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ABSTRACT 
Automated testing activities like automated test case generation 
imply a reduction in human effort and cost, with the potential to 
impact the test coverage positively. If the optimal policy, i.e., the 
course of actions adopted, for performing the intended test activity 
could be learnt by the testing system, i.e., a smart tester agent, 
then the learnt policy could be reused in analogous situations 
which leads to even more efficiency in terms of required efforts. 
Performance testing under stress execution conditions, i.e., stress 
testing, which involves providing extreme test conditions to find 
the performance breaking points, remains a challenge, particularly 
for complex software systems. Some common approaches for 
generating stress test conditions are based on source code or 
system model analysis, or use-case based design approaches. 
However, source code or precise system models might not be 
easily available for testing. Moreover, drawing a precise 
performance model is often difficult, particularly for complex 
systems. In this research, I have used model-free reinforcement 
learning to build a self-adaptive autonomous stress testing 
framework which is able to learn the optimal policy for stress test 
case generation without having a model of the system under test. 
The conducted experimental analysis shows that the proposed 
smart framework is able to generate the stress test conditions for 
different software systems efficiently and adaptively without 
access to performance models.    
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1 RESEARCH PROBLEM 
Performance describes the resource and time bound aspects of a 
software system behavior and is often described in terms of some 
sub-characteristics like time behavior, resource utilization and 
capacity [1]. Performance evaluation is generally conducted to I. 
measure the performance metrics, II. detect the functional 
problems appearing under certain performance-related execution 
conditions like heavy workload, III. detect non-functional 
problems, i.e., violations of non-functional requirements such as 
performance and robustness. Stress testing is often considered as a 
type of performance testing which implies applying extreme 
execution conditions to meet those objectives and verify the 
robustness of the system. Finding the performance breaking point 
of the software under test (SUT), at which the system 
functionality breaks, or the performance requirements are 
violated, is one of the main objectives in the stress testing activity. 
The emergence of anomalies in the performance behavior of a 
software system is resulted from performance bottlenecks. There 
are various application-, platform-, and workload-wise causes 
resulting in the emergence of performance bottlenecks. In stress 
testing, providing extreme (stress) test conditions involves 
changing (manipulating) the platform- and workload-wise factors 
affecting the performance. Generating stress test conditions to 
analyze the performance behavior under extreme conditions 
remains a challenge for complex software systems. 

2 MOTIVATION AND BACKGROUND 
Performance modeling and performance testing are common 
approaches for doing performance analysis. Performance 
modeling is often based on building a performance model of the 
system behavior and measuring the target performance metrics. It 
can be done using various modeling notations like Markov 
Processes, queueing networks, petri nets and simulation models 
[2, 3, 4, 5, 6, 7]. Performance testing is considered as a family of 
performance-related testing techniques intended for addressing the 
objectives of performance analysis. Performance, load and stress 
testing might considerably overlap in many areas. Nevertheless, 
the objectives of the performance-related testing methods could be 
summarized as follows: 
I. Measuring the performance metrics under different execution 
conditions including various workload and resource 
configurations [8, 9, 10, 11, 12, 13, 14, 15, 16, 17].          
II. Detecting the functional problems appearing under certain 
execution conditions regarding workload and resource 
configurations [18, 19, 20, 21, 22, 23].  
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III. Detecting violations of non-functional requirements under 
expected and stress conditions [8, 13, 24, 25, 26, 27, 28, 29]. 
In general, using source code or system model analysis or use-
case based design techniques are the common approaches for 
addressing the mentioned challenge. However, first, relying on the 
source code or system model like performance model might imply 
some limitations upon unavailability of these artifacts. Secondly, 
drawing a precise model of the performance behavior of a 
software system is challenging particularly for complex systems, 
while still many implementation and deployment details are often 
ignored. These are the motivations for using model-free learning-
based techniques in which the optimal policy for addressing the 
problem can be learnt indirectly without having a model of the 
system and environment.  

3 APPROACH 
How it addresses the problem. The proposed solution involves a 
stress (robustness) test case generator to find the performance 
breaking point of SUTs. It is able to learn the optimal policy for 
generating stress test conditions to find the performance breaking 
point of the SUT without access to the performance model. 
How it works. The proposed stress testing framework assumes two 
phases of learning, i.e., initial and transfer learning. The agent 
learns the optimal policy initially during the initial learning. 
During the transfer learning it replays the learnt policy in further 
analogous situations, i.e., upon observing SUTs with similar 
performance sensitivity, while keeping the learning running.  
Learning Technique. Q-learning, i.e. a model-free reinforcement 
learning (RL) [30], is used as the core learning algorithm. In RL 
the agent senses the state of the system, which is the SUT in this 
case, continuously. Upon the state detection, it takes a possible 
action randomly or selects a high valued action. Then, it receives 
a reward signal indicating the effectiveness of the applied action. 
In the proposed framework the mentioned steps have been 
formulated as follows: 
• State detection: The state of the system is identified based on 
the quality measurements of the SUT and execution environment, 
i.e., CPU, memory and disk utilization, and SUT response time. 
• Actions: They are operations modifying (reducing) the factors 
affecting the performance, e.g. available resource capacity and 
characteristics of workload. e-greedy was used as the core strategy 
for action selection. 
• Reward signal: A utility function which is a weighted linear 
combination of two functions describing the response time 
deviation from the requirement and the resource usage 
respectively, was derived for the reward signal. 
Profound Added Features. 
I. At type I of this framework, Fig.1 shows its architecture, Q-
learning augmented with experience adaptation through using 
multi-experience bases, was used. The smart tester agent uses 
separate experience bases for storing the learnt policy based on 
the type of performance sensitivity of the SUTs. It leads to the 
efficiency improvement of the agent in the transfer learning [31].  
II. At type II, which is a self-adaptive fuzzy reinforcement 
learning-based (SaFReL) stress testing, as shown in Fig. 2, an 

action selection strategy adaption, was applied which acts as a 
meta-learning feature and is intended to improve the performance 
of the learning by applying adaptive changes to the action 
selection strategy based on detected differences between the 
performance sensitivity of observed SUTs. To address the issues 
related to the crisp categorization of the discrete state modelling, 
fuzzy classification was also used for state modeling (detection). 

 
Figure 1: smart stress testing framework, type I 

 
Algorithm SaFReL: Self-adaptive Fuzzy Reinforcement Learning-
based Stress Testing 
Required: S, A, a, g; Initialize q-values, 𝑄(𝑠, 𝑎) = 	0	∀𝑠 ∈ 𝑆	, ∀𝑎	 ∈ 𝐴 
and ɛ = υ, 0 < 	υ < 1 
1. Observe the first SUT instance.  
2. Repeat until initial convergence (initial learning phase): 
      2.1. Fuzzy Q-Learning Episode with initial action selection strategy 
(e.g. ɛ-greedy, initialized ɛ) 
3. Store the obtained experience 
4. Start the transfer learning phase. 
5. Repeat: 
     5.1 Observe a new SUT instance 
     5.2 Measure the similarity 
     5.3 Apply strategy adaptation, i.e., adjust the degree of exploration 
and             exploitation (e.g. tuning parameter ɛ in ɛ-greedy) 
     5.4 Fuzzy Q-Learning Episode with adapted strategy (e.g., new ɛ) 

Figure 2: Type II, SaFReL architecture and algorithm  

4 CONCLUSION AND RESULTS 
We have evaluated the efficacy of the proposed approach by 
simulating the performance behavior of 12 benchmark programs 
such as Build-apache, n-queens, dcraw, etc. Improved efficiency 
in terms of reduced effort, i.e., time and cost, for generating the 
test conditions while reducing dependency on source code and 
system models, is the achievement of the proposed learning-based 
stress testing. Regarding the applicability, software variants in 
software product lines and evolving software programs in CI/CD 
would be well-suited application areas for this approach. 
Extending the approach to support workload-wise factors in 
generating the stress test conditions is the current ongoing part of 
this research. 
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