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Abstract—High computation demands and big memory 
resources are the major implementation challenges of 
Convolutional Neural Networks (CNNs) especially for low-powe r 
and resource-limited embedded devices. Many binarized neural 
networks are recently proposed to address these issues. Although 
they have significantly decreased computation and memory 
footprint, they have suffered from accuracy loss especially for 
large datasets.  In this paper, we propose TOT-Net, a te rnarize d 
neural network with [-1, 0, 1] values for both weights and 
activation functions that has simultaneously achieved a higher 
level of accuracy and less computational load. In fact, first, TOT-
Net introduces a simple bitwise logic for convolution 
computations to reduce the cost of multiply operations.  To 
improve the accuracy, selecting proper activation function and 
learning rate are influential, but also difficult. As the second 
contribution, we propose a novel piece-wise activation function, 
and optimized learning rate for different datasets. Our findings 
first reveal that 0.01 is a preferable learning rate for the studied 
datasets. Third, by using an evolutionary optimization approach, 
we found novel piece-wise activation functions customized for 
TOT-Net. According to the experimental results, TOT-Net 
achieves 2.15%, 8.77%, and 5.7/5.52% better accuracy compared 
to XNOR-Net on CIFAR-10, CIFAR-100, and ImageNet top-
5/top-1 datasets, respectively.  

Keywords—convolutional neural networks, ternary neural 
network, activation function, optimization. 

I. INTRODUCTION 

Convolutional Neural Networks (CNNs) have attained the 
state of the art results in many application domains, especially 
in computer vision tasks such as image and video classification 
[1] [2], object recognition [3], and image segmentation [4]. For
providing more accurate results, CNNs are becoming more
sophisticated containing hundred deep layers and millions
floating-point operations. Therefore, CNNs suffer from huge
amount of memory accesses and require significant processing
capacity.

CNNs have been used in a wide spread spectrum of 
applications, such as deployment of CNN on mobile, wearable 
devices, and Internet of Things (IoT) platforms. On the other 
hand, embedded devices have strict constraints on the 
computation resource and power consumption that are not 
compatible with the requirements of CNNs. Plus, embedded 
applications usually have real-time constraints which 
necessitates compact neural networks to meet resource, power, 
and response-time constraints. MobileNets [5] and SqueezeNet 
[6] are popular compact networks which are introduced for
smartphones and embedded vision devices.  In addition, many
prior works attempted to reduce the computational cost and

memory footprint of CNNs by decreasing accuracy. Generally, 
the efficiency of the CNN implementation can be enhanced via 
the following techniques:  

• CNN hardware accelerators try to overcome these
challenges by parallel computing, and efficient data reuse [7],
[8], [9].
• Pruning techniques such as [10], [11], [12] have eliminated
redundant and ineffective weights to reduce the amount of
computation, and afterward, reclaim the accuracy through
fine-tuning.
• Customized CNN architectures are designed for resource
budget limitations [13], [14]. 
• CNN parameters quantization is a popular approach to
diminish the amount of computation, data storage and
transfer time [15], [16], [17].

In this paper, we focus on the quantizing techniques, since 
quantized architectures are extremely suitable for embedded 
devices such as smartphones, without considerable accuracy 
loss. Table I compares different outstanding methods including 
the full-precision network AlexNet [1], BNN [18], XNOR-Net 
[19], and our proposed network named TOT-Net. 

TABLE I.  COMPARISON OF DIFFERENT QUANTIZATION METHODS ON 
IMAGENET DATASET.  

Methods Operations 
Used in CNN 

Memory Saving 
(Inference) 

AlexNet [1] +, -, × 1x 
BNN [20] XNOR, bitcount ~32x 

XNOR-Net [23] XNOR, bitcount ~32x 
TOT-Net XOR, AND, bitcount ~16x 

 The quantization has demonstrated to be quite effective 
due to: 

• Compressing the network theoretically up to 32×, when
compared with full precision floating point networks.
• Reducing the computation complexity and accelerating the
inference time by replacing the 32-bit floating point multiply-
accumulations with bitwise operations.

Although the binary quantization methods provide 
considerable efficiency, they suffer from accuracy loss, 
especially in large datasets [20]. To tackle this challenge, we 
propose TOT-Net, a ternarized neural network with ternary 
weights and activations. TOT-Net benefits from sparsity by 
adding zero states to both weights and activations. Exploiting 
the zero states, TOT-Net, disregard the useless computations 
by an enable signal, hence energy consumption is decreased 
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more than BNNs and would make it more suitable for 
embedded systems. Moreover, we exploit a simple logic 
instead of multiplication operations which matches with the 
standard sign and magnitude representation. In addition, to 
obtain higher accuracy level, we conduct a two-level 
optimization strategy for finding the most proper network 
activation functions and learning rates for TOT-Net. In nutshell 
our main contributions in this paper are three-fold: 

• We introduce TOT-Net, a novel ternarized neural network 
architecture that provides higher level of accuracy, less 
computational load, and simpler computation units.   
• We present an automatic method to find the most proper 
ternary activation functions. To do so, we utilize an 
evolutionary optimization approach to efficiently explore the 
design space. In addition, we have analyzed the impact of 
learning rate on the accuracy of Ternary Neural Networks 
(TNNs).  
• We evaluate the impact of TOT-Net on three popular 
classification datasets including ImageNet, CIFAR-100, and 
CIFAR-10. The evaluation results demonstrate huge 
improvement over typical used baselines. 

The rest of this paper is organized as follow. In Section II, 
we overview a background on CNN, ternary weight networks, 
and evolutionary optimizations for deep neural networks. 
Section III reviews related works in this scope. Our proposed 
ternary neural network, its architecture, and its optimizations 
are presented in Section IV. Section V presents and discusses 
the experimental results. Finally, we conclude this essay in 
Section VI. 

II. BACKGROUND 
This Section briefly outlines CNN, piece-wise activation 

functions and ternary weight networks. 

1) Convolutional neural networks:  

Convolutional neural networks are typically comprised of a 
combination of three main layers that are called convolutional 
layers, pooling layers, and fully connected layers. A significant 
amount of computations, over 90%, are performed in the 
convolutional layers whereas fully connected layers are mainly 
memory bounded [21]. It should be mentioned that some new 
proposed CNN architectures such as ResNet [22] and NIN [23] 
have removed fully-connected layers because of remarkable 
energy consumption of memory accesses in this layer. 
Quantized networks would also reduce memory footprint and 
hence improve the energy efficiency [15][24]. 

The convolutional layer is the principal layer of CNNs 
which extracts high-level abstraction of its inputs called feature 
map by using various filters. Equation (1) demonstrates the 
operation of a 3D convolutional layer that convolves the inputs 
via a filer 𝑊𝑊 ∈ 𝑅𝑅𝐶𝐶×𝑋𝑋×𝑌𝑌 for each feature map where C, X and Y 
are the number of input channels and spatial dimensions of the 
filter, respectively. It is obvious that a lot of multiply and 
accumulate (MAC) operations are required to just obtain one 
point of the output feature map. 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3𝐷𝐷 = 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(��� 𝐼𝐼[𝑘𝑘][𝑋𝑋 − 𝑖𝑖][𝑌𝑌 − 𝑗𝑗]
𝑌𝑌−1

𝑗𝑗=0

𝑋𝑋−1

𝑖𝑖=0

𝐶𝐶−1

𝑘𝑘=0
× 𝑊𝑊[𝑘𝑘] [𝑖𝑖][𝑗𝑗])             (1)   

Where conv3D, I and W are the output feature maps, input 
feature maps, and k×k weight filters, respectively. U 
determines the stride size that is the step for moving filters over 
the input feature maps. Pooling layers perform down-sampling 
on data to decrease the amount of computation. Commonly, in 
CNNs, pooling layers such as max pooling and mean pooling 
are used after some convolutional layers. As demonstrated by 
their names, max pooling selects the maximum feature map 
and mean pooling computes the average of feature maps in the 
pooling window. Mostly, after distinguishing high-level 
abstraction features, fully connected layers are applied in the 
CNN to classify images.  

2) Piece-wise activation functions:  

In general, each neuron computes the summation of its 
weighted inputs and then performs a function called activation 
function. In general, nonlinear activation functions are better 
suited for classification tasks [13]. 

TABLE II.  CANDIDATE PIECE-WISE ACTIVATION FUNCTIONS. BY Y(X < 
0) AND Y(X ≥ 0) WE INDICATE THE LEFT- AND RIGHT-PIECE, RESPECTIVELY. 

Activation 
Function 

Expression 

HardTanh 𝑦𝑦(𝑥𝑥) = max (−1, 𝑥𝑥) 

ELiSH 
𝑦𝑦(𝑥𝑥 < 0) =

𝑒𝑒𝑥𝑥 − 1
1 + 𝑒𝑒−𝑥𝑥

  𝑎𝑎𝑐𝑐𝑎𝑎   𝑦𝑦(𝑥𝑥 ≥ 0) =
𝑥𝑥

1, 𝑒𝑒−𝑥𝑥
 

Swish 𝑦𝑦(𝑥𝑥) =
𝑥𝑥

1 + 𝑒𝑒−𝑥𝑥
 

ReLU 𝑦𝑦(𝑥𝑥) = max(𝑥𝑥 , 0) 
ELU 𝑦𝑦(𝑥𝑥 < 0) = 𝑒𝑒𝑥𝑥 − 1 𝑎𝑎𝑐𝑐𝑎𝑎  𝑦𝑦(𝑥𝑥 ≥ 0) = 𝑥𝑥  

SeLU 𝑦𝑦(𝑥𝑥 < 0) = 𝜆𝜆𝜆𝜆(𝑒𝑒𝑥𝑥 − 1) 𝑎𝑎𝑐𝑐𝑎𝑎  𝑦𝑦(𝑥𝑥 ≥ 0) = 𝜆𝜆𝑥𝑥  

Tanh 
𝑦𝑦(𝑥𝑥) =

(𝑒𝑒𝑥𝑥 −  𝑒𝑒−𝑥𝑥)
(𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥) 

PRelu 𝑦𝑦(𝑥𝑥) = � 𝑎𝑎𝑥𝑥         𝑓𝑓𝑐𝑐𝑓𝑓 𝑥𝑥 < 0
𝑥𝑥           𝑓𝑓𝑐𝑐𝑓𝑓 𝑥𝑥 ≥  0 

Leaky_Relu 𝑦𝑦(𝑥𝑥) = �0.01𝑥𝑥     𝑓𝑓𝑐𝑐𝑓𝑓 𝑥𝑥 < 0
𝑥𝑥            𝑓𝑓𝑐𝑐𝑓𝑓 𝑥𝑥 ≥  0 

Sigmoid 
𝑦𝑦(𝑥𝑥) =

1
1 + 𝑒𝑒−𝑥𝑥

 
Linear 𝑦𝑦(𝑥𝑥) = 𝑥𝑥 

 
The design of these activation functions was inspired by 

the recently proposed Swish activation function [25]. These 
functions are unbounded, smooth, and non-monotonic [25]. 
Furthermore, good data flow through CNN is provided by 
mentioned functions [26]. A family of activation functions 
such as Swish(x) has been recognized by [25] and [26], which 
betters the information propagation and solves the vanishing 
gradient issue. Inspired from Swish, negative and positive 
inputs have a different influence on learning accuracy. 
Equation 2 has described the piece-wise activation function, 
named F(x), consisting two separate activation functions. 
Table II presents commonly used activation functions which 



can be used as the left and right parts of the piece-wise 
activation function.  

 
𝐹𝐹 (𝑥𝑥) =  (F1    𝑖𝑖𝑓𝑓 𝑥𝑥 ≥ 0,   𝐹𝐹2     𝑖𝑖𝑓𝑓 𝑥𝑥 < 0)                                 (2) 

The optimization problem will be highlighted when the 
training dataset is giant, and the optimization process needs 
prior knowledge. Section IV.B represents an efficient 
metaheuristic optimization approach that automatically tunes 
networks activation functions. To the best of our knowledge, 
this is the first try to optimize the piece-wise activation 
function for ternary neural networks.  
 

3) Ternary weight network:  

BinaryConnect lets weights to be {-1, 1}, hence, the whole 
learned weights must be -1 alternatively 1. However, during 
the training phase, many learned weights are zero or near zero. 
It arises from the stochastic sampling process which permits 
that the average value of sampled weight would be zero. On 
the other hand, the network becomes sparse if weight values 
are zero. This mean, we can disregard operations related to 
zero terms. In these circumstances, the gating technique can be 
used to avoid unnecessary energy consumption. Therefore, 
Ternary Weight Network (TWN) [27] in comparison with 
BinaryConnect, profits from the mentioned advantage by 
adding an extra zero state. 

Commonly, there exist two approaches for ternarizing 
weights that are explained as follows. It should be mentioned 
that full precision weights must be clipped into the [-1, 1] 
interval. Equation (3) shows the first method in which r 
specifies the level of sparsity. This approach is similar to the 
deterministic approach for binarizing values and can be 
implemented by a simple comparator. 

𝑊𝑊𝑊𝑊 =  �  
+1                𝑖𝑖𝑓𝑓 𝑊𝑊 ≥ r,

   0                  𝑖𝑖𝑓𝑓 |𝑊𝑊| ≤ 𝑓𝑓
−1                𝑖𝑖𝑓𝑓 𝑊𝑊 ≤ −r.

,                                       (3) 

The second approach which is roughly analogous to the 
stochastic approach of binarizing values, is demonstrated in 
Equation (4). Basically, real value weights stand into two sub-
interval [-1, 0] and (0, 1] that their ternary values are 
determined according to their distance from -1 and 1. Where 
𝑊𝑊𝑊𝑊 is a ternarized weight, 𝑊𝑊 is the full precision weight and 𝑃𝑃 
is the probability function. 

𝑊𝑊𝑊𝑊 =  �𝑃𝑃
(𝑊𝑊𝑊𝑊 = 1) = 𝑊𝑊;  𝑃𝑃(𝑊𝑊𝑊𝑊 = 0) = 1 −𝑊𝑊               𝑖𝑖𝑓𝑓  𝑊𝑊 ≥ 0

𝑃𝑃(𝑊𝑊𝑊𝑊 = −1) = −𝑊𝑊;  𝑃𝑃(𝑊𝑊𝑊𝑊 = 0) = 1 + 𝑊𝑊         𝑖𝑖𝑓𝑓 𝑊𝑊 < 0 (4)   

  
Hardware implementation of the former is simpler than the 

latter. However, the stochastic approach is generally more 
accurate than the deterministic one. Thus, depending on the 
application, we can select the ternarization method. It is worth 
noting that the scaling factor of the ternarized weights plays a 
crucial role to compensate the accuracy loss. By substituting 
full precision values with ternary values {-1, 0, 1}, all 
multiplications in the inference phase are removed and 
convolutions are just calculated by simple accumulations and 

multiplexers instead of MAC operations like BinaryConnect. 
Furthermore, TWN is more energy-efficient due to its sparsity 
that arises from disregarding operations related to zero value 
weights. Also, TWN saves 16× more memory storage and 
access for weight parameters compared to the full precision 
one. To put it simply, just 2 bits are required for weights 
instead of 32 bits.   

III. RELATED WORK 

A. Network Quantization 
Generally, binarized neural networks (BNNs) suffer from 

the accuracy loss, especially in large datasets. [20] tried to 
address this issue for BNNs by proposing an efficient training 
strategy. Some works such as [28] and [29] applied reduced 
precisions to reduce memory storage and computation. 
However, they still require computation-intensive MAC 
operations to perform the convolutional operations, hence, 
suffer from heavy operations. Bit Fusion [15] demonstrated 
that 8 bits and less than it is enough for weights and 
activations in a wide range of CNNs, especially for small 
datasets. [16] uses bit widths less than 6 bits for quantization 
and achieves good accuracy compared to the full precision 
CNNs. LQ-Nets [17] applies proper quantization bits by a 
learnable quantizer and ReLeQ [30] automates DNN 
quantization based on a Reinforcement Learning (RL) 
algorithm, respectively. Ristretto [31] as a CNN 
approximation framework allows experimental exploration to 
trade between the classification accuracy and the bit-width of 
weights and activations. Ristretto also concludes that 8-bit 
dynamic fixed-point operations are appropriate for large-scale 
image classifications such as ImageNet. 

Some recent researches [18][19][32] surpass quantized 
neural networks and have aggressively reduced precision even 
till 1 bit. BinaryConnect [32] eliminates multiplication in the 
forward pass by substituting full precision weights with -1 and 
1 values. Ternary weight network [27] achieves more accuracy 
by applying ternary weights {-1, 0, 1}. Also, it adds sparsity to 
network, hence, it is more energy-efficient than binary connect. 
[33] presents Sparse Ternary Connect (STC) which reduces 
computation complexity by raising sparsity, and just leads less 
than 0.5% accuracy loss. Binarized neural network [18] 
binarizes both activations and weights and substitutes 
computation-intensive MAC operations with XNOR-bitcount 
operations. Therefore, the computations are drastically 
reduced, and also memory footprint has been intensely 
decreased. XNOR-Net [19] achieves more accuracy compared 
to BNN by using scaling factors for both activations and 
weights. TBN [34] proposes using ternary activations and 
binary weights, and hence, attains more accuracy for the 
ImageNet dataset compared to XNOR-Net. Since binarized 
neural networks can meet the embedded device constraints, 
hardware implementation of BNN has recently gotten more 
attention. XNOR Neural Engine [24] and BRein [35] are two 
samples in this area. 

B. Neural Network Optimization  
To enable more accurate learning results, selecting the 

architectural parameters of CNNs are crucial since the network 
architecture strongly affects the inference time, memory 



footprint, the accuracy level, and the network generalization 
proficiency. However, the hand-crafted designing of CNN 
parameters is overwhelming due to requiring a lot of trial-and-
error and deep expertise since the design space is huge. 
Therefore, an automatic method for designing CNN 
architectures has emerged as a significant alternative for 
decreasing efficiency risk and design cost. 

 There are different automated neural optimization 
approaches, including random search, Bayesian optimization, 
RL, neuro-evolutionary methods. Using random search is 
challenging due to extremely random sampling in the search 
space [26], while Bayesian-based methods suffer from 
immense computational cost, suitable only for searching 
architectures with a fixed-length space and focuses on low-
dimensional continuous problems [36]. RL-based methods are 
mainly slow and require considerable computational resources 
in both exploration and training steps [36] [26]. Evolutionary 
algorithms are feasible solutions for optimizing the neural 
architecture due to exploring improved design space without 
any prior assumptions [26]. [36] proposed a multi-objective 
evolutionary solution to reduce the complexity of CNNs, while 
tries to increase the accuracy. In addition, [13] proposed two 
new activation functions, ELiSH and HardELiSH, for tiny-
ImageNet by leveraging an evolutionary method. In this paper, 
we use a similar strategy to optimize the ternary activation 
functions.  

IV. ARCHITECTURE 
As mentioned in the prior section, although, TWN doubles 

memory storage for weight parameters compared to 
BinaryConnect, it surpasses BinaryConnect in terms of 
accuracy by adding a further zero state to {-1, 1}. Moreover, it 
is more energy-efficient due to eliminating computations 
related to zero parameters. In this section, we comprehensively 
explain the proposed ternary neural network architecture in 
part A. Then, in part B, we describe the optimization algorithm 
for finding the best piece-wise activation function. 

A. Ternary Neural Networks  
As mentioned in Section I, binarized neural networks 

(BNNs) substitute MAC operations with just bitwise 
operations (XNOR-bitcount) by applying {-1, 1} for both 
weights and activations. In this work, we propose a ternarized 
neural network (TNN) that ternarizes both weights and 
activations. GXNOR-Net [37] also uses the ternary values for 
weights and activations and introduces a method that is similar 
to XNOR-Net approach. This means that they use XNOR-
bitcount operations instead of MAC operations. Thus, they 
must apply a coding which is compatible with these operations. 
As shown in Table III, XNOR-Net encodes sign values -1 and 
1 by 0 and 1, respectively. GXNOR-Net encodes -1 and 1 by 
00 and 11, respectively and 0 can be encoded either by 01 or 
10. Furthermore, [38] proposes ternary neural network which 
applies the teacher-student approach. They use ternary 
activations and full precision weights in the teacher network 
and use ternary weights and activations in the student network. 
However, our proposed method uses ternary weights and 
activations during both the training and inference phases. We 
use the standard sign and magnitude coding to encode ternary 
value {-1, 0, 1} according to Table III. This means that we 

encode -1 and 1 by 11 and 01, respectively. Also, either 00 or 
10 are used for encoding 0. 

TABLE III.  XNOR AND GXNOR CODING VERSUS SIGN AND MAGNITUDE 
CODING. 

  XNOR-Net GXNOR-Net Sign and Magnitude  

-1 0 00 11 
0 - 01 or 10 00 or 10 
1 1 11 01 

 By using sign and magnitude coding, we present a new 
simple logic instead of multiplication. Actually, by applying 00 
or 01 for 0 values, multiplications with at least one zero-
operand would be simply disregarded. As shown in Figure 1, 
we substitute multiplication with the XOR and AND gates to 
calculate most and least significant bits, respectively. MSB and 
LSB stand for most significant and least significant, 
respectively. 

IMSB   ILSB    W MSB WLSB OMSB    

OLSB 

0       0          0      0  
0       0          0      1  
0       0          1      0  
0       0          1      1     
0       1          0      0  
0       1          0      1     
0       1          1      0  
0       1          1      1  
1       0          0      0  
1       0          0      1  
1       0          1      0  
1       0          1      1     
1       1          0      0  
1       1          0      1     
1       1          1      0  
1       1          1      1              

x      0 
x      0 
x      0 
x      0 
x      0 
0      1 
x      0 
1      1 
x      0 
x      0 
x      0 
x      0 
x      0 
1      1 
x      0 
0      1 

 

 
x x x x 
x 0 1 x 
x 1 0 x 
x x x x 

O MSB= WMSB⊕ 
IMSB 

 
0 0 0 0 
0 1 1 0 
0 1 1 0 
0 0 0 0 

    O LSB  =  WLSB 
ILSB 

IN[MSB]

IN[LSB]

O[MSB]

O[LSB]
W[LSB]

W[MSB]  
Fig. 1. The proposed multiplier unit. 

Compared to TWN, TNNs increase sparsity due to adding 
zero activation, as well. Therefore, there is no need to calculate 
operations related to either zero weights or zero activations. To 
put it simply, if both activation and weight are non-zero, the 
operation is performed. The sparsity of TNNs is illustrated in 
Figure 2 with an example. As Shown in Figure2, only 
computation of continuous lines must be done, and others are 
unnecessary. In this Figure, X and Y are inputs and outputs, 
respectively. Besides, neuron and weight are demonstrated by 
circle and line, respectively.  
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Fig. 2. Neurons and their synaptic weights in ternary neural 

networks, dot lines illustrate unnecessary  computations. 

We used the enable signal as a controller to avoid 
inessential computations and hence, reduce energy 
consumption. The enable signal is used for both activations and 
weights. In other words, the enable signal is active if both 
weight and activation are non-zero. By using the GXNOR-Net 
coding, the control gates which specify enable signals are more 
complicated compared to our proposed approach. Figure 3 (a) 
and (b) illustrate multiplication operations with the enable 



signal which avoids inessential computations in GXNOR-Net 
and our proposed method. We can implement one 
multiplication and control gate with four logic gates. By this 
technique we roughly halve the number of gates compared to 
GXNOR-Net by using sign and magnitude coding as shown in 
Figure 3. Moreover, weights are constant during inference 
phase since they are obtained during the training phase. This 
means that we can prune all zero weight operations and for the 
remaining weights, just the LSB of the activation specifies the 
enable signal and there is no need to use extra control gates for 
the enable signal in this case. Since the inference phase is 
performed in embedded devices (mentioned in Section I), our 
proposed method is appropriate for them and multiplication is 
just implemented by three logic gates. To put it simply, as 
shown in Figure 3, by removing zero values from weights, the 
LSB of inputs are used as an enable signal, hence, one AND 
gate is removed and three logic gates are adequate. 
Furthermore, the memory storage is lowered in the inference 
phase by omitting the zero weights. 

Since weights and activations are represented by two bits, 
GXNOR-Net uses twice XNOR gates for multiplication 
operations compared to XNOR-Net and uses three gates for 
determining the enable signal. We have exploited two gates 
(AND and XOR) instead of two XNOR gates, one AND gate 
as a control gate just during the training phase and another 
AND gate to apply the enable signal to outputs. 

W[MSB]
W[LSB]

I[MSB]
I[LSB] Enable

O[MSB]

O[LSB]

 

W[LSB]
I[LSB]

W[MSB]

I[MSB]
Enable

O[MSB]

O[LSB]

 

(a) (b) 

Fig. 3.  Multiplication operation in (a) GXNOR-Net. (b) our 
proposed logic in TOT-Net. 

Since the enable signal avoids the computation of zero 
operands, the multiplication results can just be 01 (1) and 11 (-
1). Therefore, instead of accumulation, we would only count 
the inverse of the MSB bits to achieve the results. 

As discussed in Section II, there are two approaches 
(stochastic and deterministic methods) for ternarizing values. 
For ternarizing activations, GXNOR-Net applies deterministic 
approach according to Equation (2) and uses constant r 
depending on the sparsity level.  For instance, by exploration 
on different r values for activations on the MNIST dataset, they 
obtain 0.7 as an appropriate value for r. For each dataset, we 
must explore various r values to find a proper value for it. 
Therefore, this approach is not much effective. Results of 
GXNOR-Net show that the accuracy loss grows by escalating 
the sparsity. Also, it uses complicated equations for ternarizing 
weights. [38] uses the stochastic and deterministic methods for 
ternarizing activation in teacher and student network, 
respectively. [33] selects 1/3 as a constant value for r during 
the inference phase to simply implement the deterministic 

ternarization. It should be noted that [33] just ternarizes 
weights. Since the fixed r is used for all datasets and 
architectures, it slightly losses the accuracy which has been 
tolerated. 

In this work, we apply the deterministic method to both 
activation and weight ternarizations. There is a fundamental 
difference between our deterministic methods and the 
aforementioned methods. In fact, we use Δ instead of constant r 
in Equation (3) that can be varied depending on weight and 
activation values. Therefore, our proposed network becomes 
more accurate. Based on [27] which demonstrates roughly 
proper Δ values for weights, we use Equation (5) to obtain the 
suitable value of  both activations and weights depending on 
their values. 

𝛥𝛥 =  0.7
𝑛𝑛

  ∑ |𝑋𝑋𝑖𝑖 |𝑛𝑛
𝑖𝑖=1                                          (5) 

Where Δ is a threshold parameter, n is the total number of 
activations or weights in a filter, and X denotes either 
activations or weights. Note that, Δ changes continuously for 
each filter and the activation window during the training and 
test phases. As mentioned before, the scaling factor plays a 
crucial role in reducing the accuracy loss which is imposed by 
constraining weights and activations just to {-1, 0, 1}. Thus, 
we eliminate |X| < Δ values which are ineffective in the 
computation. Hence, the suitable scaling factor is obtained by 
calculating the average of absolute |X| > Δ values. Therefore, 
the scaling factor is computed by Equation (6). 

𝛽𝛽 =  1
|𝑛𝑛𝛥𝛥|

  ∑  |𝑋𝑋𝑖𝑖|𝑖𝑖 𝜖𝜖 𝑛𝑛𝛥𝛥                               (6) 

Where β is a scaling factor and |𝑐𝑐𝛥𝛥| demonstrates the total 
number of |X| > Δ.  

CNNs’ block commonly contains convolution layer, batch 
normalization, activation, and pooling, respectively. Based on 
XNOR-Net, for reducing the dynamic range of the activations 
and decreasing the information loss due to ternarization, we 
have normalized the activation before the ternary convolution. 

B. Ternary Neural Networks Optimization 
Existing approaches to design activation functions lack 

theoretical foundation which is hard to understand in the 
context of practical applications. Or they are based on 
inefficient search schemes, since there is no guarantee that 
NP-hard complex problems such as Neural Architectural 
Search (NAS) problem can be solved in a satisfactory manner 
in a limited time. The neuro-evolutionary methods are 
iterative population-based exploration solutions mimicking the 
process of natural selection and evolution where the 
characteristics of the process can be utilized in solving 
optimization problems. In this paper, we leverage a neuro-
evolutionary solution to automatically explore the design 
space of the network activation function.  

All evolutionary methods have an initial population where 
selection, crossover, mutation operators are applied to initial 
population for producing improved population. The operations 
will be repeated until satisfying the user criteria (reaching 



suitable results) or stopping after a predefined number of 
iterations. Genetic Algorithms (GA) is a popular evolutionary 
method which can locate a near-optimal solution. Algorithm 1 
represents pseudo-code of the GA for optimizing activation 
functions explained as following steps: Step 1. Generating 
initial population: Creating an initial population U0  with the 
size N. To generate the initial random population, the network 
hyperparameters are represented as a string of genomes using a 
direct encoding shown as the genome type in Figure 4. Step 2. 
Fitness evaluation: Calculating the accuracy (fitness values) 
of the individuals in the U0. Step 3. Crossover: GA randomly 
selects two genomes from the population set based on a certain 
crossover rate. Then two genome strings exchange parts of 
their corresponding chromosomes to create two new genomes. 
Step 4. Mutation: The main goal of the mutation operator is to 
increase genetic diversity and forces GA to get rid of local 
optima. For doing the mutation, we need to randomly select 
one gene in the chromosome and modify its assigned value to a 
new valid number. Step 5. Selection: Obviously the 
individuals with better fitness values are selected as the next 
generation and the others will be removed from the population 
set. 

 

 
 

 
Fig. 4. Representing the 
piece-wise activation 
function in a genome type 
[35]. 

The specification of GA parameters is shown in Table IV. 
The design space roughly consists of 100 different design 
points. The average training time is one hour for each design 
point by employing an NVIDIA GTX 1080ti. Thus, leveraging 
exhaustive search is not reasonable since exploration takes 100 
GPU-hours, while our search scheme requires 40 GPU-hours 
demonstrating 2.5x reduction in the exploration time. 

TABLE IV.   THE SPECIFICATION OF EVOLUTIONARY OPTIMIZATION 
STRATEGY AND NETWORK TRAINING PROCEDURE 

Evolutionary Optimization Network Training 
Parameters Value Parameters Value 
#iterations 4 Learning rate (lr) {0.01, 0.001, 0.0001} 

Population Size 10 Epochs 320 
Mutation One-Point Batch Size 256 

Crossover Rate 0.2 Optimizer Adam 

V. EXPERIMENTAL RESULTS 
The purpose of our experiments is threefold. First, we will 

show the impact of our proposed ternarization on 

classification accuracy. Besides, we will compare the 
operational overhead of our proposed architecture with a 
different quantized convolutional neural network as a baseline 
used in other literatures. Second, we will present the 
optimized ternerized activation functions for different 
datasets. Moreover, the convergence of the evolutionary 
optimization for finding ternerized activation function will be 
demonstrated. Third, we explore the impact of different 
learning rates (lr) on the accuracy of TOT-Net.  We run 
experiments on three Image classifications benchmarks consist 
of CIFAR-10, CIFAR-100, and ImageNet datasets that are 
totally different in term of the number of classes, number of 
samples, and complexities. 

A. The Results of Classification Accuracy  
Table V and Figure 5 show the accuracy comparisons of 

different quantization methods on CIFAR-10, CIFAR-100 and 
ImageNet datasets. According to the results, TOT-Net provides 
1.8%, 7.5%, and 5.7% more accuracy compared to XNOR-Net 
for AlexNet architecture on CIFAR-10, CIFAR-100, and 
ImageNet datasets, respectively. It should be mentioned that 
we trained both TOT-Net and XNOR-Net with 20 epochs for 
ImageNet on the same system to provide a fair comparison 
between XNOR-Net and TOT-Net. As shown in Figure 5, just 
the first 20 epoch of ImageNet training accuracy has been 
illustrated. Although TOT-Net has accuracy loss compared to 
full-precision networks, it provides up to 16x memory saving 
during the inference time. We predict TOT-Net achieves a 
better accuracy for the ResNet architecture on the ImageNet 
dataset compared to Binary Connect (BC) and Ternary Weight 
Network (TWN) since XNOR-Net’s accuracy is higher than 
BC, and TWN. Figure 5 shows the variation of training 
accuracy over training epochs for TOT-Net and XNOR-Net. 
Obviously, TOT-Net overcomes XNOR-Net by providing a 
higher accuracy on all the epochs. 

 
Fig. 5.  Comparrison of training accuracy trends of TOT-Net and XNOR-Net 
on CIFAR-10, CIFAR-100, and ImageNet datasets. 

    We make an assumption that a neuron stands N inputs to 
estimate essential operations which are shown in Table VI. 
GXNOR-Net requires three gates to determine enable signal 
and perform the XNOR depending on the enable. Also, it 



needs two more gates for applying the enable signal to 
outputs.  Whereas in our proposed method just two 2-input 
AND gates are required to generate enable signal and apply it 
to outputs. It should be mentioned that in our proposed 
method, we just need <3N gates during the inference-test time 
for N as the input number of the neuron. Since we eliminate 
redundant weights, enable signals are just the least significant 
bits of the activations. Therefore, computations are reduced. 

TABLE V.  COMPARISON OF VALIDATION ACCURACY ON DIFFERENT 
NETWORKS AND DATASETS. 

 
Method 

Accuracy % , (Neural Network Architecture) 
CIFAR-10 CIFAR-100 ImageNet § 

Full-Precision 
[19] 89.67, (NIN) 64.32, (NIN) 80.2/56.6, (AlexNet) + 

89.2/69.3, (ResNet-18) + 

BC [32] 91.73, 
(VGG-Net) NA 66.3/43.1, (ResNet-18) + 

61/35.4, (AlexNet) 

TWN [27] 92.56, 
(VGG-Net) NA 84.2/61.8, (ResNet-18) + 

BNN [18] 89.85, 
(ConvNet) NA 50.4/27.9, (AlexNet) + 

 
XNOR-Net * 

[19] 
85.74, (NIN) 54.10, (NIN) 62.52/37.47, (AlexNet)* + 

73.2/51.2, (ResNet-18) 

TNN [38] 87.89,  
(VGG like)  

51.40,  
(VGG like)  NA 

TOT-Net 87.53, (NIN) 61.61, (NIN) 68.20/42.99, (AlexNet) *+ 
* The experiments have been run by us (trained by 20 epochs).  
+ Presenting both top-5 and top-1 accuracy, respectively. 

 
TABLE VI.  COMPARISONS OF OPERATION OVERHEAD IN VARIOUS 

ARCHITECTURES IN TERMS OF N (THE INPUT NUMBER OF THE NEURON ). 

Methods 
Operations 

MUL ACC Mux Bitwise gate Bit 
count 

FP  N N 0 0 0 
BC [32] 0 N N 0 0 

TWN [27] 0 < N < N 0 0 
XNOR [19] 0 0 0 N 1 
GXNOR[37] 0 0 0 5N < Op <7N 1 

Ours 0 0 0 train 3N<Op<4N 1 
test <3N 

B. Activation Function 
TOT-Net is equipped with novel combined piece-wise 

activation functions. {Elish, Sigmoid} and {Sigmoid, 
Leaky_Relu} are found the superior activation functions for 
CIFAR-10 and CIFAR-100, respectively. The applicability of 
each new activation function has been empirically proved due 
to existing in dominant individuals for continues iterations. 
Figure 5 compares the training accuracy and training loss of 
the optimized and default activation functions, Relu, on 
CIFAR-10 and CIFAR-100 datasets. Optimizing activation 
functions reduces learning instability and provides a 
considerable loss function.  

As shown in Figure 6, TOT-Net with optimized activation 
functions provides 0.4% and 0.63% higher accuracy compared 
to the default network with the Relu activation function. 
Therefore, the final achieved accuracy of TOT-Net for CIFAR-

10 and CIFAR-100 datasets are 87.92% and 62.24%, 
respectively. 

 
Fig. 6. Comparing the training accuracy and loss of TOT-Net with optimized 
activation function and TOT-Net with Relu as the default activation function. 

C. Learning Rate 
Selecting proper learning rate is essential for achieving the 

maximum accuracy of CNN. However, manual learning rate 
selection could easily become exhaustive for deep neural 
networks. Generally, the learning rate value is considered 0.01 
to train CNNs for accelerating the learning procedure [20]. 
Although lower learning rate (0.0001) is more preferred for 
training quantized BNNs [20], it is not applicable for TNNs.  

Figure 7 illustrates the impact of different learning rates on 
the accuracy of TNNs. According to the results, learning 
rate=0.01 provides higher accuracy level for both CIFAR-10 
and CIFAR-100 datasets. To guarantee the results, we have 
trained the network with twice number of epochs equal to 600 
for lower learning rates. 

 
Fig. 7. The effectiveness of different learning rate on the accuracy of TNNs. 

VI. CONCLUSION AND FUTURE WORK 
Ternary neural networks provide high compression rate 

and acceptable accuracy level compared to binarized neural 
networks. These features make TNNs more suitable for low-
power embedded platforms. However, there is still a gap 
between the accuracy of state-of-the-art TNNs and the 
accuracy of full precision networks. To further improve the 
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accuracy, we first proposed ternarization on both weights and 
activations called TOT-Net which can significantly improve 
the accuracy with negligible computation overhead compared 
to binary neural networks. In fact, we propose a simple bitwise 
logic (XOR and AND gates) instead of computation-intensive 
traditional multiplications. Next, we optimized the activation 
function of TOT-Net with an evolutionary optimization 
strategy. Finally, we have done a practical survey on the initial 
learning rate for TOT-Net. The evaluation results demonstrate 
the impact of TOT-Net on large scale datasets.  
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