
Statistical Model Checking for Real-Time Database
Management Systems: A Case Study

Simin Cai∗, Barbara Gallina†, Dag Nyström‡, and Cristina Seceleanu§
Mälardalen University, Västerås, Sweden

Email: ∗simin.cai@mdh.se, †barbara.gallina@mdh.se, ‡dag.nystrom@mdh.se, §cristina.seceleanu@mdh.se

Abstract—Many industrial control systems manage critical
data using Database Management Systems (DBMS). The cor-
rectness of transactions, especially their atomicity, isolation and
temporal correctness, is essential for the dependability of the
entire system. Existing methods and techniques, however, either
lack the ability to analyze the interplay of these properties, or
do not scale well for systems with large amounts of transactions
and data, and complex transaction management mechanisms. In
this paper, we propose to analyze large scale real-time database
systems using statistical model checking. We propose a pattern-
based framework, by extending our previous work, to model
the real-time DBMS as a network of stochastic timed automata,
which can be analyzed by UPPAAL Statistical Model Checker.
We present an industrial case study, in which we design a
collision avoidance system for multiple autonomous construction
vehicles, via concurrency control of a real-time DBMS. The
desired properties of the designed system are analyzed using our
proposed framework.

Keywords—Real-time Database Management System, Statistical
Model Checking, Autonomous Vehicles, Case Study

I. INTRODUCTION

Database Management Systems (DBMS) have played an
essential role in many industrial control systems [1], since
they not only act as a central storage for critical data, but also
provide a series of transaction management mechanisms to
ensure the logical consistency of data. Among them, Concur-
rency Control (CC) prevents harmful manipulation of data by
arbitrary concurrent transactions, which ensures the so-called
isolation [2]. Abort Recovery (AR) restores the system into
a consistent state when transactions fail, which achieves the
atomicity of transactions [2].

Industrial control systems often also impose time con-
straints on their computations, which are inherited by the
transactions managed by the Real-Time DBMS (RTDBMS).
We refer to such time constraints as temporal correctness,
which consists of two aspects [3]. On one hand, timeliness
requires transactions to meet their specified deadlines. On the
other hand, the data accessed by transactions must be fresh
and relevant in time, which is referred to as temporal validity.

To achieve a dependable industrial control system, one
needs to ensure that the DBMS it relies on can guarantee the
desired atomicity, isolation and temporal correctness. Although
much effort has been made on analyzing these properties
separately, few works have provided means to analyze them
together in a DBMS, such that trade offs between logical and
temporal correctness can be reasoned about. In our previous
work [4], [5], we have proposed a formal framework, called
UPPCART (UPPaal for Concurrent Atomic Real-time Trans-
actions), for the verification of these properties in transaction-

based systems. In UPPCART, we have proposed timed-
automata patterns for modeling database transactions together
with the transaction management mechanisms, and verified the
atomicity, isolation and temporal correctness using exhaustive
model checking. However, as the amounts of transactions and
data increase, and the complexity of the mechanisms rises,
the state space to be explored by model checking may grow
drastically. Consequently, the model checker may fail to reach
any conclusion on whether or not the properties are satisfied.

In this paper, we propose to analyze atomicity, isolation
and temporal correctness of complex DBMS with Statistical
Model Checking (SMC) [6], which applies simulation-based
techniques to avoid exhaustive state space exploration, and
provides probabilistic guarantees for property satisfaction. The
challenge lies in modeling the transactions together with vari-
ous CC and AR mechanisms, such that these properties can be
analyzed by the state-of-art tools. To achieve this, we propose
a framework called UPPCART-SMC to model the transactions
and the mechanisms as a network of stochastic timed automata,
which can be analyzed by the UPPAAL SMC statistical model
checker [7]. The satisfaction of these properties of the designed
system can be evaluated as probability intervals, with an
associated confidence, and compared with required probability
thresholds. We also propose patterns to construct UPPCART-
SMC models, which can reduce modeling effort and facilitate
automated model construction.

We apply our proposed framework on a case study, sug-
gested by the automotive industry, which aims to verify the
design correctness of a collision avoidance system for multiple
autonomous construction vehicles working in a mining quarry.
We present a design that prevents vehicles from operating
in critical areas simultaneously, via concurrency control of a
common DBMS connected to the vehicles. To ensure safety
and maintain productivity, a set of transactional properties
regarding atomicity, isolation and temporal correctness should
be verified during the design phase of the DBMS. We apply our
UPPCART-SMC framework to model this system, and verify
the desired properties using UPPAAL SMC.

The remainder of the paper is organized as follows. In
Section II, we recall the background, including our previous
UPPCART framework. In Section III, we introduce our ex-
tended UPPCART-SMC framework. We present the case study
in Section IV, followed by the related work in Section V. In
Section VI, we conclude the paper and outline our future work.

1

II. BACKGROUND

A. UPPAAL Timed Automata and UPPAAL Model Checker

An UPPAAL Timed Automaton (TA) [8] is defined as the
following tuple:

TA ::= (L, l0, X, V, I, Act, E), (1)

in which: L is a finite set of locations, l0 is the initial
location; X is a finite set of clock variables; V is a finite
set of discrete variables; I : L → B(X) assigns invariants
(predicates) to locations, where B(X) denotes the set of
clock constraints; Act is a set of synchronization channels;
E ⊂ L × B(X,V) × Act × R × L is a set of edges, where
B(X,V) denotes the set of guards, R denotes the set of
assignments. We denote an edge e ∈ E as l

g,a,r−−−→ l′, where
g ∈ B(X,V), a ∈ Act, and r ∈ R. The state of a TA is
defined as a pair (l, u), where l is the active location and u is
a valuation of all clock variables. At each state, the automaton
may non-deterministically take a delay transition, denoted by
(l, u)

d−→ (l, u + d), which only increases the clock values
by d time units, as long as the invariant associated with the
current location is not violated. Alternatively, it may non-
deterministically take a discrete transition (l, u)

a−→ (l′, u′)

following an enabled edge l
g,a,r−−−→ l′, update the discrete

variables and reset clocks.

Multiple TA can form a Network of Timed Automata
(NTA) via parallel composition (“||”), by which individual TA
are allowed to carry out internal actions (i.e., interleaving),
while pairs of TA can perform hand-shake synchronization
via channels, or non-blocking communication via broadcast
channels. For a communication via channel c, the sender is
denoted by “c!”, while the receiver by “c?”. A location can
be urgent (marked as “U”) or committed (marked as “C”).
An automaton reaching an urgent location must take the next
transition without any delay in time, but another automaton
may take transitions at this time, as long as the time does
not progress. When an automaton is at a committed location,
another automaton may NOT take any transitions, unless it is
also at a committed location. The state of an NTA consists of
the values of all clocks in the NTA, together with the currently
visited locations of each TA, respectively.

Requirements can be specified in the UPPAAL query
language, which is a decidable subset of CTL (Computational
Tree Logic), and verified exhaustively and automatically by
the UPPAAL model checker [8]. Among others, we focus on:
(i) invariance properties, specified as A [] P , meaning that P
always holds for all possible execution paths; and (ii) liveness
properties, specified as P → Q (P leads to Q), meaning that
if P holds, Q will eventually hold.

B. UPPAAL Stochastic Timed Automata and UPPAAL SMC

UPPAAL Stochastic Timed Automata (STA) [7] extends
UPPAAL TA with stochastic interpretations. Formally, an STA
is defined as

STA ::= (TA, µ, γ), (2)

where µ is a probability density function that assigns delays
to the delay transitions in the TA. For time-bounded delays,
µ gives a uniform distribution between the time bounds. For
unbounded delays, µ follows an exponential distribution. γ
is a density function that assigns the probability distribution

wait[ti][di]?

try_to_lock_di

C

C

C

wait_for_lock

C

cpu_free!
cs:=FREE

grant[ti][di]?
cs:=ti

finish_locking

start_locking

grant[ti][di]?

locktype[ti][di]!

Fig. 1. UPPCART pattern for locking [4], [5]

defined by the user for multiple discrete transitions. Similar to
NTA, multiple STA can form a Network of STA (NSTA), and
communicate via broadcast channels.

UPPAAL SMC provides probability evaluation, hypothesis
testing and probability comparison for STA models. It applies
a simulation-based technique called statistical model checking
[6], which avoids the state explosion problem of exhaustive
model checking. Given ? to denote either the eventually (<>)
or the globally ([]) temporal operator, probability evaluation
calculates Pr(?x≤nφ), that is, the probability that property
φ is eventually (or globally) satisfied within n time units.
This is specified as Pr[≤ n](?φ) in the UPPAAL SMC
query language. Hypothesis testing compares Pr(?x≤nφ) with
a given value p, specified as Pr[≤ n](?φ) ∼ p, where
∼∈ {<,≤, >,≥}. For more details about UPPAAL SMC, we
refer to literature [7].

C. The UPPCART Framework

In our previous work [4], [5], we have proposed a pattern-
based framework, called UPPCART (UPPaal for Concurrent
Atomic Real-time Transactions), for modeling transaction-
based systems, which we verify by model-checking with
respect to atomicity, isolation and temporal correctness. The
transaction system is modeled as a timed automata network,
which is made of automata representing the computational
work to be executed, and automata observing the violation
of the desired transactional properties. Formally, we define a
real-time transaction-based system N as follows:

N ::=W0 || ... ||Wn−1 ||ACCManager ||AATManager

||O0 || ... ||Ok−1 ||D0 || ...||Dl−1,
(3)

where W0, ..., Wn−1 are the TA of Work Units of transactions
T0, ..., Tn−1, respectively. These work unit TA also model the
work units’ interaction with the transaction manager with re-
spect to concurrency control and abort recovery. ACCManager

is the CCManager automaton that models the CC algorithm,
and interacts with the work unit TA. AATManager is the
ATManager automaton that models the atomicity controller of
recovery mechanisms. O0, ..., Ok−1 are the TA of IsolationOb-
servers that observe the unwanted transaction interleavings
precluded by the desired isolation requirement, respectively.
D0, ..., Dl−1 are the TA that monitor the age of data.

To reduce the modeling efforts for various concurrency
control algorithms, we have proposed a set of automata skele-
tons and parameterized patterns as modules to construct the

2

TABLE I. UPPAAL QUERY PATTERNS FOR VERIFYING TRANSACTIONAL PROPERTIES [4], [5]

Property Type Property Description UPPAAL Query Pattern
Atomicity Ti aborted due to ERRORTYPE is eventually rolled back

(compensated)
(ATManager.abort_id == i&&ATManager.error_type
== ERRORTY PE) → Wi.trans_rolledback (Wi.trans_compensated)

Isolation The specified isolation phenomena never occur A [] not (O1.isolation_phenomenon || ... ||On.isolation_phenomenon)
Timeliness Ti never misses its deadline A [] notWi.miss_deadline
Absolute Tempo-
ral Validity

When read by Ti, Dj is never older than the absolute validity
interval AVI(j)

A [] (Wi.read_di_done imply Dj.age <= AV I(j))

Relative Temporal
Validity

Whenever Ti reads Dj or Dl, the age differences of Dj and Dl

is smaller than or equal to the relative validity interval RVI(j,l)
A[] ((Wi.read_dj_done ||Wi.read_dl_done) imply ((Dj.age−Dl.age
<= RV I(j, l))&& (Dl.age−Dj.age <= RV I(j, l))))

trans_started

U trans_committed

Instantiated Locking Pattern

C
tc:=0

ready

U

miss_deadline

trans_aborted

tc>DEADLINE tr>RECOVERY_DEADLINE

C

initialize(ti, p)

tc<=DEADLINE

tc<=PERIOD
tc>=PERIOD
tc:=0

tr<=RECOVERY_DEADLINE

wait

initial

start_trans[ti]?

Instantiated Begin Pattern

Instantiated Read/Write Pattern

Instantiated Commit Pattern

…

Fig. 2. Pattern-based construction of a work unit automaton [4], [5]

models of the system. For instance, Fig. 1 presents a pattern for
modeling the locking operation used for concurrency control.
This piece of a work unit automaton models the acquisition of
a lock by sending a message via the locktype[ti][di] channel,
and waits for the granting message from the CCManager
automaton. Patterns can then be instantiated, and composed
with other types of instantiated patterns, such as the ones
for the read and write operations. As an example, Fig. 2
shows a TA of a transaction constructed from instantiated
patterns. We have proposed patterns for modeling database
operations, CCManager, ATManager, data objects, as well as
IsolationObservers. Using them, basic structures of models can
be reused to compose a complex model, and thus reduces the
modeling efforts and allows for automated construction.

Atomicity, isolation and temporal correctness of the mod-
eled system can be specified in UPPAAL queries (Table
I), and verified by UPPAAL model checker. Among them,
atomicity is formalized as a liveness property, stating that if an
abortion occurs, a predefined recovery mechanism is eventually
performed. Isolation is formalized as an invariance property
that the locations representing the unwanted interleavings can
never be reached. Temporal correctness is also specified as
invariance properties, requiring that the states representing
violated deadlines or temporal validity are never reachable.

Due to the increased amounts of transactions and data, or
higher complexity of the selected CC and AR mechanisms,
exhaustive model checking may not find an answer within the
given time or resource limit. For the analysis of large systems
that are beyond the analytical capability of exhaustive model

Fig. 3. An example of a transaction specified in UTRAN

checking, we resort to statistical model checking and UPPAAL
SMC, which is presented in Section III.

D. UTRAN

In this paper, we use a high-level language called UTRAN
(UML for TRANsactions) [5] to describe the transactions in
the case study. UTRAN is a UML profile that provides a series
of stereotypes to specify transactions and their properties.
In UTRAN, a transaction is specified as a UML activity
composed of database operations. As an example, Fig. 3 shows
a transaction consisting of a begin operation, a write operation
that updates data with id 11, and a commit operation. The
worst- and best- case execution times can be specified for each
operation as annotated features. Delays between operations can
also be annotated to the edges between the operation nodes.
The stereotype «TemporalCorrectnessSpecification» specifies
the temporal constraints, such as periods, deadlines and tem-
poral data validities of transactions. «AtomicitySpecification»
and «IsolationSpecification», specify the selected atomicity
and isolation variants, as well as the recovery and concurrency
control algorithms, respectively.

III. THE UPPCART-SMC FRAMEWORK

In order to analyze atomicity, isolation and temporal cor-
rectness for large RTDBMS, we propose the UPPCART-SMC
framework that models the transactions, together with the CC
algorithm and the AR mechanisms, as a network of UPPAAL
stochastic timed automata. Denoted by N ′, the NSTA of the
modeled real-time transactions is defined as follows:
N ′ ::=W ′0 || ... ||W ′n−1 ||A′CCManager ||A′ATManager

||O′0 || ... ||O′k−1 ||D′0 ||...||D′m−1.
(4)

Since we are modeling the exact same RTDBMS as in Section
II-C, each STA in Equation 4 corresponds to a TA in Equation
3. That is to say, W ′0, ..., W ′n−1 are the STA of work units
of transactions T0, ..., Tn−1, respectively. A′CCManager is the
CCManager STA. A′ATManager is the ATManager STA. O′0,
..., O′k−1 are the STA of IsolationObservers. D0, ..., Dl−1 are
the STA that monitor the age of data.

3

chan?

loc3

loc5

loc4

loc2

loc1

chan!

bchan?
chanCheck:=0

loc3

loc5

loc4

loc2

loc1

chanCheck==1
bchan!

chanCheck:=1

|| ||

TA1 TA2 STA1 STA2

Convert

Fig. 4. Handshake synchronization modeling: converting from using a
handshake synchronization channel to using a broadcast channel [7]

To construct N ′, we apply a pattern-based approach, that
is, each STA is constructed via the instantiation of a set
of parametrized patterns, which are created such that they
incorporate STA-related syntax and semantics. Therefore, these
STA patterns are not a simple rewrite of the UPPCART
TA patterns. A series of modifications are required on the
UPPCART patterns, regarding the syntax and semantics. In
addition, as the system grows more complex, constructing
the models manually requires considerable effort, even if a
pattern-based construction can alleviate some of the burden.
Another challenge lies in the analysis using UPPAAL SMC,
which not only adopts a different specification language than
UPPAAL, but also lacks support for the “leads-to” property
that is essential to atomicity specification. We address these
challenges in the next subsections, respectively.

A. UPPCART-SMC Patterns

In order to model synchronizations between the work unit
automata, the CCManager, and the ATManager in UPPCART-
SMC, we use broadcast channels together with shared vari-
ables, as suggested in literature [7].

Since in UPPCART we have used the handshake synchro-
nization mechanism instead, as supported by the UPPAAL
tool, we use a conversion pattern from handshake to broadcast
synchronization, presented in Fig. 4. The left side of the
conversion is an NTA composed of TA1 and TA2, synchro-
nized via synchronization channel chan exactly when TA1 is
at loc1 and TA2 is at loc4. We perform the conversion by
replacing the chan with a broadcast channel bchan, and control
the handshake via an integer variable chanCheck. STA1 can
send the signal via bchan, only when chanCheck equals 1.
Before reaching loc4, STA2 sets chanCheck to 1, and waits at
loc4 for the broadcast signal. On receiving the signal, STA2
sets chanCheck to 0, such that the broadcast channel cannot
be fired. By following this scheme, we achieve handshake
synchronization in our model.

As an example, Fig. 5 shows the Locking-SMC Pat-
tern, converted from the Locking Pattern in Fig. 1. For
each synchronization channel (locktype[ti][di], wait[ti][di] and
grant[ti][di]), we change them to broadcast channels, define an
integer variable (locktypeCheck[ti][di], waitCheck[ti][di] and
grantCheck[ti][di], respectively), and add the corresponding
guard conditions and assignments according to the conversion
pattern. The added guards and assignments are formatted in
both bold and italic in Fig. 5. Since cpu_free is a broadcast
channel, no changes are made for it during the conversion.

A significant semantic implication introduced by UPPAAL
SMC, compared to UPPAAL, is that non-deterministic tran-

wait[ti][di]?
waitCheck[ti][di]:=0, grantCheck[ti][di]:=0

try_to_lock_di

C

C

C

wait_for_lock

C

cpu_free!
cs:=FREE, grantCheck[ti][di]:=1

grant[ti][di]?
cs:=ti, grantCheck[ti][di]:=0

finish_locking

start_locking

grant[ti][di]?
waitCheck[ti][di]:=0,
grantCheck[ti][di]:=0

locktypeCheck[ti][di]==1
locktype[ti][di]!
waitCheck[ti][di]:=1, grantCheck[ti][di]:=1

Fig. 5. Locking-SMC Pattern

sitions in TA become probabilistic in STA. Since the outgo-
ing edges of each location are either guarded by mutually-
exclusive clock constraints, or by different synchronization
channels, all discrete transitions in the framework are de-
terministic. Regarding the delay transitions, the locations in
UPPCART-SMC fall into two categories: (i) Committed lo-
cations, in which case the automaton does not delay, but to
take a discrete transition immediately; (ii) Invariant-associated
locations, in which case the delays at such locations follow
a uniformed distribution. We adopt this assumption when
modeling our transaction systems. However, user-specified
distribution can be modeled through adaptations in the STA
[7].

Automated Model Construction: To ease the modeling
effort, we have developed a tool to construct the UPPCART-
SMC models from UTRAN specifications. Our tool imple-
ments a straightforward mapping between the elements in
UTRAN, and the patterns in UPPCART-SMC. It accepts a
description of transactions in UTRAN as input, and constructs
models by instantiating and composing the patterns corre-
sponding to the elements in the description. The source code
of the tool can be accessed in our repository [9].

B. Statistical Analysis

We use UPPAAL SMC to analyze the STA models, and
check the transactional properties. The queries for checking
isolation, timeliness, absolute validity and relative validity are
listed as SQ2-SQ4 in Table II, and they encode the probability
of their satisfaction, over a chosen simulation time (specified
as n), and over a number of runs computed by the tool.
For hypothesis testing, these queries can be extended with a
comparison to a predefined probability value.

As the atomicity property specified with “leads-to” in Table
I cannot be checked statistically using UPPAAL SMC, we
choose to analyze time-bounded atomicity, a stricter version
of atomicity, which can be specified as a checkable query. We
analyze the probability that Ti is rolled back (or compensated)
within a time bound (e.g., Ti’s RECOVERY_DEADLINE) after
its abortion, specified as the following time-bounded property:

(ATManager.abort_id == i &&

ATManager.error_type == ERRORTY PE)

⇒≤RECOV ERY _DEADLINE Wi.trans_rolledback.

4

TABLE II. UPPAAL SMC QUERY PATTERNS FOR ANALYZING TRANSACTIONAL PROPERTIES

Property Type Property Description UPPAAL Query Pattern ID

Time-bounded
Atomicity

Ti aborted due to ERRORTYPE is rolled back
or compensated within RECOVERY_DEADLINE

Pr [<= n] (<> Wi.b) SQ1.1

Pr [<= n] ([] (Wi.b imply

Wi.ta <= RECOV ERY _DEADLINE))
SQ1.2

Isolation The probability of that the specified isolation phenom-
ena never occur

Pr [<= n] ([] not (O1.isolation_phenomenon ||
...||On.isolation_phenomenon))

SQ2

Timeliness The probability of Ti never missing its deadline Pr[<= n]([] not Wi.miss_deadline) SQ3
Absolute Validity The probability of that, when read by Ti, Dj is never

older than the absolute validity interval AVI(j)
Pr[<= n]([] (Wi.read_di_done imply
Dj.age <= AV I(j)))

SQ4

Relative Validity The probability of that, whenever Ti reads Dj or Dl,
the age differences of Dj and Dl is smaller than or
equal to the relative validity interval RVI(j,l)

Pr[<= n]([]((Wi.read_dj_done ||Wi.read_dl_done)
imply ((Dj.age−Dl.age <= RV I(j, l))&&
(Dl.age−Dj.age <= RV I(j, l)))))

SQ5

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 75 77 78 79 80

L1

L2

L3

L4 L5

L6

E1

E2

E3

Excavator Crusher Power stationWheel loader
N Cell N

Fig. 6. Map and paths of vehicles in the AutoQuarry case study

This property can be checked by UPPAAL SMC with
some modifications in the models, as suggested by
literature [10]. We first introduce a clock variable ta in
Wi, whose value is reset when ATManager.abort_id ==
i && ATManager.error_type == ERRORTY PE;
and a boolean variable b in Wi, whose value
is set to true when ATManager.abort_id ==
i&&ATManager.error_type == ERRORTY PE holds,
and to false as soon as Wi.trans_rolledback holds. The prob-
ability of the time-bounded leads-to property is then reduced
to checking the probability of: [] (Wi.b imply Wi.ta <=
RECOV ERY _DEADLINE), which holds over the
number of runs checked during analysis, and is specified as
the UPPAAL SMC query SQ1.2 in Table II. To ensure that
this query is not trivial, we also check that Wi.b is reachable,
via the query SQ1.1.

IV. A CASE STUDY
In this section, we present a case study to show the

applicability and usefulness of our UPPCART-SMC frame-
work. We consider the design-time verification for a system

model containing multiple construction vehicles that mine and
transport iron ores in a quarry autonomously. The workflows
of the vehicles are managed by a DBMS in the case study,
as workflow management is a typical application scenario of
database systems, and exemplifies complex real-time trans-
action management. Each vehicle is assigned a mission that
consists of a series of activities. For instance, an excavator
digs the ores at an assigned ore pit, and moves for charging
from time to time. A wheel loader scoops the ore from a pit,
transports them to a crusher, and travels to the power station
before moving back to the pit. If we represent the map as a
grid, a mission is actually a sequence of cells in the grid to be
visited. Fig. 6 presents the map of the quarry in our case study.
Six wheel loaders (L1, ..., L6) and three excavators (E1, E2 and
E3) are deployed in the quarry with their assigned missions.
For instance, L1 starts digging ores at at Cell 11, transports
to the crusher at Cell 41, after which it refuels at Cell 33,
before traveling back to Cell 11 and restarting its mission.
As illustrated in the figure, the vehicles do not share only the
crushers and the power stations, but also some cells as their
paths may overlap.

5

w1 c1 w2 c2 w3

Cell1 Cell2 Cell3

1 2 21 3

n: lock data Cell n

n: unlock data Cell n

start

c3
3T1 T2 T3

Mission

Tn: transaction representing passing Cell n
wn: writing operation on Cell n
cn: committing operation of Tn

Fig. 7. Illustration of collision avoidance through transactions and CC

Fig. 8. Excerpt of the UTRAN specification for L1 in IBM RSA

TABLE III. TRANSACTIONS IN THE COLLISION AVOIDANCE DBMS

Vehicle Dead-
line

Period Trans-
actions

Atomicity Isolation

L1 1500s 2000s 11 When G33 (charg-
ing) gets aborted,
redo G33

Vehicles should
not access the
power stations
and crushers
simultaneously.
In this case
study, as an
example, we
ensure that
transactions do
not access
Cells 33 (po-
wer), and
41(crusher),
simultaneously.

L2 2500s 3000s 15 When G65 (charg-
ing) gets aborted,
redo G12

L3 1700s 1700s 11 When G33 (charg-
ing) gets aborted,
redo G33

L4 2500s 2800s 17 When G65 (charg-
ing) gets aborted,
redo G33

L5 1900s 2000s 11 When G28 (charg-
ing) gets aborted,
redo G33

L6 1900s 2000s 11 When G28 (charg-
ing) gets aborted,
redo G33

E1 2000s 2100s 5 Not Applicable
E2 2200s 2400s 7 Not Applicable
E3 1900s 2000s 11 Not Applicable

Safety and productivity are the main concerns that need to
be verified when multiple vehicles are working simultaneously
and autonomously. First of all, it is crucial and challenging to
ensure collision avoidance between moving vehicles, during
their missions. In addition, to achieve desired productivity,
each vehicle is scheduled to operate its mission with a specific
period and by a given deadline, respectively. Since there are
more wheel loaders than excavators, for better productivity, it is
further required to allow the excavator to be charged whenever
necessary. Therefore, we assume that the excavators have a
higher priority than the loaders in their missions.

Write

Commit

Lock

Unlock

Activity in
the cell

cell

cell

Fig. 9. Automaton for transaction TL1G11

A. System Description

Our collision-avoidance system is designed to prevent
multiple vehicles from operating in the same cell
simultaneously, via concurrency control provided by a
central DBMS. The DBMS stores the map cells as data
objects, and is connected to every vehicle. Fig. 7 illustrates
the key idea of collision avoidance via concurrency control by
a DBMS. In this figure, the operation of a vehicle within a cell
is considered as a transaction, while each mission is treated
as a sequence of transactions. Before entering a cell, the
vehicle needs to lock the cell in the database by performing
a write operation on the data, such that no other vehicles
can enter. After the vehicle completes its work in the cell
(digging, charging, or traveling through the cell), it commits
the transaction before leaving the cell such that the cell is
unlocked. Even if another vehicle enters this unlocked cell
(before the committing vehicle entering the next cell), since the
committing vehicle is in full stop, these two are not operating
their tasks simultaneously and hence are considered safe. In
this scheme, each transaction contains a write operation on
the cell data, the moving and charging activity in the cell
with its best- and worst- case execution times, and a commit
operation before it commits. For instance, TL1G11 identifies
L1 accessing Cell 11, which is specified using UTRAN in Fig.
3. The mission of a vehicle contains a series of transactions.
For instance, the mission of L1 is a series as follows: <
TL1G11, TL1G21, TL1G31, TL1G41, TL1G312 , TL1G32, TL1G33,
TL1G23, TL1G13, TL1G12, TL1G112 >.

To ensure the immediate access of the high-priority vehicle,
we resort to applying a priority-based CC algorithm, Two
Phase Locking High Priority (2PL-HP) [11], which aborts
the low-priority transaction when two transactions try to lock
the same data. Since excavators E1, E2 and E3 have higher
priorities, the wheel loaders may be aborted when an excavator
enters the same cell, especially at the power stations. In this

6

situation, as a compensation, the wheel loader should restart
the charging transaction when the excavator finishes charging.

In Table III we list the missions of all vehicles, including
their end-to-end deadlines, periods, and number of contained
transactions. In total, the system incorporates 9 periodic mis-
sions, including 99 transactions, 6 compensation transactions,
and 60 data items. The atomicity and isolation requirements
are also listed. Atomicity mainly focuses on the compensation
of aborted charging transactions. Isolation emphasizes the
exclusive access to the power stations, which are the most
critical special cases of exclusive access to all cells. We
describe the transactions and the DBMS using UTRAN, in the
IBM Rational Software Architect (RSA) environment 1. Fig.
8 presents the UTRAN specification for the aforementioned
mission of L1, which contains 11 UML activities stereo-
typed as UTRAN transactions, and specifications for atomicity
and temporal correctness of these transactions. The complete
UTRAN descriptions are provided in the repository [9].

B. UPPAAL SMC Models

We constructed the UPPAAL STA models from the
UTRAN specifications using our tool. We obtain 9 STA for
the 9 missions, 99 STA for the 99 transactions, 6 STA for
the 6 compensations, respectively, as well as 1 STA for the
CC manager, 1 STA for the AR manager, and 9 respective
IsolationObservers for the isolation phenomena of two vehicles
entering the same critical cell. Fig. 9 shows the STA of TL1G11

that models wheel loader L1 working in Cell 11. The locking,
unlocking, writing and committing pieces, as well as the
basic structure of the transaction automaton, are constructed
by instantiating the predefined patterns. The automaton first
performs a write operation, including locking the cell that
the vehicle should enter. It then moves to the location of
the activity in the cell, which is associated with the time
bound of the activity. In the end, it commits the transaction
and sets the cell free. The CCManager STA receives locking
and unlocking requests from the transaction work units, and
performs the permission, rejection, or release of the locks. Fig.
10 shows an example of an IsolationObserver that monitors the
phenomenon when L1 and E1 enter the same power station
(Cell 33) simultaneously. It receives the messages when the
write and commit operations are performed by the transactions.
When the two transactions succeed in writing the same Cell
33, the observer moves to the isolation_phenomenon location.
Due to lack of space, the complete models, including the
CCManager, ATManagers, as well as other transactions and
phenomena, are presented in the online repository [9].

C. Analysis

The properties to be analyzed are formalized as UPPAAL
SMC queries according to Table II, and the statistical model
checking results are listed in Table IV. We select 300000 time
units (30000 seconds) as the time bound n in the queries,
because in this amounts of time, each vehicle should complete
at least 10 periods of its mission, which we consider adequate
for one complete work batch. In this case study, we consider
99.99999% is a sufficiently high threshold for the satisfaction
of the properties.

1https://www.ibm.com/developerworks/downloads/r/architect/index.html

Fig. 10. IsolationObserver that observes conflicts between L1 and E1

We verify the queries using UPPAAL SMC (version
4.1.19), on a PC with an Intel i7-4800MQ CPU (2.70GHz, 8
cores), 16GB memory, and Ubuntu 16.04 (64-bit). The analysis
results are also presented in Table IV, with a confidence
level set to be 0.99. The results show that both isolation and
timeliness of the transactions are satisfied with probabilities
higher than or equal to 99.99999%. In terms of atomicity,
L1, L2, L3, L5 and L6 are likely to get aborted during
their missions (analyzed via SQ1.1), but once this happens,
their respective compensation will be performed to maintain
consistency with sufficiently high probability (analyzed via
SQ1.2). As for L4, its mission is unlikely to be aborted. How-
ever, even if abortions happen, they will also be compensated
with acceptable probability. Therefore, the current design is
considered to satisfy the atomicity requirements.

Discussion: As a contrast to UPPCART-SMC, we also
modeled the system in the case study with UPPCART, and tried
to verify the properties using exhaustive model checking. The
analysis failed to reach a conclusion due to memory exhaustion
caused by state explosion, when the system reached 4 vehicles
and 18 transactions. Compared to UPPCART, our UPPCART-
SMC framework can deal with larger systems that contains
more vehicles and transactions (9 vehicles and 99 transactions
in this case). When the system scales up, longer analysis
time is expected, but memory exhaustion will not occur with
UPPCART-SMC.

V. RELATED WORK

A number of formal techniques have been developed for the
verification of transactions. For instance, transaction atomicity
of industrial workflow systems has been verified by Derks et al.
[12] using Petri nets. Lanotte et al. [13] have proposed to verify
atomicity and timing constraints of long-running transactions
using his timed-automata-based language. Our previous work
[5] has proposed an UPPAAL-based framework for the verifi-
cation of atomicity, isolation and temporal correctness. These
works exploit exhaustive verification, which is different from
our work that applies statistical model checking for analysis
while addressing complex transaction systems. Liu et al. [14]
have recently proposed using statistical model checking and
the tool PVESTA to analyze a distributed transaction protocol.
They analyze read atomicity and lost update of transactions,
which is a different focus if compared to our work.

Much work has been conducted to verify the correctness of
mission plans for autonomous agents. Saha et al. [15] verify the
collision avoidance of autonomous robots, whose movements
are planned by a central controller. Their controller is not
backed by a DBMS, and their verification approach is based on
SMT solving, which is different from ours. Kamali et al. [16]
and Saddem et al. [17] use UPPAAL to verify the correctness
of the paths of autonomous vehicles and robotics, respectively.

7

TABLE IV. VERIFICATION RESULTS OF THE CASE STUDY

Property ID UPPAAL SMC Query Runs Results Time

Time-
bounded
Atomicity

SQ1.L1.1
Pr [<= 300000] (<> L1.b)

24 [0.8019,1] 2126s

SQ1.L1.2
Pr [<= 300000] ([] (L1.b imply L1.ta <= 15000)) ≥ 0.9999999

458 satisfied 33657s

SQ1.L2.1
Pr [<= 300000] (<> L2.b)

74 [0.7665,
0.9642]

2166

SQ1.L2.2
Pr [<= 300000] ([] (L2.b imply L2.ta <= 25000)) ≥ 0.9999999

458 satisfied 33363s

SQ1.L3.1
Pr [<= 300000] (<> L3.b)

24 [0.8019,1] 872s

SQ1.L3.2
Pr [<= 300000] ([] (L3.b imply L3.ta <= 12000)) ≥ 0.9999999

458 satisfied 33374s

SQ1.L4.1
Pr [<= 300000] (<> L4.b)

133 [0.1648,0.3646] 8670s

SQ1.L4.2
Pr [<= 300000] ([] (L4.b imply L4.ta <= 25000)) ≥ 0.9999999

458 satisfied 34172s

SQ1.L5.1
Pr [<= 300000] (<> L5.b)

166 [0.4998,0.6991] 8018s

SQ1.L5.2
Pr [<= 300000] ([] (L5.b imply L5.ta <= 12000)) ≥ 0.9999999

458 satisfied 34712s

SQ1.L6.1
Pr [<= 300000] (<> L6.b)

172 [0.4285,0.6280] 8984s

SQ1.L6.2
Pr [<= 300000] ([] (L6.b imply L6.ta <= 13000)) ≥ 0.9999999

458 satisfied 36402s
Isolation SQ2 Pr [<= 300000] ([] not (O1.isolation_phenomenon ||...||O6.isolation_phenomenon))

≥ 0.9999999
458 satisfied 33266s

Timeliness SQ3 Pr [<= 300000] ([] not (L1.miss_deadline ||... || E3.miss_deadline) ≥ 0.9999999 458 satisfied 33924s

The difference of our case study lies in the concurrency control
provided by a DBMS, as well as that we apply statistical model
checking to achieve better scalability.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a framework for the

analysis of large scale database management systems. The pro-
posed UPPCART-SMC framework, built on top of our previous
work, models the transactions and transaction management
mechanisms as a network of stochastic timed automata, such
that the atomicity, isolation and temporal correctness can
be analyzed by UPPAAL SMC. We have demonstrated our
framework via a case study, in which we analyze the correct-
ness of a collision avoidance system for multiple autonomous
construction vehicles. The case study involves a large number
of transactions and data, which are formally modeled and
analyzed using our framework. The verification proves that
the desired properties are satisfied with acceptable confidence,
in terms of probabilities.

Better tool automation, especially a full tool chain that
covers the high-level specification of the DBMS and automated
generation of formal models, as well as heuristic based selec-
tion between UPPCART and UPPCART-SMC, is one of the
future works that can improve the applicability of our frame-
work. Another future work is to integrate code verification for
the C functions in the UPPAAL models. Currently, we assume
that the functions encoding the algorithms are implemented
correctly. In the future, such code can be verified with existing
program verifiers.

Acknowledgment: The Swedish Research Council (VR) is
gratefully acknowledged for supporting this research by the
project “Adequacy-based Testing of Extra-Functional Proper-
ties of Embedded Systems”.

REFERENCES

[1] S. Han, K.-Y. Lam, J. Wang, K. Ramamritham, and A. K. Mok, “On co-
scheduling of update and control transactions in real-time sensing and
control systems: Algorithms, analysis, and performance,” IEEE TKDE,
vol. 25, pp. 2325–2342, 2013.

[2] J. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers Inc., 1992.

[3] K. Ramamritham, “Real-time databases,” Distributed and Parallel
Databases, vol. 1, no. 2, pp. 199–226, 1993.

[4] S. Cai, B. Gallina, D. Nyström, and C. Seceleanu, “A formal approach
for flexible modeling and analysis of transaction timeliness and isola-
tion,” in Proceedings of the 24th RTNS. ACM, 2016, pp. 3–12.

[5] ——, “Specification and formal verification of atomic concurrent real-
time transactions,” in Proceedings of the 23rd PRDC. IEEE, 2018, pp.
104–114.

[6] H. L. Younes, “Verification and planning for stochastic processes with
asynchronous events,” Carnegie-Mellon University, Tech. Rep., 2005.

[7] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen,
“UPPAAL SMC tutorial,” STTT, vol. 17, no. 4, pp. 397–415, 2015.

[8] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” STTT,
vol. 1, no. 1, pp. 134–152, 1997.

[9] S. Cai. Statistical model checking for real-time database management
systems: Repository. Password: etfa2019. [Online]. Available: https:
//www.idt.mdh.se/~sica/repo/

[10] M. Lindahl, P. Pettersson, and W. Yi, “Formal design and analysis of
a gear controller,” in TACAS. Springer, 1998, pp. 281–297.

[11] R. K. Abbott and H. Garcia-Molina, “Scheduling real-time transactions:
A performance evaluation,” ACM TODS, vol. 17, pp. 513–560, 1992.

[12] W. Derks, J. Dehnert, P. Grefen, and W. Jonker, “Customized atomicity
specification for transactional workflows,” in The Proceedings of the
3rd CODAS, 2001, pp. 140–147.

[13] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, and A. Troina, “Model-
ing long-running transactions with communicating hierarchical timed
automata,” in Formal Methods for Open Object-Based Distributed
Systems. Springer, 2006, pp. 108–122.

[14] S. Liu, P. C. Ölveczky, K. Santhanam, Q. Wang, I. Gupta, and
J. Meseguer, “Rola: A new distributed transaction protocol and its
formal analysis,” in FASE, 2018, pp. 77–93.

[15] I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia,
“Automated composition of motion primitives for multi-robot systems
from safe ltl specifications,” in Proceedings of the 2014 IROS. IEEE,
2014, pp. 1525–1532.

[16] M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and S. M. Veres,
“Formal verification of autonomous vehicle platooning,” Science of
Computer Programming, vol. 148, pp. 88–106, 2017.

[17] R. Saddem, O. Naud, K. G. Dejean, and D. Crestani, “Decomposing
the model-checking of mobile robotics actions on a grid,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 11 156–11 162, 2017.

[18] R. A. Elmasri and S. B. Navathe, Fundamentals of Database Systems.
Addison-Wesley Longman Publishing Co., Inc., 2004.

[19] A. Adya, B. Liskov, and P. O’Neil, “Generalized isolation level defini-
tions,” in Proceedings of the 16th ICDE, 2000, pp. 67–78.

8

