
TOT-Net: An Endeavor Toward Optimizing Ternary
Neural Networks

Najmeh Nazari*, Mohammad Loni+, Mostafa E. Salehi*, Masoud Daneshtalab+, Mikael Sjodin+
*School of Electrical and Computer Engineering, University of Tehran, Tehran , Iran.

+School of Innovation, Design and Engineering, Malardalen University Vasteras, Sweden
{najme.nazari, mersali}@ut.ac.ir,{mohammad.loni, masoud.daneshtalab, mikael.sjodin}@mdh.se

Abstract—High computation demands and big memory
resources are the major implementation challenges of
Convolutional Neural Networks (CNNs) especially for low-powe r
and resource-limited embedded devices. Many binarized neural
networks are recently proposed to address these issues. Although
they have significantly decreased computation and memory
footprint, they have suffered from accuracy loss especially for
large datasets. In this paper, we propose TOT-Net, a te rnarize d
neural network with [-1, 0, 1] values for both weights and
activation functions that has simultaneously achieved a higher
level of accuracy and less computational load. In fact, first, TOT-
Net introduces a simple bitwise logic for convolution
computations to reduce the cost of multiply operations. To
improve the accuracy, selecting proper activation function and
learning rate are influential, but also difficult. As the second
contribution, we propose a novel piece-wise activation function,
and optimized learning rate for different datasets. Our findings
first reveal that 0.01 is a preferable learning rate for the studied
datasets. Third, by using an evolutionary optimization approach,
we found novel piece-wise activation functions customized for
TOT-Net. According to the experimental results, TOT-Net
achieves 2.15%, 8.77%, and 5.7/5.52% better accuracy compared
to XNOR-Net on CIFAR-10, CIFAR-100, and ImageNet top-
5/top-1 datasets, respectively.

Keywords—convolutional neural networks, ternary neural
network, activation function, optimization.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have attained the
state of the art results in many application domains, especially
in computer vision tasks such as image and video classification
[1] [2], object recognition [3], and image segmentation [4]. For
providing more accurate results, CNNs are becoming more
sophisticated containing hundred deep layers and millions
floating-point operations. Therefore, CNNs suffer from huge
amount of memory accesses and require significant processing
capacity.

CNNs have been used in a wide spread spectrum of
applications, such as deployment of CNN on mobile, wearable
devices, and Internet of Things (IoT) platforms. On the other
hand, embedded devices have strict constraints on the
computation resource and power consumption that are not
compatible with the requirements of CNNs. Plus, embedded
applications usually have real-time constraints which
necessitates compact neural networks to meet resource, power,
and response-time constraints. MobileNets [5] and SqueezeNet
[6] are popular compact networks which are introduced for
smartphones and embedded vision devices. In addition, many
prior works attempted to reduce the computational cost and

memory footprint of CNNs by decreasing accuracy. Generally,
the efficiency of the CNN implementation can be enhanced via
the following techniques:

• CNN hardware accelerators try to overcome these
challenges by parallel computing, and efficient data reuse [7],
[8], [9].
• Pruning techniques such as [10], [11], [12] have eliminated
redundant and ineffective weights to reduce the amount of
computation, and afterward, reclaim the accuracy through
fine-tuning.
• Customized CNN architectures are designed for resource
budget limitations [13], [14].
• CNN parameters quantization is a popular approach to
diminish the amount of computation, data storage and
transfer time [15], [16], [17].

In this paper, we focus on the quantizing techniques, since
quantized architectures are extremely suitable for embedded
devices such as smartphones, without considerable accuracy
loss. Table I compares different outstanding methods including
the full-precision network AlexNet [1], BNN [18], XNOR-Net
[19], and our proposed network named TOT-Net.

TABLE I. COMPARISON OF DIFFERENT QUANTIZATION METHODS ON
IMAGENET DATASET.

Methods Operations
Used in CNN

Memory Saving
(Inference)

AlexNet [1] +, -, × 1x
BNN [20] XNOR, bitcount ~32x

XNOR-Net [23] XNOR, bitcount ~32x
TOT-Net XOR, AND, bitcount ~16x

 The quantization has demonstrated to be quite effective
due to:

• Compressing the network theoretically up to 32×, when
compared with full precision floating point networks.
• Reducing the computation complexity and accelerating the
inference time by replacing the 32-bit floating point multiply-
accumulations with bitwise operations.

Although the binary quantization methods provide
considerable efficiency, they suffer from accuracy loss,
especially in large datasets [20]. To tackle this challenge, we
propose TOT-Net, a ternarized neural network with ternary
weights and activations. TOT-Net benefits from sparsity by
adding zero states to both weights and activations. Exploiting
the zero states, TOT-Net, disregard the useless computations
by an enable signal, hence energy consumption is decreased

mailto:mersali%7d@ut.ac.ir

more than BNNs and would make it more suitable for
embedded systems. Moreover, we exploit a simple logic
instead of multiplication operations which matches with the
standard sign and magnitude representation. In addition, to
obtain higher accuracy level, we conduct a two-level
optimization strategy for finding the most proper network
activation functions and learning rates for TOT-Net. In nutshell
our main contributions in this paper are three-fold:

• We introduce TOT-Net, a novel ternarized neural network
architecture that provides higher level of accuracy, less
computational load, and simpler computation units.
• We present an automatic method to find the most proper
ternary activation functions. To do so, we utilize an
evolutionary optimization approach to efficiently explore the
design space. In addition, we have analyzed the impact of
learning rate on the accuracy of Ternary Neural Networks
(TNNs).
• We evaluate the impact of TOT-Net on three popular
classification datasets including ImageNet, CIFAR-100, and
CIFAR-10. The evaluation results demonstrate huge
improvement over typical used baselines.

The rest of this paper is organized as follow. In Section II,
we overview a background on CNN, ternary weight networks,
and evolutionary optimizations for deep neural networks.
Section III reviews related works in this scope. Our proposed
ternary neural network, its architecture, and its optimizations
are presented in Section IV. Section V presents and discusses
the experimental results. Finally, we conclude this essay in
Section VI.

II. BACKGROUND
This Section briefly outlines CNN, piece-wise activation

functions and ternary weight networks.

1) Convolutional neural networks:

Convolutional neural networks are typically comprised of a
combination of three main layers that are called convolutional
layers, pooling layers, and fully connected layers. A significant
amount of computations, over 90%, are performed in the
convolutional layers whereas fully connected layers are mainly
memory bounded [21]. It should be mentioned that some new
proposed CNN architectures such as ResNet [22] and NIN [23]
have removed fully-connected layers because of remarkable
energy consumption of memory accesses in this layer.
Quantized networks would also reduce memory footprint and
hence improve the energy efficiency [15][24].

The convolutional layer is the principal layer of CNNs
which extracts high-level abstraction of its inputs called feature
map by using various filters. Equation (1) demonstrates the
operation of a 3D convolutional layer that convolves the inputs
via a filer 𝑊𝑊 ∈ 𝑅𝑅𝐶𝐶×𝑋𝑋×𝑌𝑌 for each feature map where C, X and Y
are the number of input channels and spatial dimensions of the
filter, respectively. It is obvious that a lot of multiply and
accumulate (MAC) operations are required to just obtain one
point of the output feature map.

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3𝐷𝐷 = 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(��� 𝐼𝐼[𝑘𝑘][𝑋𝑋 − 𝑖𝑖][𝑌𝑌 − 𝑗𝑗]
𝑌𝑌−1

𝑗𝑗=0

𝑋𝑋−1

𝑖𝑖=0

𝐶𝐶−1

𝑘𝑘=0
× 𝑊𝑊[𝑘𝑘] [𝑖𝑖][𝑗𝑗]) (1)

Where conv3D, I and W are the output feature maps, input
feature maps, and k×k weight filters, respectively. U
determines the stride size that is the step for moving filters over
the input feature maps. Pooling layers perform down-sampling
on data to decrease the amount of computation. Commonly, in
CNNs, pooling layers such as max pooling and mean pooling
are used after some convolutional layers. As demonstrated by
their names, max pooling selects the maximum feature map
and mean pooling computes the average of feature maps in the
pooling window. Mostly, after distinguishing high-level
abstraction features, fully connected layers are applied in the
CNN to classify images.

2) Piece-wise activation functions:

In general, each neuron computes the summation of its
weighted inputs and then performs a function called activation
function. In general, nonlinear activation functions are better
suited for classification tasks [13].

TABLE II. CANDIDATE PIECE-WISE ACTIVATION FUNCTIONS. BY Y(X <
0) AND Y(X ≥ 0) WE INDICATE THE LEFT- AND RIGHT-PIECE, RESPECTIVELY.

Activation
Function

Expression

HardTanh 𝑦𝑦(𝑥𝑥) = max (−1, 𝑥𝑥)

ELiSH
𝑦𝑦(𝑥𝑥 < 0) =

𝑒𝑒𝑥𝑥 − 1
1 + 𝑒𝑒−𝑥𝑥

 𝑎𝑎𝑐𝑐𝑎𝑎 𝑦𝑦(𝑥𝑥 ≥ 0) =
𝑥𝑥

1, 𝑒𝑒−𝑥𝑥

Swish 𝑦𝑦(𝑥𝑥) =
𝑥𝑥

1 + 𝑒𝑒−𝑥𝑥

ReLU 𝑦𝑦(𝑥𝑥) = max(𝑥𝑥 , 0)
ELU 𝑦𝑦(𝑥𝑥 < 0) = 𝑒𝑒𝑥𝑥 − 1 𝑎𝑎𝑐𝑐𝑎𝑎 𝑦𝑦(𝑥𝑥 ≥ 0) = 𝑥𝑥

SeLU 𝑦𝑦(𝑥𝑥 < 0) = 𝜆𝜆𝜆𝜆(𝑒𝑒𝑥𝑥 − 1) 𝑎𝑎𝑐𝑐𝑎𝑎 𝑦𝑦(𝑥𝑥 ≥ 0) = 𝜆𝜆𝑥𝑥

Tanh
𝑦𝑦(𝑥𝑥) =

(𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥)
(𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥)

PRelu 𝑦𝑦(𝑥𝑥) = � 𝑎𝑎𝑥𝑥 𝑓𝑓𝑐𝑐𝑓𝑓 𝑥𝑥 < 0
𝑥𝑥 𝑓𝑓𝑐𝑐𝑓𝑓 𝑥𝑥 ≥ 0

Leaky_Relu 𝑦𝑦(𝑥𝑥) = �0.01𝑥𝑥 𝑓𝑓𝑐𝑐𝑓𝑓 𝑥𝑥 < 0
𝑥𝑥 𝑓𝑓𝑐𝑐𝑓𝑓 𝑥𝑥 ≥ 0

Sigmoid
𝑦𝑦(𝑥𝑥) =

1
1 + 𝑒𝑒−𝑥𝑥

Linear 𝑦𝑦(𝑥𝑥) = 𝑥𝑥

The design of these activation functions was inspired by

the recently proposed Swish activation function [25]. These
functions are unbounded, smooth, and non-monotonic [25].
Furthermore, good data flow through CNN is provided by
mentioned functions [26]. A family of activation functions
such as Swish(x) has been recognized by [25] and [26], which
betters the information propagation and solves the vanishing
gradient issue. Inspired from Swish, negative and positive
inputs have a different influence on learning accuracy.
Equation 2 has described the piece-wise activation function,
named F(x), consisting two separate activation functions.
Table II presents commonly used activation functions which

can be used as the left and right parts of the piece-wise
activation function.

𝐹𝐹 (𝑥𝑥) = (F1 𝑖𝑖𝑓𝑓 𝑥𝑥 ≥ 0, 𝐹𝐹2 𝑖𝑖𝑓𝑓 𝑥𝑥 < 0) (2)

The optimization problem will be highlighted when the
training dataset is giant, and the optimization process needs
prior knowledge. Section IV.B represents an efficient
metaheuristic optimization approach that automatically tunes
networks activation functions. To the best of our knowledge,
this is the first try to optimize the piece-wise activation
function for ternary neural networks.

3) Ternary weight network:

BinaryConnect lets weights to be {-1, 1}, hence, the whole
learned weights must be -1 alternatively 1. However, during
the training phase, many learned weights are zero or near zero.
It arises from the stochastic sampling process which permits
that the average value of sampled weight would be zero. On
the other hand, the network becomes sparse if weight values
are zero. This mean, we can disregard operations related to
zero terms. In these circumstances, the gating technique can be
used to avoid unnecessary energy consumption. Therefore,
Ternary Weight Network (TWN) [27] in comparison with
BinaryConnect, profits from the mentioned advantage by
adding an extra zero state.

Commonly, there exist two approaches for ternarizing
weights that are explained as follows. It should be mentioned
that full precision weights must be clipped into the [-1, 1]
interval. Equation (3) shows the first method in which r
specifies the level of sparsity. This approach is similar to the
deterministic approach for binarizing values and can be
implemented by a simple comparator.

𝑊𝑊𝑊𝑊 = �
+1 𝑖𝑖𝑓𝑓 𝑊𝑊 ≥ r,

 0 𝑖𝑖𝑓𝑓 |𝑊𝑊| ≤ 𝑓𝑓
−1 𝑖𝑖𝑓𝑓 𝑊𝑊 ≤ −r.

, (3)

The second approach which is roughly analogous to the
stochastic approach of binarizing values, is demonstrated in
Equation (4). Basically, real value weights stand into two sub-
interval [-1, 0] and (0, 1] that their ternary values are
determined according to their distance from -1 and 1. Where
𝑊𝑊𝑊𝑊 is a ternarized weight, 𝑊𝑊 is the full precision weight and 𝑃𝑃
is the probability function.

𝑊𝑊𝑊𝑊 = �𝑃𝑃
(𝑊𝑊𝑊𝑊 = 1) = 𝑊𝑊; 𝑃𝑃(𝑊𝑊𝑊𝑊 = 0) = 1 −𝑊𝑊 𝑖𝑖𝑓𝑓 𝑊𝑊 ≥ 0

𝑃𝑃(𝑊𝑊𝑊𝑊 = −1) = −𝑊𝑊; 𝑃𝑃(𝑊𝑊𝑊𝑊 = 0) = 1 + 𝑊𝑊 𝑖𝑖𝑓𝑓 𝑊𝑊 < 0 (4)

Hardware implementation of the former is simpler than the

latter. However, the stochastic approach is generally more
accurate than the deterministic one. Thus, depending on the
application, we can select the ternarization method. It is worth
noting that the scaling factor of the ternarized weights plays a
crucial role to compensate the accuracy loss. By substituting
full precision values with ternary values {-1, 0, 1}, all
multiplications in the inference phase are removed and
convolutions are just calculated by simple accumulations and

multiplexers instead of MAC operations like BinaryConnect.
Furthermore, TWN is more energy-efficient due to its sparsity
that arises from disregarding operations related to zero value
weights. Also, TWN saves 16× more memory storage and
access for weight parameters compared to the full precision
one. To put it simply, just 2 bits are required for weights
instead of 32 bits.

III. RELATED WORK

A. Network Quantization
Generally, binarized neural networks (BNNs) suffer from

the accuracy loss, especially in large datasets. [20] tried to
address this issue for BNNs by proposing an efficient training
strategy. Some works such as [28] and [29] applied reduced
precisions to reduce memory storage and computation.
However, they still require computation-intensive MAC
operations to perform the convolutional operations, hence,
suffer from heavy operations. Bit Fusion [15] demonstrated
that 8 bits and less than it is enough for weights and
activations in a wide range of CNNs, especially for small
datasets. [16] uses bit widths less than 6 bits for quantization
and achieves good accuracy compared to the full precision
CNNs. LQ-Nets [17] applies proper quantization bits by a
learnable quantizer and ReLeQ [30] automates DNN
quantization based on a Reinforcement Learning (RL)
algorithm, respectively. Ristretto [31] as a CNN
approximation framework allows experimental exploration to
trade between the classification accuracy and the bit-width of
weights and activations. Ristretto also concludes that 8-bit
dynamic fixed-point operations are appropriate for large-scale
image classifications such as ImageNet.

Some recent researches [18][19][32] surpass quantized
neural networks and have aggressively reduced precision even
till 1 bit. BinaryConnect [32] eliminates multiplication in the
forward pass by substituting full precision weights with -1 and
1 values. Ternary weight network [27] achieves more accuracy
by applying ternary weights {-1, 0, 1}. Also, it adds sparsity to
network, hence, it is more energy-efficient than binary connect.
[33] presents Sparse Ternary Connect (STC) which reduces
computation complexity by raising sparsity, and just leads less
than 0.5% accuracy loss. Binarized neural network [18]
binarizes both activations and weights and substitutes
computation-intensive MAC operations with XNOR-bitcount
operations. Therefore, the computations are drastically
reduced, and also memory footprint has been intensely
decreased. XNOR-Net [19] achieves more accuracy compared
to BNN by using scaling factors for both activations and
weights. TBN [34] proposes using ternary activations and
binary weights, and hence, attains more accuracy for the
ImageNet dataset compared to XNOR-Net. Since binarized
neural networks can meet the embedded device constraints,
hardware implementation of BNN has recently gotten more
attention. XNOR Neural Engine [24] and BRein [35] are two
samples in this area.

B. Neural Network Optimization
To enable more accurate learning results, selecting the

architectural parameters of CNNs are crucial since the network
architecture strongly affects the inference time, memory

footprint, the accuracy level, and the network generalization
proficiency. However, the hand-crafted designing of CNN
parameters is overwhelming due to requiring a lot of trial-and-
error and deep expertise since the design space is huge.
Therefore, an automatic method for designing CNN
architectures has emerged as a significant alternative for
decreasing efficiency risk and design cost.

 There are different automated neural optimization
approaches, including random search, Bayesian optimization,
RL, neuro-evolutionary methods. Using random search is
challenging due to extremely random sampling in the search
space [26], while Bayesian-based methods suffer from
immense computational cost, suitable only for searching
architectures with a fixed-length space and focuses on low-
dimensional continuous problems [36]. RL-based methods are
mainly slow and require considerable computational resources
in both exploration and training steps [36] [26]. Evolutionary
algorithms are feasible solutions for optimizing the neural
architecture due to exploring improved design space without
any prior assumptions [26]. [36] proposed a multi-objective
evolutionary solution to reduce the complexity of CNNs, while
tries to increase the accuracy. In addition, [13] proposed two
new activation functions, ELiSH and HardELiSH, for tiny-
ImageNet by leveraging an evolutionary method. In this paper,
we use a similar strategy to optimize the ternary activation
functions.

IV. ARCHITECTURE
As mentioned in the prior section, although, TWN doubles

memory storage for weight parameters compared to
BinaryConnect, it surpasses BinaryConnect in terms of
accuracy by adding a further zero state to {-1, 1}. Moreover, it
is more energy-efficient due to eliminating computations
related to zero parameters. In this section, we comprehensively
explain the proposed ternary neural network architecture in
part A. Then, in part B, we describe the optimization algorithm
for finding the best piece-wise activation function.

A. Ternary Neural Networks
As mentioned in Section I, binarized neural networks

(BNNs) substitute MAC operations with just bitwise
operations (XNOR-bitcount) by applying {-1, 1} for both
weights and activations. In this work, we propose a ternarized
neural network (TNN) that ternarizes both weights and
activations. GXNOR-Net [37] also uses the ternary values for
weights and activations and introduces a method that is similar
to XNOR-Net approach. This means that they use XNOR-
bitcount operations instead of MAC operations. Thus, they
must apply a coding which is compatible with these operations.
As shown in Table III, XNOR-Net encodes sign values -1 and
1 by 0 and 1, respectively. GXNOR-Net encodes -1 and 1 by
00 and 11, respectively and 0 can be encoded either by 01 or
10. Furthermore, [38] proposes ternary neural network which
applies the teacher-student approach. They use ternary
activations and full precision weights in the teacher network
and use ternary weights and activations in the student network.
However, our proposed method uses ternary weights and
activations during both the training and inference phases. We
use the standard sign and magnitude coding to encode ternary
value {-1, 0, 1} according to Table III. This means that we

encode -1 and 1 by 11 and 01, respectively. Also, either 00 or
10 are used for encoding 0.

TABLE III. XNOR AND GXNOR CODING VERSUS SIGN AND MAGNITUDE
CODING.

 XNOR-Net GXNOR-Net Sign and Magnitude

-1 0 00 11
0 - 01 or 10 00 or 10
1 1 11 01

 By using sign and magnitude coding, we present a new
simple logic instead of multiplication. Actually, by applying 00
or 01 for 0 values, multiplications with at least one zero-
operand would be simply disregarded. As shown in Figure 1,
we substitute multiplication with the XOR and AND gates to
calculate most and least significant bits, respectively. MSB and
LSB stand for most significant and least significant,
respectively.

IMSB ILSB W MSB WLSB OMSB

OLSB

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

x 0
x 0
x 0
x 0
x 0
0 1
x 0
1 1
x 0
x 0
x 0
x 0
x 0
1 1
x 0
0 1

x x x x
x 0 1 x
x 1 0 x
x x x x

O MSB= WMSB⊕
IMSB

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 O LSB = WLSB
ILSB

IN[MSB]

IN[LSB]

O[MSB]

O[LSB]
W[LSB]

W[MSB]
Fig. 1. The proposed multiplier unit.

Compared to TWN, TNNs increase sparsity due to adding
zero activation, as well. Therefore, there is no need to calculate
operations related to either zero weights or zero activations. To
put it simply, if both activation and weight are non-zero, the
operation is performed. The sparsity of TNNs is illustrated in
Figure 2 with an example. As Shown in Figure2, only
computation of continuous lines must be done, and others are
unnecessary. In this Figure, X and Y are inputs and outputs,
respectively. Besides, neuron and weight are demonstrated by
circle and line, respectively.

0

1

1

-1

0

Y0

Yi

1

-1

0

0

 -1

1

0
0

1

 -1
1

-1

X0

X1

Xi

0

0
1

0
1

1

Fig. 2. Neurons and their synaptic weights in ternary neural

networks, dot lines illustrate unnecessary computations.

We used the enable signal as a controller to avoid
inessential computations and hence, reduce energy
consumption. The enable signal is used for both activations and
weights. In other words, the enable signal is active if both
weight and activation are non-zero. By using the GXNOR-Net
coding, the control gates which specify enable signals are more
complicated compared to our proposed approach. Figure 3 (a)
and (b) illustrate multiplication operations with the enable

signal which avoids inessential computations in GXNOR-Net
and our proposed method. We can implement one
multiplication and control gate with four logic gates. By this
technique we roughly halve the number of gates compared to
GXNOR-Net by using sign and magnitude coding as shown in
Figure 3. Moreover, weights are constant during inference
phase since they are obtained during the training phase. This
means that we can prune all zero weight operations and for the
remaining weights, just the LSB of the activation specifies the
enable signal and there is no need to use extra control gates for
the enable signal in this case. Since the inference phase is
performed in embedded devices (mentioned in Section I), our
proposed method is appropriate for them and multiplication is
just implemented by three logic gates. To put it simply, as
shown in Figure 3, by removing zero values from weights, the
LSB of inputs are used as an enable signal, hence, one AND
gate is removed and three logic gates are adequate.
Furthermore, the memory storage is lowered in the inference
phase by omitting the zero weights.

Since weights and activations are represented by two bits,
GXNOR-Net uses twice XNOR gates for multiplication
operations compared to XNOR-Net and uses three gates for
determining the enable signal. We have exploited two gates
(AND and XOR) instead of two XNOR gates, one AND gate
as a control gate just during the training phase and another
AND gate to apply the enable signal to outputs.

W[MSB]
W[LSB]

I[MSB]
I[LSB] Enable

O[MSB]

O[LSB]

W[LSB]
I[LSB]

W[MSB]

I[MSB]
Enable

O[MSB]

O[LSB]

(a) (b)

Fig. 3. Multiplication operation in (a) GXNOR-Net. (b) our
proposed logic in TOT-Net.

Since the enable signal avoids the computation of zero
operands, the multiplication results can just be 01 (1) and 11 (-
1). Therefore, instead of accumulation, we would only count
the inverse of the MSB bits to achieve the results.

As discussed in Section II, there are two approaches
(stochastic and deterministic methods) for ternarizing values.
For ternarizing activations, GXNOR-Net applies deterministic
approach according to Equation (2) and uses constant r
depending on the sparsity level. For instance, by exploration
on different r values for activations on the MNIST dataset, they
obtain 0.7 as an appropriate value for r. For each dataset, we
must explore various r values to find a proper value for it.
Therefore, this approach is not much effective. Results of
GXNOR-Net show that the accuracy loss grows by escalating
the sparsity. Also, it uses complicated equations for ternarizing
weights. [38] uses the stochastic and deterministic methods for
ternarizing activation in teacher and student network,
respectively. [33] selects 1/3 as a constant value for r during
the inference phase to simply implement the deterministic

ternarization. It should be noted that [33] just ternarizes
weights. Since the fixed r is used for all datasets and
architectures, it slightly losses the accuracy which has been
tolerated.

In this work, we apply the deterministic method to both
activation and weight ternarizations. There is a fundamental
difference between our deterministic methods and the
aforementioned methods. In fact, we use Δ instead of constant r
in Equation (3) that can be varied depending on weight and
activation values. Therefore, our proposed network becomes
more accurate. Based on [27] which demonstrates roughly
proper Δ values for weights, we use Equation (5) to obtain the
suitable value of both activations and weights depending on
their values.

𝛥𝛥 = 0.7
𝑛𝑛

 ∑ |𝑋𝑋𝑖𝑖 |𝑛𝑛
𝑖𝑖=1 (5)

Where Δ is a threshold parameter, n is the total number of
activations or weights in a filter, and X denotes either
activations or weights. Note that, Δ changes continuously for
each filter and the activation window during the training and
test phases. As mentioned before, the scaling factor plays a
crucial role in reducing the accuracy loss which is imposed by
constraining weights and activations just to {-1, 0, 1}. Thus,
we eliminate |X| < Δ values which are ineffective in the
computation. Hence, the suitable scaling factor is obtained by
calculating the average of absolute |X| > Δ values. Therefore,
the scaling factor is computed by Equation (6).

𝛽𝛽 = 1
|𝑛𝑛𝛥𝛥|

 ∑ |𝑋𝑋𝑖𝑖|𝑖𝑖 𝜖𝜖 𝑛𝑛𝛥𝛥 (6)

Where β is a scaling factor and |𝑐𝑐𝛥𝛥| demonstrates the total
number of |X| > Δ.

CNNs’ block commonly contains convolution layer, batch
normalization, activation, and pooling, respectively. Based on
XNOR-Net, for reducing the dynamic range of the activations
and decreasing the information loss due to ternarization, we
have normalized the activation before the ternary convolution.

B. Ternary Neural Networks Optimization
Existing approaches to design activation functions lack

theoretical foundation which is hard to understand in the
context of practical applications. Or they are based on
inefficient search schemes, since there is no guarantee that
NP-hard complex problems such as Neural Architectural
Search (NAS) problem can be solved in a satisfactory manner
in a limited time. The neuro-evolutionary methods are
iterative population-based exploration solutions mimicking the
process of natural selection and evolution where the
characteristics of the process can be utilized in solving
optimization problems. In this paper, we leverage a neuro-
evolutionary solution to automatically explore the design
space of the network activation function.

All evolutionary methods have an initial population where
selection, crossover, mutation operators are applied to initial
population for producing improved population. The operations
will be repeated until satisfying the user criteria (reaching

suitable results) or stopping after a predefined number of
iterations. Genetic Algorithms (GA) is a popular evolutionary
method which can locate a near-optimal solution. Algorithm 1
represents pseudo-code of the GA for optimizing activation
functions explained as following steps: Step 1. Generating
initial population: Creating an initial population U0 with the
size N. To generate the initial random population, the network
hyperparameters are represented as a string of genomes using a
direct encoding shown as the genome type in Figure 4. Step 2.
Fitness evaluation: Calculating the accuracy (fitness values)
of the individuals in the U0. Step 3. Crossover: GA randomly
selects two genomes from the population set based on a certain
crossover rate. Then two genome strings exchange parts of
their corresponding chromosomes to create two new genomes.
Step 4. Mutation: The main goal of the mutation operator is to
increase genetic diversity and forces GA to get rid of local
optima. For doing the mutation, we need to randomly select
one gene in the chromosome and modify its assigned value to a
new valid number. Step 5. Selection: Obviously the
individuals with better fitness values are selected as the next
generation and the others will be removed from the population
set.

Fig. 4. Representing the
piece-wise activation
function in a genome type
[35].

The specification of GA parameters is shown in Table IV.
The design space roughly consists of 100 different design
points. The average training time is one hour for each design
point by employing an NVIDIA GTX 1080ti. Thus, leveraging
exhaustive search is not reasonable since exploration takes 100
GPU-hours, while our search scheme requires 40 GPU-hours
demonstrating 2.5x reduction in the exploration time.

TABLE IV. THE SPECIFICATION OF EVOLUTIONARY OPTIMIZATION
STRATEGY AND NETWORK TRAINING PROCEDURE

Evolutionary Optimization Network Training
Parameters Value Parameters Value
#iterations 4 Learning rate (lr) {0.01, 0.001, 0.0001}

Population Size 10 Epochs 320
Mutation One-Point Batch Size 256

Crossover Rate 0.2 Optimizer Adam

V. EXPERIMENTAL RESULTS
The purpose of our experiments is threefold. First, we will

show the impact of our proposed ternarization on

classification accuracy. Besides, we will compare the
operational overhead of our proposed architecture with a
different quantized convolutional neural network as a baseline
used in other literatures. Second, we will present the
optimized ternerized activation functions for different
datasets. Moreover, the convergence of the evolutionary
optimization for finding ternerized activation function will be
demonstrated. Third, we explore the impact of different
learning rates (lr) on the accuracy of TOT-Net. We run
experiments on three Image classifications benchmarks consist
of CIFAR-10, CIFAR-100, and ImageNet datasets that are
totally different in term of the number of classes, number of
samples, and complexities.

A. The Results of Classification Accuracy
Table V and Figure 5 show the accuracy comparisons of

different quantization methods on CIFAR-10, CIFAR-100 and
ImageNet datasets. According to the results, TOT-Net provides
1.8%, 7.5%, and 5.7% more accuracy compared to XNOR-Net
for AlexNet architecture on CIFAR-10, CIFAR-100, and
ImageNet datasets, respectively. It should be mentioned that
we trained both TOT-Net and XNOR-Net with 20 epochs for
ImageNet on the same system to provide a fair comparison
between XNOR-Net and TOT-Net. As shown in Figure 5, just
the first 20 epoch of ImageNet training accuracy has been
illustrated. Although TOT-Net has accuracy loss compared to
full-precision networks, it provides up to 16x memory saving
during the inference time. We predict TOT-Net achieves a
better accuracy for the ResNet architecture on the ImageNet
dataset compared to Binary Connect (BC) and Ternary Weight
Network (TWN) since XNOR-Net’s accuracy is higher than
BC, and TWN. Figure 5 shows the variation of training
accuracy over training epochs for TOT-Net and XNOR-Net.
Obviously, TOT-Net overcomes XNOR-Net by providing a
higher accuracy on all the epochs.

Fig. 5. Comparrison of training accuracy trends of TOT-Net and XNOR-Net
on CIFAR-10, CIFAR-100, and ImageNet datasets.

 We make an assumption that a neuron stands N inputs to
estimate essential operations which are shown in Table VI.
GXNOR-Net requires three gates to determine enable signal
and perform the XNOR depending on the enable. Also, it

needs two more gates for applying the enable signal to
outputs. Whereas in our proposed method just two 2-input
AND gates are required to generate enable signal and apply it
to outputs. It should be mentioned that in our proposed
method, we just need <3N gates during the inference-test time
for N as the input number of the neuron. Since we eliminate
redundant weights, enable signals are just the least significant
bits of the activations. Therefore, computations are reduced.

TABLE V. COMPARISON OF VALIDATION ACCURACY ON DIFFERENT
NETWORKS AND DATASETS.

Method

Accuracy % , (Neural Network Architecture)
CIFAR-10 CIFAR-100 ImageNet §

Full-Precision
[19] 89.67, (NIN) 64.32, (NIN) 80.2/56.6, (AlexNet) +

89.2/69.3, (ResNet-18) +

BC [32] 91.73,
(VGG-Net) NA 66.3/43.1, (ResNet-18) +

61/35.4, (AlexNet)

TWN [27] 92.56,
(VGG-Net) NA 84.2/61.8, (ResNet-18) +

BNN [18] 89.85,
(ConvNet) NA 50.4/27.9, (AlexNet) +

XNOR-Net *

[19]
85.74, (NIN) 54.10, (NIN) 62.52/37.47, (AlexNet)* +

73.2/51.2, (ResNet-18)

TNN [38] 87.89,
(VGG like)

51.40,
(VGG like) NA

TOT-Net 87.53, (NIN) 61.61, (NIN) 68.20/42.99, (AlexNet) *+
* The experiments have been run by us (trained by 20 epochs).
+ Presenting both top-5 and top-1 accuracy, respectively.

TABLE VI. COMPARISONS OF OPERATION OVERHEAD IN VARIOUS

ARCHITECTURES IN TERMS OF N (THE INPUT NUMBER OF THE NEURON).

Methods
Operations

MUL ACC Mux Bitwise gate Bit
count

FP N N 0 0 0
BC [32] 0 N N 0 0

TWN [27] 0 < N < N 0 0
XNOR [19] 0 0 0 N 1
GXNOR[37] 0 0 0 5N < Op <7N 1

Ours 0 0 0 train 3N<Op<4N 1
test <3N

B. Activation Function
TOT-Net is equipped with novel combined piece-wise

activation functions. {Elish, Sigmoid} and {Sigmoid,
Leaky_Relu} are found the superior activation functions for
CIFAR-10 and CIFAR-100, respectively. The applicability of
each new activation function has been empirically proved due
to existing in dominant individuals for continues iterations.
Figure 5 compares the training accuracy and training loss of
the optimized and default activation functions, Relu, on
CIFAR-10 and CIFAR-100 datasets. Optimizing activation
functions reduces learning instability and provides a
considerable loss function.

As shown in Figure 6, TOT-Net with optimized activation
functions provides 0.4% and 0.63% higher accuracy compared
to the default network with the Relu activation function.
Therefore, the final achieved accuracy of TOT-Net for CIFAR-

10 and CIFAR-100 datasets are 87.92% and 62.24%,
respectively.

Fig. 6. Comparing the training accuracy and loss of TOT-Net with optimized
activation function and TOT-Net with Relu as the default activation function.

C. Learning Rate
Selecting proper learning rate is essential for achieving the

maximum accuracy of CNN. However, manual learning rate
selection could easily become exhaustive for deep neural
networks. Generally, the learning rate value is considered 0.01
to train CNNs for accelerating the learning procedure [20].
Although lower learning rate (0.0001) is more preferred for
training quantized BNNs [20], it is not applicable for TNNs.

Figure 7 illustrates the impact of different learning rates on
the accuracy of TNNs. According to the results, learning
rate=0.01 provides higher accuracy level for both CIFAR-10
and CIFAR-100 datasets. To guarantee the results, we have
trained the network with twice number of epochs equal to 600
for lower learning rates.

Fig. 7. The effectiveness of different learning rate on the accuracy of TNNs.

VI. CONCLUSION AND FUTURE WORK
Ternary neural networks provide high compression rate

and acceptable accuracy level compared to binarized neural
networks. These features make TNNs more suitable for low-
power embedded platforms. However, there is still a gap
between the accuracy of state-of-the-art TNNs and the
accuracy of full precision networks. To further improve the

0

2

4

6

-10

40

90

1 51 101 151 201 251

Lo
ss

Ac
cu

ra
cy

 (
%

)

Epochs

CIFAR-10 (Accuracy): [Elish, Sigmoid]
CIFAR-10 (Accuracy): Relu
CIFAR-100 (Accuracy): [Sigmoid, Leaky_Relu]
CIFAR-100 (Accuracy): Relu
CIFAR-10 (Loss): [Elish, Sigmoid]
CIFAR-10 (Loss): Relu
CIFAR-100 (Loss): [Sigmoid, Leaky_Relu]

0

40

80

1 51 101 151 201 251 301 351 401 451 501 551

Ac
cu

ra
cy

 (%
)

Epochs

CIFAR-10 (Accuracy): Lr=0.01
CIFAR-10 (Accuracy): Lr=0.001
CIFAR-10 (Accuracy): Lr=0.0001
CIFAR-100 (Accuracy): Lr=0.01
CIFAR-100 (Accuracy): Lr=0.001
CIFAR-100 (Accuracy): Lr=0.0001

accuracy, we first proposed ternarization on both weights and
activations called TOT-Net which can significantly improve
the accuracy with negligible computation overhead compared
to binary neural networks. In fact, we propose a simple bitwise
logic (XOR and AND gates) instead of computation-intensive
traditional multiplications. Next, we optimized the activation
function of TOT-Net with an evolutionary optimization
strategy. Finally, we have done a practical survey on the initial
learning rate for TOT-Net. The evaluation results demonstrate
the impact of TOT-Net on large scale datasets.

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with

Deep Convolutional Neural Networks,” In Advances in neural information
processing systems, pp. 1097–1105, 2012.

[2] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R. and Fei-Fei, L.,
2014. Large-scale video classification with convolutional neural networks.
In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 1725-1732.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 580-587,
2014.

[4] J. Long, E. Shelhamer, and T. Darrell. "Fully convolutional networks for
semantic segmentation." In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3431-3440. 2015.

[5] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications,” ArXiv Preprint ArXiv:1704.04861, 2017.

[6] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K.
Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
<0.5MB model size,” In International Conference on Learning Representations ,
pp. 1-13, 2017.

[7] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li et al. "Dadiannao: A
machine-learning supercomputer." In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 609-622. IEEE Computer
Society, 2014.

[8] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: a spatial architecture for energy-
efficient dataflow for convolutional neural networks,” In ACM SIGARCH
Computer Architecture News, vol. 44, no. 3, pp. 367–379, 2016.

[9] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis. "Tetris: Scalable and
efficient neural network acceleration with 3d memory." In ACM SIGARCH
Computer Architecture News, vol. 45, no. 1, pp. 751-764. ACM, 2017.

[10] S. Han, J. Pool, J. Tran, and W. Dally. "Learning both weights and connections
for efficient neural network." In Advances in neural information processing
systems, pp. 1135-1143. 2015.

[11] S. Han, H. Mao, and W. J. Dally. "Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding." arXiv preprint
arXiv:1510.00149 (2015).

[12] T. J. Yang, Y. H. Chen, and V. Sze, “Designing energy-efficient convolutional
neural networks using energy-aware pruning,” In Proceeding of the 30th IEEE
Conference Computer Vision Pattern Recognition, CVPR 2017, pp. 6071–6079,
2017.

[13] M. Basirat, and P. M. Roth. "The Quest for the Golden Activation
Function." arXiv preprint arXiv:1808.00783 (2018).

[14] M. Loni, A. Majd, A. Loni, M. Daneshtalab, M. Sjödin, and Elena Troubit sy na.
"Designing Compact Convolutional Neural Network for Embedded Stereo Vision
Systems." In 2018 IEEE 12th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC), pp. 244-251. IEEE, 2018.

[15] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Esmaeilzadeh.
"Bit fusion: Bit-level dynamically composable architecture for accelerating deep
neural networks." In Proceedings of the 45th Annual International Symposium on
Computer Architecture, pp. 764-775. IEEE Press, 2018.

[16] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” ArXiv Preprint
ArXiv:1702.03044 , 2017.

[17] D. Zhang, J. Yang, D. Ye, and G. Hua. "Lq-nets: Learned quantization for highly
accurate and compact deep neural networks." In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 365-382. 2018.

[18] I. Hubara, “Binarized Neural Networks,” In Advances in Neural Information
Processing Systems, pp. 4107-4115. 2016.

[19] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net : ImageNet
Classification Using Binary,” In European Conference on Computer Vision, p p .
525-542. Springer, Cham, 2016.

[20] Tang, Wei, Gang Hua, and Liang Wang. "How to train a compact binary neural
network with high accuracy?." In Thirty-First AAAI Conference on Artificial
Intelligence. 2017.

[21] J. Cheng, P. Wang, G. Li, Q. Hu, and H. Lu. "Recent advances in efficient
computation of deep convolutional neural networks." Frontiers of Information
Technology & Electronic Engineering 19, no. 1 (2018): 64-77.

[22] K. He , X. Zhang, Sh. Ren, and J. Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770-778. 2016.

[23] M. Lin , Q. Chen, and S. Yan. "Network in network." arXiv preprint
arXiv:1312.4400 (2013).

[24] F. Conti, P. D. Schiavone, S. Member, and L. Benini, “XNOR Neural Engine : a
Hardware Accelerator IP for 21 . 6 fJ / op Binary Neural Network Inference.”
ArXiv Preprint ArXiv:1807.03010, 2018.

[25] S. Hayou, A. Doucet, and J. Rousseau. "On the selection of initialization and
activation function for deep neural networks." arXiv preprint
arXiv:1805.08266 (2018).

[26] T. Elsken, J. Hendrik Metzen, and F. Hutter. "Neural architecture search: A
survey." arXiv preprint arXiv:1808.05377 (2018).

[27] B. Liu, “Ternary Weight Networks,” ArXiv Preprint ArXiv:1605.04711, 2016.
[28] Y. Ma, N. Suda, Y. Cao, J. Seo, and S. Vrudhula, “Scalable and Modularized

RTL Compilation of Convolutional Neural Networks onto FPGA.” In Field
Programmable Logic and Applications (FPL), 2016 26th International
Conference on, pp. 1-8. IEEE, 2016.

[29] P. Judd, J. Albericio, T. Hetherington, T.M. Aamodt, and A. Moshovos. "Stripes:
Bit-serial deep neural network computing." In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 1-12. IEEE, 2016.

[30] A. Yazdanbakhsh, A. T. Elthakeb, P. Pilligundla, F. Mireshghallah, and H.
Esmaeilzadeh. "ReLeQ: An Automatic Reinforcement Learning Approach for
Deep Quantization of Neural Networks." arXiv preprint
arXiv:1811.01704 (2018).

[31] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, “Ristretto: A Framework for
Empirical Study of Resource-Efficient Inference in Convolutional Neural
Networks,” IEEE Transactions on Neural Networks and Learning Systems, vol.
29, no.11, pp. 1–6, 2018.

[32] M. Courbariaux and J. David, “BinaryConnect : Training Deep Neural Networks
with binary weights during propagations,” In Advances in Neural Information
Processing Systems, pp. 3123-3131. 2015.

[33] C. Jin, H. Sun, and S. Kimura, “Sparse ternary connect: Convolutional neural
networks using ternarized weights with enhanced sparsity,” In Design
Automation Conference (ASP-DAC), 2018 23rd Asia and South Pacific, pp. 190-
195. IEEE, 2018.

[34] D. Wan, F. Shen, L. Liu, F. Zhu, J. Qin, L. Shao, and H. T. Shen. "TBN:
Convolutional Neural Network with Ternary Inputs and Binary Weights."
In Proceedings of the European Conference on Computer Vision (ECCV), pp.
315-332. 2018.

[35] S. Sato, H. Nakahara, and M. Ikebe, “BRein Memory : A Single-Chip Binary /
Ternary Reconfigurable in-Memory Deep Neural Network,” IEEE Journal of
Solid-State Circuits, vol. 53, no. 4,pp. 983-994, 2018.

[36] M. Loni, M. Daneshtalab, and M. Sjödin. "ADONN: Adaptive Design of
Optimized Deep Neural Networks for Embedded Systems." In 21st Euromicro
Conference on Digital System Design (DSD), pp. 397-404. IEEE, 2018.

[37] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li, “GXNOR-Net : Training deep neural
networks with ternary weights and activations without full-precision memory
under a unified discretization framework,” Neural Networks, vol.100,no. 4,
pp.49-58, 2018.

[38] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Pétrot. "Ternary neural networks
for resource-efficient AI applications." In 2017 International Joint Conference on
Neural Networks (IJCNN), pp. 2547-2554. IEEE, 2017.

	I. Introduction
	II. Background
	1) Convolutional neural networks:
	2) Piece-wise activation functions:
	3) Ternary weight network:

	III. Related Work
	A. Network Quantization
	B. Neural Network Optimization

	IV. architecture
	A. Ternary Neural Networks
	B. Ternary Neural Networks Optimization

	V. Experimental Results
	A. The Results of Classification Accuracy
	B. Activation Function
	C. Learning Rate

	VI. Conclusion and Future Work
	References

