
Resilience of Distributed Student Teams to Stress
Factors: a Longitudinal Case-study

Igor Čavraka, Ivana Bosnića, Federico Ciccozzib, Raffaela Mirandolac

aUniversity of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
bMälardalen University, School of Innovation, Design and Engineering, Väster̊as, Sweden

cPolitecnico di Milano, Milano, Italy

Abstract

Context: Teaching global software engineering is continuously evolving and
improving to prepare future software engineers adequately. Geographically dis-
tributed work in project-oriented software development courses is both demand-
ing and rewarding for student teams, who are susceptible to various risks stem-
ming from different internal and external factors, being the sources of stress and
impacting team performance.
Objective: In this paper, we analyze the resilience of teams of students working
in a geographically fully distributed setting. Resilience is analyzed in relation to
two representative stress factors: non-contributing team members and changes
to customer project requirements. We also reason on team collaboration pat-
terns and analyze potential dependencies among these collaboration patterns,
team resilience and stress factors.
Method: We conduct a longitudinal case-study over five years on our Dis-
tributed Software Development (DSD) course. Based on empirical data, we
study team resilience to two stress factors by observing their impact on pro-
cess and product quality aspects of team performance. The same performance
aspects are studied for identified collaboration patterns, and bidirectional influ-
ence between patterns and resilience is investigated.
Results: Teams with up to two non-contributing members experience grace-
ful degradation of performance indicators. A large number of non-contributing
students almost guarantees the occurrence of educationally undesirable collabo-
ration patterns. Exposed to requirements change stress, less resilient teams tend
to focus on delivering the functional product rather than retaining a proper de-
velopment process.
Conclusions: Practical recommendations to be applied in contexts similar to
our case have been provided at the end of the study. They include suggestions
to mitigate the sources of stress, for example, by careful planning the team
organization and balancing the number of regular and exchange students, or
by discussing the issue of changing requirements with the external customers
before the start of the project.

Preprint submitted to Information and Software Technology May 28, 2019

1. Introduction

Team dynamics is a crucial success (or failure) factor in any teamwork. Soft-
ware engineering is no exception, especially since it is very often carried out in
a geographically distributed manner [31]. To properly train students to become
skillful software engineers, virtually any higher education institution offers some
kind of project-based software engineering course in their master programs, giv-
ing students the opportunity to work on a project in teams whose members are
either geographically co-located or distributed. The teams are exposed to all
types of risk and sources of team stress, stemming from organizational, social
and technical issues. When a team experiences such adversities, negative reper-
cussions tend to affect both the development process and the resulting product
quality. The ability of a team to endure and overcome stressful happenings lies
in a specific quality: team resilience. We address resilience as per definition by
[24]: “a fundamental quality of individuals, groups, organizations, and systems
as a whole to respond productively to significant change that disrupts the expected
pattern of events without engaging in an extended period of regressive behavior”.
Research efforts have been devoted to study team resilience (a general discussion
can be found in [36]); in the era of distributed software development, sources of
stress have been analyzed to evaluate their impact on the project success. In
[3, 4] Avritzer et al. focus on issues related to communication, cultural diver-
sity and process deficiencies to define a project survivability model. Noll and
Beecham [38] study the global distance aspects and their impact on distributed
project. A set of strategies to be applied to increase the project resilience in a
distributed setting is presented in [31].

In this study, we analyze the impact of two sources of stress for teams
involved in our distributed project-based Distributed Software Development
(DSD)1 course. The first stress source is internal to the team and is caused by
the existence of one or more non-contributing team members. The second one
is external to the team and is caused by significant changes in project require-
ments and propagation of information on those changes within the distributed
team.

We have selected these two stress sources as stemming from our 15 years of
experience running the DSD course, we found these to be the causes of the most
pressing risks to student project teams. The two addressed stress sources were,
by no means, the only ones we have encountered on the DSD course; a number of
different factors impeded student team performance, ranging from omnipresent
factors in software development industry [50], factors stemming from the global
context [40], and from various diversities specific to the educational context
and particular course setup [7]. The most frequent internal stress sources we
have encountered, apart from the non-contributing team members, included
diversities in cultural and educational backgrounds, and personal conflicts be-
tween team members. External stress sources were predominantly related to

1DSD course webpage: https://www.fer.unizg.hr/rasip/dsd

2

project customers (initial requirements specification and their variability, cus-
tomer availability) and, to a lesser extent, organizational context shared among
the three participating universities.

Although we have conducted several short- and long-term studies on dis-
tributed student teamwork, we have not yet explicitly addressed the effects of
non-contribution and requirements change to team performance in detail and
the ability of student teams to cope with them – their resilience. The addi-
tional motivation for this study was, to our best knowledge, the absence of
similar studies addressing those two topics in depth. Considering the individ-
ual and team challenges in GSD courses, a significant number of publications
exist, as listed in [14], however, we have not identified those directly addressing
the impact of student non-contribution to project team performance and team
organization. Requirements management in the GSD education has also been
a topic of a number of publications (for example, [25], [16], [44]), and external
customer-related issues have been identified such as feature-creep [20] and non-
responsiveness [8]. Unfortunately, none of the studies focused on the impact of
requirements volatility, predominantly caused by external customers, on student
team performance and the resilience of student teams to such occurrences.

We assess resilience to a specific stress factor by observing its impact on
team performance indicators derived from the end-of-semester project evalua-
tion. Team performance is assessed on three aspects: (i) overall project perfor-
mance – taking into consideration four major aspects of student project work:
process, product, documentation and presentation quality, (ii) adherence to
mandatory development process and (iii) resulting product quality.

Non-contributing team members present an internal source of stress that
may more or less dramatically reduce the team’s ability to perform properly in
certain project work aspects. We investigate the potential roots of students’ lack
of contribution, the effect on the team performance and the ability of the team
to compensate it given a number of non-contributing students in the team. We
also study the impact of this stress on internal team dynamics by identifying
project-wide collaboration pattern that the team resorts to when faced with
non-contributing students, and individual collaboration roles played by each of
those students.

The entailed external source of stress, requirements change, broadly relates
to the type of project and project customer, given the level of initial require-
ments definition quality and the level of changes during the project duration.
Around 25% of initial requirements change in medium-sized projects and more
than 35% in larger projects [28]. These frequent changes become a relevant
source of errors in the product [27] and a strong coordination issue in distributed
teams [29]. This issue increases team communication and calls for more complex
collaboration methods [21]. Well-organized distributed teams facilitate informa-
tion flow and balance out potential issues related to geographical distribution,
while poorly organized teams struggle. Team resilience, indicated by grace-
ful degradation of performance indicators in the context of frequently changing
requirements, should present a strong indication of a sound distributed team or-
ganization. Considering this stress source, we assess respective team resilience

3

by:

- clustering teams according to observed differences in requirements change
perceptions across distributed sub-teams, thus indicating the quality of
collaboration and information flow across the distance boundary,

- determining performance indicators for each cluster in order to assess their
resilience towards requirement changes,

- revealing typical internal project organization by studying collaboration
patterns incidence for each of the clusters and thus

- allowing the characterization of team resilience to requirements change
according to adopted collaboration pattern and inter-pattern properties.

This paper is an extended version of “Team Resilience in Distributed Student
Projects”, published at the International Conference on Global Software Engi-
neering (ICGSE 2018) [11]. In this extended version, we further investigate our
initial findings, including the definition and detailed analysis of project teams’
collaboration patterns on project-wide and individual team member levels. The
analysis starts with a general study of the occurrence of each educationally
desired or undesired pattern in the student projects, being extended to the
analysis of individual collaboration roles for each non-contributing team mem-
ber, as well as the analysis of occurrence of project-wide collaboration patterns
in teams depending on the number of non-contributing team members. We also
extended our previous analysis on an external stress factor – the perception of
requirements change – by clustering projects and thoroughly analyzing their
performance indicators in relation to the collaboration patterns observed. In
order to extend the original analysis, the units of analysis in this paper are the
same as in the conference paper – the course projects from the year 2012 to
2016.

The remainder of the paper is organized as follows. Section 2 depicts the
most relevant related literature in terms of team resilience, both in general
and in distributed settings, collaboration patterns and distributed development
courses similar to DSD, which is described in detail in Section 3. Section 4 briefly
describes collaboration patterns, pattern identification method and educational
value of collaboration patterns. In Section 5 we describe our research method
as a longitudinal case-study and also argument on the potential threats to the
validity of our study method and results. The results of the study are presented
and discussed in Section 6. The discussion on educational implications and
recommendations is presented in Section 7. The paper is concluded with a
summary and a description of possible future increments in Section 8.

2. Background and Related Work

In this section we introduce the three main elements of our study: team
resilience (the concept under study), collaboration patterns (tools for studying

4

team resilience), and global/distributed software engineering courses (the scope
of the study). For each of the three elements we provide a dedicated subsection
with background and related work.

2.1. Team Resilience in Software Engineering

Various efforts have been made to define and study resilience, mostly in the
psychology field. In general, resilience is the capacity to rebound from adver-
sities strengthened and more resourceful [49]. Starting from an individual or
personal resilience, it can be described as an adaptive system which enables a
person to “bounce back” from a setback or failure [15]. In a similar manner,
team resilience can be conceptualized as a team’s belief that it can absorb and
cope with the strain, as well as a team’s capacity to cope, recover, and adjust
positively to difficulties [9]. In software engineering, team resilience is regarded
as “the capacity of a team to react and recover quickly from problems/crises”,
definition polished by Diegmann and Rosenkranz [19], but originally defined
by Meneghel et al. [35] in a non-software engineering context. In their work,
Diegmann and Rosenkranz highlight how recent research in organizational psy-
chology exposes team diversity and psychological safety to be core factors for
team performance and resilience in agile software engineering. Based on that,
they propose a model and research design to investigate the effects of team di-
versity, psychological safety, and social agile practices on team resilience and
team performance in agile collaborative software development.

Research on resilience brings good news: competencies for team resilience
can be improved. Coutu [15] describes seven “streams” of behavior used to
improve team resilience, shortly introduced as: community, competence, con-
nections, commitment, communication, coordination and consideration. Mal-
lak [34] proposes seven basic resilience principles for organizations: (a) perceive
experiences constructively, (b) perform positive adaptive behaviors, (c) ensure
adequate external resources, (d) expand decision-making boundaries, (e) practice
bricolage, (f) develop tolerance for uncertainty, and (g) build virtual role systems.
An experience from collaboration with NASA is described in [1], where Alliger
et al. list around 20 team resilience challenges, but also 40 practical behaviors
of resilient teams, grouped into Minimize (Before), Manage (During) and Mend
(After) categories related to the period of adversity.

In software engineering context, Amaral et al. [2] surveyed 115 members of
teams working on software-related projects, developed in academia, collecting 48
actions to improve project team resilience. As part of the survey, participants
ranked the actions proposed, having “promote collaboration” and “promote
solidarity” perceived as the most useful. The influence of process flexibility
was the center of Maccormack and Verganti’s [32] study, who focused their
research of 29 Internet software development projects on the following question:
Do development practices that support a more flexible process have a stronger
association with performance in projects that face more uncertain contexts? The
question of flexibility is related to team resilience, as resilient teams should be
more flexible to adverse changes. Authors study related hypotheses depending
on platform uncertainty and market uncertainty. They conclude that merely

5

reacting to change is just an appearance of flexibility, while real flexible processes
should be invested into from the early phases of the project, long before the need
for changes occurs.

Sharma et al. [46] report on the great importance of resilience for teams
working in complex and diverse environments. Besides existing studies on team
resilience, they highlight the lack of reliable and valid scale to measure team
resilience in the literature. To fill this gap, they design and develop a reliable
and valid measure to assess the resilience capacity of collaborative development
teams. They find out that team resilience is a hierarchical and multidimensional
scale comprising of four primary dimensions along with ten sub-dimensions.

There are not many resources on team resilience in distributed project work.
The field study of 43 teams in a large multinational company showed that ge-
ographically distributed teams have more both task and interpersonal conflicts
than their similar collocated teams. As concluded by Hinds and Mortensen [23],
spontaneous communication plays an important role in maintaining team re-
silience, with direct effects in conflict management. Stahl et al. [47] observe
that diversity in multicultural teams is studied with a specific focus on its nega-
tive effects on team performance and resilience. They take another perspective
to investigate whether and how such diversity can instead become an asset to
improve the team’s performance and resilience; they propose a research agenda
based on a collected set of existing literature.

For quantifying team resilience and identifying possible points of risk, Xiao et
al. [53] propose an automatic approach to visualize team hierarchies. They apply
their approach to six Apache open-source projects to show its effectiveness.

Summarizing, team resilience has been studied with various nuances in dif-
ferent domains and disciplines providing suggestions about possible sources of
stress and consequent mitigating actions. In this paper, we focus on a specific
context, a university distributed software development course, and we analyze
the impact of two sources of stress, non-contributing team members and changes
to customer project requirements, considering the period 2012-2016.

2.2. Collaboration Patterns

When analyzing team dynamics, a helpful method is to study collaboration
patterns represented by sociograms, graphical representations of a social net-
work created in a team. Several works use social network analysis as a means
for determining relations in the team. The studies are performed in various
settings: local and distributed, industrial and academic.

Damian et al. [17] observed the development of a main product feature, in a
distributed sub-team (part of a larger project), where six developers from two
sites (the US and Canada) agreed to provide their data. The social network of
interactions was formed, and over the course of 19 days, some interesting find-
ings were made. Social networks evolved in time, and interactions dramatically
changed throughout the development phases. Those interactions were “almost
completely unrelated to those documented in the project proposal.”

Hinds and McGrath [22] found, based on the research of one multinational
company, on 33 research & development teams (16 collocated, 17 distributed),

6

that the informal hierarchical structure works better than a fully flat, flexible
organization. In their case it was also found that dense communication was
related to more - instead of less - coordination problems. However, in contrast to
their findings, which showed that the efficiency of a distributed team is ensured
by “point people” through whom much of the team communication flows to the
remote teams [22], Nguyen et al. [37] find that having a large core of multiple
active members of each sub-team, connecting their teams in other locations,
reduces possible communication bottleneck problems and introduces redundant
communication channels, enabling fast communication.

Cataldo and Herbsleb [10] performed a longitudinal study of collaboration
patterns in a distributed SE project, lasting for 39 months, including 114 devel-
opers. They found that the core people in the team are not only in charge of
communication, being technically competent, but they performed a significant
part of actual development as well. Also, these “communication hubs” were
even more important in communication across sites, than in local context. The
team dynamic changed over time, with people temporarily moving in and out
of the “core” hub.

Social interactions are also related to project requirements, as presented by
Damian et al. [18]. Their paper presents a case study of a distributed industrial
project between the US and Brazil, where authors were studying requirements-
centric collaboration and awareness in both local and distributed contexts. The
results showed that social interactions were dynamic and different from initial
plans, there was considerable cross-site interaction with the main communica-
tion reason being related to requirements changes. Interestingly, there was no
evidence of reduced awareness of remote team members, although the distance
was a factor in remote members’ availability.

Moving further from the conventional industry to the open source context,
Surian et al. [48] analyzed a snapshot of Sourceforge.Net data using graph the-
ory, extracting topological sub-graph patterns and presenting some of the com-
mon topological collaboration patterns appearing in these collaboration clusters
of distributed developers. While the open source developers’ context is differ-
ent from ours, it is useful to observe the patterns of communication in a huge
community.

Although communication pattern analysis is often used in e-learning con-
text and courses, not many papers focus on software engineering courses. One
of these is [26], where Knutas et al. performed the social network analysis
of intra- and inter-group collaboration patterns over three “code-camp style”
software development courses/projects (each lasting five days). Their findings
include observing intensive collaboration outside of defined project teams, dis-
cussing the issues with members from other teams based on pre-existing social
connections. These patterns also showed that the projects also had a strong
“center of collaboration” (core), but such a setting was not beneficial for all
groups.

In a more conventional course setting, MacKellar [33] provided sociograms of
a big course project with student interactions, finding out how the collaboration
patterns influenced the outcome for each project sub-team. At that time, this

7

was still a work-in-progress, so no strong conclusions were being made.
Finally, Paasivara et al. [41] presented the GSE course carried out using agile

methods (distributed Scrum), showing using sociograms that the team which
had very high scores for teamwork quality, was communicating in a true Scrum
manner, having “the most egalitarian communication structure.”

The course described in this paper, Distributed Software Development course,
was the basis of a previous analysis of collaboration patterns, where Čavrak et
al. [13] analyzed 14 DSD course project teams and their collaboration patterns,
identifying and visualizing 14 patterns of local and remote collaboration.

The presented studies show how collaboration patterns are a widely adopted
way to analyze the communication and team dynamics. In this paper, we adopt,
with minor changes, the patterns proposed in [13] to study how they are in-
fluenced by non-contributing team members and how they can impact team
resilience to project requirement changes.

2.3. Global Software Engineering Courses

In an educational context, there is a number of international courses dealing
with the same topic – global/distributed software engineering courses. Clear
et al. [14] carried out an extensive literature review of 82 papers about global
software engineering courses, published in 2015, providing a list of challenges
and recommendations in such education. Examples of similar courses include:

- The DOSE project (Distributed and Outsourced Software Engineering),
organizing the course on three continents, among 12 universities. Several
course instances included a role–playing game - a contest - to prepare
students to work in a distributed manner and present them the challenges
of such work [39].

- The Runestone project, at the time presenting the course among Sweden,
Finland and China, which involved working on projects related to LEGO
NXT robots, proposed by teaching staff, in a period of 10-13 weeks [43].

- A GSE course carried out between Finland and Canada, focusing on agile
development methods, including GSE best practices. In this course, the
members move across teams during the course, so they gain experience
working in both local and remote teams [42].

Most research in the educational field of global software engineering has focused
on communication and collaboration in this educational context; however, team
dynamics – especially team resilience – has not been addressed yet.

3. DSD Course Overview

The Distributed Software Development course (DSD) is a project–based
course given jointly by three universities: University of Zagreb, Croatia (FER),
Mälardalen University, Sweden (MDH) and Politecnico di Milano, Italy (POLIMI).

8

Started in academic year 2003/04, the course has now been running – and im-
proving – for 15 consecutive years.

The course is run in a distributed manner, with international student teams
working together on a project throughout all its phases, from project plan and
requirements definition, to implementing, testing, documenting and deploying
the full product, while presenting their project status several times during the
semester. Students have to deal with several challenges like distance collabora-
tion, language and cultural differences, knowledge transfer, team organization
and dynamics, etc. In 15 years, 510 students from 45 countries and 6 continents
participated in 77 projects – usually 4-5 project teams per each year. More
details about projects and demographics are available in the Results section of
this study.

Besides introductory lectures and guest lectures given in the first weeks by
industry professionals involved in global software engineering, team project work
is the central theme in the course, giving students practical experience. Projects
are sized for teams of 6-8 members (3-4 per site) working for one semester (15
weeks). All sites participate in every project phase, working together in a syn-
chronous manner, using several collaboration and communication tools to orga-
nize their distributed work. Students are explicitly and consistently informed on
the importance of conducting a proper (distributed) development process, and
that delivering a well-working final product without a well-conducted process
will not be rewarded with high course grades.

Throughout the DSD history, there have been several types of projects and
project customers, presented in [5], but in recent years our main focus is having
projects with external industry partners, as well as ICSE SCORE2 competition –
students’ contest on software engineering, organized by International Conference
on Software Engineering (ICSE). Both of these project types pose additional
challenges to project teams and their resilience, but have additional educational
benefits for students and their learning experience.

The project topics are suitable for 6-8 team members, big enough to experi-
ence the teamwork challenges but small enough to be feasible. They are usually
complex web applications, often including the additional mobile application. In
some instances, projects include specific elements like hardware sensors or big
data sources. Some of the project examples are:

- visualization of world air quality open data obtained by satellites

- an application for the organization of cycling and running races, with
real-time tracking of participants

- a system for easier garage parking using Bluetooth beacons, etc.

While customers have a general project idea and an initial general set of require-
ments, during the discussions in the requirements gathering phase, students and

2ICSE SCORE competition: http://score-contest.org/

9

customers jointly decide on the list of stories and functionalities to implement.
Both sides could ask to change the requirements during the project, due to
several reasons (misunderstandings, lack of time/resources, project focus shift,
better insight into the customers’ needs, more knowledge of technology con-
straints, etc.). In general, such changes are not numerous nor too dramatic, but
students’ perceptions of the changes can be different, depending on the team
dynamics, as is described in this paper.

In the first decade of course delivery (2003 - 2013), our projects followed the
iterative methodology, with the students taking over the roles of Project Leader
and Team Leader. Starting with the year 2014, all student projects leverage an
agile development methodology, specifically Scrum framework. Teams follow the
usual SCRUM rules, divide the work in Sprints, produce artifacts like Product
and Sprint Backlogs, organize different types of meetings, etc.

During the course, students, in general, invest 100-150 working hours in the
project. Besides delivering the interim versions of documentation and product,
the teams present their ongoing work in 6 distributed presentations, covering
the different project phases and deliverables (Project Plan, Requirements and
Design, Project status presentation, Alpha and Beta prototype, Final presenta-
tion).

Teaching staff, organized as team supervisors, invests big efforts to support
and accompany the team, not mainly in solving technical and programming
issues, but in providing feedback and advising students on team issues, problems
stemming from distributed nature of work, differences in students’ levels of
knowledge and motivation, communication and collaboration challenges, work
organization, etc. Regular meetings among supervisors and team members,
in general, take place every week, enabling teaching staff to track the team’s
progress, especially in the process part, particularly important for our course.

Towards the end of the course, after submitting the final versions of their
product and documentation, projects are evaluated on more than 50 weighted
elements: the quality of documentation, final product, process and presenta-
tions. The template of the Final evaluation table, including all the elements,
is available at our website3 This evaluation outputs a number of points, which
are sent to student teams, who are asked to jointly propose the points division
among team members. After this, the final course grades are given by the teach-
ers, having in mind not only the distribution of points, but also the teachers’
perception of each student’s work and effort, as well as student’s reflection on
events in the team and the method of distributed development in general.

More details on several aspects of DSD course organization and rationale
(e.g. technology used in the course, students’ motivation, project types, cus-
tomers’ involvement, etc.) are provided in other papers; the list of publications
is available at our course website4. The complete project archive, including all

3Templates of data sources: https://www.fer.unizg.hr/rasip/dsd/research_data_

sources
4DSD course website: https://www.fer.unizg.hr/rasip/dsd

10

presentations and deliverables, is available on the same website as well.
In comparison to the conventional course methods, this method of educa-

tion – using project-based courses, especially distributed and “tightly-coupled”
among course partners – brings along a number of additional, wider risks de-
scribed in [6], related to course organization or project organization. Some of
these risks are related to team resilience, as highlighted in this paper.

4. Collaboration Patterns in the DSD course

In this section, we briefly introduce collaboration patterns, used to char-
acterize the true organization of a distributed student team and collaboration
among team members. The description of the pattern identification process and
the set of identified principal collaboration patterns was originally published in
[13]. We start this section by providing the rationale for using collaboration
patterns as a means of gaining insight into distributed team dynamics, then
describe the process used to identify principal collaboration pattern within a
project team and conclude it with the discussion of educational desirability of
different collaboration patterns.

4.1. Team Dynamics and Collaboration Patterns

Gaining insight into team dynamics, collaboration intensity and information
flows of a distributed development team, especially in the educational context
where many of the environment variables (such as team composition, individual
motivation, communication pathways and tools, etc.) are not easily controllable,
can be a very challenging task. One of the feasible approaches is to conduct a
post-mortem analysis of collaboration intensity among team members based on
their feedback and reconstruct it in the form of a sociogram. Further analysis of
such sociograms, acquired from a large number of projects, can reveal repeating
graph (sub-)structures and typical individual roles, allowing the identification
of representative collaboration patterns at the project level and collaboration
roles at the level of individual team members.

In our collaboration pattern model principal patterns characterize distributed
project-level collaboration and necessarily involve team members from both lo-
cations; principal patterns reflect distributed team organizational structure and
information pathways between distributed sub-teams. Collaboration roles ad-
dress individual team member roles within a project team, either in a local or
a distributed context.

By systematically collecting, storing and analyzing data collected from the
DSD course student projects since the year 2009, we have identified seven prin-
cipal collaboration patterns and nine individual collaboration roles. Principal
collaboration patterns and their properties are detailed in Table 1 whereas in-
dividual collaboration roles are described in Table 2. A simplified visual repre-
sentation of principal patterns and individual roles is given in Figure 1.

11

Table 1: Principal collaboration patterns [13]

Pattern Description

Backbone There exists a single significant collaboration link between dis-
tributed teams; all information between locations is exchanged
using only one communication channel and two mediators.

Core Represents the existence of a collaboration nucleus within the
project, where nucleus members are from both locations and
are mutually well connected by significant collaboration links.

Sandglass Experienced in projects where two Triangle patterns exist,
symmetrical to the distance gap between remote teams.

Split Implies a division of a distributed project team into two (or
more) sub-teams, where each of the sub-teams retains a dis-
tributed nature. Within each sub-team, there exists a signif-
icant collaboration over the distance gap, but there is a lack
of significant collaboration between members of different sub-
teams.

Star (prin-
cipal)

All significant collaboration links within a project focus in only
one project member, regardless of his location. The pattern
represents a complete breakdown of local collaboration and
the existence of a project master that is a single source of
coordination among distributed non-cooperating individuals.

Triangle A constellation of significant collaboration links where the
most team members from one location express collaboration
links with only one team member from the other location.

Virtual
team

Represents a project team with significant collaboration be-
tween team members regardless of their location. The crite-
ria for determining the existence of a Virtual team pattern
are: a) there exists a subset of team members from both loca-
tions with at least 80% of possible collaboration links existing
among them, b) such a subset is composed of at least 70% of
all project members, and c) all subset members express col-
laboration links with at least 50% of subset members from
remote location. Project teams failing only in criterion b) are
considered to exhibit a Core collaboration pattern.

12

Table 2: Individual collaboration roles [13]

Pattern Description

Island Represents a complete lack of significant collaboration links of
an individual member with any of the other project members.
Lack of collaboration does not automatically imply lack of
contribution, only a complete absence of proactivity and will
to participate in collaborative project activities.

Local Significant collaboration links of a team member are restricted
to other local team members, no significant collaboration over
the distance gap.

Loose Individual team member with only a few local and remote
collaboration links.

Parallel A team member is a member of a minor subgroup of a Split
principal pattern.

Core A team member is a member of a Core principal pattern.
Virtual
Team

A team member is a member of a Virtual Team principal pat-
tern.

Backbone A team member is a member of a Backbone principal pattern.
Star A team member is the focus of a Star principal pattern.
Proxy
client

A team member “attached” to the project team by having a
single significant collaboration link with a well-connected local
team member (usually classified as another individual pattern)
acting as a proxy.

13

4.2. Pattern Identification

Pattern identification method follows the method described by Čavrak et al.
[13], with several minor adjustments to accommodate for changes in the DSD
course organization and resulting data properties. The main source of data
required to construct the collaboration patterns are students’ Final Question-
naire documents (subsection 5.5), specifically the questions related to intensity
of collaboration with local and remote team members:

Describe the intensity (not quality!) of collaboration with each of the
local team members with the number 0-5; 0-no contact at all, 5-very
intensive collaboration

Describe the intensity (not quality!) of collaboration with each of the
remote team members with the number 0-5; 0-no contact at all, 5-very
intensive collaboration

Resulting data, collected from all team members and grouped at the project
level, is represented in the form of a directed weighted graph describing the
perception of collaboration intensity within a project team. Corresponding ad-
jacency matrix provides the input to the pattern identification process, where
only the significant collaboration links among team members are retained and
team member reputation is assessed based on the asymmetry of collaboration
intensity perceptions. For each project, a sociogram is constructed, visually
revealing principal collaboration pattern, as well as roles of individual team
members within those patterns. As the final step of the identification process,
the resulting sociogram is compared to the catalog of already identified pat-
terns and their key properties, selecting one that most closely matches, or a
new pattern is introduced in the catalog. Major criteria for identifying a princi-
pal pattern are: (i) the number of significant collaboration links across distance
gap dividing two project sub-teams, and (ii) number and location of team mem-
bers in a strongly connected graph component. A more detailed description of
the identification process can be found in [13].

Since the original pattern identification process and the corresponding col-
laboration patterns were defined only with the iterative development process and
hierarchical team organization in mind, currently used process has been adjusted
to accommodate both hierarchical- and Scrum-based projects. The original pro-
cess treated all collaboration links with average weight greater or equal to 3 as
significant; the updated process requires this link weight to be greater or equal
to 3.5. This change stems from the far greater number of border-strength col-
laboration links found in Scrum-based projects but only marginally changes the
interpretation of collaboration patterns in the older, hierarchical-based projects.
In addition, collaboration strength perception asymmetry is given more signifi-
cance in the process, eliminating all collaboration links with asymmetry larger
than one from a set of significant links. Team member reputation is determined
based on her systematic over- or under-estimation of collaboration link weights
towards other team members, adjusting her link weights accordingly.

14

proxy
local

Virtual
team

Core

loose
member

Sandglass Split

Star

local local

Triangle

Legend

team member

distance gap between sub-teams

principal collaboration pattern

individual collaboration roles

Backbone

island

Figure 1: Examples of principal collaboration patterns and individual collaboration roles [13]

4.3. Educational Value of Collaboration Patterns
Given the optimal size of distributed student project teams (6-8 students),

and educational goals emphasizing the quality of development process over the

15

quality of final product, we expect the emergence of educationally desirable
collaboration patterns in students’ distributed projects. Such patterns should
reflect intensive coordination and information flow at both local sub-teams and
between remote sub-teams, as well as promote inclusiveness of all project team
members.

A project’s principal collaboration pattern should ideally reflect one of the
two types of educationally desirable distributed team organization: virtual team
or distributed team. Virtual team organization is characterized by strong col-
laboration among all team members, regardless of their location and project
role. We consider Virtual team principal collaboration pattern as the represen-
tative of the Virtual team organization. Distributed team organization, on the
other hand, characterizes teams manifesting strong local collaboration and lim-
ited, but sufficient, communication links between remote teams. Representative
patterns for this team organization are Backbone, Triangle, and Sandglass. Ed-
ucationally undesirable collaboration patterns – Core, Split, and Star – mirror
team weaknesses in local and/or remote collaboration. Split and Star patterns
are considered especially undesirable since they portray the project team’s com-
plete failure to act as a coherent group (Split) or severely degraded local and
remote collaboration (Star).

Individual collaboration role for a productive team member should portray
her participation in a project’s principal pattern or at least some level of col-
laboration with one or more team members from both locations. We consider
Core, Virtual Team, and Backbone roles as positive ones. Local, Loose and
Parallel roles are considered neutral, while Island, Star and Proxy client roles
are treated as negative.

5. Research Formulation and Study Design

In this section, we first address our study design and its main phases. In
the remainder of this section, we provide details on the core components of the
study design: we formalize research objective and questions, define the case and
units of analysis, and describe data collection, data analysis and limitations of
the study.

5.1. Study Design

In this paper we report on a longitudinal case-study, designed as follows
according to the guidelines by Runeson et al. [45]. The three main phases were:
planning, conducting and documenting.
Planning. The objective of this phase was to formalize the research objective
and the research questions, as well as to identify the case and units for analysis,
the relevant data sources (among all data stored throughout the years) and
potentially interesting data analyses.
Conducting. In this phase, we performed the study itself by following two main
steps:

16

- Data collection: we investigated stored data and thereby isolated and
extracted relevant data for the intended analyses.

- Data analysis: during this activity we analyzed and summarized the ex-
tracted data with the aim of answering our research questions.

Documenting. In this phase we elaborated the analyzed and synthesized data,
and performed an accurate analysis of possible threats to validity. Eventually,
we wrote this paper, which describes the performed study.

5.2. Research Objective

Our goal is to reason on team resilience and how two core stress factors
– non-contributing team members in a distributed project environment and
changes of project requirements5 – influence the project performance of student
teams. We identify the collaboration patterns of distributed student teams, and
analyze their educational desirability. In addition, we seek possible correlations
between team collaboration patterns, resilience and stress factors.

As per definition of a case-study [45], we do not attempt nor claim general-
ization of the findings to other cases with different characteristics (e.g., indus-
trial distributed projects), but rather focus on the similar cases, that is to say
distributed student team projects in regular courses (within one study period).

5.3. Research Questions

To achieve our objective, we designed a longitudinal case-study with the aim
of answering the following research questions (RQs):

– RQ1a: What is the resilience of distributed student teams to non-contributing
team members?

– RQ1b: How do non-contributing team members influence project team
collaboration patterns?

– RQ2a: What is the resilience of distributed student teams to project re-
quirements change?

– RQ2b: How do different collaboration patterns influence team resilience
to project requirements change?

5Note that the focus is NOT only on the requirements specification phase. In fact, we
analyzed how changing requirements throughout the entire development process, AFTER the
requirements phase, affects resilience.

17

5.4. Case and Units of Analysis

The investigated case is the Distributed Software Development course. We
had five units of analysis, represented by the analyzed instances of the course
during the period 2012–2016. Moreover, since we also analyze at a finer gran-
ularity than course instance level, we had 23 subunits of analysis, represented
by the analyzed projects across all five course instances. In each (sub)unit of
analysis, our aim was to identify the potential impact of specific stress factors
on the resilience of student teams.

5.5. Data Collection

We collected data according to the four principles by Verner et al. [51]: use
multiple data sources, create a database with them, validate data and maintain
a chain of evidence. For data collection we leveraged the independent method,
i.e. based on documentation analysis, as introduced by Lethbridge et al. [30].

A large volume of data is generated during one DSD course instance, at
different time periods (before, during and after the project work), as part of
different documents and by different actors (individual students, project teams
and teaching staff). All the documents are in a structured or semi-structured
format, and have undergone only minor changes in format and content over the
years. Produced documents are systematically collected and archived, providing
a stable data source for conducting longitudinal studies.

Data necessary for conducting this study is extracted from the following data
sources (templates available at our course website6:
Project Evaluation Forms. Reports created by teaching staff as a result of
the evaluation process. Each project is evaluated on the basis of more than
50 criteria, divided into four major criteria groups: (i) documentation quality,
(ii) presentation quality, (iii) process quality and (iv) product quality. Each
criterion is assigned a corresponding weight, reflecting the importance of that
criterion for the overall project grade. Criteria groups have the following rela-
tive importance in the overall project evaluation, based on cumulative weights
of contained criteria: documentation quality - 22%, presentation quality - 10%,
process quality - 33%, and product quality - 35%. During the evaluation pro-
cess, each evaluation criterion is awarded a grade 1 (low) – 5 (high), reflecting
the quality of the evaluated project work aspect. Overall project performance
and per-criteria-group performances are expressed as the percentage of points
awarded – calculated as the weighted sum of criterion grades – compared to the
maximal number of overall or per-criteria-group points.
Final Questionnaires. Final Questionnaire reports are individually filled out
by DSD students, after all the project activities are over. The aim of this ques-
tionnaire is to allow students to record a ”guided” retrospective of their project
work by posing a set of open and closed questions. The form of the required
answers varies from purely textual and unstructured, to highly structured in the

6Templates of data sources available at: https://www.fer.unizg.hr/rasip/dsd/

research_data_sources)

18

form of Likert-like scales. Major question groups address students’ experience
of collaboration within the local team, the collaboration between remote teams,
perceived cultural differences, work organization, communication tools etc.
Individual Student Grades. Individual student grades are a combination of
their project performance (as perceived by their teachers and their teammates)
and the quality of their Final Questionnaire. Although each institution may (or
does) in the end locally use different grading scales, a scale of 1–5 is used in
our joint evaluation process for the individual student, where 5 represents the
highest grade, and grade 3 being the lowest grade for passing the course.

5.6. Data Analysis

To assess the impact of internal or external stress source on project per-
formance, we use three project performance indicators: overall project perfor-
mance, process performance, and product performance. All three indicators are
extracted from Project evaluation forms as values of overall project quality,
process quality and product quality, their values expressed on a percentage
scale 0–100%. The overall project performance indicator collectively measures
all project aspects (product, process, documentation, and presentation quality)
and provides an overarching measure of project success. More specific process
and product performance indicators are used to reveal potential differences in
how project teams react to different stress sources – was the team’s effort more
on delivering a functional product or on adhering to the required development
process. In the studied context, prioritizing process over product quality brings
far more educational value for students and is the preferred reaction of student
teams to stress, than resorting to ad-hoc processes and organizational structures
in order to finish a functional product.

We classify project team members to contributing and non-contributing based
on the received individual grade, extracted from Individual Student Grades re-
ports. Non-contributing team members, classified as such by receiving final
project grades 3 (barely passing the course) or 1-2 (failing the course) effectively
reduce the nominal team size after the project kick-off. Those students usually
restrict their activities to only dealing with project documentation and presen-
tations, or are isolated by other team members as unproductive in the technical
part of the project due to their insufficient technical/educational background.

To study the possible effect of team size on project performance, we classify
projects according to the number of team members into three classes: undersized
(< 6 students), optimally sized (6–8 students) and oversized (> 8 students). In
addition, we observe this classification for nominal and effective team sizes.
Nominal team size denotes the number of students allocated to the project
team at the beginning of the project. Nominal team size may deviate from
the optimal team size due to imbalances in enrollment on involved institutions,
resulting in undersized or oversized teams from the very project beginning. In
addition to sub-optimal team sizes, imbalances of team member numbers on two
involved locations may occur, posing additional risks for effective distributed
work. Effective team size denotes the number of contributing team members in
project and is always equal or less than project’s nominal team size.

19

The following three subsections (5.6.1 – 5.6.3) define the three major groups
of analyses conducted in order to address the posed research questions, with
analyses results presented in subsections 6.2 – 6.4 respectively.

5.6.1. Collaboration Patterns and Project Performance

For each of the projects under study, we identify principal collaboration
pattern and individual collaboration roles, employing the pattern identification
process briefly described in Section 4.

To gain an overall view on the presence and impact of collaboration patterns,
we conduct the initial analysis of (i) principal pattern incidence within the set
of studied projects, (ii) principal pattern incidence within two sets of projects
employing different development methodologies (i.e., iterative and Scrum, as
described previously), and (iii) project performance indicators for each of the
identified principal collaboration patterns. By pattern incidence analysis we
are examining the relative occurrence of educationally desirable and undesir-
able principal collaboration patterns in the analyzed population of distributed
projects and identify dominant ones. As the mandatory development process
methodology was changed in 2014 from iterative to agile (more precisely, Scrum
framework), we also analyze whether this change affects our data analysis re-
sults, in particular how the collaboration patterns change in moving from one
methodology to another.

Finally, we examine the distribution of project performance indicators (over-
all, process, product) for each of the identified principal patterns within the
project population. Resulting distributions should reveal median project per-
formance and its variability for projects employing a specific principal collabo-
ration pattern. Observed performance allows comparison of performance indi-
cators among different principal patterns, as well as comparison among overall,
process and product performance indicators for a single pattern. Results of this
analysis should confirm or deny our perception of educational desirability or
undesirability of specific patterns, as well as the impact of the principal pattern
on process and product performance aspects.

5.6.2. Resilience to Non-Contributing Team Members

Resilience to internal stress in the form of non-contributing team members
is assessed by observing the effect of the number of (non-)contributing students
on project performance indicator distributions, and on occurrence of principal
collaboration patterns that affected student teams tend to adopt.

Non-contributing students are divided into two classes: those finishing the
course and receiving lower grades and those leaving the course without receiving
a grade and not providing feedback (e.g., not submitting their Final Question-
naire). The option of leaving the course is institution-dependent and student
type dependent – for example, exchange students can drop out much more eas-
ily than regular students – influencing students’ motivation to participate in
project work actively.

We start our analysis by observing the occurrence of non-contributing stu-
dents in the analyzed projects, examining non-contribution and dropout rates

20

among regular and exchange student sub-populations, and identifying collabo-
ration roles non-contributing team members tend to adopt within their project
teams. The impact of non-contributing students on project performance is as-
sessed by studying the performance indicator distributions of projects grouped
by the number of non-contributing students present in project teams. Incidence
of principal patterns per project groups is revealed with the aim of identifying
principal patterns the project teams tend to adopt, depending on the number
of non-contributing team members.

Next, instead of the number of non-contributing project team members, we
take into account the number of contributing team members (effective team
size). We analyze the distribution of project performance indicators for teams
grouped by the effective team size.

In the end, we observe differences in project size classification when nominal
and effective team sizes are considered. Consequently, we study the impact of
those differences on project performance indicators, as well as the occurrence of
project principal collaboration patterns.

5.6.3. Resilience to Project Requirements Changes

Student project team resilience to requirement changes is assessed indirectly,
by observing the effect of differing requirement change perceptions between
remote sub-teams on project performance indicator distributions. To identify
projects with satisfactory and low resilience, we group them into three clusters.
In addition, we identify dominant principal collaboration patterns within each
cluster and assess pattern impact in shaping team resilience.

Clusters were manually formed according to values of two variables:

- Requirements change perception — mean value of requirements change
perception of all project team members (values 1–5); reflects the magni-
tude of requirements change as perceived by the whole project team, but
not necessarily the same for remote sub-teams.

- Difference in requirements change perceptions — the difference between
mean values of requirements change perceptions per distributed sub-team
(values 0–4); reflects the difference in perception of remote sub-teams,
mostly due to lack of communication and/or coordination between remote
sub-teams of a distributed project.

Perceived requirement change data are extracted from students’ Final Ques-
tionnaire documents, specifically from the students’ qualitative assessment of
requirement change magnitude submitted as answers to the following question:

Rate (1-no or minor changes, 5-huge changes) and describe
the level of requirement changes during the project

We define three clusters – A, B and C with the following semantics:
Cluster A encompasses projects with the non-existent or minimal difference in
requirements change perceptions between distributed sub-teams, while project–
wide mean requirements change perception being confined to values less than

21

2.5 (less than half of the variable range). The rationale for cluster A lies in
the formation of a “control group” of projects, with project teams not being
exposed to significant requirements change stress, and remote sub-teams acting
in synchronization.
Cluster B represents projects that expose significant differences in requirements
change perceptions. The true magnitude of the requirements change stress for
those teams cannot be reliably assessed (due to the difference between percep-
tions of sub-teams), so mean value of all team member perceptions is used as
a project-wide measure. We presume that cluster B projects were exposed to
medium-to-high requirements change stress and could not effectively compen-
sate it using internal team mechanisms.
Cluster C represents projects with minimal-to-moderate differences in require-
ments change perceptions, but with moderate-to-high requirements change stress
(value between 2.5 and 5). These teams presumably had a clear joint view on the
project state (therefore presenting small differences in perceptions) but needed
to deal with significant requirements changes.

Distribution of project performance indicator values is analyzed for projects
grouped into aforementioned clusters, revealing their typical overall response
to stress, as well as specific responses in domains of the process and product
quality. We also examine and compare per-cluster effective team sizes and em-
ployed development methodologies, detecting their possible influence on analysis
results.

The incidence of principle collaboration patterns per cluster is analyzed and
the most representative patterns for clusters B and C are selected for deeper
analysis. To further investigate the observed effect of smaller project team
nucleus, for each cluster B project we analyze the difference in requirement
change perceptions between nucleus and all team members.

5.7. Threats to validity

We assess the threats to the validity of the reported study guided by the
model proposed by Wohlin et al. [52] for empirical studies in the field of software
engineering. We focus on threats to the following three validity categories:
construct – validity of data sources used in this study, internal – validity of
analysis process and results, and external – a generalization of the results outside
the scope of our DSD course.

Neither of the seven data sources was designed for conducting a specific
type of empirical research study, but to assist in different phases of the student
projects. The two major data sources used in this study do present potential
sources of risk to construct validity : Final Questionnaires and Project evaluation
forms. Students are aware that the quality of their Final Questionnaire has
an influence on their final grade, as well as it could affect the grades of their
project teammates, therefore we expect them to present certain project aspects
in a better light than they actually were. However, questions addressing project
requirements were posed in a rather neutral way, without implicating anyone’s
responsibility, reducing the potential bias towards more positive valuation of
this project aspect.

22

Project evaluation forms provide a detailed evaluation framework listing
evaluation criteria and corresponding criteria weights, allowing evaluators only
a reduced variation of criteria (limited to 5%) to adjust criteria to individual
project properties. In addition, to reduce location bias, each project is evaluated
by two teachers; each from a location involved in the specific project; with final
evaluation being negotiated between them. Therefore, an additional low internal
validity threat remains in the small variation of evaluation criteria, and as a
result of the negotiation process, teachers’ personalities and criteria involved in
the project evaluation.

Another internal validity threat lies in a moderate number of projects ana-
lyzed, where certain project groups resulting from different classifications (num-
ber of team members, non–contributing team members, projects changing size
classification, collaboration pattern classification, etc.) do not possess a valid
population size for drawing any statistically significant conclusions. In those
borderline cases, we refrained from drawing any conclusions. At the moment,
we have no valid way to mitigate this threat as the lack of borderline data can
only be remedied by new data becoming available in the future iterations of the
course.

The external validity of the findings presented in this study can be assessed
considering their relevance within the context of other distributed software en-
gineering courses. In this case, its relevance primarily depends on the project
framework used in the course: results could be highly relevant to courses utiliz-
ing the full development cycle. However, other factors could affect the results of
the replicated studies in seemingly similar environments: differing educational
background, enrollment policies, cultural background, and work ethics.

As per definition of a case-study [45], we do not attempt nor claim generaliza-
tion of the findings to other cases with different characteristics (e.g., industrial
distributed projects), but rather focus on the similar cases, that is to say, dis-
tributed student team projects in distributed courses. The educational context
of (distributed) software engineering projects imposes many limitations, primar-
ily in the dimensions of project complexity, available time, ethical issues and
fairness, as well as limited funding [12]. Generalization to cases with different
characteristics, such as industrial/real-world projects, is not sought nor claimed,
and in general, would not hold due to idiosyncratic differences with educational
context and settings.

6. Results and Discussion

In this section, we present the results of the analysis performed according
to the study design described in Section 5 and discuss them in the context of
the four research questions. First, in Section 6.1 we provide basic properties of
the analyzed data covering the period 2012–2016 of the DSD course, followed
by the assessment of project performance indicators for each of the identified
principal collaboration patterns in Section 6.2 (as defined in Section 5.6.1).
Sections 6.3 and Section 6.4, (with respective methods described in Section 5.6.2
and Section 5.6.3) lay out analysis results of student teams’ resilience to internal

23

and external stress factors, providing a foundation for addressing the posed
research questions. Finally, research questions are answered in two Highlights
frames, based on the analysis results provided in sections preceding them.

6.1. General Results

Table 3: Course statistics 2012–2016.

Year ’12 ’13 ’14 ’15 ’16
Students 49 22 26 21 38
Nations 14 11 14 12 13
Projects 7 3 4 3 6

Data analyzed in this paper stems from 23 distributed student projects con-
ducted in academic years 2012 – 2016 as part of our DSD course. The total
number of students attending the course during the analyzed period was 156,
coming from 32 countries and five continents (Table 3). Institutional distribu-
tion of those students was as follows: FER 60, MDH 56, and POLIMI 40 stu-
dents. The data for this analysis was therefore acquired from 156 students’ Final
Questionnaires, 23 project evaluation forms and individual students’ grades.

As a result of relatively balanced numbers of enrolled students on three in-
volved institutions, in the analyzed time period there were only two occurrences
of undersized and two occurrences of oversized project teams, while a strong
majority of projects (19 projects – 82%) were of optimal size.

We further assessed the analyzed projects’ cultural diversity – by identifying
the number of unique UN sub-regions7 from which the project team members
originate – and educational background diversity – by estimating the number of
unique educational institutions from which project team members come. Ob-
tained results suggest that the analyzed projects were characterized with a low-
to-moderate cultural diversity of their members (team members originating from
2 or 3 different regions – 78% of the projects) and a low-to-moderate educational
diversity (team members originating from 2 or 3 educational institutions – 74%
of the projects). Therefore, we conclude that the cultural and educational di-
versity present in the analyzed project teams is of an expected magnitude and
should not negatively affect the results of further analyses.

Usage of iterative development methodology and hierarchical team orga-
nization were mandatory for ten projects conducted in years 2012 and 2013,
while Scrum methodology and “flat” team organization had been employed in
13 projects in years 2014 – 2016.

6.2. Collaboration Patterns and Project Performance

The incidence of principal collaboration patterns within the set of analyzed
projects is presented in Table 4 , where the patterns are grouped by their ed-

7https://unstats.un.org/unsd/methodology/m49/

24

Table 4: Incidence of principal collaboration patterns

Principal Pattern Projects Percentage
Virtual team 7 30.4%

d
es

ir
-

a
bl

eBackbone 3 13.0%
Triangle 2 8.7%
Sandglass 1 4.3%
Core 7 30.4%

u
n

d
e-

si
ra

bl
e

Star 2 8.7%
Split 1 4.3%

70

80

90

100

backbone core sandglass split star triangle virtualTeam
Principal collaboration patterns

G
ra

de
 (

pc
t)

overall process product

Figure 2: Performance indicators of principal collaboration patterns

ucational desirability and ordered according to their overall incidence. Two
similar patterns, Core and Virtual team, are present in more than 60% of the
projects. If observed from the perspective of educationally desirable or unde-
sirable principal collaboration patterns, 57% of the projects employed desirable
and 43% undesirable collaboration patterns. Analysis of pattern incidence per
team’s development process revealed no significant differences: for projects us-
ing iterative development method and hierarchical organization, five out of ten
projects (50%) were using educationally desirable collaboration patterns, while
for Scrum-based projects mentioned ratio was eight out of thirteen (62%). The
same applies to the most represented patterns: Core pattern appears in three
iterative and four Scrum projects, while Virtual team pattern is identified in
four iterative and three Scrum projects.

Performance indicators (overall, process, and product) of the projects grouped
by identified principal patterns (Figure 2) reveal that the performance of the
Core pattern is significantly lower than the structurally similar Virtual team

25

pattern, on all three performance indicators. Low process indicator score of the
Core pattern is almost comparable to one of the projects characterized by the
highly undesirable Star principal pattern. Both patterns share the tendency to
score significantly higher on the product than process indicator, thus opposing
the educational goals the DSD course insists on. On the other hand, projects
leveraging Virtual team and Backbone patterns show high and balanced prod-
uct and process indicator values, effectively representing educationally desirable
virtual team and distributed team project organizations.

6.3. Resilience to Non-Contributing Team Members

In this section, we provide and discuss the results of the analysis addressing
the resilience of student teams to non-contributing team members, by following
the approach defined in Section 5.6.2. We begin by studying the incidence
of non-contributing team members, associated individual collaboration roles
and impact on process performance indicators in Section 6.3.1. Correlation
between effective team size and project performance indicators is presented in
Section 6.3.2. Section 6.3.3 studies the impact of differing nominal and effective
project classifications on process performance indicators and resulting principal
collaboration patterns.

6.3.1. Non-contributing Team Members

Table 5: Number of projects with n non-contributing team members

Non-contributing team members in project
0 1 2 3 4

Number of projects with n
non–contributing members 10 6 2 3 2
Pct. of projects with n
non–contributing members 43.5% 26% 8.7% 13% 8.7%

Table 5 summarizes the data on non-contributing students per project, dur-
ing the analyzed period. Almost 60% of projects experienced at least one non-
contributing team member.

Table 6: Incidence of non-contributing students in Regular and Exchange student groups

Regular Exchange
Total number of students 132 24
Number of non-contributing students 17 10
Pct. of non-contributing students 12.9% 41.7%
Number of dropout students 2 4
Pct. of dropout students 1.5% 16.7%

26

Table 6 summarizes student types attending the DSD course during the
analyzed period; a much higher rate of non-contribution and course drop-out
can be observed in the sub-population of exchange students.

Table 7: Non-contributing students and individual collaboration roles

Collaboration All students Regular students Exchange students
role # % # % # %
Other 5 18.5% 4 23.5% 1 10.0%
Island 10 37.0% 5 29.4% 5 50.0%
Local 5 18.5% 3 17.6% 2 20.0%
Loose member 3 11.1% 1 5.9% 2 20.0%
Parallel 1 3.7% 1 5.9% 0 0.0%
Proxy client 3 11.1% 3 17.6% 0 0.0%

Table 7 lists the occurrences of individual collaboration roles for non-contributing
team members. The most frequently observed role in the overall non-contributing
student group, as well as in regular and exchange subgroups, is Island – denot-
ing detached team members with no significant collaboration links to any of
the other team members. The occurrence of this role is especially dominant
in the exchange student subgroup. Collaboration roles collectively represented
as Other denote involvement of non-contributing students in principal patterns
(Core, Star) or lack of any specific role. We ascribe the absence of the Proxy
client role in the exchange students subgroup to the difficulty of exchange stu-
dents to quickly create social bonds with at least one local team member in a
new project environment.

70

80

90

100

0 1 2 3 4
Number of non−contributing team members

G
ra

de
 (

pc
t)

overall process product

Figure 3: Project performance vs number of non–contributing team members

The effect of the number of non-contributing students on project perfor-

27

mance is presented in Figure 3. Project teams having up to two non-contributing
team members experience graceful degradation of process and project perfor-
mance indicators. Product score is consistently higher than process score, but is
degrading much faster than process; the number of team members available for
product development is smaller, but the distributed team manages to preserve
its organization. Substantial degradation of performance indicators is visible
for the project with more than two non-contributing team members, where pro-
cess grade experiences a sharper decrease. Such teams are trying to salvage the
product resorting to a simple ad-hoc development process, which might even
end up obtaining decent product grades, but misses the point of our course in
which the collaboration aspect is emphasized.

Table 8: Number of non-contributing team members and incidence of principal patterns

Non-contributing
team members

Principal Pattern 0 1 2 3 4
Virtual team 3 3 1 0 0

d
es

ir
-

a
bl

eBackbone 2 0 1 0 0
Triangle 1 1 0 0 0
Sandglass 1 0 0 0 0
Core 3 2 0 1 1

u
n

d
e-

si
ra

bl
e

Star 0 0 0 1 1
Split 0 0 0 1 0

Table 8 confirms that, in scenarios with strong lack of contribution, dis-
tributed team organization tends to adopt educationally undesirable collabo-
ration patterns. Projects with three and four non-contributing team members
exhibit Core, Split and Star patterns – characterized by low process grades. On
the other hand, projects with less than two non-contributing team members do
not exhibit prevalence of desirable collaboration patterns: the Core pattern is
almost as much present as Backbone and Virtual team patterns. This suggests
that a large number of non-contributing students almost guarantees the occur-
rence of undesirable patterns, but the absence of non-contributing ones does not
guarantee that desirable collaboration patterns will emerge.

Presence of undesirable Core pattern in projects with none or a small number
of non-contributing students can be explained by its ambivalence towards the
individual team member (non-)contribution; only reflecting the existence of a
well-connected subgroup taking over the coordination and decision making in
the project. Non-core members can either be non-contributing to the project
at all, or contributing ones – but their effort is mostly reflected in the product
quality aspect of the project, not the process one (as depicted on Figure 2).

28

6.3.2. Effective Project Team Size

Table 9 summarizes the data on the number of DSD course projects during
the analyzed period with a number of contributing team members.

Table 9: Number of projects with n contributing team members (effective project team size)

Effective project team size
2 3 4 5 6 7 8 9

Number of projects 1 2 3 4 7 2 3 1

70

80

90

100

2 3 4 5 6 7 8 9
Number of contributing team members

G
ra

de
 (

pc
t)

overall process product

Figure 4: Project performance vs number of contributing team members

Figure 4 reveals the linear relationship of the number of contributing team
members with the overall and process performance indicators; availability of
work hours and team size allow for conducting comprehensive projects and
require adhering to processes used in a distributed setting in order to coordi-
nate distributed project work. Smaller teams cannot address all project aspects
(product, process, documentation, presentations) at the same time and with the
same quality, therefore tend to focus on product aspect only.

It is interesting to note the absence of correlation between a number of con-
tributing team members and the product performance indicator. For smaller
teams (up to four) the aforementioned product-focus applies, but for larger
teams process indicator equalizes with or outgrows product indicator value; in
larger teams distributed collaboration is (almost) unavoidable, thus emphasiz-
ing the need to address process aspect, and, at the same time, lowering team
resources for investing in product aspect.

29

Table 10: Project team sizes (nominal and effective)

Classification undersized optimal oversized
nominal size 2 (8.7%) 19 (82.6%) 2 (8.7%)
effective size 10 (43.5%) 12 (52.2%) 1 (4.3%)
effective - iterative 4 (40.0%) 5 (50.0%) 1 (10.0%)
effective - Scrum 6 (46,2%) 7 (53.8%) 0 (00.0%)

70

80

90

100

mm ms ss xm xx
Project size classification

G
ra

de
 (

pc
t)

overall process product

Figure 5: Project performance vs number of contributing team members

6.3.3. Team Size Classification Change

Table 10 summarizes the number of projects within each category when all
(nominal) or only contributing (effective) team members are taken into con-
sideration. Large differences between nominal and effective sizes can be ob-
served for undersized and optimal classes, suggesting that a significant number
of projects changes their category from optimal to undersized. Two bottom
rows of Table 10 confirm there is no significant difference in effective project
size classification between projects employing iterative and Scrum development
methodologies.

When observing differences between nominal and effective categorization of
analyzed projects, we found that:

- two undersized, eleven optimal and one oversized projects have the same
nominal and effective categorization,

- eight projects with nominal optimal categorization change their category
to undersized when only effective team size is considered,

- one nominally oversized project is effectively categorized as optimally-
sized.

30

Figure 5 depicts the process performance indicator scores for such projects
(m – optimally sized projects, s – undersized projects, x – oversized projects,
pairs of letters on the x–axis indicate nominal and effective size classification;
for example, ms denotes nominally optimal (m) but effectively undersized (s)
projects). Observing only the categories with a sufficient number of represented
projects (mm, ms and ss), the figure suggests that projects that do not change
category (mm and ss) perform much better than projects that do change cate-
gory due to the reduced effective number of team members. It is also interesting
to note that original undersized teams (ss) significantly outperform new under-
sized teams (ms); this indicates the existence of a threshold that, when crossed,
represents an internal stress source that distributed teams show a low resilience
to.

Table 11: Team size classification change and principal patterns

Size classification change
Principal Pattern mm ms ss xm xx
Virtual team 4 2 0 0 1

d
es

ir
-

a
bl

eBackbone 1 1 1 0 0
Triangle 1 0 1 0 0
Sandglass 1 0 0 0 0
Core 4 2 0 1 0

u
n

d
e-

si
ra

bl
e

Star 0 2 0 0 0
Split 0 1 0 0 0

Table 11 reveals that the overall incidence of undesirable collaboration pat-
terns (Core, Split and Star) is more frequent within projects that transition from
optimally-sized to undersized. While 64% of the projects that do not change
classification (column mm of Table 11) exhibit desirable and 36% of them un-
desirable collaboration patterns, projects that do change classification (column
ms) adopt desirable patterns in 37% and undesirable ones in 63% of the cases.

Highlights

RQ1a. What is the resilience of distributed student teams to non-
contributing team members?

I Student project teams exhibit reasonable resilience to up to two non-
contributing team members; experiencing a graceful degradation of
process and product performance indicators.

I When resilience threshold is reached, process performance indicator
drops sharply; effectively undersized teams tend to focus on product
aspect neglecting the (educationally more important) process aspect
of the project work.

31

I There exists a relation between the number of contributing team mem-
bers and the overall and process performance indicators; no such re-
lation exists with the product performance indicator.

I The stress of becoming an undersized team has a significant impact
on all project performance indicators, whereas being an undersized
team from the project start has no such impact.

I Exchange students represent a high risk of being non-contributing
team members.

RQ1b. How do non-contributing team members influence project team col-
laboration patterns?

I Island is the dominant individual collaboration role among non-
contributing students.

I A large number of non-contributing students almost guarantees the
project team will resort to an educationally undesirable principal pat-
tern, but their absence does not guarantee that desirable principal
pattern will emerge.

6.4. Resilience to Project Requirements Changes

In this section, we provide and discuss results of analyses addressing the
resilience of student teams to changing project requirements, by following the
approach defined in Section 5.6.3. We begin by analyzing project performance
indicators for three project clusters in Section 6.4.1. Section 6.4.2 identifies prin-
cipal pattern incidence in project clusters and correlated performance indicator
distributions, further analyzes dependency of performance indicators to collab-
oration within project nucleus, and discusses implications of projects’ principal
patterns on resilience.

6.4.1. Requirements Change Perception Differences

Clustering of the analyzed projects, according to criteria defined in Sec-
tion 5.6.3, yielded cluster sizes A, B and C of 6, 9 and 8 respectively (Figure 6).
Figure 7 presents the project success evaluation results for clustered projects.
Projects in cluster A (projects with minimal difference in requirements change
perceptions) score better than projects in other clusters on all indicators, as
expected due to a lack of requirement change stress. Interesting differences
in evaluation scores can be observed for clusters B (projects with significant
differences in requirements change perceptions) and C (projects with minimal-
to-moderate differences in requirement change perceptions and moderate-to-high
requirements change stress); projects in cluster B, on average, tend to score
higher in the product than the process indicator and have a better score in the

32

1

2

3

4

0.0 0.5 1.0 1.5
Difference in requirement change observations (1−10)

R
eq

ui
re

m
en

ts
 c

ha
ng

e
ob

se
rv

at
io

n
(1

−
10

)

Clusters A B C

Figure 6: Projects grouped into tree clusters (A, B and C) according to the value of project-
wide mean requirement change perceptions and difference between mean requirement change
perceptions of remote sub-teams

70

80

90

100

A B C
Project clusters

G
ra

de
 (

pc
t)

overall process product

Figure 7: Comparison of project performance indicator values among project clusters

product indicator than cluster C projects. However, they have worse scores and
higher score variability than cluster C projects in the process indicator.

Our interpretation of the results is the following: as the cluster C projects
have confirmed moderate-to-high requirements change stress, their product grade
suffers due to unclear and volatile requirements, but they tend to keep the
overall indicator score higher than cluster B projects due to better intra-team
cohesion and the consequent resilience to external stress factors. They also ex-

33

hibit high process indicator grade, almost the same as the stress-free cluster A
projects, also due to their internal cohesion and preservation of collaboration
among remote sub-teams. On the other hand, cluster B projects indicate low-
ered resilience to requirements change stress by both the lowest process indicator
value and by the rather high difference between product and process indicator
values. These teams tend to fragment themselves, not being completely aware
of the overall project status (resulting in a difference in perceived requirement
changes). For the sake of product success and lowered overhead related to dis-
tributed collaboration, one of the remote sub-teams, or several more skilled
team members regardless of their location, tend to squeeze out others and take
over the project — directly contradicting our educational goals.

Regarding the effective team sizes for projects grouped in three clusters,
cluster C exhibits a slightly smaller median team size (5.5) than projects in
clusters A and B (median team size 6). We conclude that the effective team
size does not have a significant impact on project clustering.

However, interesting results emerge when inspecting the distribution of de-
velopment methodologies among clusters; 50% of the projects employing iter-
ative methodology are found within cluster A, 30% within cluster B and 20%
within cluster C. The distribution of projects employing Scrum methodology is
as follows: cluster A – 7.7%, clusters B and C – 46.2%. This implies that the
requirements change stress is far more present in Scrum-based student projects,
a cause of which we cannot reliably confirm without additional analysis.

6.4.2. Collaboration Patterns and Resilience to Changing Requirements

Table 12: Principal collaboration pattern incidence within project clusters

Cluster
Principal Pattern A B C
Virtual team 2 0 5

d
es

ir
-

a
bl

eBackbone 1 1 1
Triangle 0 1 1
Sandglass 1 0 0
Core 1 6 0

u
n

d
e-

si
ra

bl
e

Star 1 1 0
Split 0 0 1

Table 12 reveals the incidence of collaboration patterns per cluster. Only
the Backbone pattern is present in all three clusters, and the rather surprising
result is the appearance of Core and Virtual team patterns clearly separated
into cluster B (Core pattern strongly present, no Virtual team pattern) and
cluster C (strong presence of Virtual team pattern, Core pattern absent).

We further studied project performance under the requirement change stress,
focusing only on Core and Virtual team principal patterns within clusters B
and C, due to the prohibitively small number of occurrences for the other pat-

34

70

80

90

100

A B Core B Other C Other C VirtualTeam
Project clusters and principal patterns

G
ra

de
 (

pc
t)

overall process product

Figure 8: Comparison of project performance indicator values among project cluster A, and
dominant and other patterns in clusters B and C

terns. Figure 8 provides a basis for comparison of performance indicators within
clusters B and C, by separating performance indicators for projects with dom-
inant pattern (Core or Virtual team) and other projects present within that
cluster. Projects employing Core pattern dictate low-performance indicators
of cluster B, while good performance indicators of cluster C are dominated by
high-performance grades of projects using Virtual team pattern. Those results
are consistent with the initial performance assessments given in Figure 2; Vir-
tual team represents a desirable collaboration pattern that reflects well in the
team performance, scoring the highest in all performance indicators compared
to other patterns. The exclusive presence of Virtual team in cluster C strongly
suggests that the distributed project teams with such collaboration pattern are
also highly resilient to significant changes in requirements. Such resilience can
be attributed to the high density of strong collaboration links within the project
team nucleus and the size of that nucleus compared to the overall team size.

On the other hand, projects employing Core pattern, although structurally
similar to the Virtual team pattern, score lower – especially on the process
performance indicator. Their confinement to cluster B suggests that smaller
project team nucleus, compared to the nominal team size, cannot efficiently
absorb external stress in the form of changing requirements. Core’s nucleus
size is four team members for all but one project, in contrast with Virtual
team’s nucleus, which varies from five to seven.

Values of performance indicators for cluster B and C projects grouped under
Other are ambiguous: both groups contain two educationally (semi-)desirable
patterns (Backbone and Triangle) with strong average performance indicators
(Figure 2), and differ in one undesirable pattern (B with Star, C with Split).

35

However, performance indicators for cluster B Other projects are higher than
those in cluster C. We ascribe these results to an overly small number of indi-
vidual patterns within those groups and leave further investigation for future
work if more data collected on those patterns would become available.

A comparison between the difference of requirement change perceptions cal-
culated involving all team members and the difference calculated involving only
nucleus team members revealed the following:

- If the calculated difference was higher for nucleus team members or equal
to difference for all team members, the project’s performance indicator
scores were consistent with the overall Core pattern indicator scores. The
majority of the cluster B Core projects (67%) fall into this category.

- If the calculated difference was lower for nucleus team members than the
difference for all team members, the project’s performance indicator scores
were significantly higher than the overall Core pattern indicator scores,
almost matching the overall Virtual team pattern scores.

A similar analysis was conducted on Virtual team projects, where only a
smaller portion of projects (20%) exhibited higher difference in requirements
change perceptions for nucleus team members than for all team members and,
consequently, lower-than-expected performance indicator scores.

Considering the previous findings for projects adopting virtual team project
organization, represented by Core and Virtual team patterns, we conclude that
the resilience of student teams to the external stress represented by requirements
change is primarily dependent on the ability of the team’s nucleus to handle
it: the larger the nucleus, the higher the probability of absorbing the stress.
For projects adopting distributed team project organization, we are unable to
draw firm conclusions due to a too small number of projects adopting its typical
principal patterns.

Highlights

RQ2a. What is the resilience of distributed student teams to project require-
ments change?

I Cohesive distributed teams exposed to the stress of changing require-
ments express strong resilience from the process aspect of the project
work but tend to sacrifice the product quality aspect (educationally
desirable behavior).

I Non-cohesive distributed teams exposed to the stress of changing re-
quirements exhibit lower-quality process aspect of the project work
and focus on delivering a functional product (educationally undesir-
able behavior).

36

RQ2b. How do different collaboration patterns influence team resilience to
project requirements change?

I Educationally undesirable Core pattern is strongly present within less
resilient teams, while desirable Virtual team pattern within more re-
silient ones.

I The larger the project team nucleus with respect to the overall team
size and the more uniform perception of requirements changes within
that nucleus are, the more resilient the team is to requirements
changes.

7. Implications to Practice

The results of this study point to a set of recommendations for the practice
in educational contexts similar to our case – teaching global software engineer-
ing through a distributed project work. Both sources of stress should be tackled
before the course begins. The first stress source, effective change in the number
of team members (particularly due to non-contributing students) is a factor that
is dealt with through team organization and assignment of members to teams.
Special attention should be given to exchange students; staff should provide
clear information on the nature of the course and the expectations on team
members before the course starts. When forming student teams, the risk of this
stress source to arise is reduced if the ratio of exchange and regular students
is adequate. In this way, possible drop-outs or low-performance of one or two
students would not influence the team nor lead to undesirable collaboration pat-
terns. This stress source is much less prominent in industrial settings, as other
methods for selecting team members can be applied and the companies possess
the means to address unsatisfying performance. In educational settings, teach-
ing staff often doesn’t have any influence on students’ enrollment to courses, nor
they can do much about non-contributing students besides making them fail the
course or giving them low grades. However, a sanction for the particular student
should not affect the other team members’ performance; therefore teaching staff
should pay particular attention to the countermeasures they take to reduce this
stress source.

The other source of stress, changes in project requirements, is very often
found in industrial contexts, as stated at the beginning of our paper. While this
is undesirable, it is part of the formative process to allow students to experience
such stress. For them to take the most out of it, teaching staff should guide
and help them to deal with it in a productive and resilient way. As part of this
specific training, ad-hoc discussions about it with the external project customers
(from industry) should take place before the course starts. The customer should
be ready to add or change requirements, but this should always be done in a
thoughtful manner, in line with the educational context of the course.

37

Another recommendation, helpful in both cases, is the following. Currently,
our collaboration patterns are analyzed at the end of the course, as students
provide their insights on collaboration only in the Final Questionnaire. This
means that we can observe educationally undesirable patterns only after the
project is completed. While this gives us the knowledge to act accordingly for
the future course instances, it would be very beneficial to observe individual
and principal collaboration patterns before, e.g., during the mid-term project
evaluation. In this way, educationally undesirable patterns (or their inceptions)
would emerge before and give teaching staff time to steer teams towards one of
the equally recommended desirable ones.

Finally, we would like to emphasize again that, as such courses are a “taste”
of industrial contexts for students, the staff should not attempt to sanitize the
project work or over-protect the students, but rather to support them so to
make the experiences as useful as possible for their future careers.

8. Conclusions

In this paper, we focused on the study of distributed student team resilience
by exploring their reactions to two stress sources: non-contributing team mem-
bers and changing requirements. Team reactions were evaluated by observing
changes to project performance indicators – overall, process, and product, result-
ing from final project evaluations. To effectively analyze project team dynamics,
we identified principal collaboration patterns and individual collaboration roles
for each of the analyzed student projects and correlated them to other observed
project characteristics.

Non-contributing team members, a stress source internal to the team, re-
duce the project team size and impact its ability to produce a quality product
and follow the desired development process. These students take more relaxed
project roles, are isolated from other team members due to their inability to
effectively collaborate, or present a lack of motivation to participate in the
project work actively. Their lack of motivation is often correlated to their sta-
tus; exchange students represent a high risk of becoming non-contributing team
members. Concerning the individual collaboration roles, such non-contributing
students predominantly take on the Island role, with fewer instances of Local,
Loose member and Proxy client roles.

Distributed teams exhibit a fair level of resilience, given that the team size
is not reduced so that the distributed development process becomes more of
a burden than a tool needed to coordinate the work effort. In such a case,
reduced teams focus on the product and neglect the process-related part of
the development, hampering the educational goals set before them. In general,
projects exhibit a correlation between the number of contributing team members
and the quality of the development process, while such an explicit dependency
for the final product quality does not exist.

This finding is reflected in the most common collaboration patterns found in
student project teams of varying effective sizes: projects with large numbers of

38

non-contributing team members and/or changing classification from optimally-
sized to undersized tend to adopt educationally undesirable and process-wise low
performing principal patterns such as Core, Split or Star. However, such low
performing patterns are present in optimally-sized projects in numbers equal
to educationally desirable patterns, suggesting that the project team size is a
necessary, but not the sufficient requirement for achieving our educational goals.

Requirements change, stress source external to the distributed team, tends
to expose weaknesses in team coordination and information flow. Cohesive dis-
tributed teams exposed to moderate-to-high changing requirements have lower
product quality, but preserve high resilience in their process quality aspect. Non-
cohesive teams, identified by significant differences in perception of requirements
volatility between remote sub-teams, tend to focus on the product, experiencing
a sharp drop in process quality.

Principal collaboration patterns analysis showed that distributed teams that
are cohesive and resilient to requirements changes tend to implement education-
ally desirable collaboration patterns, predominantly the Virtual team pattern.
However, the structurally very similar but undesirable Core pattern is dominant
among non-cohesive teams. The results suggest that there exists a minimal
project team nucleus size, with respect to the nominal team size, required for
reaching team cohesion and, consequently, resilience to external stress factors.
Furthermore, the same cohesion indicator used at team level – differences in per-
ception of requirements changes – can be used on the nucleus itself to predict
the performance of the project team.

The ability of a distributed student team to adapt to stress without signifi-
cantly sacrificing performance is a crucial property in the educational settings of
a distributed development course. It provides the opportunity to the teaching
staff to expose student teams to external stress sources in a controllable fashion
and to estimate and control risk factors endangering the desired educational
outcomes.

A further study of the resilience of distributed teams to external and internal
stress sources in an educational context will focus on assessing the impact of ad-
ditional stress sources and reliable indicators revealing weaknesses in distributed
team performance.

This research includes projects realized using two development processes -
iterative (used in the first decade of the course) and agile development. As
observed, the change didn’t affect the elements on which we focused in this
study. However, having completed five years of using an agile approach (more
precisely, Scrum) in the course projects, we plan to perform an in-depth study to
analyze the various implications of moving from iterative to agile development.
This will also include a thorough analysis of team dynamics and resilience in
both course settings, from a qualitative perspective as well.

Acknowledgements

The authors would like to thank all former and current colleagues from
Mälardalen University, Sweden, Politecnico di Milano, Italy, and University of

39

Zagreb, Croatia, for the joint effort in working on DSD course. This work is
partially supported by the Knowledge foundation through the projects MO-
MENTUM and HERO.

References

[1] George M. Alliger, Christopher P. Cerasoli, Scott I. Tannenbaum, and
William B. Vessey. Team resilience: How teams flourish under pressure.
Organizational Dynamics, 44(3):176 – 184, 2015. ISSN 0090-2616.

[2] António Amaral, Gabriela Fernandes, and João Varajão. Identifying useful
actions to improve team resilience in information systems projects. Procedia
Computer Science, 64:1182 – 1189, 2015. ISSN 1877-0509. Conference
on ENTERprise Information Systems/International Conference on Project
MANagement/Conference on Health and Social Care Information Systems
and Technologies, CENTERIS/ProjMAN / HCist 2015 October 7-9, 2015.

[3] A. Avritzer, S. Beecham, J. Kroll, D. S. Menasche, J. Noll, and M. Paasi-
vaara. Survivability models for global software engineering. In 2014 IEEE
9th International Conference on Global Software Engineering (ICGSE), vol-
ume 00, pages 100–109, Aug. 2014. doi: 10.1109/ICGSE.2014.19. URL
doi.ieeecomputersociety.org/10.1109/ICGSE.2014.19.

[4] A. Avritzer, S. Beecham, R. Britto, J. Kroll, D. S. Menasche, J. Noll, and
M. Paasivaara. Extending survivability models for global software devel-
opment with media synchronicity theory. In 2015 IEEE 10th International
Conference on Global Software Engineering, pages 23–32, July 2015. doi:
10.1109/ICGSE.2015.29.

[5] Ivana Bosnić, Igor Čavrak, Mario Žagar, Rikard Land, and Ivica Crnkovic.
Customers’ role in teaching distributed software development. In Software
Engineering Education and Training (CSEE&T), 2010 23rd IEEE Confer-
ence on, pages 73–80. IEEE, 2010.

[6] Ivana Bosnić, Federico Ciccozzi, Igor Čavrak, Raffaela Mirandola, and
Marin Orlić. Multi-dimensional assessment of risks in a distributed soft-
ware development course. In Collaborative Teaching of Globally Distributed
Software Development (CTGDSD), 2013 3rd International Workshop on,
pages 6–10. IEEE, 2013.

[7] Ivana Bosnić, Federico Ciccozzi, Ivica Crnković, Igor Čavrak, Elisabetta Di
Nitto, Raffaela Mirandola, and Mario Žagar. Managing diversity in dis-
tributed software development education – a longitudinal case study. ACM
Trans. Comput. Educ., 19(2):10:1–10:23, January 2019. ISSN 1946-6226.

[8] B. Bruegge, A. H. Dutoit, R. Kobylinski, and G. Teubner. Transatlantic
project courses in a university environment. In Proceedings Seventh Asia-
Pacific Software Engeering Conference. APSEC 2000, pages 30–37, 2000.

40

[9] Abraham Carmeli, Yair Friedman, and Asher Tishler. Cultivating a re-
silient top management team: The importance of relational connections
and strategic decision comprehensiveness. Safety Science, 51(1):148 – 159,
2013. ISSN 0925-7535.

[10] Marcelo Cataldo and James D Herbsleb. Communication networks in ge-
ographically distributed software development. In Proceedings of the 2008
ACM conference on Computer supported cooperative work, pages 579–588.
ACM, 2008.

[11] Igor Čavrak and Ivana Bosnić. Team resilience in distributed student
projects. In Proceedings of the 13th Conference on Global Software En-
gineering, pages 112–120. ACM, 2018.

[12] Igor Čavrak and Rikard Land. Taking global software development from
industry to university and back again. In Proceedings of ICSE International
Workshop on Global Software Development (GSD), 04 2003.

[13] Igor Čavrak, Marin Orlić, and Ivica Crnković. Collaboration patterns in
distributed software development projects. In Proceedings of the 34th In-
ternational Conference on Software Engineering, pages 1235–1244. IEEE
Press, 2012.

[14] Tony Clear, Sarah Beecham, John Barr, Mats Daniels, Roger McDermott,
Michael Oudshoorn, Airina Savickaite, and John Noll. Challenges and
recommendations for the design and conduct of global software engineer-
ing courses: A systematic review. In Proceedings of the 2015 ITiCSE on
Working Group Reports, pages 1–39. ACM, 2015.

[15] Diane L. Coutu. How resilience works. Harvard Business Review, 2002.

[16] Daniela Damian, Ban Al-Ani, Davor Cubranic, and Lizveth Robles. Teach-
ing requirements engineering in global software development: A report on a
three-university collaboration. In Workshop on Requirements Engineering
Education and Training, pages 685–690, 2005.

[17] Daniela Damian, Luis Izquierdo, Janice Singer, and Irwin Kwan. Awareness
in the wild: Why communication breakdowns occur. In Global Software
Engineering, 2007. ICGSE 2007. Second IEEE International Conference
on, pages 81–90. IEEE, 2007.

[18] Daniela Damian, Sabrina Marczak, and Irwin Kwan. Collaboration pat-
terns and the impact of distance on awareness in requirements-centred so-
cial networks. In Requirements Engineering Conference, 2007. RE’07. 15th
IEEE International, pages 59–68. IEEE, 2007.

[19] Phil Diegmann and Christoph Rosenkranz. Team diversity and perfor-
mance – how agile practices and psychological safety interact. In Interna-
tional Conference on Information Systems, 12 2017.

41

[20] Olly Gotel, Christelle Scharff, and Sopheap Seng. Preparing computer
science students for global software development. In Proceedings - Frontiers
in Education Conference, pages 9 – 14, 12 2006. doi: 10.1109/FIE.2006.
322632.

[21] Jo Hanisch and Brian Corbitt. Impediments to requirements engineering
during global software development. European Journal of Information Sys-
tems, 16(6):793–805, 2007.

[22] Pamela Hinds and Cathleen McGrath. Structures that work: social struc-
ture, work structure and coordination ease in geographically distributed
teams. In Proceedings of the 2006 20th anniversary conference on Com-
puter supported cooperative work, pages 343–352. ACM, 2006.

[23] Pamela J. Hinds and Mark Mortensen. Understanding conflict in geograph-
ically distributed teams: The moderating effects of shared identity, shared
context, and spontaneous communication. Organization Science, 16(3):
290–307, 2005.

[24] John F. Home and John E. Orr. Assessing behaviors that create resilient
organizations. Employment Relations Today, 24(4):29–39, 1998.

[25] Lorraine Johnston, Dirk Peters, Jean-Guy Schneider, and Ursula Wellen.
Requirements analysis in distributed software engineering education – an
experience report. In Proceedings of 6th Australian Workshop on Require-
ments Engineering, 2001.

[26] Antti Knutas, Jouni Ikonen, and Jari Porras. Communication patterns in
collaborative software engineering courses: a case for computer-supported
collaboration. In Proceedings of the 13th Koli Calling International Con-
ference on Computing Education Research, pages 169–177. ACM, 2013.

[27] Seija Komi-Sirviö and Maarit Tihinen. Lessons learned by participants of
distributed software development. Knowledge and Process Management, 12
(2):108–122, 2005.

[28] Craig Larman. Agile and iterative development: a manager’s guide.
Addison-Wesley Professional, 2004.

[29] Gwanhoo Lee, J Alberto Espinosa, and William H DeLone. Task environ-
ment complexity, global team dispersion, process capabilities, and coordina-
tion in software development. IEEE Transactions on Software Engineering,
39(12):1753–1771, 2013.

[30] Timothy C Lethbridge, Susan Elliott Sim, and Janice Singer. Studying
software engineers: Data collection techniques for software field studies.
Empirical software engineering, 10(3):311–341, 2005.

42

[31] Brian Lings, Björn Lundell, Pär J. Ågerfalk, and Brian Fitzgerald. Ten
strategies for successful distributed development. In Brian Donnellan,
Tor J. Larsen, Linda Levine, and Janice I. DeGross, editors, The Trans-
fer and Diffusion of Information Technology for Organizational Resilience,
pages 119–137, Boston, MA, 2006. Springer US. ISBN 978-0-387-34410-2.

[32] Alan MacCormack and Roberto Verganti. Managing the sources of uncer-
tainty: Matching process and context in software development. Journal of
Product Innovation Management, 20(3):217–232, 2003.

[33] Bonnie MacKellar. A case study of group communication patterns in a large
project software engineering course. In Software Engineering Education
and Training (CSEE&T), 2012 IEEE 25th Conference on, pages 134–138.
IEEE, 2012.

[34] Larry Mallak. Putting organizational resilience to work. Industrial Manage-
ment (Norcross, Georgia), 40(6 NOV./DEC.):8–13, 1998. ISSN 0019-8471.

[35] Isabella Meneghel, Marisa Salanova, and Isabel M Mart́ınez. Feeling good
makes us stronger: How team resilience mediates the effect of positive
emotions on team performance. Journal of Happiness Studies, 17(1):239–
255, 2016.

[36] Sal Mistry, A C. Stoverink, and B Rosen. Team resilience: A theoretical
model of teams that bounce back from adverse events. Academy of Man-
agement Proceedings, 2015:17642–17642, 01 2015. doi: 10.5465/AMBPP.
2015.17642abstract.

[37] Thanh Nguyen, Timo Wolf, and Daniela Damian. Global software develop-
ment and delay: Does distance still matter? In Global Software Engineer-
ing, 2008. ICGSE 2008. IEEE International Conference on, pages 45–54.
IEEE, 2008.

[38] John Noll and Sarah Beecham. Measuring global distance: A survey of
distance factors and interventions. In Software Process Improvement and
Capability Determination - 16th International Conference, SPICE 2016,
Dublin, Ireland, June 9-10, 2016, Proceedings, pages 227–240, 2016.

[39] Martin Nordio, H Christian Estler, Bertrand Meyer, Nazareno Aguirre,
Rafael Prikladnicki, Elisabetta Di Nitto, and Anthony Savidis. An experi-
ment on teaching coordination in a globally distributed software engineering
class. In Software Engineering Education and Training (CSEE&T), 2014
IEEE 27th Conference on, pages 109–118. IEEE, 2014.

[40] Helena Olsson, Eoin Ó Conchúir, Pär Ågerfalk, and Brian Fitzgerald.
Global software development challenges: A case study on temporal, ge-
ographical and socio-cultural distance. In Proceedings - 2006 IEEE Inter-
national Conference on Global Software Engineering, pages 3–11, 2006.

43

[41] Maria Paasivaara, Casper Lassenius, Daniela Damian, Petteri Räty, and
Adrian Schröter. Teaching students global software engineering skills using
distributed scrum. In Proceedings of the 2013 International Conference on
Software Engineering, pages 1128–1137. IEEE Press, 2013.

[42] Maria Paasivaara, Kelly Blincoe, Casper Lassenius, Daniela Damian, Jyoti
Sheoran, Francis Harrison, Prashant Chhabra, Aminah Yussuf, and Veikko
Isotalo. Learning global agile software engineering using same-site and
cross-site teams. In Proceedings of the 37th International Conference on
Software Engineering-Volume 2, pages 285–294. IEEE Press, 2015.

[43] Arnold Pears and Mats Daniels. Developing global teamwork skills: The
runestone project. In IEEE EDUCON, April 14-16, 2009, Madrid, SPAIN.
IEEE, 2010.

[44] A. Peters, W. Hussain, A. Cajander, T. Clear, and M. Daniels. Preparing
the global software engineer. In 2015 IEEE 10th International Conference
on Global Software Engineering, pages 61–70, July 2015. doi: 10.1109/
ICGSE.2015.20.

[45] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. Case study
research in software engineering: Guidelines and examples. John Wiley &
Sons, 2012.

[46] Shikha Sharma and Sanjeev Kumar Sharma. Team resilience: scale devel-
opment and validation. Vision, 20(1):37–53, 2016.

[47] Günter K Stahl, Kristiina Mäkelä, Lena Zander, and Martha L Maznevski.
A look at the bright side of multicultural team diversity. Scandinavian
Journal of Management, 26(4):439–447, 2010.

[48] Didi Surian, David Lo, and Ee-Peng Lim. Mining collaboration patterns
from a large developer network. In Reverse Engineering (WCRE), 2010
17th Working Conference on, pages 269–273. IEEE, 2010.

[49] Kathleen Sutcliffe and Timothy Vogus. Innovation and intellectual property
rights. In J. E. Dutton K. S. Cameron and R. E. Quinn, editors, Positive
Organizational Scholarship: Foundations of a New Discipline, pages 94–
110. Berrett Koehler Publishers, San Francisco, CA, 2003.

[50] Adam Trendowicz and Jurgen Munch. Factors influencing software devel-
opment productivity–state-of-the-art and industrial experiences. Advances
in Computers, 77:185 – 241, 2009.

[51] June M Verner, Jennifer Sampson, Vladimir Tosic, NA Abu Bakar, and
Barbara A Kitchenham. Guidelines for industrially-based multiple case
studies in software engineering. In Research Challenges in Information
Science, 2009. RCIS 2009. Third International Conference on, pages 313–
324. IEEE, 2009.

44

[52] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in software engineering.
Springer Science & Business Media, 2012.

[53] Lu Xiao, Zhongyuan Yu, Bohong Chen, and Xiao Wang. How robust is
your development team? IEEE Software, 35(1):64–71, 2018.

45

