
Impediments to Introducing Continuous Integration
for Model-Based Development in Industry

Robbert Jongeling, Jan Carlson, Antonio Cicchetti
Department of Innovation, Design and Engineering, Mälardalen University

Västerås, Sweden
Email: {robbert.jongeling, jan.carlson, antonio.cicchetti}@mdh.se

Abstract—Model-based development and continuous integra-
tion each separately are methods to improve the productivity of
development of complex modern software systems. We investigate
industrial adoption of these two phenomena in combination, i.e.,
applying continuous integration practices in model-based de-
velopment projects. Through semi-structured interviews, eleven
engineers at three companies with different modelling practices
share their views on perceived and experienced impediments to
this adoption. We find some cases in which this introduction is
undesired and expected to not be beneficial. For other cases, we
find and categorize several impediments and discuss how they
are dealt with in industrial practice. Model synchronization and
tool interoperability are found the most challenging to overcome
and the ways in which they are circumvented in practice are
detrimental for introducing continuous integration.

Index Terms—Model-based development, Continuous integra-
tion, Interview study

I. INTRODUCTION

For the design of complex modern software systems, model-
based development (MBD) is often leveraged, i.e., models are
used as core artifacts for activities like system design, simula-
tion, and code generation [1]. The models are core artifacts in
the sense that the eventual code and application match them
and the models are not used, for example, just for informal
communication. Industrial practice implies collaboration on
these models by multiple engineers, possibly from multiple
domains. Empirical results show improved productivity of
development in industrial settings when that includes using
models in this way [2]–[5].

In parallel, Continuous Integration (CI) has also been eval-
uated in industrial settings and shows an improvement in the
productivity of software development [6], [7]. CI proposes a
collaboration in which developers frequently (at least daily)
integrate their work into a shared repository [8]. Notably,
CI does not entail continuously making a release available
(as in continuous delivery) or continuously deploying the
software on user machines (as in continuous deployment). The
respective scopes of these practices are illustrated in Figure 1.

Build  Test   Release   Deploy  Develop

Continuous 
 Integration

Continuous 
Delivery 

Continuous 
Deployment 

Fig. 1. Steps included in continuous integration, continuous delivery, and
continuous deployment.

To optimally make use of their individual benefits, we con-
sider the combination of CI and MBD. This entails multiple
developers using models as core artifacts for development and
frequently integrating new versions of these models into a
shared repository. In our experience, industrial adoption of this
combination of practices is low, despite several evaluations
showing its potential benefits [9], [10]. More specifically than
agile, combining CI and MBD is also identified as a promis-
ing practice towards increased development productivity [11],
[12]. Understandably, introducing these development methods
in industry is not an overnight process and many obstacles
are encountered. To identify the most important of these
impediments, we have interviewed industry practitioners who
share their experience and expectations for the future from
different perspectives.

The remainder of this paper is organized as follows. In
Section II, we describe the design of the interview study,
the findings from which are then presented in Section III
and further discussed in Section IV. Relevant related work
is considered in Section V and the paper is concluded in
Section VI.

II. RESEARCH APPROACH

A. Context

We consider the combination of CI and MBD to entail a
practice in which models are developed in rapid iterations
and developers integrate their work frequently into a shared
repository. When models at different levels of abstraction
are created, for example for system design and software
implementation, they should be synchronized. Changes to any
model could incur a build and test run, as part of the CI
pipeline. A common current industrial practice is development
using the “V-model” [13], so initially this CI can be seen as
an enhancement of some steps in that process, as illustrated
in Figure 2.

By means of interviews with industry practitioners of MBD,
and to some extent also CI, we reflect on the difficulties
of adopting this combination of CI and MBD in practice.
Specifically, we aim to answer the following research question:
What are the experienced and perceived impediments to in-
troducing continuous integration in model-based development
projects?



Concept of
Operations

Requirements 

Detailed Design 

Implementation 

Integration, Test,
Verification 

System Verification,
Validation 

Operation,
Maintenance 

Test,
Integration 

Project
Definition 

Verification,
Validation

Architecture 

Fig. 2. Continuous Integration concerns the steps in the bottom of the V-
model [13]. Modelling artifacts belonging to these blocks may be subject to
rapid iterations that may impact modelling artifacts in the other blocks, as
indicated by the dashed arrow.

B. Interview Design

In this work, we consider the perspective of three large com-
panies, referred to as company 1, company 2, and company
3. Two of the companies are based in Sweden and one is
based in the Netherlands. The companies develop software
for embedded systems in the varied domains of avionics,
electronics, and vehicular embedded systems.

We have interviewed eleven engineers, five at company 1,
two at company 2, and four at company 3. The interviewees
have various roles in the companies, such as system architect,
system designer, software engineer, or software integrator and
have varied levels of experience, from an interviewee being
involved in modelling only since its company introduction in
the last 2 years to an interviewee who has been involved with
modelling for more than 25 years.

At two companies, the interviews were conducted by two
interviewers, at the other company the interviews were con-
ducted one-on-one. The interviews at one of the companies
were in person, the others remote, through Skype and by
phone. Audio of eight interviews and detailed notes of all in-
terviews were recorded. The notes were summarized and sent
to the interviewees for confirmation and discussed extensively
between the interviewers.

In the design of the interviews, we have included some
measures to alleviate threats to external, construct, and in-
ternal validity as well as threats to their reliability, using the
categorization of these threats by Runeson and Höst [14].

C. Threats to validity

A threat to the external validity of this work is unjustly
drawing generalizing conclusions based on a too narrow
sample. We alleviate this threat by including companies who
implement MBD to different degrees and thus have the re-
quired different perspectives. Albeit a small sample size, we
synthesize our results such that they are nevertheless relevant
for companies that have adopted agile and MBD to similar
degrees as the interviewed companies.

To alleviate threats to construct validity, in particular the
threat of the interviewers and the interviewees having a

different idea in mind when talking about agile MBD, we
presented our views on these concepts before starting each
interview. In this brief introduction we presented definitions of
MBD and CI, as well as what we mean by their combination,
similar to the introduction of this paper. Furthermore, during
each interview, the interviewers have taken detailed notes
that were, as mentioned, summarized and sent for review
to the interviewees, such that they could confirm that we
reflected their statements correctly or to allow them to correct
misunderstandings.

The internal validity of our study can be impacted by
interviewers not having a complete picture of the context in
which the interviewee is working. Consequently, the inter-
viewers could unjustly attribute certain impediments to certain
practices. To alleviate this threat, we started the interviews
with questions to determine the current state of practice at
the companies and used this information after the interviews
to discuss the results between the interviewers to understand
from what viewpoint the different comments originate.

Towards the reliability of any interview study, there is a
trade-off between a strict set of completely reproducible closed
questions and an open conversation highly influenced by the
personal input of the interviewers. We have balanced these
interests by creating semi-structured interviews following the
pyramid model [14]. Early questions are closed and specifi-
cally related to the current state of practice at companies and
the professional background of the interviewees. In later stages
of the interview, the questions are open and only the themes
decided beforehand. During that stage, we ask the interviewees
to identify impediments to combining CI and MBD, which
allowed us to then talk more in-depth about these identified
impediments by asking follow-up questions to explore them
further.

III. FINDINGS

In this section, we present the results from the semi-
structured interviews. First, we briefly describe the current
state of practice at the industrial partners. Then, we catego-
rize perceived and experienced impediments as identified by
interviewees.

A. State of practice

All three companies are, to different extents, model-based
development practitioners and also have adopted agile devel-
opment practices to different extents. Figure 3 sketches the
relative positions of these companies on both spectra, where
the horizontal axis denotes adoption of models in development
and the vertical axis denotes adopting agile practices with
respect to the development of those models.

Company 1 utilizes models to create system designs at
a high abstraction level. At this level, the design is mostly
concerned with subdividing the system into clusters of soft-
ware components and specifying their interfaces. After this
stage, the models are handed over to software teams, who
implement the designed components in code. There are some
agile processes in place in the software development part,



Modelling adoption

Company 1

Company 2

Company 3

A
gi
le

ad
op

ti
on

Fig. 3. Relative positioning of involved companies based on their adoption
of agile and MBD practices.

but not involving the development of the system models.
Iterations of the models are spread out over a long time and
are usually made far in advance of the software development,
making system models and the software implementation quite
decoupled. Changes to the system design are communicated
by system designers to software engineering teams after each
new iteration by means of a manual handover, in which the
teams agree on the changes and their implications.

Company 2 works in a similar way; a system design is
created using models at a high level of abstraction, which are
not directly linked to the software implementation. Addition-
ally, a portion of the software is implemented in models from
which code is generated. CI is used in the development of
these software models, it is done in rapid iterations and they
are integrated very frequently, up to multiple times per day.

Company 3 has a continuous integration pipeline in place
for software models, all code is generated from them. For the
design of the system, models are used in a less formal way,
embedded in documents and only meant for communication of
the design ideas. Since they are used in this way, the models
do not necessarily strictly conform to their language syntax
and no explicit links exist between these design models and
the software models.

It should be noted that we considered only companies who
already employ models for the development of their software
systems. So, we are investigating only how to adopt CI once
modelling is to some degree in place, rather than considering
also the symmetrical case, where CI is in place but models
are not used at all. Given the known challenges in adopting
modelling, it is more in line with industrial practice to consider
the introduction of CI in MBD, rather than supposing that
modelling is introduced in an already agile, but code-centered
software development process.

B. Conservative views

Early on in our research, we encountered MBD setups in
which there is no need nor desire for more rapid development
iterations, contradicting our initial assumptions by saying for
example that there is no need for CI and that the current
practices are good enough. An example of such a case involves
a clear distinction between the design and implementation

phases. In the design phase, system models are used to
describe the system at a high level of abstraction. In the
implementation phase, models or code are used to design
the software, but there are no formal or automated links
between the system models and the implementation models
or code. Therefore, in both of these cases, the synchronization
between design and implementation is done manually, either
by communication between system design teams and imple-
mentation teams, or by having the same engineers work on
both parts. Rapid iterations are then undesirable because they
would only increase the communication overhead between
teams, or impractical, when both phases are performed by the
same engineers but the implementation phase starting after the
design phase is completed.

To better align our questions with these practices, we have
first asked interviewees about their views on potential benefits
to introducing more models in the software development,
we then asked them to think about impediments they see
towards that goal. Having established first the introduction of
models throughout development, we moved on to questions
regarding the benefits of applying CI in modelling contexts
and perceived impediments towards doing so. The questions
thus follow the expected adoption process of agile modelling,
i.e., first introducing MBD, then going more agile. This order
of the questions was chosen to separate concerns interviewees
might have regarding the introduction of modelling from the
impediments they encountered or expect to encounter when
introducing CI.

Using more models in development can refer to extending
modelling practice from system design to software models.
Alternatively, it can refer to using models more formally
in all development stages, rather than for example only for
communication of system design concepts. The opinions are
divided on the formality required in the created models,
where more strictness is seen as a must for introducing more
automation, but on the other hand, some engineers would like
to have more freedom in a modelling tool, for example by
writing free text in models, to enable easier communication
of design ideas.

When code is written manually, interviewees view the
potential productivity gains of introducing CI in MBD as
minimal. But at the same time, modelling for code generation
encounters some apprehensive views. Firstly, enabling code
generation requires modelling to a low level of abstraction,
which is a big step when the current practice includes only
modelling on system level. This causes some reserved reac-
tions from engineers stating that modelling is more difficult
than coding for certain concepts, such as parallelism: “Things
are sometimes very difficult to describe in models, perhaps
software on a higher control level can be described, but
parallel processes and what is described in VHDL on our
FPGAs, . . . , complete parallelism is impossible to describe,
at least in SysML. All those continuous flows, I don’t know
how to describe those.” Similarly, some doubts are shed to the
applicability of modelling in their domain, or for their specific
products: “code generation is good if you want to make very



simple things.” These types of comments illustrate some of
the conservative viewpoints in industry, but more experienced
modellers have expressed their wonder at the resources spent
on writing code while it could be generated from models: “I
don’t see why we have to write code anymore.”

More rapid iterations in the system design might also not
be considered relevant because the design is often made far
in advance of the software implementation and is not so
flexible but only updated for very relevant changes. Another
viewpoint is that it would hinder the freedom of developers,
as said by one interviewee about introducing more formal
modelling at system design level (instead of using models only
for communication): “I think in some situations this might help
a little, but mostly it would be experienced as a limitation if
those high-level diagrams have to be correct.”

CI for models at the implementation level is in place in
two of the companies in this study, although those models
are not explicitly linked to the system design models. It
is noteworthy that both companies use, for this stage, a
single modelling tool, simplifying the implementation of a CI
process. More rapid iterations involving both the system design
and the software implementation are not considered useful
due to the previously mentioned factors. The system design is
typically to a large extent completed before the implementation
starts and is often created for the purpose of communication,
so the models are not a precise description of the design.
Furthermore, as discussed before, the process of synchronizing
between the phases often involves communication between
people, which scales badly to faster iterations. Rather, a
more explicit coupling between the models at the different
abstraction levels is desired, such that the impact of changes in
the design are clearer to the system designers and the required
changes in the implementation are easier communicated to the
implementation teams. As reflected by the following statement
about more rapid iterations between models on all levels, “If
the models would be more connected, then that would work
much better”.

C. Impediments

The conservative views of some interviewees were not
shared by all interviewees in companies 1 and 2. Some
engineers did see benefits in moving towards CI even with
current modelling practices. “Yes obviously, we would like
to have that, because it’s working quite well in the software
area, but it’s hard to get to a point where it is convenient,
especially in the modelling world.” In general, the benefits of
a short turnaround loop between software and system design
are appreciated, but thinking about doing CI in MBD may be a
bridge too far. Many other problems need to be solved before
getting to a stage where these practices are useful enough
to be increasing productivity. It seems that the views of the
engineers with conservative views to introducing CI in MBD
are influenced by the impediments they foresee towards its
implementation.

We have collected impediments from different perspectives,
by asking engineers in companies 1 and 2 what they perceive

TABLE I
SUMMARY OF IDENTIFIED IMPEDIMENTS TO INTRODUCING CI IN MBD IN

THIS PAPER, IN DIFFERENT CATEGORIES OF CAUSES.

Functional Lack of tool interoperability
Lack of synchronization between models
Requires model validation
Lack of model merge support
Lack of configuration management

Non-functional Too long time needed for builds and tests
Lack of impact analysis
Tooling frustrations

Human Lack of modelling expertise
Lack of willingness to model
Difference in modelling styles

Business Difficult to enthuse management and colleagues
Lack of time/knowledge to set up tool-chain
Domain-induced complications

as impediments now, and expect as impediments in the future,
towards implementing CI in MBD. Engineers in company
3 were asked to reflect on their implementation of CI and
the biggest obstacles encountered, as well as looking ahead
to expected impediments when further streamlining their ex-
isting development processes. We categorized the obtained
impediments as those having causes based on the desired
functionality of the combination of CI and MBD, causes
related to non-functional elements, such as the development
process, human causes and business causes. A summary of
those findings is provided in Table I. We now elaborate each
category and each identified impediment.

1) Functional: A CI practice in which models at multiple
levels of abstraction are included requires a tight coupling
between all models, such that automatic builds and tests can
provide insight into the state of the integration. Since models
describing the system at different levels of abstraction and
from different disciplines are typically expressed in different
languages and created in different tools, this requires multiple
tools that work well together. While engineers endorse this
need: “An integration would be good to have, between different
tools, different categories of system designs”, in practice,
getting tools to cooperate is very challenging. “I don’t really
believe strongly in having several tools if they are not really
tightly integrated, but then it’s the same tool.” As another
interviewee stated, on the impediments to more frequent inte-
grations of models on all levels: “one reason is the different
tool vendors, which are not integrated.” Companies have dealt
with these tool interoperability challenges mostly by avoiding
it. The models from which code is generated are all created in
the same tool. Other models, for example system models, are
created in different tools, but are connected to each other only
informally, so there are no automatic checks between them or
formal definitions evaluated to check that these models express
the same design.

Indeed, this lack of tool interoperability consequently con-
tributes to development in which the synchronization between
models is a manual task, increasing overhead and decreasing
the ability of continuously integrating new model changes. As



discussed earlier, a more explicit coupling of these models is
desired. As one interviewee underscored with the following
statement about system and software models: “We have a
need to integrate it really.” Or, particularly about generation
of code and the creation of a feedback loop between models at
different levels: “It would be good to have a nice turnaround
from design to code and from code to design. I think we
will always need the possibility to change code. Because of
performance reasons or maintenance reasons. In a CI context,
the state of the integration should be known after each build,
but this is greatly complicated if there is no automatic support
to synchronize models or check consistency between them.
“Using more models would be hard if there are no consistency
checks, because if they are standalone they will never be the
same.” Furthermore, mistakes due to model inconsistencies
can be propagated more rapidly in a CI context.

Towards the same goals of creating an automated pipeline
for building and testing, model validation is required, but
typically minimally in place. This refers to syntax checking
within models, since automation requires more formality from
the included models, as well as consistency checking between
models. The former is often in place inside modelling tools,
but are not always used: “Continuous validation of the model
would be very convenient, the first step would be to get
help from the tool in validating. Just get rid of all these
stupid errors that you might introduce. For example, scoping,
some of these errors have really serious consequences.” When
models are used only for communicating designs, even less
strict validation is desired by some engineers, for example the
ability to write free text in some models. Consistency checking
between models is hampered by the previously mentioned
impediment of tool interoperability, but not felt so strongly
since the models are not explicitly coupled. So, inconsistencies
have no direct effects in terms of failing builds or tests, but
rather may subtly affect the subsequent development, possibly
incurring late and costly changes if they are noticed late. The
validation of system design models is completely manual,
since they are not connected to the implementation models.
These manual actions do not scale to larger models or more
rapid iterations and are thus hampering the move towards CI.

A common impediment to introducing MBD in industrial
settings is the lack of good version control systems for models,
one part of the broader challenge of collaborating effectively
on models. As one interviewee said: “for us system engineers,
this is one of the hardest parts, to share the model and not
interfere with each other more than we have to.” Different to
code, line-based diffs of XML representations of models are
not helpful in indicating the differences between models and
merging them. Particularly, the graphical representations of
models are difficult to version, which is problematic especially
when models grow large (and they typically do). Engineers
mention a lack of model differencing in current practice: “We
have no good ways to merge models. It’s even worse, we have
no good ways of comparing models.” As well as too many
manual steps required to obtain differences. “There is no really
good way to get a delta out of the model. To get that delta the

system engineer manually has to go through and mark what is
changed. To make a diff on the model, we don’t have any good
tools to do that.” In practice, the lack of faith in merging has
two consequences. First, merging is circumvented by locking
models for changes, thus avoiding the need to merge. Second,
the system design is divided and tasks are assigned in such a
way that the need for concurrent changes to the same model
are avoided as much as possible. Locking models is a good
enough solution for small teams, but already involved “a lot of
legwork”, where intense communication was required between
engineers to allow synchronous collaboration. So, locking does
not scale well to larger and possibly distributed teams. It
also impedes the introduction of more rapid iterations on the
models. The strict division of the model is similarly impeding
the agility of development. Rather, each contributor should
be able to make changes at any place in the system. This
lack of support for merging drives both these sub-optimal
and non-scaling development practices. Notably, configuring
the CI pipeline for automatic merging was also named as the
biggest overcome challenge in company 3 and something that
still can be improved to allow for more parallel work.

Version control is one of the components of configuration
management, which manages among other things the change
history and deployment of specific versions of the software on
specific platforms. In general, in software engineering, config-
uration management is challenging, especially when software
needs to be supported for a long time (possible decades) after
it is first produced, thus requiring the possibilities to make
changes and test them in old configurations. This is also a
challenge in MBD, and a problem when trying to do MBD
in more rapid iterations, since the tooling ecosystems are
typically fragile. “I think configuration management and better
tooling are what we need.”

2) Non-functional: In this category, we include those im-
pediments that are not directly related to current tooling
or other technical problems, but are rather related to non-
functional elements such as current practices and development
processes. A first example of a current practice hindering the
introduction of more frequently integrating is the duration of
builds and regression tests. In a similar vein, a large amount
of computation power is required for extensive simulations
including all models. Initially, such problems can be (and have
been, by company 3) avoided by allocating more computing
power to these tasks. But this is of course addressing the
symptom and not the cause, and will eventually also be
insufficient. This is not an insurmountable problem, but it
is one of the practical hinders that are encountered when
introducing agile MBD processes.

Another such practical problem is partly caused by the
current division of development teams between system mod-
ellers and software designers. Changes in a system model
impact lower level models, but to the system modellers, it
is not always clear how. This also works the other way
around; the software designers are not aware of the exact
changes in the system model and the entailed required changes
in software models. Both effects are strengthened by the



size and complexity of the models: “the (system) model is
complex organized, the developers don’t know where to look
for information.” Consequently, communication, sometimes
through documentation, is needed to align the activities of
different modellers. This also does not scale well to larger
settings and more rapid iterations. The alternative, more formal
and tool supported impact analysis, requires a more formal
usage of the models. If the system models are only used
to communicate design and do not strictly adhere to some
syntax, or do not capture the exact semantics, then trying to
automatically assess impact of changes is hopeless.

Naturally, an implementation of CI will require several
tools, current manual practices are not good enough to just
be done more frequently. “There are too many manual steps,
too little automation.” It is therefore not a good sign that
already, often ventilated frustrations have to do with tooling.
“It is slowing us down.” Or, as indicated by another quote
regarding using modelling in more phases of development:
“The modelling tool is not so stable, it crashes and it freezes
and everything goes slow. You want to have quicker tools,
if it was quicker and easy to understand then you could
use it more.” While tool instability is not a hinder only to
introducing CI, since it also hindering current MBD prac-
tices, it is still relevant to mention here, since the potential
benefit of introduction of CI in MBD depends heavily on
tool support. These are comments about single modelling
tools and contribute to a skeptical view about involving more
automation in the development process. “People don’t want
to use 5 to 10 different tools.” One interviewee described
current CI practices, for non-MBD projects, as involving “a
lot of small steps and something is always broken.” Given
earlier comments on tool interoperability and tool instability,
the interviewees seem not to expect that this is getting any
easier when setting up a CI pipeline for MBD.

3) Humans: When discussing these functional and non-
functional impediments, we cannot overlook the human as-
pects, which remain present even if perfect tools are created
and used in the perfect process. Most of these impediments
have to do with the inherent complexity of modelling, “not
enough people know SysML.” Furthermore, a steep learning
curve needs to be overcome to start contributing to models,
“it is hard to learn how to model, it takes time to be a
good software modeller and it is even harder to be a good
system engineer.” Besides this general modelling knowledge,
the complexity of the product sometimes just requires a lot of
experience. “Some parts require so much domain knowledge
that you probably need to work here for ten years before
you can contribute.” This contributes to a lack of willingness
to learn modelling, it seems that modelling has an image
problem, people are scared off and do not want to model,
despite the views of some interviewees: “it’s fun to model.”

Another human factor is a lack of alignment between
modelling practices of different developers. Different styles
of modelling can lead to different subdivisions of models, and
difficulties in understanding large models, if parts are created
in different ways. This is a problem similar to traditional, code-

based software development, in which the use and enforcement
of coding standards is well established. For this aspect, the
main difference between the code and model-based industrial
practice is tool support. Several interviewees remarked that
the tooling lacks, e.g., checking of conformance of models to
design guidelines.

4) Business: In addition to these human factors, impedi-
ments were mentioned that are related to the business perspec-
tive. Any change in process and tooling requires an investment,
be it time, money, or both. The advantage of introducing these
processes is often not easily quantified, making it difficult to
gather support for them.

A difficulty in achieving a complete modelling pipeline can
also be to get all involved disciplines in a company on board.
A coupling between models from different domains is desired,
but a lack of willingness and resources to do so hinders this
synchronization between parts of a company. It might be that
engineers estimate the amount of required resources as high,
due to other functional or process impediments they see.

Further, engineers mentioned a lack of time and knowledge
to invest in setting up a toolchain. Especially considering the
need for customization of such toolchains, since almost no
two companies are working with the same sets of tools. Fur-
thermore, this customization depends on the type of product
developed. “It depends a lot on the domain what the gener-
ated code should exactly look like.” The domain furthermore
impacts the required lifetime of products, complicating, as
mentioned earlier, configuration management. Another related
challenge that might apply is the need for the developed code
to conform to strict regulations and certifications.

D. Future visions

Some alternative future visions were proposed, which would
make this more useful and more possible. One of them
describes an extension of existing tooling in to other mod-
elling domains, such that all modelling activities, from system
architecture to software implementation, can be performed in a
single tool. An alternative vision assumes that engineers from
each domain will keep using their preferred tools, but aims
rather at better interactions between these tools. Ultimately,
both these visions allow for CI involving all models, by
resolving one of the main seen impediments by practitioners:
a lack of tool interoperability.

IV. DISCUSSION

The identified challenges in Section III paint part of the
picture of the impediments towards adoption of CI in industrial
MBD practice, by considering the different points of view
from the different industrial partners. Still, the sample size is
not big and we should be careful to generalize our findings to
cases in which CI and MBD are adopted to different degrees
than in the interviewed companies.

The division of the impediments in the different categories
emphasizes the broadness of the encountered challenges. In-
deed, a silver bullet does not exist, rather, it is a long process to
introduce modelling and then CI in industry practice. While for



our research, the functional and non-functional aspects are the
most interesting to focus on, the human and business aspects
should not be disregarded.

Considering the adoption of CI in modelling in the involved
companies, it is noteworthy that in company 3, modelling and
CI works well, using a single modelling language. Company
2 as well uses a single modelling tool for software models
and develops them in rapid iterations. Tool interoperability
and model interoperability is in these cases to a large extent
avoided. Nevertheless, implementing a CI pipeline in which
models are included for system design, detailed design, and
implementation requires information sharing between these
models and thus communication between the tools in which
they are created. Indeed, these two elements are central to in-
troducing CI in MBD and they make resolving the other named
impediments more complicated. For example, impact analysis
is more complicated when the impact must be assessed across
modelling languages.

Considering these findings in another way, we can say that
there are few impediments to introducing CI when modelling
for code generation using a single modelling language. Rather,
most of the found impediments are encountered when models
are also used in other parts of development, such as system
design. Then, maintaining sound architectures and consistency
between the models is increasingly challenging, particularly in
a CI environment. An apparently practiced way to circumvent
many of these impediments is by applying CI only to the
lowest level models, those used for code generation, while
manually managing the correctness of the other models. The
downside of this way of working is that it benefits minimally
from one of the main promises of CI, i.e., always having an
overview of the state of integration, since that state cannot be
completely known using only implementation models.

As also found, introducing CI is not always the desired
approach, we have seen a current way of working in which
introducing more frequent integrations is not useful. In that
case, because there is a strict separation between design and
implementation and because many manual steps are involved
that would not scale up appropriately. It should be noted
that the starting point of a company is crucial in how en-
gineers view this aspect, conservative views are natural given
a well-functioning process and foreseen serious impediments
to changing them. Furthermore, if the benefits of their intro-
duction are not clear, gathering support for CI practices is
difficult. Finally, the domains in which the companies work
and the traditions that those bring with them seem to impact
the willingness to adopt faster development cycles.

V. RELATED WORK

Our study has underscored some results that were found
earlier, when investigating the adoption of modelling practices
in industry. In their experience report from 2005, Baker, Loh,
and Weil [2] already note a lack of performance of tools and
interoperability between different tools. Other empirical stud-
ies also point to tools as impeding more MBD adoption [4].
In addition to these technical issues, Hutchinson, Whittle, and

Rouncefield [15], also using semi-structured interviews, find
organizational (process and business-caused) factors important
to the success or failure of their introduction. Recently, an
evaluation of industrial MBD practice shows its potential
benefits but also highlights the difficulties in its adoption,
particularly tool interoperability and a steep learning curve
of the method itself and tools used for it [5].

In a similar industrial context as our study, an interview
study has shown the state of practice and impediments to intro-
ducing continuous deployment in agile software development
projects [16]. While the paper does not consider modelling, it
does identify some impediments that are also relevant in our
case. Notably, in companies moving towards CI, one of the
impediments is the complexity of test automation. This aspect
is underexposed in our interviews, possibly because many of
interviewees were doing system modelling and did not operate
closer to the implementation.

Another interview study involving large industrial partners
identifies four categories of impediments to introducing CI,
albeit not in modelling projects [17]. The categories identified
in that work are related to testing processes, the usability of
tools, the splitting of the system into parts and the division of
work among engineers. Some overlap can be noticed between
those results and our results, particularly the impediments
related to the process.

In our earlier work [18], we have reviewed modelling tools
and their suitability to be applied in the context of CI and
MBD. There, we concluded CI is achievable when using
a single modelling tool, albeit possibly challenging to set
up, but much more challenging when using a combination
of modelling tools. This aligns with our findings in this
work, where we have seen one company where a pipeline is
implemented, but for a single tool. Further, we have seen in all
companies that introducing or streamlining CI practices raises
challenges in tool interoperability, and model interoperability,
when using different modelling tools and modelling languages.

A systematic literature review in the area of combining agile
methods (of which CI is one) and modelling has shown the im-
maturity of the field [19]. In particular, the authors have argued
for more reports on industrial experiences. One such study
focused on introducing agile practices in modelling projects
in the automotive industry [10], although not including CI yet,
the authors do report a successful application of agile methods.
Similarly, a case study in the telecommunications domain
has shown benefits of agile MBD [9], although it minimally
discusses the extent to which this practice includes continuous
integration. This paper contributes to this knowledge base by
exploring views and current practices of industry practitioners
of agile development methods in MBD projects.

Other work has reported on experiences of introducing
CI in an MBD project [11]. The authors show the benefits
from combining CI and MBD to the development process
and discuss hurdles overcome to achieve this. An impediment
identified in common with this work is the lack of support for
differencing and merging of models.

Other work has considered practical applications of CI



in the automotive domain [20]. While not explicitly about
modelling, some identified impediments are closely related
to our findings. In particular the many manual steps that
are performed to move data in between tools, due to a lack
of tool interoperability. Further, the authors identify many
organizational issues, besides the tooling, which we have
touched upon in the category of business impediments.

Although not evaluated in industrial practice, some initial
works have sketched the possibilities to wrap modelling tools
for each step in the process of modelling to validation in
a continuous delivery pipeline [21]. This addresses the tool
interoperability challenge for one specific set of tools. The
authors stress the need for maturity of individual tools and
steps in the pipeline and summarize the challenges of creating
a CI pipeline for models by stating that all steps in it should
be “model-aware.”

VI. CONCLUSION

In this work, we have identified several impediments to
introducing continuous integration (CI) in model-based de-
velopment (MBD) through eleven interviews at three large
companies. Furthermore, we have discussed how some of
those impediments are circumvented in current practice. The
three companies each have a different current way of working
and therefore a different starting point when introducing or
streamlining existing CI practices. Some starting points imply
that introducing CI is not desired by engineers. Other starting
points did see an embrace the idea of combining CI and
MBD, but several impediments were named towards that goal.
We have categorized these impediments as functional, non-
functional, human, and business-related.

To broaden the coverage of our findings, in future extensions
of this work, we aim to include more companies on different
positions in the graph in Figure 3. For instance, by including
companies that are doing more modelling than company 2
and less CI than company 3. Moreover, we aim to include
companies that have implemented more explicit links between
all models.

To answer the research question posed in the introduction:
the impediments to applying continuous integration in MBD
projects are summarized in Table I and in addition also
implicitly include general impediments to introducing MBD.
Our two main findings of this interview study are 1) that
introducing CI is not always desirable or useful given a current
way of working, and 2) workarounds to common problems of
tool interoperability and model synchronization are impeding
the introduction of an automated CI pipeline for MBD.

ACKNOWLEDGMENT

The authors would like to thank all interviewees for their
time and input in fruitful discussions. This work is partially
supported by Software Center1 and by the Knowledge Foun-
dation in Sweden through the MINEStrA project.

1www.software-center.se

REFERENCES

[1] D. C. Schmidt, “Model-Driven Engineering,” IEEE Computer, vol. 39,
no. 2, p. 25, 2006.

[2] P. Baker, S. Loh, and F. Weil, “Model-Driven Engineering in a Large
Industrial Context—Motorola Case Study,” in LNCS 3713. Springer,
2005, pp. 476–491.

[3] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Em-
pirical Assessment of MDE in Industry,” in Proceedings of the 33rd
International Conference on Software Engineering (ICSE). IEEE, 2011,
pp. 471–480.

[4] P. Mohagheghi, W. Gilani, A. Stefanescu, and M. A. Fernandez, “An em-
pirical study of the state of the practice and acceptance of model-driven
engineering in four industrial cases,” Empirical Software Engineering,
vol. 18, no. 1, pp. 89–116, Feb 2013.

[5] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-
based engineering in the embedded systems domain: an industrial survey
on the state-of-practice,” Software & Systems Modeling, vol. 17, no. 1,
pp. 91–113, 2018.

[6] D. Ståhl and J. Bosch, “Experienced Benefits of Continuous Integration
in Industry Software Product Development: A Case Study,” in The 12th
IASTED International Conference on Software Engineering, 2013, pp.
736–743.

[7] A. Miller, “A hundred days of continuous integration,” in Agile. IEEE,
2008, pp. 289–293.

[8] M. Fowler and M. Foemmel, “Continuous integration,”
https://www.thoughtworks.com/continuous-integration, 2006.

[9] Y. Zhang and S. Patel, “Agile model-driven development in practice,”
IEEE software, vol. 28, no. 2, pp. 84–91, 2011.

[10] U. Eliasson, R. Heldal, J. Lantz, and C. Berger, “Agile model-driven
engineering in mechatronic systems – an industrial case study,” in
International Conference on Model Driven Engineering Languages and
Systems. Springer, 2014, pp. 433–449.

[11] V. Garcı́a-Dı́az, J. Pascual Espada, E. R. Núnez-Valdéz, G. Pelayo,
B. C. Bustelo, and J. M. Cueva Lovelle, “Combining the Continuous
Integration Practice and the Model-Driven Engineering Approach,”
Computing and Informatics, vol. 35, no. 2, pp. 299–337, 2016.

[12] H. Alfraihi, K. Lano, S. Kolahdouz-Rahimi, M. Sharbaf, and
H. Haughton, “The Impact of Integrating Agile Software Development
and Model-Driven Development: A Comparative Case Study,” in Inter-
national Conference on System Analysis and Modeling. Springer, 2018,
pp. 229–245.

[13] INCOSE, Systems Engineering Handbook, v3.2.2, 2011.
[14] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, p. 131, 2009.

[15] J. Hutchinson, J. Whittle, and M. Rouncefield, “Model-driven engineer-
ing practices in industry: Social, organizational and managerial factors
that lead to success or failure,” Science of Computer Programming,
vol. 89, pp. 144–161, 2014.

[16] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the ‘Stairway to
Heaven’–A Mulitiple-Case Study Exploring Barriers in the Transition
from Agile Development towards Continuous Deployment of Software,”
in 2012 38th Euromicro Conference on Software Engineering and
Advanced Applications. IEEE, 2012, pp. 392–399.

[17] T. Mårtensson, D. Ståhl, and J. Bosch, “Continuous integration im-
pediments in large-scale industry projects,” in 2017 IEEE International
Conference on Software Architecture. IEEE, 2017, pp. 169–178.

[18] R. Jongeling, J. Carlson, A. Cicchetti, and F. Ciccozzi, “Continuous
integration support in modeling tools,” in Proceedings of MODELS 2018
Workshops co-located with ACM/IEEE 21st International Conference on
Model Driven Engineering Languages and Systems), 2018, pp. 268–276.

[19] H. Alfraihi and K. Lano, “The Integration of Agile Development and
Model Driven Development – A Systematic Literature Review.” in
MODELSWARD, 2017, pp. 451–458.

[20] E. Knauss, P. Pelliccione, R. Heldal, M. Ågren, S. Hellman, and
D. Maniette, “Continuous integration beyond the team: a tooling per-
spective on challenges in the automotive industry,” in Proceedings of
the 10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 2016, p. 43.

[21] J. Garcia and J. Cabot, “Stepwise Adoption of Continuous Delivery
in Model-Driven Engineering,” in International Workshop on Software
Engineering Aspects of Continuous Development and New Paradigms
of Software Production and Deployment. Springer, 2018, pp. 19–32.


