
Machine Learning-Assisted Performance Testing
Mahshid Helali Moghadam

 RISE Research Institutes of Sweden, Mälardalen University
 Västerås, Sweden

 mahshid.helali.moghadam@ri.se

ABSTRACT
Automated testing activities like automated test case generation
imply a reduction in human effort and cost, with the potential to
impact the test coverage positively. If the optimal policy, i.e., the
course of actions adopted, for performing the intended test activity
could be learnt by the testing system, i.e., a smart tester agent,
then the learnt policy could be reused in analogous situations
which leads to even more efficiency in terms of required efforts.
Performance testing under stress execution conditions, i.e., stress
testing, which involves providing extreme test conditions to find
the performance breaking points, remains a challenge, particularly
for complex software systems. Some common approaches for
generating stress test conditions are based on source code or
system model analysis, or use-case based design approaches.
However, source code or precise system models might not be
easily available for testing. Moreover, drawing a precise
performance model is often difficult, particularly for complex
systems. In this research, I have used model-free reinforcement
learning to build a self-adaptive autonomous stress testing
framework which is able to learn the optimal policy for stress test
case generation without having a model of the system under test.
The conducted experimental analysis shows that the proposed
smart framework is able to generate the stress test conditions for
different software systems efficiently and adaptively without
access to performance models.

CCS CONCEPTS
• Software and its engineering → Software testing and
debugging; Software performance; • Computing methodologies
→ Machine learning

KEYWORDS
Performance testing, Stress testing, Test case generation,
Reinforcement learning, Autonomous testing

ACM Reference format:

M. H. Moghadam. 2019. Machine Learning-Assisted Performance
Testing. In Proceedings of the 27th ACM ESEC/FSE ’19, August 26–30,
2019, Tallinn, Estonia. ACM, New York, NY, USA, 3 pages.
https://doi.org/

1 RESEARCH PROBLEM
Performance describes the resource and time bound aspects of a
software system behavior and is often described in terms of some
sub-characteristics like time behavior, resource utilization and
capacity [1]. Performance evaluation is generally conducted to I.
measure the performance metrics, II. detect the functional
problems appearing under certain performance-related execution
conditions like heavy workload, III. detect non-functional
problems, i.e., violations of non-functional requirements such as
performance and robustness. Stress testing is often considered as a
type of performance testing which implies applying extreme
execution conditions to meet those objectives and verify the
robustness of the system. Finding the performance breaking point
of the software under test (SUT), at which the system
functionality breaks, or the performance requirements are
violated, is one of the main objectives in the stress testing activity.
The emergence of anomalies in the performance behavior of a
software system is resulted from performance bottlenecks. There
are various application-, platform-, and workload-wise causes
resulting in the emergence of performance bottlenecks. In stress
testing, providing extreme (stress) test conditions involves
changing (manipulating) the platform- and workload-wise factors
affecting the performance. Generating stress test conditions to
analyze the performance behavior under extreme conditions
remains a challenge for complex software systems.

2 MOTIVATION AND BACKGROUND
Performance modeling and performance testing are common
approaches for doing performance analysis. Performance
modeling is often based on building a performance model of the
system behavior and measuring the target performance metrics. It
can be done using various modeling notations like Markov
Processes, queueing networks, petri nets and simulation models
[2, 3, 4, 5, 6, 7]. Performance testing is considered as a family of
performance-related testing techniques intended for addressing the
objectives of performance analysis. Performance, load and stress
testing might considerably overlap in many areas. Nevertheless,
the objectives of the performance-related testing methods could be
summarized as follows:
I. Measuring the performance metrics under different execution
conditions including various workload and resource
configurations [8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
II. Detecting the functional problems appearing under certain
execution conditions regarding workload and resource
configurations [18, 19, 20, 21, 22, 23].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2018 Copyright held by the owner/author(s).
ACM ISBN
https://doi.org/

ESEC/FSE’19, August 2019, Estonia M. Helali Moghadam

III. Detecting violations of non-functional requirements under
expected and stress conditions [8, 13, 24, 25, 26, 27, 28, 29].
In general, using source code or system model analysis or use-
case based design techniques are the common approaches for
addressing the mentioned challenge. However, first, relying on the
source code or system model like performance model might imply
some limitations upon unavailability of these artifacts. Secondly,
drawing a precise model of the performance behavior of a
software system is challenging particularly for complex systems,
while still many implementation and deployment details are often
ignored. These are the motivations for using model-free learning-
based techniques in which the optimal policy for addressing the
problem can be learnt indirectly without having a model of the
system and environment.

3 APPROACH
How it addresses the problem. The proposed solution involves a
stress (robustness) test case generator to find the performance
breaking point of SUTs. It is able to learn the optimal policy for
generating stress test conditions to find the performance breaking
point of the SUT without access to the performance model.
How it works. The proposed stress testing framework assumes two
phases of learning, i.e., initial and transfer learning. The agent
learns the optimal policy initially during the initial learning.
During the transfer learning it replays the learnt policy in further
analogous situations, i.e., upon observing SUTs with similar
performance sensitivity, while keeping the learning running.
Learning Technique. Q-learning, i.e. a model-free reinforcement
learning (RL) [30], is used as the core learning algorithm. In RL
the agent senses the state of the system, which is the SUT in this
case, continuously. Upon the state detection, it takes a possible
action randomly or selects a high valued action. Then, it receives
a reward signal indicating the effectiveness of the applied action.
In the proposed framework the mentioned steps have been
formulated as follows:
• State detection: The state of the system is identified based on
the quality measurements of the SUT and execution environment,
i.e., CPU, memory and disk utilization, and SUT response time.
• Actions: They are operations modifying (reducing) the factors
affecting the performance, e.g. available resource capacity and
characteristics of workload. e-greedy was used as the core strategy
for action selection.
• Reward signal: A utility function which is a weighted linear
combination of two functions describing the response time
deviation from the requirement and the resource usage
respectively, was derived for the reward signal.
Profound Added Features.
I. At type I of this framework, Fig.1 shows its architecture, Q-
learning augmented with experience adaptation through using
multi-experience bases, was used. The smart tester agent uses
separate experience bases for storing the learnt policy based on
the type of performance sensitivity of the SUTs. It leads to the
efficiency improvement of the agent in the transfer learning [31].
II. At type II, which is a self-adaptive fuzzy reinforcement
learning-based (SaFReL) stress testing, as shown in Fig. 2, an

action selection strategy adaption, was applied which acts as a
meta-learning feature and is intended to improve the performance
of the learning by applying adaptive changes to the action
selection strategy based on detected differences between the
performance sensitivity of observed SUTs. To address the issues
related to the crisp categorization of the discrete state modelling,
fuzzy classification was also used for state modeling (detection).

Figure 1: smart stress testing framework, type I

Algorithm SaFReL: Self-adaptive Fuzzy Reinforcement Learning-
based Stress Testing
Required: S, A, a, g; Initialize q-values, 𝑄(𝑠, 𝑎) = 	0	∀𝑠 ∈ 𝑆	, ∀𝑎	 ∈ 𝐴
and ɛ = υ, 0 < 	υ < 1
1. Observe the first SUT instance.
2. Repeat until initial convergence (initial learning phase):
 2.1. Fuzzy Q-Learning Episode with initial action selection strategy
(e.g. ɛ-greedy, initialized ɛ)
3. Store the obtained experience
4. Start the transfer learning phase.
5. Repeat:
 5.1 Observe a new SUT instance
 5.2 Measure the similarity
 5.3 Apply strategy adaptation, i.e., adjust the degree of exploration
and exploitation (e.g. tuning parameter ɛ in ɛ-greedy)
 5.4 Fuzzy Q-Learning Episode with adapted strategy (e.g., new ɛ)

Figure 2: Type II, SaFReL architecture and algorithm

4 CONCLUSION AND RESULTS
We have evaluated the efficacy of the proposed approach by
simulating the performance behavior of 12 benchmark programs
such as Build-apache, n-queens, dcraw, etc. Improved efficiency
in terms of reduced effort, i.e., time and cost, for generating the
test conditions while reducing dependency on source code and
system models, is the achievement of the proposed learning-based
stress testing. Regarding the applicability, software variants in
software product lines and evolving software programs in CI/CD
would be well-suited application areas for this approach.
Extending the approach to support workload-wise factors in
generating the stress test conditions is the current ongoing part of
this research.

Machine Learning-Assisted Performance Testing ESEC/FSE’19, August 2019, Estonia

REFERENCES
[1] ISO/IEC 25010 - System and software quality models. Available at

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
[2] D. Petriu, C. Shousha and A. Jalnapurkar. Architecture-based performance

analysis applied to a telecommunication system. IEEE Transactions on
Software Engineering, (11), 1049-1065, 2000.

[3] S. Bernardi, S. Donatelli and J. Merseguer. From UML sequence diagrams and
state charts to analyzable petri net models. In Proceedings of the 3rd
International Workshop on Software and Performance, pp. 35-45. ACM, 2002.

[4] E. D. Lazowska, J. Zahorjan, G. S. Graham and K. C. Sevcik. 1984.
Quantitative system performance: computer system analysis using queueing
network models. Prentice-Hall, Inc.

[5] V. Cortellessa, A. Di Marco and P. Inverardi. 2011. Model-based software
performance analysis. Springer Science & Business Media.

[6] M. Harchol-Balter. 2013. Performance modeling and design of computer
systems: queueing theory in action. Cambridge University Press.

[7] K. Kant & M. M. Srinivasan. 1992. Introduction to computer system
performance evaluation. McGraw-Hill College

[8] J. Zhang and S. C. Cheung. Automated test case generation for the stress testing
of multimedia systems. Softw. - Practice Experience, vol. 32, no. 15, pp. 1411–
1435, 2002.

[9] D. A. Menasce. Load testing, benchmarking, and application performance
management for the web. in Proc. Comput. Manag. Group Conf., pp. 271–281,
2002.

[10] J. Hill, D. Schmidt, J. Edmondson, and A. Gokhale. Tools for continuously
evaluating distributed system qualities. IEEE Softw., vol. 27, no. 4, pp. 65–71.
2010.

[11] J. H. Hill. An architecture independent approach to emulating computation
intensive workload for early integration testing of enterprise DRE systems. in
Proc. Confederated Int. Conf., CoopIS, DOA, IS, and ODBASE 2009 On the
Move to Meaningful Internet Syst., pp. 744–759. 2009.

[12] B. A. Pozin and I. V. Galakhov. Models in performance testing. Program.
Comput. Softw., vol. 37, no. 1, pp. 15–25. 2011.

[13] M. Kalita and T. Bezboruah. Investigation on performance testing and
evaluation of prewebd: A .net technique for implementing web application. IET
Softw., vol. 5, no. 4, pp. 357–365. 2011.

[14] G. Casalezhnag, A. Kalbasi, D. Krishnamurthy, and J. Rolia. Automatic stress
testing of multi-tier systems by dynamic bottleneck switch generation. in Proc.
10th ACM/IFIP/USENIX Int. Conf. Middleware, pp. 1–20. 2009.

[15] D. Krishnamurthy, J. Rolia, and S. Majumdar. Swat: A tool for stress testing
session-based web applications. in Proc. Comput. Meas. Group Conf., pp. 639–
649. 2003.

[16] D. S. Hoskins, C. J. Colbourn, and D. C. Montgomery. Software performance
testing using covering arrays: Efficient screening designs with categorical
factors. in Proc. 5th Int. Workshop Softw. Perform., pp. 131–136. 2005.

[17] M. Sopitkamol and D. A. Menasc_e. A method for evaluating the impact of
software configuration parameters on e-commerce sites. in Proc. 5th Int.
Workshop Softw. Perform., pp. 53–64, 2005.

[18] B. Dillenseger. Clif, a framework based on fractal for flexible, distributed load
testing. Ann. Telecommun., vol. 64, pp. 101–120, 2009.

[19] C. Barna, M. Litoiu, and H. Ghanbari. Autonomic load-testing framework. in
Proc. 8th ACM Int. Conf. Autonomic Comput., pp. 91–100. 2011.

[20] I. Schieferdecker, G. Din, and D. Apostolidis. Distributed functional and load
tests for web services. Int. J. Softw. Tools for Technol. Transfer, vol. 7, pp.
351–360. 2005.

[21] P. Zhang, S. G. Elbaum, and M. B. Dwyer. Automatic generation of load tests.
in Proc. 26th IEEE/ACM Int. Conf. Automated Softw. Eng., pp. 43–52. 2011.

[22] D. Bainbridge, I. H. Witten, S. Boddie, and J. Thompson. Stress testing general
purpose digital library software. in Research and Advanced Technology for
Digital Libraries. Springer, pp. 203–214. 2009.

[23] L. C. Briand, Y. Labiche, and M. Shousha. Stress testing realtime systems with
genetic algorithms. in Proc. Conf. Genetic Evolutionary Comput., pp. 1021–
1028. 2005.

[24] A. Chakravarty, Stress testing an AI based web service: A case study. in Proc.
7th Int. Conf. Inf. Technol.: New Generations, pp. 1004–1008. 2010.

[25] A. Avritzer and E. J. Weyuker. The automatic generation of load test suites and
the assessment of the resulting software. IEEE Trans. Softw. Eng., vol. 21, no.
9, pp. 705–716. 1995.

[26] S. Abu-Nimeh, S. Nair, and M. Marchetti. Avoiding denial of service via stress
testing. in Proc. IEEE Int. Conf. Comput. Syst. Appl., pp. 300–307. 2006.

[27] V. Garousi. A genetic algorithm-based stress test requirements generator tool
and its empirical evaluation. IEEE Trans. Softw. Eng., vol. 36, no. 6, pp. 778–
797, 2010.

[28] V. Garousi. Empirical analysis of a genetic algorithm-based stress test
technique. in Proc. 10th Annu. Conf. Genetic Evolutionary Comput., pp. 1743–
1750. 2008.

[29] V. Garousi, L. C. Briand, and Y. Labiche. Traffic-aware stress testing of
distributed real-time systems based on UML models using genetic algorithms.
J. Syst. Softw., vol. 81, no. 2, pp. 161–185, 2008.

[30] R. S. Sutton, A. G Barto, et al.1998.Introduction to reinforcement learning. Vol.
135. MIT press Cambridge.

[31] M. Helali Moghadam, M. Saadatmand, M. Borg, M. Bohlin and B. Lisper.
Machine Learning to Guide Performance Testing: An Autonomous Test
Framework. ICST Workshop on Testing Extra-Functional Properties and
Quality Characteristics of Software Systems ITEQS’19, 2019.

