPAAL SMC.

UPPAAL SMC Stochastic Timed Automata: Example

In this section we present an illustrative example of an ordinary timed automa-
ton and a stochastic timed automaton as supported by UPPAAL SMC tool.

The input language of the UPPAAL model checker extends the original TA
framework with a number of features, including: constants, global and local
data variables (integer variables with bounded domain), arithmetic operators,
arrays, synchronization channels, urgent and committed locations, as well as
definition of procedures using a subset of the C programming language [54].
The input into the UPPAAL SMC tool is a network of stochastic timed automata
(NSTA). The NTA in UPPAAL is a parallel composition of a finite set of timed
automata over X and Σ, synchronizing over channels and using shared vari-
ables.

Figures 2.4a and 2.4b show an example of TA and STA, respectively, as
supported by UPPAAL SMC. The automaton in Figure 2.4a shows an UPPAAL
TA that models the behavior of a component in the system that periodically
executes a predefined computational routine (compute()) that maps inputs to
outputs. It is composed of two locations: Init and Operate, out of which Init is
the initial one, which is denoted by two concentric circles. By taking the edge
from Init to the Operate location the automaton executes an update action,
which in this particular example resets the clock variable timer. The Operate
location is decorated with an invariant timer ≤ ts, denoting that the automaton

28 Chapter 2. Background

is allowed to stay in that location and perform delay transitions as long as the
value of the clock variable is smaller or equal to the value of the sample time
(ts). The Operate location represents the operational mode of the automaton
and has a single looping edge decorated with a guard expression timer ≥ ts.
The automaton takes the edge on the Operate location whenever the guard
timer ≥ ts is satisfied, that is, as soon as timer == ts. When the edge is taken,
two update actions are executed: i) the computational routine (compute()) that
produces output based on the current value of the input, and ii) the reset of the
clock variable. The computational routine is encoded as a C function.

In Figure 2.4b we show an example of a STA. The automaton is composed
of the same two locations (Init and Operate) as the TA in Figure 2.4a. This au-
tomaton models the behavior of a component that executes continuously, that
is, at very small time intervals (similar to a continuous-time Simulink block,
Section 2.4). To model an approximation of a continuous behavior of the com-
ponent, instead of an invariant, we decorate the Operate location with a rate of
exponential. The rate of exponential is in fact a user-defined value for the dis-
tribution parameter λ in the delay function that calculates the probability that
the automaton leaves the specified location at each simulation step, as follows:
Pr(leaving Operate after t) = 1 − e−λt, λ = 1000. Basically, the greater the
value of λ, the higher the probability that the automaton leaves the location.

Temporal Logics for Property Specification

In this section, we give an overview of the different temporal logics used in this
thesis for specifying properties of timed transition systems.

Computation Tree Logic (CTL) is a branching time logic used for formal
specification of finite-state systems [55]. The semantics of CTL is defined over
a model M that consists of a non-empty set of states S, a labeling function
Label : S → 2AP that assigns a set of atomic propositions (AP) to each state
in the model, and a successor function R : S → S which assigns a set of
successor states to each state s ∈ S.

The syntax of a CTL formula consists of quantifiers over paths and path-
specific temporal operators. In CTL, there are two path quantifiers: universal,
denoted by “A”, which reads “for all paths”, and existential, denoted by “E”,
which reads “there exists a path”. A valid CTL formula is of the type ϕ U ψ,
where “U” (“until”) represents the basic path-specific temporal operator, that
can be combined with either of the path quantifiers. There are two additional
derived path-specific temporal operators, namely the F (Future) also denoted
by “♦”, meaning that a formula eventually becomes true (Fϕ ⇔ true U ϕ),

2.5 Formal Modeling and Verification 29

and the G(Globally) also denoted by “�”, meaning that a given formula is
always true (Gϕ ⇔ ¬ F ¬ϕ). There exists also a weaker version of the U
operator called “weak-until” defined as follows: ϕ W ψ ⇔ (ϕ U ψ) ∨ Gϕ,
which captures all the formulas where the right hand side term (ψ) might never
be satisfied.

Timed CTL (TCTL) [56] is an extension of the CTL with real-valued
variables called clocks. In TCTL each of the path-specific operators has
a timed version that uses constraints over clocks. For denoting the timed
operators, in this thesis we use the following syntax: Operator./T , where
Operator ∈ {U,F,G,W}, ./∈ {<,≤,=,≥, >}, and T is a numeric bound
on the real-valued variable. For instance, the formula EF≤Tϕ requires that
there exists an execution path along which ϕ eventually becomes true within T
time units.

In UPPAAL SMC [52], one can specify probabilistic time-constrained prop-
erties in the probabilistic extension of the weighted metric temporal logic
(PWMTL). The PWMTL properties of UPPAAL SMC that we use in this thesis
are as follows:

ψ ::= P(FC≤cϕ) ./ p | P(GC≤cϕ) ./ p (2.3)

where C is the observer clock of the automaton under analysis, ϕ is a state-
property with respect to the automaton, ./ ∈ {<,≤,=,≥, >} and p ∈ [0, 1].

2.5.5 Bounded Model Checking
Bounded model checking (BMC) [42] is a specialized model checking tech-
nique for verification of system properties over a finite subset of the model’s
state space that is covered by execution paths of finite length. The finite length
of the paths, which is usually denoted by k is called bound. Initially proposed
as an efficient refutation technique, it has been shown that BMC can also be
used for full verification of underlying designs [57].

Let M be the system model with the set of states S, I ⊆ S be the set
of initial states and a state transition relation T , which is a binary relation on
S. We write T (s, s′) to indicate that the state s is related to state s′ via the
transition relation T . Based on this, we define a path in M as follows:

path(s[0,··· ,i]) ,
∧
T (si, si+1),∀i . 0 ≤ i<n (2.4)

Formula (2.4) represents a finite path in model M . The size of a path is
determined by the number of transitions that it contains. Same as for any other

30 Chapter 2. Background

form of model checking, one can check different types of properties over the
finite paths. In our work, we are interested in checking safety requirements,
which can be encoded as invariance properties over bounded paths. An invari-
ance property (P) is a property that holds in every reachable state in model M ,
which is formally defined as follows:

∀s0, · · · , sn, ∀i · 0 ≤ i ≤ n− 1 · (I(s0) ∧ path(s[0,··· ,i])) =⇒ P (si), (2.5)

where P (si) is a predicate denoting that a given state si satisfies property P .
Using this definition, one can check the model with respect to invariance prop-
erties in one of the following ways: i) using the forward reachability procedure,
which starts from the set of initial states I(s0) and repeatedly applies the tran-
sition relation T , while checking whether the each new state satisfies P , or ii)
one can resort to a backward reachability procedure, which starts from a non-
initial state (sk · 0 < k ≤ n) in which P (sk) does not hold, and then show
that it is not possible to reach an initial state by applying the inverse transition
relation.

In any case, one can prove that the modelM satisfies an invariance property
P by proving the following conjunction:

∀s0, · · · , sn, ∀i · 0 ≤ i ≤ n− 1 · ¬(I(s0) ∧ path(s[0,··· ,i]) ∧ ¬P (si)) (2.6)

where n denotes the length of the longest path of non-repeating states, defined
as follows:

max{i|∃s0, · · · , si · I(s0)
i−1∧
j=0

T (sj , sj+1) ∧
i−1∧
j=0

i∧
m=j+1

·sj 6= sm} (2.7)

Provided that the transition relation T (s, s′) can be expressed as a pred-
icate, it is clear how the reachability problem can be reduced to a Boolean
satisfiability problem. In cases when the transition relation T is constrained
by a background theory, SMT is applied. This representation of the transition
relation and the reachability procedure give the following advantages to BMC
over the symbolic model checking based on binary decision diagrams: i) it al-
leviates the infamous state-space explosion of model checking, and ii) it is very
efficient for fast detection of errors in bounded traces up to 100 transitions [42].

The invariance-checking BMC procedure terminates when one of the fol-
lowing two conditions is fulfilled: i) Formula (2.6) cannot be satisfied, or ii)

2.5 Formal Modeling and Verification 31

a predefined number of transitions (denoted as k) of the transition relation has
been reached. The termination in the first case is due to the fact that a state that
does not satisfy property P is detected, in which case a counter-example is gen-
erated. In the second case, all of the states along the generated path satisfy the
invariance property P . When the procedure terminates according to the second
case, a given property is proven to hold in all states between the initial state
and the bound, but not beyond that. This makes the procedure incomplete, as
there is no information whether the states reachable beyond the bound k satisfy
the property or not. However, this is not the case for all models as there are
some designs in which the paths might be infinite, but the set of non-repeating
states is finite and all of them are reachable within k. Such designs usually
contain a back loop in the transition relation, meaning that T (si, sj) represents
a transition from some current state si to a state sj that has been previously vis-
ited. The minimal path that contains the complete set of non-repeating states is
called the reachability diameter, and its size is called completeness threshold
(CT). In our work, we show the existence of the reachability diameter of fi-
nite size to perform complete verification of invariance properties over certain
Simulink models. For the models that do not have a reachability diameter of
finite size, we perform an incomplete invariance checking.

Chapter 3

Research Methodology

A research method represents a concrete way of solving research problems.
The logical scheme of the research method that is used to obtain answers
to scientific questions is called scientific method [58]. A collection of well-
established and accepted scientific methods, rules and postulates particular for
some research discipline is called research methodology. In this chapter, we
present an overview of the research methodology used to fulfil the research
goals of this thesis.

Validate((
the(Solu-ons

Industrial++
Problems State+of+prac5ce

Define(
Research(
Goals Propose((

Solu-ons

State+of+the+art

Implement((
the(Proposed(Solu-ons

Research+results+
(papers/reports)

Industry<related+
Ac5vi5es

Academic<related+
Ac5vi5es

Figure 3.1: The cycle of our research process.

The core of our research methodology is the research process that is il-
lustrated in Figure 3.1. The research process used in this thesis represents an
adaptation of the four steps research framework proposed by Holz et al. [59].

33

34 Chapter 3. Research Methodology

Although the original framework is primarily intended for teaching, our adap-
tation makes it suitable for our research context.

Our research process starts with defining a particular research goal. As
the aim of our research is to provide tools and methods that are relevant for
the industrial practitioners, all of the research goals are defined based on the
following: i) a particular industrial challenge that needs to be addressed, ii) the
state of the practice and iii) the state-of-the-art literature. The initial point for
defining our research goals are the concrete real-world software engineering
challenges that we identify in cooperation with our industrial partners Scania
and Volvo Trucks Group Technology (VGTT). Then, we analyze the industrial
challenges from a research point-of-view in order to identify the underlying
research challenges. A particular challenge might stem from some specific
engineering process used by the company or from a set of methods and tools
that are currently being used in the development process. In order to formulate
a research goal (research objective), we apply the critical analysis of relevant
literature and practice method [60]. By performing the critical assessment of
the relevant literature and practice we make sure that the defined research goal
has not been previously addressed in the existing body of knowledge. The
formulation of the research goals is not a linear process, as they are iteratively
refined and narrowed down until the final version is reached.

During the next step of the research process we propose a solution that ad-
dresses an identified research goal. For developing the solutions that address
the different research goals defined in this thesis, we use a set of established
research methods. In the following, we present the research methods used
for developing the contributions in each of the papers that constitute this the-
sis as listed in Section 1.1. In Paper A [19], we use the case study research
method [61, 62] in order to assess the expressiveness of an already existing
approach for formal system specification in industrial settings. The contribu-
tion of the paper is not a method or a tool that addresses a particular research
goal, but rather a collection of empirical data that we use to draw conclusions
on the expressiveness of an existing method in industrial settings and to iden-
tify challenges not addressed in the literature. In contrast to this, in Paper
B [22], C [25], and D [26] we propose concrete solutions for the identified
research goals through adaptation of already existing approaches for the for-
mal analysis of system specifications encoded as temporal formulas (Paper B)
and methods based on existing techniques for the formal analysis and veri-
fication of Simulink models, based on statistical model checking (Paper C)
and bounded model checking (Paper D). The listed contributions are on two
fronts: i) proposing an adaptation of an already existing technique to address

35

our research goals, which is performed through the formal proof of correctness
research method [59] that ensures that our adaptation is theoretically and for-
mally sound, and ii) a tool that implements the proposed technique such that
the feasibility of the solution can be tested in our context, for which we apply
the proof-of-concept method [59].

During the last step of the research process, we perform validation of our
research results. The main goal of the validation phase is to assess whether
our research results are applicable for the earlier identified real-world software
engineering challenges in the initial step of the research process. This step
is performed in a close cooperation with industry by applying the proof-by-
demonstration [59] research method, where both researchers and the engineers
evaluate the research results. During the validation phase, the following as-
pects of the results are assessed: i) the scope of the proposed solution, that
is, checking whether the proposed solution fully or partially addresses the in-
dustrial challenge; ii) scalability, to determine whether the proposed solution
can be applied on the actual industrial systems, and iii) usability, that is, does
the proposed solution support the transfer of the research results into industrial
practice. All of the proposed tools in this thesis are validated using either an
operational systems, such as the Fuel Level Display (FLD) system from Scania
or the Adjustable Speed Limiter (ASL) from VGTT, or working prototypes,
such as the Brake-by-Wire system (BBW) from VGTT. For instance, in Paper
E [27], the PROPAS tool for the pattern-based formal requirements specifica-
tion is validated by a group of five engineers from Scania based on a subset of
requirements from the FLD system, whereas the BBW Simulink model from
VGTT is used for the validation of both the SIMPPAAL tool for the formal
analysis of Simulink models using statistical model checking (Paper C), and
SYMC tool for bounded invariance checking of Simulink models based on the
principles of bounded model checking (Paper D). Based on the outcome of the
validation phase, we either modify the proposed solution or we modify the ini-
tial research goal, which then triggers subsequent changes to adjust the existing
solution and the implementation of the tool.

After the validation phase is concluded, the research results composed of
the research goal, the solution (both in terms of theoretical advancements and
the tool implementation) and the validation results are summarized into a re-
search manuscript, which we then submit for peer review either as a workshop
paper, conference paper or journal article. In some instances, when the results
are partial but worth sharing with the research community, we publish them as
technical reports [63].

Chapter 4

Research Problem

In this chapter, we present the problem (Section 4.1) and the research goals of
this thesis (Section 4.2). First, we define the overall research goal based on
the actual state of practice and state of the art, which we then decompose into
three smaller research goals, such that we can structure our research and map
the produced research results to the goals better.

4.1 Problem Statement

One way of enabling practitioners who are not experts in formal methods to
create formal system specifications is by providing them with methods and
tools that facilitate structured and reusable style of specification that can be
expressed in various notations, including a restricted form of natural language,
and have precise semantics (a defined relationship between their syntax and
the computational model) such that the corresponding formal specifications
can be automatically extracted. The specification patterns fulfill these criteria.
There is a large body of work on creating different pattern catalogs [11, 12,
18, 64, 65], and a plethora of academic tools that use the specification patterns
for creating formal systems’ specifications [30–34]. What is missing from the
existing endeavors are more studies for generating empirical data regarding the
applicability of the specification patterns and their expressiveness for capturing
the specifications of industrial systems. Some of the potential questions that
await answers are: i) How can industrial systems’ specifications be formalized
using the specification patterns, and how many of them? ii) Are there types

37

38 Chapter 4. Research Problem

of requirements that cannot be captured using the existing set of patterns? iii)
How does an engineer know which pattern to select? iv) How to validate that
the formalized behavior captures the engineer’s intention?

Once the system specifications have been formally expressed, the next step
is to ensure their quality with respect to a certain criterion, such as consis-
tency. A consistent system specification is free of internal contradictions,
meaning that it is logically consistent. The majority of the existing work on
automated formal analysis approaches for assessing the quality of the sys-
tems’ specifications resort to model checking as an underlying analysis tech-
nique [13, 14, 35, 38–40, 66]. For these methods the analysis might suffer from
the well-known state-space explosion problem, so its scalability can be poten-
tially limited, especially for large industrial models. Additionally, industry has
an imperative need for early checking of correctness of the system specifica-
tions for preventing potential specification errors from propagating to subse-
quent artifacts, including the various system models and ultimately the code
as the executable artifact. Consequently, a lightweight and sufficiently scalable
formal analysis approach for consistency analysis of systems specifications that
can be applied even before a complete behavioral system model exists, might
be beneficial.

Most industries, and especially the automotive domain, enjoy the benefits
of the MBD paradigm, as models provide a good way of abstracting the engi-
neering problem and documenting the design. Currently, many of the solutions
are implemented according to the MBD paradigm using different tools. In the
automotive domain, Simulink is the de facto standard tool for developing sys-
tem models. Additional value of the Simulink models is that they can be used
as an input into specialized commercial tools for generating code [16], which
is later deployed for operation. Assuming that the code generation procedure
is correct, one can treat the Simulink models as executable specifications. Un-
der these assumptions, establishing the correctness of the behavioral Simulink
models is of utmost importance as it has direct impact on the correctness of
the generated code. The formal verification of Simulink models raises chal-
lenges on several fronts. First, despite the fact that Simulink is well docu-
mented, which includes extensive specification of the atomic and composite
blocks, their execution semantics and the input-output functions, there is no
formal semantics defined for these models, which can be used to produce a
formal counter-part suitable for analysis with the state-of-the-art formal ver-
ification tools. Second, considering the high expressiveness of the Simulink
models and the complexity and intricacy of industrial systems, even symbolic
and exhaustive model checking is likely not to scale, so identifying and em-

4.2 Research Goals Definition 39

ploying alternative verification techniques that are possibly less exhaustive yet
rigorous and scalable for industrial application is needed.

4.2 Research Goals Definition
Based on the problem description from Section 4.1, we define the overall re-
search goal (Overall RG) of this thesis as follows:

Overall RG: Extend and improve automated and mathematically-rigorous
analysis of system requirements specifications and executable design-time

Simulink models using state-of-the-art formal verification techniques,
towards industrial applicability.

The overall goal of this thesis is to create means for mathematically-
rigorous verification of both system specifications and behavioral models by
using state-of-the-art verification methods and tools. One way to facilitate this
is to extend existing approaches based on well-established verification method-
ologies that require less effort and expert knowledge for application in practice,
and create tools for automation. The overall goal is defined broadly, and in or-
der to narrow it down and be able to assess the contributions more accurately,
we divide it into three smaller goals.

All formal verification techniques rely on properties described in some kind
of logical notation (e.g., temporal logic, Boolean logic, etc.). Such proper-
ties represent the formal counterpart of the informal system specification. The
Achilles heel and “show stopper” of employing formal verification in industry
is the daunting task of generating such formal notations. To ease the task, one
needs an underlying methodology backed by tool support for the automated
generation of formal system specifications. Once the system specification is
formally encoded, one can additionally employ formal analysis techniques in
order to assure its correctness with respect to consistency, such that all logical
contradictions are removed. Hence, we formulate the first research goal (RG1)
as follows:

RG1: Facilitate the automated generation of formal embedded systems
specifications, and their consistency analysis.

Addressing the first research goal follows two steps: i) investigating the
expressiveness of existing reusable approaches (e.g. SPS) for transforming the
natural language requirements into formalized requirements when applied on

40 Chapter 4. Research Problem

an industrial use case, and ii) proposing a rigorous method for consistency
checking of the formalized requirements, complemented by adequate tool sup-
port.

The second challenge that is addressed in this thesis concerns the verifica-
tion of early design-time executable models. Following the MBD approach,
the current industrial practice often resorts to developing executable software
models for complex embedded software functions. Among the different tool-
boxes that enable MBD, MATLAB Simulink is the most popular and the de
facto standard in many industries, including the automotive industry. The cur-
rent state-of-practice techniques and tools for verification of such models are
restrictive, by either not providing support for the formal verification of high-
level system properties, or by failing to scale with the size and complexity of
most industrial Simulink models. Consequently, we define the second research
goal (RG2) of the thesis as follows:

RG2: Facilitate automated and scalable formal analysis of large Simulink
models.

By addressing research goals RG1 and RG2 we establish the foundations of
a framework for the formal analysis of requirements, and industrial embedded
systems models specified in Simulink. Finally, in order to get more insight
about the potential usability of the proposed approaches on industrial systems,
we need to investigate their applicability on industrial systems. Consequently,
we define the last research goal (RG3) as follows:

RG3: Assess the practical usefulness and scalability of the proposed
formal verification approaches on industrial system models.

By addressing RG3, the aim is to gain information on the strengths and
limitations of our proposed solutions, when applied on real-world systems, and
assess their impact on the quality of industrial embedded systems.

Chapter 5

Thesis Contributions

In this chapter, we give a compact overview of the contributions that address
the research goals defined in Section 4.2. The contributions of this thesis are on
three main fronts: i) industrially-relevant method and tool for the formal system
specification, and an automated consistency analysis approach of formalized
system specifications expressed as a set of TCTL formulas, ii) methods and
tools for the formal analysis of Simulink models, and iii) assessment of the
proposed tools and methods on industrial systems.

5.1 Pattern-based Formal Specification and
Automated Consistency Checking of
Embedded Systems Requirements

As our first contribution (RC1), we evaluate an existing approach for the
pattern-based formal specification of automotive embedded software systems’
specifications from Scania, and propose an SMT-based method supported by
a tool for checking logical consistency of formally encoded system specifica-
tions. This contribution addresses research goal RG1.

In Paper A [19], which is also included as Chapter 8 of this thesis, we re-
assess the expressiveness of an existing approach called Specification Pattern
System [18], more specifically its real-time extension (RTSPS) [12] for for-
malizing requirements in the automotive domain. Our work has been inspired
by an earlier attempt of industrial application of specification patterns by Post

41

42 Chapter 5. Thesis Contributions

Formalized	

70%	

Non	
 Formalized	

6%	

Phenomenon	

24%	

(a)

25	

16	

11	

8	
 7	

2	
 1	

0	

5	

10	

15	

20	

25	

30	

Pre
ce
de
nc
e	

Un
ive
rsa
lity
	

Re
sp
on
se	

Pre
ce
de
nc
e	
 c
ha
in	

2-­‐1
	

Bo
un
de
d	
 i
nv
ari
an
ce
	

Ex
ist
en
ce
	

Bo
un
de
d	
 r
esp
on
se	

(b)

Figure 5.1: Pattern-based formalization results: (a) main formalization results
and (b) frequency of the used patterns.

et al. [67], in which the authors show that by using the specification patterns
one can capture the behavior of most of the requirements in the automotive do-
main. Additionally, the same study reports that a small subset of the patterns is
usually enough to express most of the requirements. In our work, the goal is to
perform a similar study using different systems’ specifications from the same
domain, with the intention to either strengthen or disprove the claims of Post
et al. [67].

The set of requirements selected for formalization in our study consists
of 100 requirements that have been extracted from the system specifications
of several operational software functions installed in heavy-load vehicles pro-

5.1 Pattern-based Formal Specification and Automated Consistency
Checking of Embedded Systems Requirements 43

duced by Scania. The set includes requirements at different levels of abstrac-
tion of the system, ranging from high-level requirements up to very detailed
implementation specifications. The core part of the study, which is the appli-
cation of the specification patterns on the set of requirements is performed by
a formal methods expert.

The results of our study are given in Figure 5.1. The formalization results
given in Figure 5.1a show that 70% of all the requirements can be formalized
using the specification patterns; 24% of the remaining requirements belong
to the category of so called phenomenon requirements that capture the systems
configuration and as such can be trivially formalized (no patterns are required).
Finally, 6% of the requirements could not be expressed using the specification
patterns due to several factors, which include: high complexity, high level of
ambiguity, and lack of information. The formalization results from our study
are aligned with the results of the previous study in the automotive domain [67].

The second aspect assessed in the study is the frequency of occurrence of
the patterns used in the formalization. The goal is to determine the number of
the patterns from the RTSPS catalog that have been used in the formalization
process and their frequency, that is, how many times each of the patterns has
been used. Our results for the pattern frequency are given in Figure 5.1b, and
in principle show that a small subset of patterns is enough to formalize most of
the requirements. Again, our results are aligned with the previously reported
ones [67].

Once the systems’ specifications have been formally encoded, one can em-
ploy formal analysis techniques to assess their quality with respect to some for-
mally defined criterion. In Paper B [22], which is also included as Chapter 9
of this thesis, we propose an SMT-based consistency analysis approach for
system requirements specifications encoded in TCTL. For such system speci-
fications, we propose the following definition for consistency:

Definition 1 (Inconsistent specification). Let Φ = {ϕ1, ϕ2, ..., ϕn} denote the
system requirements specification, where each of the formulas ϕ1, ϕ2, ..., ϕn
encodes a requirement, respectively. We say that the set Φ is inconsistent if the
following implication is satisfied: ϕ1 ∧ ϕ2 ∧ ... ∧ ϕn =⇒ False.

From the definition above, it follows that a system specification is incon-
sistent if there does not exist a truth valuation of the conjunction of all the
formulas in the specification. To disprove the inconsistency, following Defi-
nition 1, it is enough to provide a witness set of valuations of variables that
satisfies the conjunction of all the formulas ϕ1 ∧ ϕ2 ∧ ... ∧ ϕn.

44 Chapter 5. Thesis Contributions

Step	
 1 Step	
 2 Step	
 3 Step	
 4
Text	
 to	
 TCTL TCTL	
 to	
 FOL Encoding	
 in	
 	

SMT-­‐LIB SMT	
 Analysis

sat	
 (consistent)

unsat	
 (inconsistent)

SMTLibReqSeSAMM	
 Specifier

PROPAS

unsat-­‐core

model

Figure 5.2: Automated SMT-based consistency checking of requirements
specifications.

Our methodology for consistency checking of systems specifications is il-
lustrated in Figure 5.2. It consists of four steps given as follows: in Step 1,
the system specifications expressed in natural language are transformed into a
set of TCTL formulas by using the SPS patterns [12, 18]. As the SMT solvers
operate over first-order logic (FOL) formulas, in order to bridge the semantic
gap between the two formalisms, that is TCTL and FOL, during the Step 2 the
system specification encoded as a set of TCTL formulas is automatically trans-
formed into FOL formulas. The transformation is performed as follows: first
the TCTL encoding of the used specification patterns are translated into FOL
counterpart by instantiating the semantics of the TCTL path-specific operators
and path quantifiers using structured derivations, and second, the non-literal
terminals of the patterns (see Section 2.2) that represent the user inputs are
mapped into the FOL formulas. During Step 3, the FOL formulas are then au-
tomatically encoded into SMT-LIB assertions to produce an SMT-LIB script,
which can be used as an input to SMT solver. During the same step, the as-

5.2 Formal Analysis of Simulink Models by Statistical Model Checking
45

sertions of the generated SMT-LIB script are additionally optimized for solv-
ability by reducing the number of quantifiers and quantified variables using a
number of abstraction rules, which are used to simplify the original formulas
in order to ensure their analyzability, while preserving the information relevant
for detecting potential inconsistencies. Finally, in Step 4, we perform the con-
sistency analysis using a state-of-the-art SMT solver (e.g., Z3), which returns
the consistency verdict for the considered set of requirements. If the system
specification is deemed consistent according to Definition 1 the user gets an
affirmative answer by the tool. In the opposite case, that is, when the sys-
tem specification is not consistent, the negative answer is complemented by a
minimal set of logically inconsistent requirements.

The proposed four-step methodology is automated via the PROPAS tool.
The tool is created by coupling two major components: our SESAMM SPEC-
IFIER tool [20] that provides means for creating formal system specifications
(Step 1 in Figure 5.2), and a library called SMTLIBREQ that completely au-
tomates the Steps 2-4 of our consistency analysis methodology given in Fig-
ure 5.2.

5.2 Formal Analysis of Simulink Models by
Statistical Model Checking

As our second contribution (RC2), we propose an approach for the formal anal-
ysis of Simulink models using statistical model checking (SMC). The contri-
bution is given as Paper C [25] (which is included as Chapter 10 of this
thesis) and partially addresses research goal RG2. Our approach in essence is a
pattern-based, execution-order preserving automatic transformation of atomic
and composite Simulink blocks into a NSTA that can then be formally ana-
lyzed with UPPAAL SMC. To enable this, first we define the formal syntax
and semantics of Simulink blocks and their composition, and second, we show
that the transformation is provably correct for discrete-time Simulink models.
Our method is supported by the SIMPPAAL tool [25], which we introduce and
apply on two industrial Simulink models, a prototype implementation of the
Brake-by-Wire (BBW) and the operational Adjustable Speed Limiter (ASL)
system. Our work enables the formal analysis of industrial Simulink models
by automatically generating STA counterparts. In the following, we present
more details of the approach.

We define the syntax of a Simulink block as follows:

46 Chapter 5. Thesis Contributions

Definition 2 (Simulink block). An atomic Simulink block, denoted by B, is
defined as the following tuple:

B = 〈sn, Vin, Vout, VD,∆, Init, blockRoutine〉 (5.1)

where: sn ∈ Z+ is the execution order number; Vin is a finite set of
typed input real-valued variables; Vout is a finite set of typed output real-
valued variables; is a finite set of typed data (or state) real-valued variables;
∆ = {∆0,∆1, · · · ,∆k} represents the totally ordered set of time points at
which an output is produced. For discrete-time Simulink blocks, the value of
a time point ∆j is calculated as ∆j = offset + j ∗ ts, where ts, offset ∈ R≥0

are the sample time and the offset of the atomic Simulink block, respectively,
and 0 ≤ j ≤ k ∈ N is the index of the element. For continuous-time blocks
∆j = j ∗ ts, where ts is infinitely small. Init() - is an initialization of the data
variables; blockRoutine() = Update();Output() - is the sequential compo-
sition of Output() and Update() functions. It captures the functionality of a
Simulink block, where: Output() : Vin × VD 7→ Vout is the output function
and Update() : Vin × VD 7→ VD is the update function. A Simulink model
is then formally defined as a sequential execution of a set of Simulink blocks
represented as follows:

Definition 3 (Simulink model). A Simulink model is formally defined as a
sequential composition of n Simulink blocks that communicate via shared vari-
ables, as follows:

S = B1 ⊗B2 ⊗B3 · · · ⊗Bn, (5.2)

where: sS = {s1, s2, . . . , sn} is an ordered list of execution of blocks
B1, B2, . . . , Bn, such that ∀(i, j), i, j ∈ [1, · · · , n] · i < j ⇒ si < sj , V Sin
=

n⋃
i=1

V iin is the set of input variables of S, V Sout =
n⋃
i=1

V iout is the set of out-

put variables of S, V SD =
n⋃
i=1

V iD is the set of internal state variables, ∆S =
n⋃
i=1

∆i is the set of time points at which the respective data and output vari-

ables are updated, and (Init; blockRoutine)S is an ordered list of pairs of
(Init, blockRoutine), which are executed atomically at given times ∆i, de-
noted by |=∆i

, 1 ≤ i ≤ n:

(Init; blockRoutine)S ,(Init1; blockRoutine1)|=∆1 ; · · · ;

(Initi; blockRoutinei)|=∆i

5.2 Formal Analysis of Simulink Models by Statistical Model Checking
47

The operational semantics of a Simulink block is interpreted over a timed
transition system T , defined as follows:

T = 〈Σ,Σ0, L,→〉 (5.3)

where: Σ is the set of states, where each state σ = (x|t, u|t, y|t) is given by
the values y|t of all output variables y at a given time instance t ∈ R≥0, for
given input at time t, that is, x|t, and data at time t, that is, u|t, Σ0 ⊆ Σ
is the set of initial states, L = La ∪ Lt represents the set of labels, where
La = {init, blockRoutine} is the set of action labels and Lt = {m ∗ δ, r ∗ δ}
is a set of time labels, and→⊂ Σ×La×Lt×Σ is the transition relation that
consists of the following types of transitions:

σ0
init,r∗δ−−−−−→ σ ⇐⇒


if VD 6= ∅ then t = t0 + (r ∗ δ), and

init() : u = u0, y0 = u

else t = t0 and init() : void

(5.4)

σ
blockRoutine,m∗δ−−−−−−−−−−−−→ σ′ ⇐⇒ t′ = t+m ∗ δ, and

u′ = f(x′, u), y′ = f(x′, u′) (5.5)

The first transition type called init is executed once at the beginning of the
blocks’ execution only for those that have an internal state, whereas the second
type of transitions called blockRoutine updates the internal state (if any) and the
output variables for given inputs at particular time points denoted as t+m ∗ δ.
If in the definition of ∆ we instantiate r = m = 1 we obtain the continuous-
time behavior of blocks that execute the blockRoutine infinitely often, that is,
at every simulation step δ.

From the above definition, an infinite run ρ of a Simulink block can be
defined as the following sequence of states:

ρ = σ0
init,r∗δ−−−−−→ σ1

blockRoutine,m∗δ−−−−−−−−−−−−→ . . .
blockRoutine,m∗δ−−−−−−−−−−−−→ σn (5.6)

Further, we use the above semantics of the Simulink blocks given in terms
of a timed transition system to transform the Simulink models into a NSTA.
The fact that we chose a probabilistic encoding rather than a non-probabilistic
one is justified by the scalability of statistical model checking as compared to
the traditional one, and this requires the encoding that we propose. The formal
definition of an atomic Simulink block given in Definition 2 supports two types

48 Chapter 5. Thesis Contributions

(a)

(b)

Figure 5.3: Templates for transforming Simulink blocks into stochastic timed
automata: (a) discrete-time template and (b) continuous-time template.

of computational behavior: i) continuous blocks that compute output at each
step of the execution, and ii) discrete blocks that compute output at specific
time points. In order to facilitate the transformation of the atomic Simulink
blocks, we propose two (S)TA templates as given in Figure 5.3.

The TA given in Figure 5.3a represents the template for the discrete-time
atomic blocks. The automaton is composed of two locations, Start and Ope-
rate, and two edges. The execution modeled by this automaton is as follows:
the simulation time is modeled by a global clock, called gtime. The automa-
ton is initially in the Start location and stays there until it is scheduled for first
execution, which is modeled though the execution order number of the block
(sn) and the inter-arrival time of the signals within the model (IAT). At the
first execution, the automaton first initializes the internal state variables by per-
forming the initialize() UPPAAL update action, followed by the input-output
routine (blockRoutine() UPPAAL update action) that calculates the value of the
outputs. The last update action is resetting the local clock variable t. Both
the initialize() and blockRoutine() are modeled as C functions in UPPAAL. For
assuring the correctness of the block routines encoded as C functions, we use
the Dafny program verifier [68]. Once the automaton reaches the Operate lo-
cation, it executes the blockRoutine() on every sample time interval (ts), which
is modeled though the loop-edge on the Operate location.

5.2 Formal Analysis of Simulink Models by Statistical Model Checking
49

The STA in Figure 5.3b represents the template used for modeling the be-
havior of the continuous-time atomic blocks. The automaton is composed of
the same two locations as the discrete-time template and uses the same mech-
anism for the initial execution. The only difference is in the operational be-
havior that is modeled. In order to encode the continuous-time behavior of the
Simulink blocks, the Operate location is decorated with the exponential rate λ,
which determines the probability of the automaton leaving the specified loca-
tion at each simulation step, according to an exponential distribution, formally
defined as Pr(leaving Operate after t) = 1− e−λt.

We provide a proof for the soundness of the transformation of the tu-
ples into STA. The proof covers only Simulink models composed of discrete-
time components only. For validation of the Simulink models that contain
continuous-time atomic blocks, we resort to comparing the simulation traces
between the Simulink model as produced by MATLAB Simulink and the
NSTA model obtained in UPPAAL SMC. For the complete proof, we refer our
reader to Paper C [25] or to Chapter 10 of this thesis.

Given that in the general case a Simulink model is a hierarchical structure
constructed using composite blocks, in the same work we propose a flatten-
ing algorithm that is used to transform a hierarchical Simulink model into a
flat one. Our flattening procedure serves the following two main purposes: i)
it eliminates the Simulink modeling elements that do not contribute to com-
putation, and ii) it assures the preservation of the sequential execution order
of the computational blocks as defined in the original Simulink model. After
the flattening procedure has been applied, the newly generated flat model is
generally of a lower complexity due to the non-computational elements being
removed from the model, which include the composite blocks, and virtual mod-
elling atomic elements such as buss, (de)multiplexer, goto, from,
etc. These elements have the single purpose of improving the readability of the
model and do not influence the computation.

Finally, we provide a tool called SIMPPAAL that completely automates the
process of generating an analyzable model encoded as a NSTA suitable for
analysis using the UPPAAL SMC tool [25], which is an extension of UPPAAL
tool for analysis of stochastic hybrid systems. The input to the SIMPPAAL tool
is a Simulink model and the block execution order (generated by the MATLAB
tool), and as an output it generates a NSTA that is suitable for analysis using
the UPPAAL SMC tool. The tool executes all the phases of the transformation
process of Simulink model into NSTA in a completely user-transparent way,
meaning that it does not require any user intervention during the process.

50 Chapter 5. Thesis Contributions

5.3 Bounded Invariance Checking of Simulink
Models

176 Paper D

B1

B2

B3 B4
input1 yB1

yB2

yB3 yB4

input2

Figure 11.2: Linear composition of Simulink blocks.

The term composition is used to denote a subset of atomic blocks of a Simulink
model, which in isolation can be treated as a Simulink model. Consequently,
the syntax and semantics definitions for Simulink models apply to composi-
tions as well. In this section, we provide definitions for the identified compo-
sitions.

Before we introduce and define the different types of compositions, we
define the notion of predecessor for Simulink blocks inside a given Simulink
model.

Definition 9. Let S = B1, B2, . . . Bn be a set of n 2 N atomic Simulink blocks
with their sets of input and output variables VinBi

, VoutBi
, 8Bi · i 2 [0, n]. A

Predecessor (Bi is a predecessor of Bj) is a binary relation over S defined as
follows: 8Bi, Bj 2 S · predecessor(Bi, Bj) , 9y · y 2 VoutBi

^ y 2 VinBj
.

The set of Predecessors(Bi) ⇢ S is: predecessors(Bi) , 8Bj 2
S · (predecessor(Bj , Bi) _ (9Br 2 predecessors(Bi) ^ Bj 2
predecessors(Br))).

Linear composition This is the most common composition of Simulink
blocks. An illustrative example of a linear composition is given in Figure 11.2,
and it consists of four blocks (B1, B2, B3, and B4) and six signals (input1,
input2, yB1, yB2, yB3, yB4). The main characteristic of the linear compo-
sitions is that the signals propagate in one direction, meaning that the current
value of any output signal depends on the current value of the input signal(s)
and internal state variables only. For instance, let us consider the signal yB3

from Figure 11.2. The value of the signal can be computed using a function
obtained as a sequential (forward) composition of transfer functions of the pre-
decessor blocks yB3 = f3(f2(input2), f1(input1)), where f1, f2 and f3 are
the transfer functions of B1, B2 and B3, respectively and input1 and input2
are the inputs. Based on this, we define a linear composition as follows:

(a)

48 Chapter 5. Thesis Contributions

B1 B2 B3
input yB1 yB2 yB3

Figure 5.4: Linear composition of Simulink blocks.

B3

B1 B2
input yB1

yB2

yB2

yB3

Figure 5.5: Feedback-loop composition of Simulink blocks.

reachability diameter, and the size of the same expressed in number of tran-
sitions is called completeness threshold (CT). Consequently, if a property is
verified over the reachability diameter then the verification result is complete.
As our next contribution on the topic, we isolate commonly used Simulink de-
signs and check whether there exists a CT for the same. Based on the analysis
of the Simulink designs of two industrial use cases, namely BBW and ASL,
which contains 320 and 4000 Simulink blocks respectively, we identify com-
monly used blocks and compositions. The commonly used blocks belong to
three categories, namely feedthrough, delay and sFunctions, which when com-
posed together generate the two commonly occurring compositions: linear and
feedthrough. We prove that the linear and a restricted class of feedthrough
compositions have CTs, meaning that Simulink models that contain only such
compositions are completely verified once the CT is met. Last but not least,
propose the SyMC tool that automates all the required steps for employing the
bounded invariance checking of Simulink models and apply it on the BBW
Simulink model.

5.4 Assessing the practical usefulness and
scalability of the proposed approaches on
industrial models

The last contribution of the thesis is the validation of the proposed approaches
and tools for the automated formal specification and mathematically rigurous

(b)

Figure 5.4: Commonly identified Simulink block compositions: (a) Linear
composition and (b) Feedback-loop composition.

The third contribution of this thesis (RC3) is an approach and a tool for the
formal verification of invariance properties of Simulink models using the prin-
ciples of bounded model checking (BMC), which completes our contributions
towards the research goal RG2. The motivation for investigating this approach
is to avoid encoding Simulink model behavior into a stochastic framework,
and go beyond probabilistic guarantees of property satisfaction. The proposed
approach is presented in Paper D [26] (included as Chapter 11 of this the-
sis) and is proposed as a complement to our SMC-based analysis approach
(see Section 5.2) for Simulink models. In this work, we show how Simulink
models can be formally analyzed against invariance properties using BMC. In
its basic form, the technique provides means for verification of an underlying
model over bounded traces, in a rigorous manner.

Our BMC-based approach unfolds as follows: first, we retain the opera-
tional semantics of the Simulink blocks and the flattening procedure as defined
for the SMC-based approach (see Section 5.2). This means that the opera-
tional semantics are again interpreted over a timed transition system; second,
we propose an encoding of the reachable state-space of the Simulink blocks
as a sequence of steps each expressed as a constraint, and third, we propose
a template-based encoding of the general constraints into assertions encoded
into the SMT-LIB format, which can be used as an input in most of the mod-
ern SMT solvers. In our work, we use the Z3 [44] SMT solver from Microsoft.
Even though BMC procedure is in general incomplete, we show that for certain
Simulink designs the verification result is complete. We do this by calculating
the bound k and proving that it is indeed a completeness threshold (CT) for

5.3 Bounded Invariance Checking of Simulink Models 51

the particular block composition. Consequently, if an invariance property is
proven for the reachability diameter then the verification result is complete.

In order to identify recurring Simulink designs, we isolate commonly-
used compositions of Simulink blocks from two industrial Simulink models,
namely BBW and ASL, both from VGTT, and check whether there exists a CT
for such models. Based on the analysis of the Simulink models we identify
both the commonly-used blocks and commonly-occurring compositions. The
commonly-used blocks belong to three categories, namely: feedthrough, delay
and s-function, which when composed together generate the two commonly-
occurring compositions: linear and feedthrough (see Figure 5.4). To be able
to reason whether the identified compositions of blocks have CT, we first de-
fine how each of the identified block types computes its outputs, respectively,
based on the possible transitions for Simulink blocks, which we then use to
give formal definitions for the linear and feedthrough compositions of blocks.

Feedthrough (FT) blocks are atomic Simulink blocks characterized by the
absence of an internal state and by the immediate execution of the block routine
when the input(s) change(s). The type of the block is determined by the type
of the input-output function (f() in Formula (5.5) Section 5.2). Based on the
possible transitions for atomic Simulink blocks given by Formulas (5.4) and
(5.5), the execution trace of a feedthrough block BFT , with VinBFT

the set of
input variables, VoutBFT

the set of output variables, and the value of an output
variable yBFT

∈ VoutBFT
in any state σiBFT

of Formula (5.6) (denoted as
yiBFT

), is always defined as follows:

yiBFT
= fBFT

(xiBFT
), (5.7)

where xiBFT
and yiBFT

are the valuations of the xBFT
∈ VinBFT

yBFT
∈

VoutBFT
in a given state σiBFT

, respectively.
The execution semantics of a UnitDelay block BD, which is the only type

of delay block present in our use cases, is given as follows: before the first
computation, the init() transition is executed, setting uBD

∈ VDBD
to the

initial value (initV) as specified in the block’s configuration. After the block
starts, the block executes its blockRoutine(). If we assume that t denotes
the time that has elapsed along the execution of the block (Formula (5.6)), the
blockRoutine() is executed whenever t mod ts = 0. Consequently, the value
of the output variable yBD

of a UnitDelay block are defined as follows:{
uiBD

= initV, executed before the execution starts
yiBD

= uiBD
, uiBD

= xiBD
, if t mod ts = 0

(5.8)

52 Chapter 5. Thesis Contributions

In our use cases, all of the s-function blocks are either stateless or the internal
state is constant, that is, it does not change during execution. Consequently all
the s-function blocks can be treated as feedthrough ones.

In order to show the existence of the CT for certain Simulink designs, we
propose and prove three theorems for the existence of the CT for the linear
and a restricted class of feedback-loop compositions. The first theorem is on
the existence of the CT for the linear compositions composed of feedthrough
blocks only. In the second theorem, we show that the existence of the CT
is still retained for linear compositions composed of feedthrough and delay
blocks. The last theorem shows that there is a restricted class of feedback-loop
compositions for which there exists a CT. In the proposed theorems, we do not
only show that there exists a CT for the specified compositions of blocks, but
we also provide means for calculating the size of the reachability diameter for
the linear compositions. Our work identifies and shows that Simulink models
that contain those certain classes of block compositions that exhibit a CT, can
be guaranteed to satisfy an invariance property. For the theorem formulations
and the complete proofs we refer our readers to Paper D [26]. Last but not least,
we propose the SYMC tool that automates the following steps: i) generation
of bounded paths, ii) calculation of CT for the linear-compositions and iii)
invariance checking via the Z3 Python API.

5.4 Assessing the practical usefulness and
scalability of the proposed approaches on
industrial models

As the last contribution (RC4) of this thesis, we present the validation of
the proposed approaches and tools for the automated generation of formal
systems specifications, and mathematically-rigorous verification of executable
Simulink models, which are required to meet the research goal RG3.

In Paper B [22], we validate our SMT-based consistency analysis method
by applying the PROPAS tool on a system specification for the Fuel Level Dis-
play (FLD) system from Scania. The validation effort in this paper focuses
on showing that the approach can be applied on the specification of a realistic
system. First, we encode in TCTL the set of 24 requirements using specifi-
cation patterns, which are then automatically transformed into an SMT-LIB
script composed of 36 assertions. The script is then analyzed using the Z3
SMT solver, which proves the system specification of the FLD system consis-

5.4 Assessing the practical usefulness and scalability of the proposed
approaches on industrial models 53

tent in the sense of Definition 1 given in Section 5.2. The proof terminates in
seconds on a standard Linux-based laptop. Considering the number of require-
ments used, generalizing the scalability of the approach is difficult, however,
the short analysis time represents a good indicator for the potential usability of
the approach. The formal specification of the system has been performed by a
formal methods expert, hence that the practical usefulness of the pattern-based
specification feature with engineers, is not assessed.

In order to get more insight about the practical usefulness of the pattern-
based formal system specification approach, we perform an exploratory case
study of the pattern-based approach and the PROPAS tool in industrial setting,
which is reported in Paper E [27] (included as Chapter 12 of this thesis).
The goal of this paper is to gather empirical data to evaluate the practical use-
fulness of the pattern-based specification approach and the PROPAS tool in
industry. We use the following criteria for the assessment: i) correctness of
the application of the specification patterns , and ii) required time for express-
ing a given system specification using the patterns. The case study involves
execution of the following steps: i) select the operational system and the set
of requirements to be used in the study, ii) select group of different stakehold-
ers from the embedded software development process in Scania, Sweden, iii)
prepare and distribute a comprehensive tutorial on how to use the specifica-
tion patterns and the PROPAS tool to the selected participants, iv) gathering
of qualitative and quantitative data, and finally, v) data analysis and drawing
conclusions. Our case study involves the following participants: a software ar-
chitect for autonomous systems, two development engineers (out of which one
previously worked as quality assurance engineer), a requirements coach, and
an information/safety architect. The participants in a case study are called case
study subjects or CSS for short. The quantitative data consists of correctness of
application of the patterns (expressed as % of correctly specified requirements
out of the total set of requirements) and the time (in minutes) for specifying the
set of six predefined requirements from the Fuel Level Display (FLD) system,
whereas the qualitative data is collected using a survey of ten statements that
could be answered using five predefined degrees of satisfaction, ranging from
“completely disagree” to “completely agree”.

The obtained quantitative data shows that in 90% of the cases the correct
specification pattern is selected by the engineers (see Table 5.1, where “X”
denotes that a correct pattern is applied for the given requirement and “×”
the opposite case), and that on average the engineers spend 26.4 minutes for
formalizing the set of six requirements (see Table 5.2). The qualitative data
(details provided in Paper E [27] or in Chapter 12) shows that the involved

54 Chapter 5. Thesis Contributions

Table 5.1 Pattern-based requirements specification correctness.

CSS R1 R2 R3 R4 R5 R6 total
CSS1 X X X X X X 100%
CSS2 × × X X X X 66.67%
CSS3 X X X X X X 100%
CSS4 X X X X X X 100%
CSS5 X X X X X × 83.33%
total 80% 80% 100% 100% 100% 80% 90%

Table 5.2 Requirements specification time in minutes.

CSS R1 R2 R3 R4 R5 R6 total
CSS1 3 2 2 2 4 13 26
CSS2 3 6 2 2 1 16 30
CSS3 2 2 2 2 2 16 26
CSS4 3 2 2 2 2 18 29
CSS5 2 3 2 2 2 10 21
avg. 2.6 3 2 2 2.2 14.6 26.4

engineers are positively inclined towards the pattern-based system specification
through a specialized tool support such as the PROPAS tool. Based on the
collected data, we conclude that the pattern-based approach accompanied by
an adequate tool support can be practically useful for the engineers. However,
in order to assess whether the approach has the potential for a wider industrial
adoption a case study of larger scale is required.

We also validate our SMC-based approach for verification of Simulink
models implemented in SIMPPAAL on two industrial use cases: Brake-by-Wire
(BBW) and Adjustable Speed Limiter (ASL), both from VGTT in Paper C [25].
The validation is carried out by applying our SIMPPAAL tool that automates the
process of generating the formal model, on the Simulink diagrams of the above
mentioned systems. In order to analyze the scalability of the approach, we ap-
plied the SIMPPAAL tool on a prototype Simulink model implementation of the
BBW system that contains around 320 Simulink blocks, and on parts of ASL
Simulink model that contains more than 4000 blocks. Our preliminary results

5.4 Assessing the practical usefulness and scalability of the proposed
approaches on industrial models 55

Table 5.3 Mapping between the included papers and the research contributions.

RC1 RC2 RC3 RC4
Paper A X
Paper B X X
Paper C X X
Paper D X X
Paper E X X

Table 5.4 Mapping between the research contributions and the research goals.

RG1 RG2 RG3
RC1 X
RC2 X
RC3 X
RC4 X

show that SIMPPAAL can be successfully applied on Simulink models of the
BBW scale; the NSTA model generation terminates within seconds and the re-
sulting model is analyzable. For larger Simulink model sizes, like that of ASL,
the tool is applicable up to a certain limit because of technical limitations, such
as: i) inability to parse Simulink models that use the concept of library to refe-
rence Subsystem blocks, and ii) the limited set of plug-ins for generating the C
functions for the blocks input-output functions.

We analyze the NSTA model of the BBW system with respect to six func-
tional properties, out of which three are timed and three untimed. Due to long
analysis time, we perform hypothesis testing for one of the properties, whereas
for the remaining five we carry out a probability estimation, which in princi-
ple is less time consuming. The complete analysis results are given in Paper
C [25]. The analysis of the generated model performed by the UPPAAL SMC
tool shows encouraging results, however for increased confidence in applicabil-
ity a more extensive validation is required. The complete process of generating
the formal model for analysis is automated and thus transparent for the user,
which means that it does not introduce usability difficulties.

The validation of the BMC-based verification approach is presented in Pa-

56 Chapter 5. Thesis Contributions

per D [26]. The approach is validated by assessing the scalability of the SYMC
tool that automates the complete process of generating the formal analysis
model and performing the bounded invariance checking by means of satisfi-
ability analysis using Z3. Since the model-generation procedure is automated
and executed in a “push-button” manner, its practical usefulness is assured by
design and implementation. For validation, we apply the SYMC tool on the
BBW Simulink model, on which we verify two functional properties. During
the analysis we demonstrate both the bounded yet incomplete, as well as the
bounded and complete invariance checking. The complete invariance checking
is possible for one of the properties, since it specifies the desired behavior of
a part of the BBW model that is a linear combination of Simulink blocks, for
which the CT exists.

In summary, the mapping between the included papers and the research
contributions is given in Table 5.3, whereas the mapping between the research
contributions and the research goals is given in Table 5.4.

Chapter 6

Related Work

In this chapter, we present an overview of and comparison to research en-
deavors related to the three main areas that are considered in our work, in-
cluding: formal systems specification via specification patterns, automated re-
quirements consistency analysis, and formal analysis of behavioral models of
industrial embedded systems specified in Simulink.

Formal system specification. In this thesis we adopt the specification pat-
terns [11, 12, 18] as an engineer-friendly approach for formal system specifi-
cation suitable for practitioners who are not trained in formal methods. The
existing body of work on specification patterns has two major directions: the
first one is towards enriching the specification pattern catalog by identifying
new patterns, whereas the second one is more focused towards bringing the
specification patterns closer to the practitioners. Our work follows the latter
research direction.

Most of the existing work in the literature focuses on improving the speci-
fication pattern catalog [11,12,18,64,65], with rather few studies that study the
applicability of the patterns in real-world scenarios. The main focus our work
on the topic is the following: i) performing case studies to test the expressive-
ness and the practical usefulness of the specification patterns for industrial sys-
tem specifications, and ii) providing a specialized tool support intended to ease
the adoption of the specification patterns in industrial development process.

The suitability, that is, the expressiveness of the specification patterns for
formalizing requirements for operational industrial systems has not been ad-
dressed in many studies. Post et al. [67] perform a case study in which they

57

58 Chapter 6. Related Work

test the expressiveness of the specification patterns for formalizing a set of re-
quirements from the automotive domain. The results of the study show that the
specification patterns, in this case the real-time catalog as proposed by Konrad
and Cheng [12] is expressive enough for formalizing the selected set of re-
quirements from the automotive domain. There are other studies, in which the
expressiveness of the specification patterns is implicitly assessed. For instance,
Konad and Cheng [69] successfully apply specification patterns to formalize
the specification of an automotive system. The study of Autili et al. [65] fo-
cuses on creating a comprehensive catalog of specification patterns by aligning
the existent catalogs and introducing new patterns to fill in gaps. For valida-
tion, the authors apply the specification patterns on a set of requirements of
an ad-hock network protocol. Similarly, Walter et al. [70] use the specifica-
tion patterns to create formal system specifications, which are then checked for
redundancy. In all of these approaches, the complete set of natural language
requirements are successfully formalized using specification patterns. In our
work [19], we provide empirical data based on our experience of applying
the specification patterns on 100 requirements from the automotive domain.
Our results are inline with the claims of similar studies [67], and in principle
strengthen the earlier claims [67] that specification patterns can be used for
creating formal system specifications in the automotive domain.

There is a number of academic tools that have been developed to facil-
itate the formal requirements specification using the specification patterns.
The PROPerty ELucidation system (PROPEL) [30] and Property Specifica-
tion (Prospect) [32] support requirements specification using disciplined natu-
ral language and finite-state automata, relying solely on state-based notations
to formally represent requirements behavior. The Property ASSistant (PASS)
tool [33] provides means for specification of event-based systems. Other tools
such as CHARMY [31] support the design and validation of architectural spec-
ifications captured in UML. The PSPWizard tool [65] is very similar to PRO-
PEL and Prospect, yet it exhibits an advantage by providing a more compre-
hensive catalog of specification patterns.

If compared to the tools listed above, our PROPAS tool differs in several
ways. First, all previously mentioned tools subsume a specific pattern catalog.
In contrast, PROPAS does not rely on a predefined catalog of patterns, it rather
is designed and developed to be a general tool built on top of the pattern-based
approach [20]. Consequently, it has more expressive power than the rest of
the tools. Secondly, our PROPAS tool provides a mechanism for giving visual
feedback to the users. Although not unique with respect to this feature, our tool
provides more options for visual feedback compared to existing tools. What is

59

truly unique about the PROPAS tool is the fact that it has been developed with
practitioners in the loop. This has resulted in a tool that engineers can associate
themselves with, which can have a positive effect on the adoption of the tool in
their everyday work.

Requirements boilerplates is a semi-formal structured specification method
that usually lacks formal semantics [71], and it is similar to specification pat-
terns. Farfeleder et al. [72] propose the DODT approach for semi-automatic
transformation of natural language requirements into requirements boiler-
plates. Pang et al. [73] use a combination of requirements boilerplates and
domain-specific ontology to generate formal system specifications. Similarly,
Mahmud et al. [74] introduce an automotive-specific domain ontology to create
formal system specifications expressed in TCTL.

Formal Analysis of Requirements Specification. In our work, we have pro-
posed an approach for automated consistency analysis using Z3 SMT solver. In
the following, we list some of the related approaches for automated consistency
analysis of requirements specified as temporal formulas.

Barnat et al. [40] propose a model-free sanity checking procedure for
consistency analysis of system requirements specification in Linear Tempo-
ral Logic (LTL) [75] by means of model checking. The approach has later
been extended to support generation of a minimal inconsistent set of require-
ments [13]. Despite the exhaustiveness, the approach suffers from the inher-
ent complexity of transforming the LTL formulas into automata, especially
for complex systems, potentially making it unusable in industrial settings. A
similar approach for consistency checking of requirements specified in LTL is
proposed by Ellen et al. [76]. The authors introduce a definition for the so-
called existential consistency, that is, the existence of at least one system run
that satisfies the complete set of requirements. Similar to what we propose, the
analysis procedure has been integrated into an industrially relevant tool, aim-
ing at industrial application. The work by Post et al. [39] defines the notion of
rt-(in)consistency of real-time requirements. The definition covers cases where
the requirements in the system’s requirements specification can be inconsistent
due to timing constrains. The checking for rt-inconsistency is reduced to model
checking, where a deadlock situation implies inconsistency of requirements.

Despite the exhaustiveness of the consistency checking approaches men-
tioned above, all of them suffer from two major limitations: the time required
for generating the requirements model as well as the time for analysis that
grows exponentially with the number of requirements that should be analyzed.
In comparison, our approach copes well with respect to the time required for

60 Chapter 6. Related Work

generating the model for analysis. This is due to the fact that the input model
for analysis is a set of constraints encoded as Z3 assertions, which can be gener-
ated in negligible time as compared to building automata models as required by
some of the approaches [13,39]. Compared to the model-checking-based anal-
ysis approaches, the main difference with our method is the exhaustiveness of
consistency analysis of the former. Model checking is exhaustive, whereas we
sacrifice exhaustiveness for avoiding the potential state-space explosion. The
model-checking-based consistency analysis [39,40] can guarantee the absence
of any inconsistencies in the system, while our approach (similarly to [76]) is
suitable for checking whether the system specification is realizable as such,
that is, if there exists at least one system run that satisfies the conjunction of
all the requirements in the specification. A more high-level consistency analy-
sis approach applied at Boolean level, without taking the temporal aspects into
consideration is proposed by Mahmud et al. [77]. In cases where inconsisten-
cies are detected, all of the approaches (including ours) are able to generate
the minimal set of inconsistent requirements. The above listed characteristics
make our approach suitable to be used in the early phases of system require-
ments specification, where a more lightweight and considerably faster proce-
dure might be more suited.

The quality of the system requirements specifications can be assessed even
when they are expressed informally, that is, in natural language. One such
approach is proposed by Fabbrini et al. [78,79], who assesses the quality of the
requirements specifications using natural language processing techniques with
respect to a quality model. The approach is complemented by an adequate
tool support for automating the analysis [80]. A more recent study [81] shows
that such techniques can be applied on large sets of industrial requirements to
help the engineers prioritize the requirements that are going to be manually
analyzed for defects.

Formal Verification of Simulink Models. There is a growing body of work
on the formal verification and analysis of Simulink models. In the following,
we present some of the state-of-art approaches for analysis of Simulink models,
divided in several categories based on how the analysis model is constructed or
which type of formal verification technique is employed for analysis.
i) Abstraction of blocks into contracts/theories and their formal analysis. Fer-
rante et al. [82] use contract-based theory to model the Simulink blocks, and
rely on a combination of SAT solvers and the NuSMV model checker for anal-
ysis. Hocking et al. [83] use the PVS specification language for writing the
specification, and use the PVS theorem prover for analysis. Both steps require

61

much user interaction, so it is error-prone and requires certain understanding
of the formal analysis engines, which is not common among embedded sys-
tems engineers, which compared to our approaches that are fully automated
represents a disadvantage. In similar fashion, Cavalcanti et al. [84] use the
CircusTime specification language to construct more realistic analysis models
that capture functional, behavioral, and timing aspects of the Simulink mod-
els. Similar to our approaches, it is fully automated. Dragomir et al. [85]
propose a refinement calculus for reactive systems (RCRS) toolset, which is
a fully automated compositional framework for modeling and reasoning about
Simulink models. The toolset consists of two main engines, namely Translator
that transforms a given Simulink model into an RCRS model of the diagram,
which is then analyzed via the Analyzer. It can be used for static analysis, be-
havioral type checking and inference for Simulink models. On the down side,
the authors do not show how this approach can be used for the verification
of Simulink models with respect to properties that describe the functional or
behavioral characteristics of the system, which SIMPPAAL focuses on.
ii) Model to model transformation followed by model checking. The ap-
proaches based on model-to-model (M2M) transformation aim for minimiz-
ing the user intervention during both generation of the formal model and the
analysis of the same. The most common strategy is to transform the original
Simulink model into some kind of automata framework, which is then analyzed
for different properties using model checking.

The approach proposed by Barnat et al. [40] focuses on transforming
Simulink models into the language of the LTL explicit model checker Di-
ViNE. The authors show how the latter can be integrated with the Honey-
well formal verification environment. The work provides support only for
discrete Simulink blocks, yet they show it suitable for the aeronautics indus-
try. Compared to our approaches where we use branching temporal logic, the
authors use linear temporal logic for expressing system properties, meaning
that the set of properties that can be verified are complementary. Addition-
ally, the approach by Barnat et al. [40] uses explicit LTL model-checking,
hence the scalability might be an issue for large Simulink models. Similarly,
the approach by Meenakshi et al. [86] proposes a transformation of discrete
blocks into a formal model suitable for analysis using the NuSMV model
checker. In contrast, Agrawal et al. [87] propose a transformation approach
of Simulink models into networks of automata, without providing concrete
means for formal verification. The work by Miller [88] proposes a translation
from Simulink to Lustre, and enables formal verification with a constellation of
model checkers and provers. The transformation of StateFlow design elements

62 Chapter 6. Related Work

has been addressed in research endeavors by Manamcheri [89] and Jiang et
al. [90], in which the authors propose transformation frameworks from State-
Flow/Simulink into timed and hybrid automata, respectively, without consid-
ering other types of Simulink blocks. Sfyrla et al. [91] propose compositional
translation of Simulink models into BIP [92] modeling framework. The trans-
formation procedure is similar to the one that we propose in our SMC-based
approach, however, the authors do not report any verification. The formal ver-
ification of C-code automatically generated from Simulink modules, as pre-
sented by Berger et al. [93], is another example of M2M transformation. The
approach has been applied in two case studies of the automotive industry with
moderate success because of complexity issues. For the requirements for which
finding unbounded correctness proofs is not feasible, the authors advocate the
use of subsystem verification. Overall, the paper shows that much human in-
tervention is still required for verifying a Simulink model, with a significant
percentage of the time dedicated to requirement formalization, as other stud-
ies indicate [19]. Minopoli et al. propose the SL2SX Translator [94] that
performs a semi-automated transformation from Simulink diagrams into a hy-
brid automata formalism, SpaceEx, which preserves the model architecture. It
is based on a rather simple definition of a Simulink model, which does not
account for some of the complex features addressed by SIMPPAAL. It is con-
strained by the limitations of SpaceEx, but it has been recently complemented
with a technique called syntactic hybridization [95], which allows analysis of
non-linear dynamics.

iii) Generation and abstraction of simulation traces. A third approach, sug-
gested in the PlasmaLab platform [96], consists of generating and collecting
simulation traces directly from the Simulink environment, and transforming
them, by abstraction, into a state machine representing the system’s behavior.
PlasmaLab is, in fact, a statistical model checking architecture that can be con-
nected to different simulation engines [96], with Simulink being one of them.
It accepts properties specified in bounded linear temporal logic (BLTL) and of-
fers the three basic modes of statistical model checking: simple Monte Carlo,
Monte Carlo using Chernoff confidence bound, and sequential hypothesis the-
sis. The approach has been enhanced with runtime mechanisms for generation
of optimal schedules, rare event simulation, and change detection, in order to
increase the trust on the properties obtained by SMC [96]. Due to the ab-
sence of an input model, the PlasmaLab platform relies on external simulation
engines to generate execution traces, and as such is strongly coupled to such
tools. Another approach based on statistical model checking is proposed by Zu-
liani et al. [97]. They use Bayesian statistical model checking for analyzing the

63

specification, however, the approach has not been applied on Simulink models
of industrial systems, and it seems to have practical limitations such as not ac-
cepting multi-file Simulink models. In both SIMPPAAL and SYMC the model
generation and analysis is completely independent from external tools, as only
the system model and the sorted order execution are required once, that is, at
the time the formal model is generated. Lastly, PlasmaLab does not require a
system model and thus is not hampered by the complexity of M2M transfor-
mation. However, for completely discrete-time Simulink models of moderate
size and complexity, by using SIMPPAAL one can perform exhaustive model
checking thus obtaining either a full guarantee that the property is satisfied, or
a counter-example in the opposite case.

Schrammel et al. demonstrate the potential of BMC for verification of
industrial systems [98]. In their work, the authors show how an incremental
BMC approach can be applied for verification of industrial code. Chaves et
al. [99] propose the DSVerifier tool for the formal analysis of digital systems
with respect to design errors such as overflow, limit cycle, stability, etc. Again,
the analysis is performed over the code, rather than on the Simulink model
like in our case. Harde et al. [100] propose a bounded reachability analysis
approach for hybrid models using the HySAT tool [101].

Our proposed approaches relies on M2M transformation and statistical
model checking or invariance checking based on BMC, but it goes beyond the
current state of the art by reducing the modeling effort as M2M transformation
is based on templates and fully automated. Additionally, in general, we are
supporting a larger number of Simulink blocks (although some of them are still
under development), whereas for validation we use real-size industrial exam-
ples. We also aim at generating a formal model as close to the Simulink model
as possible, so we encode the functions of blocks not as differential equations,
when the case, but as C routines that are faithful to the Simulink modeling. In
addition, to increase confidence, we also verify the C encoding of the Simulink
functions in UPPAAL, by employing the program verifier Dafny [68]. Regard-
ing the BMC-based approach, we show how the completeness of the invariance
checking can be established prior to the generation of the analysis model.

Chapter 7

Conclusions and Future
Work

In this thesis, we have presented our work on extending and improving the state
of the art with respect to methods and tools for the formal specification and
analysis of requirements and Simulink models of embedded systems. While
conducting our research we have kept industrial applicability and appeal as
one of the most important desiderata.

Summary of Contributions. The first contribution of this thesis is an ap-
proach for pattern-based formal system specification and its consistency anal-
ysis. For the first part of this contribution that concerns the formal encoding of
system specifications, we have assessed the expressiveness of the specification
patterns (SPS) for capturing industrial system requirements, with particular fo-
cus on specifications from the automotive systems domain [19]. Our results
show that the specification patterns are expressive enough to capture most of
the selected requirements, and that in principle a small set of patterns is suf-
ficient for expressing most of the requirements. Additionally, we complement
the pattern-based approach with a specialized tool support called SESAMM
SPECIFIER [20], which is not bound to a predefined set of patterns and includes
features such as visual feedback on the specified behavior using different forms
of visualization. The second aspect of our first contribution is an automated
SMT-based consistency analysis approach for system specifications [22], for-
mally encoded as sets of TCTL formulas. Our approach is completely auto-

65

66 Chapter 7. Conclusions and Future Work

mated by means of our PROPAS tool. The tool represents an extension of the
existing SESAMM SPECIFIER tool, by additionally introducing an SMTLI-
BREQ that allows one to check the consistency of system specifications, in a
completely automated way via the following steps: i) transformation of TCTL
formulas into FOL formulas, ii) optimizing the FOL formulas for solving by
reducing the number of quantified variables and quantifiers, and their encod-
ing into SMT-LIB format, suitable as input to modern SMT solvers, and iii)
consistency analysis using the Z3 SMT solver.

As our next contributions, we propose two approaches for the formal anal-
ysis of large Simulink models. Both approaches are based on model checking,
which is the most suitable candidate for formal verification of industrial mod-
els due to the fully automated verification procedure. Our first approach is
based on statistical model checking (SMC), and provides probabilistic guar-
antees of the correctness of the model with respect to functional and timing
requirements, and as such represents a non-exhaustive yet rigorous way of an-
alyzing large Simulink models using the UPPAAL SMC tool [25]. To enable
our approach, we propose the following: i) formal definitions of the syntax and
semantics of Simulink blocks and their composition in models, ii) a flattening
procedure for eliminating the composite blocks from the model structure, and
iii) an execution-order-preserving transformation of Simulink blocks into net-
works of stochastic timed automata, based on two proposed STA templates,
one for discrete-time atomic blocks, and one for continuous-time ones. The
STA templates encode both the continuous-time and discrete-time execution of
the atomic blocks, whereas the input-output function of the atomic blocks is
encoded as a C function in UPPAAL SMC. For ensuring that the input-output
function is correct, we use the Dafny program verifier [68]. We also provide a
proof of soundness for the transformation of completely discrete-time Simulink
models. For the models that contain at least one continuous-time atomic block,
we resort to simulation-based validation of the transformation. The complete
transformation procedure is automated by our SIMPPAAL tool.

The second approach for the formal analysis of Simulink models relies on
bounded model checking (BMC) and is suitable for verification of invariance
properties [26]. The approach retains the flattening procedure, the template-
based transformation of the atomic blocks and the formal semantics of the lat-
ter as introduced in our SMC work for Simulink verification [25], with the
difference that the model-checking procedure is reduced down to a satisfiabil-
ity problem. Consequently, we generate an analysis model in a form of an
SMT-LIB script in which the reachable state-space is encoded via a number
of constraints. In addition, we investigate whether there are some commonly-

67

occurring design patterns based on commonly-used atomic Simulink blocks
in Simulink models, for which the complete reachable state-space can be en-
coded with a finite number of constraints. For that purpose, we have analyzed
two Simulink models, namely Brake-by-Wire (BBW) and Adjustable Speed
Limiter (ASL) from VGTT, from which we identified three commonly-used
block types (feedthrough, delay and s-function) and two commonly-occurring
designs (linear and feedback-loop composition). In order to prove whether
the invariance checking for the commonly-occurring designs based on the se-
lected block types is complete, we perform the following: i) give formal defini-
tions for the linear and feedback-loop compositions, ii) propose three theorems
that show that for the linear compositions composed of the commonly-used
block types the complete reachable-state space is finite, which yields the in-
variance checking complete, whereas for the feedback-loop compositions in
general case the invariance checking is incomplete. The proposed approach is
automated by our SYMC tool.

As our last contribution, we perform validation and assess the practical use-
fulness of the proposed methods and tools. For the validation of the PROPAS
tool, we perform consistency analysis of the system specification of the op-
erational FLD system from Scania. The original system specification of the
FLD system, which is composed of 24 requirements has been automatically
transformed and analyzed in a matter of seconds. In order to assess the prac-
tical usefulness of the pattern-based specification approach and the PROPAS
tool, we carry out an exploratory case study evaluation with industrial practi-
tioners. For the case study, we have used a selected number of requirements
(both functional and timing ones) of the system specification of the operational
FLD system and invited a group of five experts in embedded software develop-
ment in Scania to formalize the requirements in the set, using our PROPAS tool.
Based on the collected quantitative data, with respect to the specification cor-
rectness and specification time, and the qualitative data based on the personal
preferences and opinions of the engineers, we conclude that the pattern-based
specification and the PROPAS tool can be practically useful for formally spec-
ifying requirements of industrial systems, by engineers lacking expertise in
formal methods.

Given the fact that both of the SMC- and BMC-based approaches for for-
mal analysis and verification of Simulink models are completely automated
through our SIMPPAAL and SYMC tools, respectively, for validation we apply
both of the tools on industrial Simulink models. The capability of the SIMP-
PAAL tool to transform large industrial Simulink models has been assessed
on two instances, namely the BBW and ASL systems from VGTT, which are

68 Chapter 7. Conclusions and Future Work

composed of around 300 and 4000 blocks, respectively. The transformation
procedure finished in matter of seconds. Out of the two generated models, we
have analyzed only the BBW model, with respect to 6 properties. The NSTA
analysis model generated for the ASL system is not analyzable, due to techni-
cal limitations of our tool, which we discuss further in this section. We apply
our SYMC tool for bounded invariance checking on the BBW model. The gen-
eration procedure of the analysis model terminates within seconds, generating
the complete reachable state-space of the model within 200 ms. Given the gen-
erated state-space, both the complete and the incomplete invariance checking
has been demonstrated.

Scope of Application and Limitations. The main obvious limitation of all
of the proposed tools and methods is the restricted validation, which is per-
formed over three systems from two companies from the automotive domain.
Even though the proposed approaches are intended to be applied to all kinds
of embedded systems, in this thesis, we perform validation only on automotive
systems due to the fact that the research presented in this thesis has been car-
ried out in a research project, called VeriSpec1, which focuses exclusively on
the automotive domain.

The pattern-based system specification supported by the PROPAS tool has
been applied only on one instance of an operational system. Even though the
approach has been assessed by the industrial practitioners and deemed as po-
tentially useful, a more extensive evaluation is required for strengthening our
claims. Moreover, the inherent incompleteness of the specification patterns
should be taken into consideration. The incompleteness of the specification
patterns means that practically there is no finite catalog that contains all the
possible patterns for property specification, and in principle it means that there
will always be a need that the catalogs are maintained by formal methods ex-
perts. Despite the fact that the patterns are expressed in constrained natural
language, making them accessible to users not skilled in logics still poses chal-
lenges with respect to the accompanying ambiguity related to determining ex-
actly the ordering of events occurrences, specified by the property. A similar
validation limitation applies to our automated consistency analysis approach,
which has been applied only on one system. For pushing the boundaries of
applicability of our consistency-analysis approach, more evaluation involving
more systems with potentially larger specifications is required.

Regarding the formal analysis of Simulink models, we report the follow-

1http://www.es.mdh.se/projects/343-VeriSpec

69

ing limitations of our approaches and tools. Our SMC-based formal analysis
approach is suitable for analyzing both discrete-time and hybrid Simulink mod-
els. However, the proof of correctness of the transformation from the Simulink
model into the analyzable STA model targets only the discrete-time models.
This is due to the fact that a completely discrete-time model results in a net-
work of timed automata in which the ordered sequence of execution of the
components can be guaranteed. In case of hybrid models, due to the presence
of continuous-time components and the execution mechanism that relies on a
stochastic interpretation, this is not possible. The SIMPPAAL tool on the other
hand, exhibits several limitations also, unlike the transformation approach they
are of purely technical nature and can be potentially resolved provided enough
human resources. Among the limitations that are worth mentioning here, we
point out the fact that currently SIMPPAAL cannot parse Simulink models that
use the concept of library to reference the contents of subsystem blocks.

Except for the inherent incompleteness problem of the BMC procedure, we
are not aware of other theoretical limitations to bounded invariance checking
approach. When it comes to the SYMC tool, it exhibits several limitations of
technical nature, which should be easy to overcome. The most obvious limi-
tation of the SYMC tool is that currently it accepts as an input a preprocessed
Simulink model, with the following characteristics: i) the model is flattened,
ii) non-computational block are eliminated from the internal structure such that
all connections are between two computational blocks, and iii) it is encoded in
JSON2 format. Additionally, the specification of the invariance properties in
the current version of the tool requires training in formal logic and in using the
SMT-LIB2 standard [45], which must be addressed in order to make the tool
more accessible for a wider audience.

Future Work. There are several directions for future research, in order to
improve and advance the work presented in this thesis. The most immediate fu-
ture work is related to improving the SIMPPAAL tool for generating the formal
model. The improvement encompasses mostly technical improvements and
adding new features to the tool, such as improvement in the Simulink model
parsing feature in order to be able to use the concept of referencing external
models as libraries and to remove as many of the external libraries used in the
tool that cause unexpected behaviors in the tool, due to limited documenta-
tion and immaturity. A similar development can be applied to our SYMC tool,
which needs to be improved with respect to parsing of the input Simulink mod-

2JavaScript Object Notation (https://www.json.org/)

70 Chapter 7. Conclusions and Future Work

els. Since parsing Simulink models seems to be the weaker point of our tools,
ideally, developing an independent platform that can perform the flattening of
the Simulink model and eliminate all the non-computational blocks from its in-
ternal structure will solve the problems on both fronts. From a theoretical point
of view, we outline the following directions for future research: i) use model-
pruning techniques in order to generate more tractable analysis models, ii) ex-
plore the possibility of using other modeling frameworks and model-checking
tools as compared to what we currently use, iii) identify additional commonly-
occurring design patterns and commonly-used Simulink blocks in industrial
Simulink models and reason whether for such compositions bounded verifica-
tion is complete, and iv) investigate whether our bounded invariance checking
approach can be extended for verification of invariance properties that include
timing constraints.

Concerning the formal system specification using specification patterns,
we outline the following directions for future work: i) more empirical stud-
ies around formal requirements specification via the specification patterns are
necessary in order to identify new gaps and to measure the benefits of using
patterns in industry more accurately, and ii) improving the existing PROPAS
tool, especially the visual validation mechanism that is intended to help the en-
gineers in visualizing the temporal ordering of the events as described by the
pattern.

Bibliography

[1] Martin Hiller. Thoughts on the future of the automotive electronic ar-
chitecture. In Presentations at the fuse Final Seminar, 2016.

[2] Oliver Wyman Group. A comprehensive study on innovation in the
automotive industry. http://www.emic-bg.org/files/CarInnovation2015 -
engl.pdf, 2015.

[3] Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and Thomas
Stauner. Software engineering for automotive systems: A roadmap. In
2007 Future of Software Engineering, FOSE ’07, pages 55–71, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[4] Klaus Grimm. Software technology in an automotive company: Ma-
jor challenges. In Proceedings of the 25th International Conference
on Software Engineering, ICSE ’03, pages 498–503, Washington, DC,
USA, 2003. IEEE Computer Society.

[5] UK Ministry of Defence (MoD). Defence Standard 00-56 (Part 1)/4,
Safety Management Requirements for Defence Systems. Issue 4, UK
Ministry of Defence, 2007.

[6] ISO/DIS 26262-1 - Road vehicles Functional safety Part 1 Glossary.
Technical report, Geneva, Switzerland, July 2009.

[7] Michael Barr and Anthony Massa. Programming Embedded Systems.
O’Reilly Media, Inc., 2006.

[8] Michael Barr. Embedded Systems Glossary.
http://www.netrino.com/Embedded-Systems/Glossary, Last access:
2019-02-05.

71

72 Bibliography

[9] IBM. Rational DOORS - Overview. https://www.ibm.com/us-
en/marketplace/rational-doors, Last access: 2019-02-05.

[10] Gursimran Singh Walia and Jeffrey C Carver. A systematic literature
review to identify and classify software requirement errors. Information
and Software Technology, 51(7):1087–1109, 2009.

[11] Matthew B Dwyer, George S Avrunin, and James C Corbett. Patterns in
property specifications for finite-state verification. In Proceedings of the
21st international conference on Software engineering, pages 411–420.
ACM, 1999.

[12] Sascha Konrad and Betty HC Cheng. Real-time specification patterns.
In Proceedings of the 27th international conference on Software engi-
neering, pages 372–381. ACM, 2005.

[13] Jiřı́ Barnat, Petr Bauch, Nikola Beneš, Luboš Brim, Jan Beran, and
Tomáš Kratochvı́la. Analyzing Sanity of Requirements for Avionics
Systems. Form. Asp. Comput., 28(1):45–63, March 2016.

[14] Mats Heimdahl and Nancy G. Leveson. Completeness and Consistency
in Hierarchical State-Based Requirements. IEEE Trans. Softw. Eng.,
22(6):363–377, June 1996.

[15] James Dabney and Thomas Harman. Mastering Simulink. Pearson/Pren-
tice Hall, 2004.

[16] Mathworks. Simulink Coder - MATLAB Simulink. [Online; Last ac-
cessed 2019-01-30].

[17] Mathworks. Simulink Design Verifier - MATLAB Simulink.
https://se.mathworks.com/products/sldesignverifier.html. [Online; Last
accessed 2019-01-30].

[18] Matthew B Dwyer, George S Avrunin, and James C Corbett. Property
specification patterns for finite-state verification. In Proceedings of the
second workshop on Formal methods in software practice, pages 7–15.
ACM, 1998.

[19] Predrag Filipovikj, Mattias Nyberg, and Guillermo Rodriguez-Navas.
Reassessing the pattern-based approach for formalizing requirements in
the automotive domain. In RE’14, pages 444–450, 2014.

Bibliography 73

[20] Predrag Filipovikj, Trevor Jagerfield, Guillermo Rodriguez-Navas, Mat-
tias Nyberg, and Cristina Seceleanu. Integrating pattern-based formal
requirements specification in an industrial tool-chain. In QUORS, pages
167–173, 2016.

[21] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories:
Introduction and applications. volume 54, pages 69–77, New York, NY,
USA, September 2011. ACM.

[22] Predrag Filipovikj, Guillermo Rodriguez-Navas, Mattias Nyberg, and
Cristina Seceleanu. Automated smt-based consistency checking of in-
dustrial critical requirements. ACM SIGAPP Applied Computing Re-
view, 17(4):15–28, 2018.

[23] Håkan LS Younes and Reid G Simmons. Probabilistic verification of
discrete event systems using acceptance sampling. In International Con-
ference on Computer Aided Verification, pages 223–235. Springer, 2002.

[24] Alexandre David, Dehui Du, Kim G Larsen, Axel Legay, Marius
Mikučionis, Danny Bøgsted Poulsen, and Sean Sedwards. Statisti-
cal model checking for stochastic hybrid systems. arXiv preprint
arXiv:1208.3856, 2012.

[25] Predrag Filipovikj, Nesredin Mahmud, Raluca Marinescu, Guillermo
Rodriguez-Navas, Cristina Seceleanu, Oscar Ljungkrantz, and Henrik
Lönn. SIMPPAAL - a framework for statistical model checking of indus-
trial simulink models. Submitted to the ACM Transactions on Software
Engineering and Methodology.

[26] Predrag Filipovikj, Guillermo Rodriguez-Navas, and Cristina Sece-
leanu. Bounded invariance checking of simulink models. In The 34th
ACM/SIGAPP Symposium On Applied Computing, April 2019.

[27] Predrag Filipovikj and Cristina Seceleanu. Specifying industrial system
requirements using specification patterns: A case study of evaluation
with practitioners. In Proceeedings of the 14th International Conference
on Evaluation of Novel Approaches to Software Engineering (ENASE
2019), 2019.

[28] Frederick P. Brooks, Jr. The Mythical Man-month (Anniversary Ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

74 Bibliography

[29] Bran Selic. Model-Driven Development: Its Essence and Opportunities.
In Ninth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2006), 24-26 April 2006, Gyeongju, Ko-
rea, pages 313–319, 2006.

[30] Rachel L. Cobleigh, George S. Avrunin, and Lori A. Clarke. User guid-
ance for creating precise and accessible property specifications. In SIG-
SOFT ’06/FSE-14, pages 208–218. ACM, 2006.

[31] Paola Inverardi, Henry Muccini, and Patrizio Pelliccione. Charmy: An
extensible tool for architectural analysis. In ESEC/FSE-13, pages 111–
114. ACM, 2005.

[32] Oscar Mondragn, Ann Q. Gates, and Steven Roach. Prospec: Support
for elicitation and formal specification of software properties. Electronic
Notes in Theoretical Computer Science, pages 67 – 88, 2003.

[33] Daniela Remenska, Tim A. C. Willemse, Jeff Templon, Kees Verstoep,
and Henri Bal. Property Specification Made Easy: Harnessing the
Power of Model Checking in UML Designs, pages 17–32. Springer Ver-
lag, 2014.

[34] Rachel L. Smith, George S. Avrunin, Lori A. Clarke, and Leon J. Os-
terweil. Propel: An approach supporting property elucidation. In ICSE
’02, pages 11–21. ACM, 2002.

[35] Orna Kupferman. Sanity checks in formal verification. In CONCUR
2006, pages 37–51, 2006.

[36] Matthew S. Jaffe, Nancy G. Leveson, Mats P. E. Heimdahl, and Bon-
nie E. Melhart. Software Requirements Analysis for Real-Time Process-
Control Systems. IEEE Trans. Softw. Eng., 17(3):241–258, March 1991.

[37] Mats Heimdahl and Nancy Leveson. Completeness and consistency in
hierarchical state-based requirements. IEEE Transactions on Software
Engineering, 22(6):363–377, 1996.

[38] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Au-
tomated Consistency Checking of Requirements Specifications. ACM
Transactions Software Engineering Methodology, 5(3):231–261, July
1996.

Bibliography 75

[39] Amalinda Post, Jochen Hoenicke, and Andreas Podelski. rt-
inconsistency: a new property for real-time requirements. In FASE 2011,
number 6603 in LNCS, pages 34–49. Springer, 2011.

[40] Petr Bauch Jiri Barnat and Lubos Brim. Checking sanity of software
requirements. In SEFM 2012, LNCS 7504, pages 48–62, 2012.

[41] Mathworks. Choose a solver - MATLAB Simulink.
https://se.mathworks.com/help/simulink/ug/types-of-solvers.html.
[Online; Last accessed 2019-03-05].

[42] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman,
Yunshan Zhu, et al. Bounded model checking. Advances in computers,
58(11):117–148, 2003.

[43] Stephen A Cook. The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, pages 151–158. ACM, 1971.

[44] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[45] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Stan-
dard: Version 2.5. Technical report, Department of Computer Science,
The University of Iowa, 2015. Available at www.SMT-LIB.org.

[46] Joost-Piter Katoen. Concepts, Algorithms and Tools for Model Check-
ing. 1999.

[47] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAALin a nutshell. Int.
Journal on Software Tools for Technology Transfer, 1:134–152, 1997.

[48] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw.
Eng., 23(5):279–295, May 1997.

[49] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In Proceedings of the 14th International Conference on Com-
puter Aided Verification, CAV ’02, pages 359–364, London, UK, UK,
2002. Springer-Verlag.

76 Bibliography

[50] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[51] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, April 1994.

[52] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis,
Danny Bøgsted Poulsen, Jonas van Vliet, and Zheng Wang. Statistical
Model Checking for Networks of Priced Timed Automata, pages 80–96.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[53] Alexandre David, Kim Larsen, Axel. Legay, M. Mikučionis, and D.B.
Poulsen. UPPAAL SMC tutorial. STTT Journal, 17(4):397–415, 2015.

[54] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on
Uppaal. In Marco Bernardo and Flavio Corradini, editors, Formal Meth-
ods for the Design of Real-Time Systems: International School on For-
mal Methods for the Design of Computer, Communication, and Soft-
ware Systems, Bertinora, Italy, September 13-18, 2004, Revised Lec-
tures, pages 200–236, Berlin, Heidelberg, 2004. Springer Berlin Hei-
delberg.

[55] Edmund Clarke, Allen Emerson, and Prasad Sistla. Automatic verifi-
cation of finite-state concurrent systems using temporal logic specifica-
tions. ACM Trans. Program. Lang. Syst., pages 244–263, 1986.

[56] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in
dense real-time. Information and Computation, pages 2–34, 1993.

[57] Leonardo De Moura, Harald Rueß, and Maria Sorea. Bounded model
checking and induction: From refutation to verification. In International
Conference on Computer Aided Verification, pages 14–26. Springer,
2003.

[58] Gordana Dodig-Crnkovic. Scientific methods in computer science. In
Proceedings of the Conference for the Promotion of Research in IT at
New Universities and at University Colleges in Sweden, Skövde, Suecia,
pages 126–130, 2002.

[59] Hilary J. Holz, Anne Applin, Bruria Haberman, Donald Joyce, Helen
Purchase, and Catherine Reed. Research methods in computing: What
are they, and how should we teach them? SIGCSE Bull., 38(4):96–114,
June 2006.

Bibliography 77

[60] Marvin V. Zelkowitz and Dolores Wallace. Experimental Validation In
Software Engineering. Information and Software Technology, 39:735–
743, 1997.

[61] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in software engineering.
Springer Science & Business Media, 2012.

[62] Barbara Kitchenham, Lesley Pickard, and Shari Lawrence Pfleeger.
Case studies for method and tool evaluation. IEEE software, 12(4):52–
62, 1995.

[63] Predrag Filipovikj, Nesredin Mahmud, Raluca Marinescu, Guillermo
Rodriguez-Navas, Cristina Seceleanu, Oscar Ljungkrantz, and Henrik
Lönn. Analyzing industrial simulink models by statistical model check-
ing. Technical report, March 2017.

[64] Lars Grunske. Specification patterns for probabilistic quality properties.
In Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International
Conference on, pages 31–40. IEEE, 2008.

[65] Marco Autili, Lars Grunske, Markus Lumpe, Patrizio Pelliccione, and
Antony Tang. Aligning qualitative, real-time, and probabilistic prop-
erty specification patterns using a structured english grammar. Software
Engineering, IEEE Transactions, pages 620–638, 2015.

[66] Amalinda Post, Jochen Hoenicke, and Andreas Podelski. Vacuous real-
time requirements. In RE 11, pages 153–162. IEEE, 2011.

[67] Amalinda Post, Igor Menzel, Jochen Hoenicke, and Andreas Podelski.
Automotive behavioral requirements expressed in a specification pattern
system: a case study at bosch. Requirements Engineering, 17(1):19–33,
2012.

[68] Rustan Leino. Dafny: An automatic program verifier for functional cor-
rectness. In LPAR’10, pages 348–370. Springer, 2010.

[69] Sascha Konrad and Betty HC Cheng. Facilitating the construction of
specification pattern-based properties. In 13th IEEE International Con-
ference on Requirements Engineering (RE’05), pages 329–338. IEEE,
2005.

78 Bibliography

[70] Benedikt Walter, Jakob Hammes, Marco Piechotta, and Stephan
Rudolph. A formalization method to process structured natural lan-
guage to logic expressions to detect redundant specification and test
statements. In 2017 IEEE 25th International Requirements Engineer-
ing Conference (RE), pages 263–272. IEEE, 2017.

[71] Ajitha Rajan and Thomas Wahl. CESAR: Cost-efficient methods
and processes for safety-relevant embedded systems. Number 978-
3709113868. Springer, 2013.

[72] Stefan Farfeleder, Thomas Moser, Andreas Krall, Tor Stålhane, Herbert
Zojer, and Christian Panis. Dodt: Increasing requirements formalism
using domain ontologies for improved embedded systems development.
In 14th IEEE International Symposium on Design and Diagnostics of
Electronic Circuits and Systems, pages 271–274. IEEE, 2011.

[73] Cheng Pang, Antti Pakonen, Igor Buzhinsky, and Valeriy Vyatkin. A
study on user-friendly formal specification languages for requirements
formalization. In 2016 IEEE 14th International Conference on Indus-
trial Informatics (INDIN), pages 676–682. IEEE, 2016.

[74] Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz. Specifi-
cation and semantic analysis of embedded systems requirements: From
description logic to temporal logic. In International Conference on Soft-
ware Engineering and Formal Methods, pages 332–348. Springer, 2017.

[75] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science, SFCS
’77, pages 46–57, Washington, DC, USA, 1977. IEEE Computer Soci-
ety.

[76] Christian Ellen, Sven Sieverding, and Hardi Hungar. Detecting consis-
tencies and inconsistencies of pattern-based functional requirements. In
FMICS, volume 8718 of LNCS, pages 155–169. Springer, 2014.

[77] Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz.
ReSA Tool: Structured Requirements Specification and SAT-based
Consistency-checking. In Proceedings of the 2016 Federated Confer-
ence on Computer Science and Information Systems, FedCSIS 2016,
Gdańsk, Poland, September 11-14, 2016., pages 1737–1746, 2016.

Bibliography 79

[78] Fabrizio Fabbrini, Mario Fusani, Stefania Gnesi, and Giuseppe Lami.
An Automatic Quality Evaluation for Natural Language Requirements.
In in Proceedings of the Seventh International Workshop on RE: Foun-
dation for Software Quality (REFSQ2001, pages 4–5, 2001.

[79] Fabrizio Fabbrini, Mario Fusani, Stefania Gnesi, and Giuseppe Lami.
The Linguistic Approach to the Natural Language Requirements Qual-
ity: Benefit of the Use of an Automatic Tool. In Proceedings of the
26th Annual NASA Goddard Software Engineering Workshop, SEW ’01,
pages 97–, Washington, DC, USA, 2001. IEEE Computer Society.

[80] Stefania Gnesi, Fabrizio Fabbrini, Mario Fusani, and Gianluca
Trentanni. An automatic tool for the analysis of natural language re-
quirements. CRL Publishing: Leicester, 20:53–62, 2005.

[81] Benedetta Rosadini, Alessio Ferrari, Gloria Gori, Alessandro Fantechi,
Stefania Gnesi, Iacopo Trotta, and Stefano Bacherini. Using NLP to De-
tect Requirements Defects: An Industrial Experience in the Railway Do-
main, pages 344–360. Springer International Publishing, Cham, 2017.

[82] Orlando Ferrante, Luca Benvenuti, Leonardo Mangeruca, Christos
Sofronis, and Alberto Ferrari. Parallel NuSMV: A NuSMV extension
for the verification of complex embedded systems. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), volume 7613 LNCS,
pages 409–416, 2012.

[83] Ashlie B. Hocking, M. Anthony Aiello, John C. Knight, and Nikos
Aréchiga. Proving Critical Properties of Simulink Models. In Pro-
ceedings of IEEE International Symposium on High Assurance Systems
Engineering, volume 2016-March, pages 189–196, 2016.

[84] Ana Cavalcanti, Alexandre Mota, and Jim Woodcock. Simulink timed
models for program verification. In Theories of Programming and For-
mal Methods, pages 82–99. Springer, 2013.

[85] Iulia Dragomir, Viorel Preoteasa, and Stavros Tripakis. The refine-
ment calculus of reactive systems toolset. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pages 201–208. Springer, 2018.

80 Bibliography

[86] B. Meenakshi, Abhishek Bhatnagar, and Sudeepa Roy. Tool for Trans-
lating Simulink Models into Input Language of a Model Checker. In
ICFEM, pages 606–620. Springer, 2006.

[87] Aditya Agrawal, Gyula Simon, and Gabor Karsai. Semantic Translation
of Simulink/Stateflow Models to Hybrid Automata using Graph Trans-
formations. ENTC Journal, 109:43–56, 2004.

[88] Steven P. Miller. Bridging the Gap Between Model-Based Development
and Model Checking. In TACAS, pages 443–453. Springer, 2009.

[89] K. Manamcheri Sukumar. Translation of Simulink-Stateflow Models to
Hybrid Automata. 2011.

[90] Yu Jiang, Yixiao Yang, Han Liu, Hui Kong, Ming Gu, Jiaguang Sun,
and Lui Sha. From Stateflow Simulation to Verified Implementation:
A Verification Approach and A Real-Time Train Controller Design. In
RTAS’16, pages 1–11, April 2016.

[91] Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga, and
Joseph Sifakis. Compositional translation of simulink models into syn-
chronous bip. In IEEE Fifth International Symposium on Industrial Em-
bedded Systems - SIES 2010, University of Trento, Italy, July 7-9, 2010,
pages 217–220. IEEE, 2010.

[92] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling hetero-
geneous real-time components in BIP. In Fourth IEEE International
Conference on Software Engineering and Formal Methods (SEFM’06),
pages 3–12. IEEE, 2006.

[93] Philipp Berger, Joost-Pieter Katoen, Erika Ábrahám, Md Tawhid Bin
Waez, and Thomas Rambow. Verifying auto-generated c code from
simulink. In Klaus Havelund, Jan Peleska, Bill Roscoe, and Erik
de Vink, editors, Formal Methods, pages 312–328, Cham, 2018.
Springer International Publishing.

[94] Stefano Minopoli and Goran Frehse. Sl2sx translator: From simulink
to spaceex models. In Proceedings of the 19th International Conference
on Hybrid Systems: Computation and Control, HSCC ’16, pages 93–98,
New York, NY, USA, 2016. ACM.

[95] Nikolaos Kekatos, Marcelo Forets, and Goran Frehse. Constructing ver-
ification models of nonlinear simulink systems via syntactic hybridiza-
tion. In Proceedings of Applied Verification for Continuous and Hybrid
Systems, 2017.

[96] Axel Legay and Louis-Marie Traonouez. Statistical model checking of
simulink models with plasma lab. In Cyrille Artho and Peter Csaba
Ölveczky, editors, Formal Techniques for Safety-Critical Systems, pages
259–264, Cham, 2016. Springer International Publishing.

[97] Paolo Zuliani, André Platzer, and Edmund M Clarke. Bayesian statis-
tical model checking with application to stateflow/simulink verification.
Formal Methods in System Design, 43(2):338–367, 2013.

[98] Peter Schrammel, Daniel Kroening, Martin Brain, Ruben Martins, Tino
Teige, and Tom Bienmüller. Successful use of incremental bmc in the
automotive industry. In International Workshop on Formal Methods for
Industrial Critical Systems, pages 62–77. Springer, 2015.

[99] Lennon Chaves, Iury Bessa, Lucas Cordeiro, Daniel Kroening, and Ed-
die Lima. Verifying digital systems with matlab. In Proceedings of the
26th ACM SIGSOFT Int. Symposium on Software Testing and Analysis,
pages 388–391. ACM, 2017.

[100] Christian Herde, Andreas Eggers, Martin Fränzle, and Tino Teige. Anal-
ysis of hybrid systems using hysat. In IN ICONS ’08: Proceedings of
the Third International Conference On Systems, pages 196–201, 2008.

[101] Martin Fränzle and Christian Herde. Hysat: An efficient proof engine
for bounded model checking of hybrid systems. Formal Methods in
System Design, 30(3):179–198, 2007.

