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Abstract. Convolutional Neural Networks (CNNs) suffer from energy-hungry
implementation due to their computation and memory intensive processing pat-
terns. This problem is even more significant by the proliferation of CNNs on
embedded platforms. To overcome this problem, we offer NeuroPower as an au-
tomatic framework that designs a highly optimized and energy efficient set of
CNN architectures for embedded systems. NeuroPower explores and prunes the
design space to find improved set of neural architectures. Toward this aim, a
multi-objective optimization strategy is integrated to solve Neural Architecture
Search (NAS) problem by near-optimal tuning network hyperparameters. The
main objectives of the optimization algorithm are network accuracy and number
of parameters in the network. The evaluation results show the effectiveness of
NeuroPower on energy consumption, compacting rate and inference time com-
pared to other cutting-edge approaches. In comparison with the best results on
CIFAR-10/CIFAR-100 datasets, a generated network by NeuroPower presents
up to 2.1x/1.56x compression rate, 1.59x/3.46x speedup and 1.52x/1.82x power
saving while loses 2.4%/-0.6% accuracy, respectively.

Keywords: Convolutional neural networks (CNNs) - Neural Architecture Search
(NAS) - Embedded Systems - and Multi-Objective Optimization

1 Introduction

CNNs have penetrated in a wide spectrum of platforms from workstations to embedded
devices due to influential learning capabilities. However, modern CNN architectures
are becoming more complex to provide superior accuracy leading to remarkable energy
consumption. Dealing with huge computing throughput demand of upcoming complex
learning models will be more critical where the failure of traditional energy and per-
formance scaling paradigm in affording of modern applications requirements leads
computing landscape towards inefficiency [4]. Approximate computing is one possi-
ble propitious alternative to cope with these challenges by amortizing outputs quality
of imprecision-tolerant applications such as objects recognition, image processing, and
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data analytics. Generally, three different approximation based strategies are proposed
to diminish CNN computational complexity and/or improve energy saving: (D pruning
network weights and quantization [7,16], @ employing customized hardware accelera-
tors [28], and Q) optimizing network architecture at design-time since the performance
(energy consumption and inference time) and output quality of CNNs are immensely
affected by network architecture [18-20].

To benefit from these approaches, we propose NeuroPower, a CNN acceleration
framework aiming to automatically explore the design space in order to design an en-
ergy efficient CNN architecture. NeuroPower solves the NAS problem and explore the
design space considering better accuracy level and less network architectural complex-
ity as the optimization objectives. Previous NAS solutions mainly focus on improving
the network accuracy, while NeuroPower considers network architectural complexity,
represented by the number of parameters in the network, as the second optimization
objective since there is a strong correlation between energy consumption and network
architectural complexity (see Section 3.1). For this, NeuroPower is equipped with a
neuro-evolutionary Multi-Objective Optimization (MO?) mechanism which produces a
set of Pareto-optimal curves wherein each point on the curve is a vector with elements
of the CNN hyperparameters. NeuroPower adaptively selects a suitable CNN architec-
ture regarding power budget limitations and/or response-time of embedded hardware
platform. Network pruning is a popular solution for diminishing the amount of network
computation. In addition to design space exploration, NeuroPower can apply a network
pruning method on a dense architecture to achieve further level of network optimization.
In order to guarantee designing a light-weight architecture and to boost the optimiza-
tion process, the design space has been trimmed by taking inspirations from DenseNet
architecture [13].

Fig. 1.a illustrates an overview of the proposed NeuroPower framework. The MO?
starts exploring design space after setting predefined learning and optimization param-
eters. Displayed NeuroPower controller in Fig. 1.a verifies the optimization termination
condition by getting energy consumption and/or inference time of candidates. The opti-
mization procedure will be continue until satisfying user criteria or the maximum num-
ber of iterations is reached. To verify the impact of NeuroPower on energy consumption
and inference time, three COTS embedded platforms are utilized including a many-core
NVIDIA Quadro K5100M GPU, a multi-core high-performance Intel Core processor
17-4940MX, and an ARM Cortex-A15. ARM architecture is one of the immensely pop-
ular embedded processors due to low power consumption, and providing reasonable
performance. However, ARM is not suitable to process computational intensive CNN
models. On the other hand, GPUs are popular performance-centric accelerators for ma-
chine learning applications refereed as another possibility to deal with reducing effi-
ciency trend in the multi-core era. Although GPUs offer a higher level of programma-
bility and memory bandwidth, they suffer from huge power consumption [28]. To tackle
these challenges, our proposed framework demonstrates considerable performance gain
over GPU, high-performance Intel CPU, and embedded ARM processor. In a nutshell,
our main contributions in NeuroPower are:
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Fig. 1. (a) The overview of NeuroPower framework, (b) Energy consumption vs. # of network
parameters.

— Presenting a meta-heuristic MO? method to explore energy aware CNN architec-
tures. NeuroPower generates a set of network architectures optimized for a wide
range of architectural complexities fitting different hardware resource budgets.

— Proposing novel activation functions which significantly increase the network ac-
curacy.

— Developing a cutting-edge network pruning method on the neural network archi-
tecture to obtain less complex network with acceptable accuracy.

The remainder of this paper is organized as follows: Section 2 reviews related work
in this scope. Section 3 gives background on CNN and the MO? algorithm. Details
of the proposed framework are presented in Section 4 which consist of two solutions
for network optimization: Design Space Exploration and Design Space Pruning. The
experimental results are presented in Section 5, after which Section 6 concludes the
paper.
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2 Related Work

In the field of neural network design space exploration, different automated NAS ap-
proaches have been proposed including Bayesian optimization, Reinforcement Learn-
ing (RL), and neuro-evolutionary methods. Bayesian-based methods suffer from im-
mense computational cost, suitable only for search models with a fixed-length space,
and focuses on low-dimensional continuous problems [3, 18]. RL-based NAS methods
provides high-quality results for image classification applications compared to the best
hand-crafted CNN accuracy results [2,29, 30, 33]. Despite their success, these models
are mainly slow and require considerable computational resources in both exploration
and training steps [2]. The most of the neuro-evolutionary methods leverage evolu-
tionary algorithms for optimizing the neural architecture by evolving a population of
improved candidates [18-20, 22, 25]. There has been proposed other multi-objective
neuro-evolutionary frameworks [18-20] considering the number of network parameters
as the second optimization objective. NeuroPower is more efficient compare to [18, 19]
in terms of both compression rate and exploration time. Plus, NeuroPower can generate
more compact architectures compared to [20], while takes roughly equal exploration
time.

Moreover, As mentioned in previous section, the proposed framework has the abil-
ity of design space pruning to obtain less complex network with acceptable accuracy.
In the field of neural network design space pruning also several methods have been
presented. In [16] a method is proposed that prune CNN filters in two levels. It first
clusters network filters by enforcing the K-means algorithm, then retain the filter which
is the closest to the cluster center and pruning some of the others randomly. In [24] a
data-free approach is proposed to carry out CNN model compression. They managed
to avoid employing any training data by minimizing the expected squared difference of
logits. In [8] a pruning approach by applying L1/L2-norm regularizations is introduced
to remove the small weights. Although the performance is inspiring, the pruning would
result in unstructured patterns in weights connectivity. Research in [17] tries to select
the best filters for pruning, for example, uses absolute weight summation to evaluate
the impact of a filter. In this method very low differences in weights are affected too
much, thus, the work presented in [11] introduced Average Percentage of Zeros to as-
sess the importance of each filter. This work needs lots of extra calculations and the
compression ratio is not satisfying.

3 Background

3.1 An Overview of CNNs

A typical CNN is composed of multiple layers running in sequence, where input data
is fed to the first layer and output is a series of feature extraction kernels applied on the
input image. Convolution, normalization, pooling, and activation layers are responsible
for feature extraction, while fully-connected layers are in charge of classification. VGG-
16 [23] is a well-known CNN containing 13 and 3 convolutional and fully-connected
layers respectively. Computational analysis of VGG-16 demonstrates that convolutional
layers are extremely computation intensive containing 99.3% of the total computation
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while fully-connected layers are memory-intensive which utilize more than 80% of data
movements [18]. Thereby, for optimizing architectural complexity of a CNN, convolu-
tional parameters including the number of convolutional layers, the sizes of each layer,
activation function, convolutional filter size, and learning rate should be considered as
the networks optimization hyperparameters.

Table 1. The CNN hyperparameters used as exploring neural design space parameters.

Parameter Value
Activation Function Relu, Elu, Sigmoid,
(Left, Right) [21] Tanh, Swish, Selu, Linear
# Condense Layer 1,2,3,4
# Feature Extraction Layer (FEL) 16, 28, 40, 52
Kernel Size 3x3, 5x5
Optimizer [6] Adam, SGD, Adagrad, Adamax, Nadam

Table 1 lists considered hyperparameters and their corresponding values where the
value range of each parameter has been limited to prune the design space, moreover,
huge hyperparameter values does not always provide highly accurate networks [3].
Based on practical evaluations, these selected hyperparameters strongly influence accu-
racy and inference time [18, 19]. In addition, we realized a strong relationship between
energy consumption/inference time and the number of parameters of a CNN. Fig. 1.b
illustrates the relationship between energy consumption per each forward query and the
number of parameters executed on an NVIDIA Quadro K5100M GPU. The results are
plotted in the logarithmic scale to improve visual comprehension. These results imply
that the number of parameters in a network is a strong proxy for network architectural
complexity [18, 20, 27]. While the main focus of this paper is on diminishing CNN
power consumption, the experimental results indicate that NeuroPower efficiently de-
creases inference time (see Section 5).

3.2 Strength Pareto Evolutionary Algorithm-II (SPEA-II)

to make the best balance between the network accuracy and architectural complexity,
an optimization approach is needed. Computability is highly challenging especially in
complex problems since there is no guarantee that NP-hard complex problems such
as NAS problem can be solved in a satisfactory manner in a limited time. To improve
solving such problems several techniques have been proposed. Among them, Evolu-
tionary Computing (EC) methods are more prominent [18, 22, 25]. EC comprises a
set of optimization algorithms mimicking the survival of the nature fittest principle, as
some characteristics of this process can be utilized in optimization problems. Strength
Pareto Evolutionary Algorithm-IT (SPEA-II) [32] is a powerful meta-heuristic EC solv-
ing MO? problems. In this work, accuracy and the number parameters are considered
as the optimization objectives. SPEA-II provides slightly superior optimization mech-
anism compared to NSGA-II [18,31] by obtaining more diverse solutions in the archi-
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Fig. 2. (a) A genome type representing NAS hyperparameters. (b) Crossover & forced mutation
operators between two genomes for SPEA-II optimization algorithm. (c) Inspired template archi-
tecture of a generated network.

tectural design space of CNNs. Algorithm 1 represents the pseudo-code of NeuroPower
framework integrating SPEA-II as the optimization engine. SPEA-II is explained as
following steps: Step 0: Creating an initial population Uy with size N, and Y as a
null population. To generate the initial random population, network hyperparameters
are represented as a string of genomes using direct encoding shown as genome type in
Fig. 2.a. Step 1: Calculating the fitness values of individuals in the Uy and Y. The
fitness function is described in (1) as follows;

Net_Acc
S = 1
core #Net_Params M

where Net_Acc is network accuracy and # Net_Params is the number of network
parameters. The Score factor is SPEA-II fitness function for selection process, where
architectures with higher accuracy and smaller network parameters are desirable. Step
2: Y ={ai | z € {Y UU} AND z; is a nondominant individual}, and adjusting
Y1 size to N. Step 3: The NeuroPower controller terminates optimization procedure
if one of the individuals in Y, satisfies user criteria or maximum number of iterations
is reached. otherwise, the procedure progresses as long as satisfying termination con-
dition. Step 4: Put individuals from Yy, into the mating pool with substituted binary
championship rule. Step 5: Applying Crossover and Forced Mutation operators on
the mating pool individuals to create the next population Uy ;. Network hyperparame-
ters are represented as a genomes string and the recombination of these genes occurs
with one-point crossover and one-point mutation operators shown in Fig. 2. We de-
fined the new ForcedMutation operator to change at least one hyperparameter node
in genome type while guarantee the probability of evaluating equal architectures being
zero. ForcedMutation operator improves the exploration capability due to pushing
the SPEA-II to find new candidates.



Title Suppressed Due to Excessive Length 7

Algorithm 1: Pseudo Code of NeuroPowers Design Space Exploration

Input: N: Archive Size, G: Max. Number of Iterations, H: Hyperparameters List, Enguser,
Accyser : User Criteria
Output: A Non-Dominated Set of Optimal Architectures on Pareto Frontier
Function Optimization_Engine (N, G, H):
Step 0: Up= Random_Population (N, H); Yo= Empty_Population;
t = 0; //Tteration Number

while True do
Step 1: Fitness_Values_Calculation (U, Yz, N);
Step 2: Y;11=Environmental_Selection (U, Yo, N);
Step 3: if (3i € Y | Ei, 1, Ai —satisfies Enguser, AcCuser) then
| BreakW hileLoop; // Terminate NeuroPower
Step 4: P,=Mating_Selection (Y:41);
Step 5: U;+1=Crossover&Forced_Mutation (F;);
t=t+1;
| returnY;iq;

4 NeuroPower: The Proposed Framework

4.1 Design Space Exploration (DSE) Algorithm

The NeuroPower framework consists of a controller, optimization engine and code gen-
eration module (Fig. 1.a). Predefined parameters of NeuroPower are specified in the
configuration file including optimization and network training parameters such as num-
ber of epochs, learning rate, and valid range of network hyperparameters. After provid-
ing the input dataset and initiating the configuration file by user, the engine function
will start to explore the design space of CNN architectures. At the end of each iteration,
the energy consumption and inference time of each individual on Pareto curve will be
measured by passing the network configuration to code generation module to generate
specific run-time execution code for each platform. The code generation module uses
Tensorflow library [1] to automatically generate kernel code for NVIDIA GPUs. Then,
the controller checks whether the designed architecture satisfies user criteria or not. In
the case of non-satisfaction, the optimization module will be called again to find the
next iteration of the optimized solutions (Algorithm 1). SPEA-II explores the design
space over a template architecture inspired from DenseNet for decreasing the probabil-
ity of generating giant architectures. Template Architecture: The template consists of
multiple Condense Layers where each Condense Layer contains back-to-back Feature
Extraction Layers (FELs) [18]. FEL includes Batch Normalization, Activation Func-
tion, 2D Convolution, Drop-out, respectively. Obviously, for classification max-pooling
and fully-connected layers are integrated as the last layers with softmax activation func-
tion. To share maximum learned knowledge between layers, all the layers are connected
in a feed-forward manner to each other such that each layer receives the additional fea-
ture map information from the whole former layers in the Condense Layer and using
concatenation layer to merging shared data.



8 M. Loni et al.

4.2 Design Space Pruning Algorithm

In general, neural network pruning techniques try to reduce the storage and computation
required by neural networks without considerable affecting on the network accuracy by
learning the influential weights. To take advantages of network pruning on the designed
architectures by NeuroPower, we proposed a pruning method which basically uses the
idea presented in [16]. This technique tries to select and remove redundant filters which
affected zero or very low in the network results by utilizing K-means++ algorithm for
selecting appropriate filters for pruning. The proposed pruning algorithm works as fol-
lows: First, it employs the K-means++ algorithm to enforce the filters to enter specific
clusters. Second, it will retain the filter which is the closest to the cluster center and
prune the others in every cluster. Then the pruned model will be fine-tuned to recover
accuracy.

5 Experimental Results

In this section the experimental results of design space exploration and design space
pruning of the proposed framework are presented respectively. NeuroPower framework
has been evaluated using well-known datasets and compare with cutting-edge architec-
tures. The experiments have been performed on the following data sets: MNIST [15],
CIFAR-10 [14] and CIFAR-100 [14].

5.1 Training Datasets

MNIST [15]: This is a dataset of black and white images for handwritten digit recog-
nition containing 60,000 training and 10,000 testing images. Each image is a 28x28
pixels with ten labeled output as 0 to 9 numbers. CIFAR-10 [14]: This is a complex
colorful dataset of natural images, each with 32x32 pixels which is mainly used for ob-
ject recognition. This benchmark contains ten labeled output classes containing 50000
and 1000 images for training and testing, respectively. CIFAR-100 [14]: CIFAR-100 is
similar to CIFAR-10, but with 100 classes while each class has 500 instead of 5,000 as
in CIFAR10 making the classification more challenging.

5.2 Design Space Exploration Results

The design space roughly consists of 8000 different design points. The average train-
ing time is one hour for each design point by employing NVIDIA GTX 1080ti. Thus,
leveraging exhaustive search is not reasonable since exploration takes 8000 GPU-hours,
while NeuroPower required 360 GPU-hours for generating the experimental results
demonstrating 22x reduction in exploration time. NeuroPower trains each network dur-
ing exploration step using only 16 epochs since approximately 90% of the maximum
achievable accuracy is obtained after 16 epochs [18]. The full training step will be ap-
plied to only the best selected architecture with 250 epochs. The NeuroPower’s config-
uration file was set with the following parameters: batch size=128, maximum number
of iterations=8, and random initial population=45.



Title Suppressed Due to Excessive Length 9

6
5 y=0.0955x +4.2897 .o @
4
g y=0.0744x +2.3332
S 3
23
72
c
« 2
1
=8=—MNIST =¥ CIFAR-10 ==i=CIFAR-100
----- Linear (MNIST) «+«-Linear (CIFAR-10) = - Linear (CIFAR-100)
0
1 2 3 4 5 6 7 8 9
Tterations

Fig. 3. Score convergence for MNIST, CIFAR-10 and IFAR-100 datasets. The linear equations
demonstrate the overall improvement of the Score fitness function over proceeding iterations.

Table 2 presents network designing strategy, error rate, number of parameters and
network compression rate of solutions generated by NeuroPower compared to the other
cutting-edge approaches. For MNIST dataset, M_Net_1 generated by Neuropower is 2x
more compressed (with 0.3% accuracy loss) in comparison with a highly optimized net-
work ADONN-Arch.3 [18]. C10_Net.1, C10_Net.2, and C10_Net.3 are different nodes
of Pareto frontier selected from seventh iteration for CIFAR-10 dataset. C10_Net.1 is
the most dense architecture provides up to 47.7x compression rate with 13% accu-
racy loss compared to a cutting-edge squeezed network, named CondenseNet"€" [12].
C10-Net.3 provides the best accuracy for CIFAR-10 dataset which is 3.1x compressed
with loosing only 3% accuracy. The compression rate of C100-Net.1 and C100-Net.2
architectures for CIFAR-100 dataset is not significant compare to the other solutions,
but NeuroPower still provides more accurate networks. In nutshell, NeuroPower strikes
better balance between network accuracy and network size compare to RL and EC
strategies and hand-crafted designs.

Fig. 3 illustrates the continuous proceeding improvement of the results and demon-
strates that the convergency diagram guaranteeing the score/fitness function is approach-
ing toward near-optimal points for the considered datasets. Fig. 4 illustrates the tun-
ing of piece-wise activation functions toward designing more accurate architectures for
CIFAR-10 dataset. Obviously, Swish is the dominant activation function for the input
data greater than zero (right activation function) in initial iterations, however, Relu was
replaced after fifth iteration meaning that NeuroPower finds Relu a superior option.
However, Swish strongly overcomes other activations functions for the input data less
than zero (left activation function) for all iterations.
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Table 2. Error rate and Compression rate for different datasets.

Dataset Approach Solutions #Params | Error Rate | Compression
(x10%)| (%) Rate” 1
Hand-Crafted Wan et al. [26] - 0.21 -
RL MetaQNN [2] 5.59 0.35 0.023x
MNIST | MOZ?-EC | * ADONN-Arch.3[18] | 0.13 041 -
MOZ2-EC Our M_Net_1 0.065 0.71 2x
Hand-Crafted | * CondenseNetnght [12] 3.1 3.46 -
Hand-Crafted SimpleNet [9] 5.48 4.68 0.53x
Hand-Crafted | DenseNet (k=12)-40 [13] 1.0 7.0 3.1x
Hand-Crafted ResNet-20 [10] 0.27 8.75 11.48x
Hand-Crafted ResNet-110 [10] 1.7 6.43 1.82x
Hand-Crafted Gastaldi et al. [5] 26.4 2.86 0.117x
RL Block-QNN-22L [30] 39.8 3.54 0.078x
CIFAR-10 RL MetaQNN [2] 6.92 11.18 0.45x
RL NAS-v1/v3 [33] 4.2/37.4 | 5.50/3.65 | 0.7x/0.083x
RL Block-QNN-S [30] 6.1 4.38 0.5x
EC Real et al. [22] 54 5.4 0.57x
MO2-EC NSGA-Net [20] 33 3.85 0.94x
MOZ2-EC ADONN-Arch.3 [18] 0.14 14.1 22.14x
MO?-EC Loni et al. [19] 0.56 13.8 5.5x
MOZ2-EC Our C10-Net.1 0.065 16.49 47.7x
MOZ2-EC Our C10-Net.2 0.21 11.05 14.7x
MOZ2-EC Our C10-Net.3 1.0 6.81 3.1x
RL MetaQNN [2] 11.18 27.14 0.28x
RL Block-QNN-S [30] 6.1 20.65 0.5x
Hand-Crafted | * CondenseNet“€0t [121 3.1 17.55 -
Hand-Crafted | DenseNet (k=12)-40 [13] 1.0 27.55 3.1x
CIFAR-100 | Hand-Crafted | DenseNet (k=12)-100 [13] 7.0 23.79 0.44x
Hand-Crafted SimpleNet [9] 5.48 26.58 0.53x
MOZ2-EC NSGA-Net [20] 33 20.74 0.94x
MOZ2-EC Our C100-Net.1 1.1 26.63 2.82x
MOZ2-EC Our C100-Net.2 1.89 24.87 1.64x

* The baseline for comparing the compressing rate.

I The values more than 1.0 indicate improvement. Best results are in bold.
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Table 3 presents the hardware implementation results for MNIST, CIFAR-10 and
CIFAR-100 datasets. For each dataset, the architecture with highest Network-Information-
Density (NID) is employed as the baseline of the comparisons. NID (accuracy per pa-
rameters) is a yield factor highlighting that the capacity of an architecture to utilize
better its parametric space [27]. In order to measure energy consumption of the tested
platforms, we used the NVIDIA Management Library (NVML), Intel Running Aver-
age Power Limit (RAPL) and kill-a-watt P4400 device to obtain the average power of
GPU, Intel CPU and ARM during benchmark execution. In this paper, the kernel time
is used for reporting run-time results, however, the overhead of communication time
should be considered for embedded implementations, especially for mainly latency-
oriented. Therefore, To demonstrate the positive impact of squeezing network architec-
ture on GPU Device-to-Host (D2H) and Host-to-Device (H2D) data communications,

the achieved data communication speedup after leveraging NeuroPower is reported in
Table 3.

We can conclude: QD) the networks with more NID provide higher energy efficiency.
@ For CIFAR-10 and CIFAR-100 our architectures did not obtain maximum achievable
energy efficiency, compare to the ResNet architecture. However, if we take the total
execution time (kernel + communication) into account, we can achieve higher speedup.
In Addition, the obtained energy efficiency results of our designed architectures are
showing remarkable improvement on the ARM and CPU platforms. @) Compacting
an architecture potentially diminish the overhead of communication time (D2H/H2D)
since less number of data packets need to be copied via PCI-Express Bus. We obtain
1.7x and 1.9x speedup on average for D2H and H2D data communications, respectively.



12 M. Loni et al.

Table 3. Implementation results for different platforms

Platform GPU Intel ® CPU ARM Processor
NID | Energy |Speedup|Speedup: D2H/H2D| Energy Speedup Energy Speedup
Dataset Network (x10%)|Efficiency|(Kernel) (Comm.) Efficiency |(Inference Time)|Efficiency| (Inference Time)
* ADONN-Arch.3 [18]] 7.06 - - - - - - -
MNIST M Net_1 1525 | 1.55x 1.49x 1.59x/2.95x 1.49x 1.51x 1.56x 1.38x
ResNet-20 [10] 3.37 4.2x 4.25x 0.62x/0.79x 0.75x 0.81x 1.05x 0.87x
ResNet-110 [10] 0.55 1.53x 1.64x 0.108x/0.15x 0.093x 0.95x 0.16x 0.87x
CIFAR-10 | DenseNet (k=12)-100 | 0.135 | 0.25x | 0.027x 0.05x/0.073x 0.099x 0.112x 0.07x 0.115x
* ADONN-Arch.3 [18]] 6.13 - - - - - - -
C10_Net_1 13 1.54x 1.51x 1.61x/1.57x 1.5x 1.59x 1.52x 1.32x
C10_Net_3 0.93 0.14x | 0.154x 0.25x/0.313x 0.3x 0.372x 0.3x 0.37x
# ResNet-110 [10] 0.43 - - - - - - -
CIFAR-100| DenseNet (k=12)-100 | 0.109 | 0.017x | 0.016x 0.44x/0.46x 0.92x 1.03x 0.34x 0.74x
C100-Net.1 0.66 0.11x 0.1x 2.28x/2x 3.2x 3.46x 1.89x 2.38x
C100-Net.2 0.4 0.06x 0.06x 1.45x/1.39x 2.45x 2.53x 1.35x 1.83x
* The baseline for comparing the energy efficiency of different architectures. The values more than 1.0 indicate improvement. Best results are in bold.
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Fig. 5. The impact of the network pruning on the accuracy level of (a) C10-Net.1 and (b) C10-
Net.3.

5.3 Pruning Results

The pruning method has been evaluated on two different architectures designed for
CIFAR-10 dataset including C10-Net.1 and C10-Net.3. The first architecture is a com-
pressed architecture with 0.065 million parameters, while the second one is a larger
architecture with 1 million parameters. First, these two architectures are trained sepa-
rately with 200 epochs and the accuracy rates are obtained 81.79% for C10-Net.1 and
87.72% for C10-Net.3. Then, the filter pruning technique is used by assuming cluster
factor =0.9 and number of fine tune epochs=5 and pruning iteration=10 as the constant
configuration and maximum pruning percent is equal to 30, 65, 75 as the threshold on
weight pruning for both studied architectures. Fig. 5 illustrates the impact of the net-
work pruning on the accuracy level. The number of networks parameters decreases with
increasing the pruning rate and the NID of pruned architectures increases with increas-
ing maximum pruning percent. Obviously, the impact of pruning on the accuracy rate of
larger architecture, C10-Net.3, is much better than the other one. However, the denser
architecture still provides 3.1x higher NID level compared to the pruned architecture of
the large network with 75% pruning rate.
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6 Conclusion

In this paper, we proposed the NeuroPower framework which automatically generates a
highly-optimized CNN for commercial embedded devices. In the presented framework,
two algorithms are proposed for design space exploration and design space pruning.
NeuroPower alleviates the huge computational cost of CNNs by squeezing the net-
work architecture while delivers acceptable accuracy level. In order to achieve an en-
ergy efficient network, a novel fitness function is used to consider energy consumption
during exploration procedure. Experimental results show that, in comparison with the
best results on CIFAR-10/CIFAR-100 datasets, NeuroPower presents up to 1.59x/3.46x
speedup and 1.52x/1.82x power saving while loses 2.4%/-0.6% accuracy, respectively.

7 Acknowledgment

This Paper is supported by KKS within DeepMaker and DPAC projects.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine learning. In: 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16).
pp. 265-283 (2016)

2. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using
reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

3. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey. arXiv preprint
arXiv:1808.05377 (2018)

4. Esmaeilzadeh, H., Blem, E., Amant, R.S., Sankaralingam, K., Burger, D.: Power challenges
may end the multicore era. vol. 56, p. 93 (2013). https://doi.org/10.1145/2408776.2408797,
http://dl.acm.org/citation.cfm?doid=2408776.2408797

5. Gastaldi, X.: Shake-shake regularization. arXiv preprint arXiv:1705.07485 (2017)

6. Goodfellow, 1., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)

7. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neu-
ral network. In: Advances in neural information processing systems. pp. 1135-1143 (2015)

8. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neu-
ral network. In: Advances in neural information processing systems. pp. 1135-1143 (2015)

9. Hasanpour, S.H., Rouhani, M., Fayyaz, M., Sabokrou, M.: Lets keep it simple, using sim-
ple architectures to outperform deeper and more complex architectures. arXiv preprint
arXiv:1608.06037 (2016)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp. 770-778
(2016)

11. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250 (2016)

12. Huang, G., Liu, S., Van der Maaten, L., Weinberger, K.Q.: Condensenet: An efficient
densenet using learned group convolutions. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 2752-2761 (2018)



14

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

M. Loni et al.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional
networks. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017 (2017). https://doi.org/10.1109/CVPR.2017.243

Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 and cifar-100 datasets. URI: https://www. cs.
toronto. edu/kriz/cifar. html 6 (2009)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278-2324 (1998)

. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets.

arXiv preprint arXiv:1608.08710 (2016)

Li, L., Xu, Y., Zhu, J.: Filter level pruning based on similar feature extraction for convolu-
tional neural networks. IEICE TRANSACTIONS on Information and Systems 101(4), 1203—
1206 (2018)

Loni, M., Daneshtalab, M., Sjodin, M.: ADONN: Adaptive design of optimized deep neural
networks for embedded systems. In: Proceedings - 21st Euromicro Conference on Digital
System Design, DSD 2018 (2018). https://doi.org/10.1109/DSD.2018.00074

Loni, M., Majd, A., Loni, A., Daneshtalab, M., Sjodin, M., Troubitsyna, E.: Designing com-
pact convolutional neural network for embedded stereo vision systems. In: Proceedings -
2018 IEEE 12th International Symposium on Embedded Multicore/Many-Core Systems-on-
Chip, MCSoC 2018 (2018). https://doi.org/10.1109/MCS0C2018.2018.00049

Lu, Z., Whalen, 1., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W.: Nsga-
net: a multi-objective genetic algorithm for neural architecture search. arXiv preprint
arXiv:1810.03522 (2018)

Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv preprint
arXiv:1710.05941 (2017)

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Kurakin, A.:
Large-scale evolution of image classifiers. In: Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70. pp. 2902-2911. JMLR. org (2017)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556 (2014)

Srinivas, S., Babu, R.V.: Data-free parameter pruning for deep neural networks. arXiv
preprint arXiv:1507.06149 (2015)

Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing
convolutional neural network architectures. In: Proceedings of the Genetic and Evolutionary
Computation Conference. pp. 497-504. ACM (2017)

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural networks
using dropconnect. In: International conference on machine learning. pp. 1058—1066 (2013)
Wong, A.: Netscore: Towards universal metrics for large-scale performance analysis of deep
neural networks for practical usage. arXiv preprint arXiv:1806.05512 (2018)
Yazdanbakhsh, A., Park, J., Sharma, H., Lotfi-Kamran, P., Esmaeilzadeh, H.: Neural accel-
eration for GPU throughput processors (2016). https://doi.org/10.1145/2830772.2830810
Zhong, Z., Yan, J., Liu, C.L.: Practical network blocks design with g-learning. arXiv preprint
arXiv:1708.05552 1(2), 5 (2017)

Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.L.: Practical block-wise neural network archi-
tecture generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 2423-2432 (2018)

Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Em-
pirical results. Evolutionary computation 8(2), 173—-195 (2000)

Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evolutionary
algorithm. TIK-report 103 (2001)

Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578 (2016)



