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Abstract—Real-world applications are composed of multiple
subtasks which have data dependencies in general. To exploit
distributed processing platforms, subtask matching and schedul-
ing, which consist of assigning subtasks to machines and ordering
inter-machine data transfers, plays a vital role. However, optimal
scheduling subtasks to machines and finding optimized network
topology is an NP-complete problem. The problem will be more
complicated when the subtasks have real-time deadlines for
termination. Exploring the whole search space in order to find
the optimal solution is not feasible in a reasonable amount of
time, therefore meta-heuristics are mostly used to find a near-
optimal solution. We propose a multi-population evolutionary
approach for near-optimal scheduling and topology optimization
that guarantees end-to-end deadlines of subtasks in distributed
processing environments. In this paper, two different exploration
scenarios including single and multi-objective exploration have
been analyzed. The main aim of single objective exploration
algorithm is to achieve the minimal number of processing ma-
chines for all the subtasks, where a multi-objective optimization
tries to optimize two objectives simultaneously consisting the
total number of processing machines and end-to-end finishing
time for all the jobs. The potential of the proposed approach is
demonstrated by experiments based on an industrial automation
use case for mapping a number of jobs, each of which consists
of a number of tasks to a distributed environment.

Index Terms—Distributed Task Scheduling, Real-Time Pro-
cessing, Evolutionary Computing, Topology Optimization

I. INTRODUCTION

Industrial applications often require guaranteeing real-time
execution, fault tolerant implementations and providing re-
liable functionality. In general, it is impossible for a sin-
gle processing machine to satisfy all these needs. However,
a distributed processing environment provides a variety of
computational capabilities, which can be utilized to perform
an application that has diverse execution requirements. An
application job can be decomposed into subtasks. Subtasks
may have data dependences and it is possible that each subtask
needs a certain computational throughput. For distributing
subtasks, the following decisions should be made respectively:
1© subtasks matching, i.e. assigning subtasks to processing

machines, and 2© subtasks scheduling, i.e. defining subtask
execution order and the order of data transfers among ma-
chines. The general goal of subtasks matching and scheduling
is to minimize the end-to-end cost of computation, i.e. min-
imizing overall response time of the application, minimizing
the number of processing machines, or both.

Performance of such parallel systems can be optimized
by employing an efficient task matching and scheduling ap-
proach, however, the matching and scheduling problem is an
NP-complete problem [1]. Using exhaustive approaches for

finding optimal solution is time-consuming and is impossible
in practice. Many heuristic task scheduling strategies have
been proposed [2], [3] to find a near-optimal solution in a
resealable amount of time. Evolutionary Computing (EC) is a
set of methods proposed to solve the matching and scheduling
problem. Genetic Algorithm (GA) is a popular EC method
which can better locate a near-optimal solution than other
similar approaches in most cases [4]–[7]. Although GA is a
powerful solution, defining a proper fitness function is always
challenging and requiring expertise especially when the size
of design space is huge. Plus, GA is relatively slow and may
be trapped in local optima.

To overcome aforementioned challenges, Multi-Population
Genetic Algorithm (MPGA) [8] is leveraged in this research
for subtask matching and scheduling in a collection of nonuni-
form processing machines. MPGA is a static scheduling
strategy, where the execution times of subtasks and the data
transfer times between subtasks are known. MPGA is the
parallel version of GA that provides better convergency rate
and more speedup compared to single population GA. In
addition, MPGA highly reduces the probability of falling into
local optima trap. Two different MPGA strategies have been
considered to solve the matching and scheduling problem
including single objective and multi-objective optimizations.
While the single objective optimization minimizes the num-
ber of processing machines, the multi-objective optimization
considers the second metric, jobs total finishing time, to find
solutions satisfying multiple user needs.

In nutshell our main contributions are:

• Presenting a MPGA optimization method for solving
subtask matching and scheduling problem in a distributed
environment.

• Defining a novel fitness function to efficiently explore the
design space in both single and multi-objective optimiza-
tions.

• The evaluation results based on an industrial use case
shows the impact of the proposed fitness function while
converging to better solutions.

The paper is organized as follows. Section II defines the
matching and scheduling problem and the industrial use case.
Section III explains the GA and the specifications of fitness
functions for both single objective and multi-objective opti-
mizations. Section IV presents the experimental results and
demonstrates the efficiency and convergency of the proposed
algorithm. Some related work reviewed in Section V. We end
with concluding remarks and future work in Section VI.



Fig. 1. Representing a Job Sample From the Industrial Use Case (Job #7).

II. PROBLEM DEFINITION

A. Problem Assumption

To only focus on the matching and scheduling problem, we
made the following assumptions. First of all, we assumed that
each subtask is written in a machine-independent language.
Moreover, it is assumed that an application job is decomposed
into multiple subtasks and we know all the data dependencies
among subtasks before execution. The load complexity of
all the subtasks and their execution time on each processing
machine is known a priori. It is assumed that for each subtask,
there is a couple of input nodes that produces raw input data
(sensors) and there are some output nodes which consume
subtasks processing results (actuators). Obviously the input
of subtask is coming from sensors or the output of other
subtasks and similarly the output results of each subtask will
be consumed by actuators or other subtasks. The distributed
processing platform is nonuniform that consists of multiple
homogeneous machines with various processing potential. All
the processes on processing machines are non-preemptive
meaning each processing machine completes the current task
before calling the next task.

Also, all input data items of a subtask must be received
before its execution can begin, and none of its output data
items is available until the execution of this subtask is finished.
If a data conditional is based on input data, it is assumed to be
contained inside a subtask. A loop that uses an input data item
to determine one or both of its bounds is also assumed to be
contained inside a subtask. When two communicating tasks
are mapped onto the same processing machines we assume
that the communication delay is zero. However, when they
are mapped onto different processors a finite communication
delay is assumed and modeled. Fig. 1 shows the dependency
graph between subtasks of a job example from the industrial
use case (see Section II.A).

B. Industrial Use Case

@Cristina: I also attached Fig 2, job table

III. MPGA DESCRIPTION

GA is an iterative population-based exploration solution
mimicking the process of natural selection and evolution

where the characteristics of the process can be utilized in
solving optimization problems. All GA-based methods have
an initial population where selection, crossover, mutation oper-
ators are applied to initial population for producing improved
population. The operations will be repeated until satisfying
user criteria (reaching suitable results) or meeting predefined
number of iterations. The following subsections explain the
basic components of GA.

a) (Step 0) Generating Initial Population: The initial
population includes random solutions in the design space,
where each solution represented by chromosome is a schedul-
ing for all the jobs. The size of initial population depends on
the size of design space. To check the validity of solutions in
the initial population, each solution is examined by using the
Equation (1) objective function.

b) (Step 1) Fitness Evaluation: Objective function (fit-
ness function) is a metric for comparing different scheduling
that satisfy problem constraints. Equation (1) and Equation (2)
represent the fitness functions for single-objective and multi-
objective optimizations, respectively.

Fitness 1 = #Processors+ (γ × (α+ β + θ)) (1)

Fitness 2 =
#Processors

γ
+

Runtime

BiggestDeadline
+3×(α+β+θ)

(2)
α is the total extra loads of all subtasks that exceed the

load of processing machines, β is the total extra deadline of
all subtasks that exceed the real-time deadlines, θ is the total
extra ports of all job assignments that exceed the number ports
pf processing machines, and γ is equal to 23, the total number
of processing machines. BiggestDeadline is the maximum
possible time fo the slowest subtask.

c) (Step 2) Selection: Obviously the schedules with
better fittest function are selected as the next population and
the others will be removed from population set. The goal is
to find a solution in design space with lowest fitness function.

d) (Step 3) Crossover Operators: is the most important
operator of GA. GA randomly selects two genomes from
the population set based on a certain crossover rate. Then
two genome strings exchange parts of their corresponding
chromosomes to create two new genomes. In the use case
example the chosen jobs scheduling are exchanged with the
other scheduling on corresponding processor for producing
two new schedules with most likely better schedules. Fig. 3
illustrates the representation of the all jobs scheduling by a
genome type. Each genome consists of 42 portions since the
use case has 42 different subtasks. All possible assignments
to processing machines for each subtask which is equal to 23
(γ).

e) (Step 4) Mutation Operator: The main goal of
mutation operator is to increase genetic diversity. Mutation
alters one gene value (assigned processor to subtask) in a
chromosome string from its initial state. The solution may
be better or even worst solution by using mutation. Mutation



Fig. 2. Representing The industrial Use Case Including Jobs, Intra Subtasks Subtasks Dependencies, Subtasks Load Complexity and Real-time Deadlines,
and Processing Machines Specifications.
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Fig. 3. Representing a Valid Matching and Scheduling by GA/MPGA
Chromosome Type.

forces GA to get rid of local optima. For doing mutation, we
need to randomly select one gene in chromosome and modify
its assigned value to a new valid number.

After each cycle of selection, crossover and mutation, the
newly generated set of solutions (schedules) is called as new
generation. Every generation is evaluated based on the fitness
function to determine if they represent a good enough solution
to satisfy the fitness function. This determines if the GA
can stop searching, or if otherwise, for the GA to continue
searching until the set stopping criteria is met. The stopping
criteria could be the number of generations, or evolution
time, or fitness threshold, or fitness convergence, or population
convergence. In our case, the number of generations was set as
the stopping criteria. The schedule obtained after the stopping
criteria will be the optimal or near optimal schedule.

A. MPGA Algorithm

Although EC methods can improve the quality of results,
using them have some difficulties. First of all, an evolutionary
algorithm may not converge towards the optimal solutions
or even to near-optimal solutions in the case of very huge
exploration space. One possible solution is to increase the

Fig. 4. Multi-population Migration Operation.

initial population size, but leading to increase the execution
time of evolutionary algorithms. Parallelizing these algorithms
can remarkably diminish their execution time and improve the
quality of results. In the parallelized GA, multiple processors
work together where each one runs a simple GA and has an
independent populations. After a predefined number of itera-
tions, all processors share their best chromosomes among each
other (migration operation). The whole parallel procedure is
called MPGA. Sharing the best individuals aids the MPGA
to get avoid of local optima. Fig. 4 represents the behavior
of the MPGA and the flowchart of consequent operations is
shown in Fig. 5. The pseudocode of MPGA is presented in
Algorithm 1.

The inputs of proposed meta-heuristic optimization ap-
proach include: 1© the specification of processing machines



Fig. 5. Flowchart of MPGA.

including maximum processing potential, the total number
of input/output ports, and 2© the specifications of jobs and
subtasks including load complexity, run-time deadlines, and
subtask dependencies.

IV. EVALUATIONS

This section presents the results of experiments that have
been fulfilled to verify the impact of the proposed MPGA
on the industrial use case. The evaluations have been done
based on two different optimization strategies including single
objective and multi-objective optimizations.

A. Implementation Detail

MPGA is implemented in C++ and MPI library has been
utilized for parallelization. Ring topology is used for connec-
tions between processors for running MPGA. For the imple-
mentations, an Intel Core i7-4770 CPU 3.40 GHz with 16.0
GB RAM running on 64-bit Windows 10 has been used. Seven
cores have been leveraged in the parallel implementation. The
specification of MPGA parameters is shown in Table I.

B. Experimental Results Convergency

One of the main limitations of evolutionary algorithms is
decreasing the convergence speed by increasing the number
of iterations leading to make non-convergent results in low
iterations for difficult problems. Fig. 6 and Fig. 7 represent
the convergency of fitness functions for both single and multi-
objective, respectively. It can be easily observed from the
convergency figures that both strategies are highly convergent
toward the optimal results by contentious reduction in fitness
functions (se Equation (1) and Equation (2)).

Algorithm 1: Pseudo Code of MPGA
Input: • Processor Pi: 1 ≤ i ≤ # Processors
• Distributed Processing Machines Specifications
• Jobs and related Subtasks Specifications
• N : Population Size
• T : Maximum Number of Iterations
Output: A Set of Near-Optimal Solutions
Function MPGA(N , T):

(Step 0): U i,0= Random Population (N);
//Creating initial random population and assign to
each Pi
(Step 1): Fitness Function (U i,0); //Evaluating
the objectives of each solution in the all
populations
t = 1;
while t ≤ T | SatisfyingUserNeeds do

(Step 2): U ′i,t = Select (U i,t); //Select some
chromosomes from the U i,t randomly.
(Step 3): U ′′i,t = Crossover (U ′i,t)
(Step 4): Y i,t+1 = Mutation (U ′′i,t)
(Step 1): Fitness Function (Y i,t+1);
(Step 5): if
Iterations%MigrationGap == 0 then

Select the best chromosome from Y i,t+1
Send the best chromosome to Pi+1
Receive the best chromosome from Pi-1

t = t+ 1;
return Y i,t+1

TABLE I
MPGA ALGORITHM PARAMETERS.

Parameter Value
N: Initial Population Size (Each Processor) 100

# Populations 15
Total # Iterations 750
Crossover Rate

Mutation One-Point Mutation
Migration Rate 3
Migration Gap 25

a) Single Objective Optimization: Fig. 8 illustrates the
variation trend of total number of utilized processing machines
by increasing the number of iterations. As mentioned before,
the aim of single objective optimization is to decrease the
number of processing machines used in jobs scheduling. Fig. 8
shows considerable improvement in finding scheduling with
less required processing machines. According the results of
Table II, we need 22 processing machines for scheduling in the
first iteration, while by proceeding the exploration algorithm,
we found a solution with only seven required processing
machines. Although there exist some breaks in continuous
improvement, the overall trend moves toward improvement.

b) Multi-Objective Optimization: As mentioned before,
the total number of processing machines and end-to-end
runtime for all the jobs are the two main objectives of MPGA.



TABLE II
EXPERIMENTAL RESULTS COMPARED TO ...

Exploration Approach Runtime # Processing Machines
Single Objective 250 7

Equation(1)
Solution 1©: 210 7

Multi-Objective Solution 2©: 250 8
Equation(2) Solution 3©: 160 9

Fig. 6. Convergency Diagram of Single Objective Optimization (# Processing
Machines).

Fig. 9 and Fig. 10 illustrate the convergency figures of required
processing machines for scheduling and end-to-end runtime
for all the schedule jobs, respectively. We can conclude from
the figures that both the objectives are approaching toward
optimized results. Although there are some failures or stops
in achieving better results in each iteration, the overall Progres-
sion of MPGA always approaches toward superior outcomes
(Fig. 11).

Table II shows three different solutions on the Pareto frontier
of the last Population. We have a variety of options based on
the user needs. Solution 1© is an scheduling with minimized
number of processing machines (7 processing machines) while
takes more time, 210 time unit, for running. On the other
hand, Solution 3© provide the minimum elapsed end-to-end
runtime (160 time unit), while needs 9 processing machines
for running.

C. Comparison Between MPGA and simple population GA

For evaluating the impact of multi population optimization
on the matching and scheduling problem, The results of single
objective optimization has been achieved by leveraging single
population scheme. On the other hand, the results of multi-
objective optimization has been achieved by using MPGA.
We compared MPGA and simple GA schemes in terms

Fig. 7. Convergency Diagram of MPGA (# Processing Machines, End-to-End
runtime).

Fig. 8. Convergency Diagram of Single Objective Optimization.

of exploration time and quality of results in the following
sections.

a) Exploration Time and Speedup: Fig. 9 and Fig. 2
represent the convergency of processing machines for MPGA
and single population GA, respectively. MPGA achieve the
best result after 400 iterations, while single population GA
needs 750 iterations for finding the best solution. Obviously
converging to the best result needs in less number of iterations
by using MPGA which is the best proof to show the benefits
of applying the MPGA, especially when the design space is
large.

b) Quality of Results: According to the results of Ta-
ble II, MPGA found a solution with 7 required processing
machines and 210 time unit for total runtime execution, while
single population GA found a solution with the same required
processing machines but takes 250 time unit for total runtime.



Fig. 9. Convergency Diagram of # Processing Machines in Multi-objective
Optimization by Using MPGA Approach.

Fig. 10. Convergency Diagram of End-to-End runtime in Multi-objective
Optimization by Using MPGA Approach.

MPGA provides more quality of results compared to single
population GA even single population GA tries optimize only
one objective.

D. Comparison Between MPGA and ...

E. Matching and Scheduling Results

Fig. 12 illustrates the best scheduling results for the studied
use case after applying MPGA. Fig. 12.a represents a valid
scheduling for all jobs and their related subtasks with mini-
mum end-to-end runtime (Solution 3©). Fig. 12.b represents a
valid scheduling for all jobs and their related subtasks with
minimum number of processing machines (Solution 1©).

V. RELATED WORK

Here, we first explore more traditional list scheduling
heuristics that have considered communication costs.

Fig. 11. Improvement Proceeding of Exploration Objectives Including The
Number of Processing Machines and End-to-End Use Case Runtime.

The basic idea is to make an ordered list of nodes by
assigning them orders, and then to repeatedly execute the
following two steps until a valid schedule is obtained: 1©
Select from the list the node with the highest order for
scheduling. 2© Select a processor to accommodate this node.
In realistic cases, scheduling needs to exploit parallelism by
identifying the task graph structure and take into consideration
task granularity, arbitrary computation, and communication
costs.

In [9], the modified critical path algorithm (MCP) is pro-
posed, based on the latest possible start time of a node. A
node’s latest possible start time is determined via the as-
late-as-possible (ALAP) binding by traversing the task graph
upward from the exit nodes to the entry nodes while pulling
the node’s start times downwards as much as possible. The
latest possible start time of the node itself is followed by
a decreasing order of the latest possible start times of its
successor nodes. Furthermore, in [9], the dominant sequence
clustering algorithm (DSC) is presented. It is based on the
dominant sequence, which is essentially the critical path of
the partially scheduled task. CP (the critical path of task
graph) node is a ready node. If so, DSC schedules it to a
processor allowing the minimum start time. Such a minimum
start time may be achieved by rescheduling some of the node’s
predecessors to the same processor. If the highest CP node
is not a ready node, DSC does not select it for scheduling.
Instead, it chooses the highest node which lies on a path
reaching the CP for scheduling. Moreover, also in [9], the
mobility directed algorithm (MD) is presented. MD selects a
node at each step based on relative mobility which is defined
as the difference between a node’s earliest start time and latest
start time. Similar to the ALAP binding, the earliest possible
start time is assigned to each node via the as-soon-as-possible
(ASAP) binding. This is performed by traversing the task
graph downward from the entry nodes to the exit nodes while
pulling the nodes upward as much as possible. Moreover,
relative mobility is obtained by dividing the mobility with the



Fig. 12. (a): The Best Solution For Multi-Objective Optimization with Minimum End-to-End Runtime (Solution 3©). (b):The Best Solution For Multi-Objective
Optimization with Minimum Number of Processing Machines (Solution 1©)

nodes computation cost. Basically, a node with zero mobility
is a node on the CP. At each step, MD schedules the node
with the smallest mobility to the first processor having a large
enough time to accommodate the node without considering the
minimization of the nodes start time. After a node has been
scheduled, the relative mobility values of the remaining nodes
are updated.

In [10], a MPGA is presented which outperforms determin-
istic and nondeterministic methods described in [11], [12].
In [13], a new encoding mechanism with a multi-functional
chromosome is presented, using a priority representation that
is called priority- based multi-chromosome (PMC). PMC
can efficiently represent a task schedule and assign tasks to
processors. It is another meta-heuristic method that uses a GA
to achieve near-optimal scheduling of tasks.

Research on static mapping methods includes the work
of Lei et al., who proposed a genetic mapping algorithm
to optimize application execution time [14]. In their work,
graphs represent applications and the target architecture is a
NoC. Wu, et al. also investigated genetic mapping algorithms
[15]. By combining dynamic voltage scaling techniques with
mapping, they achieved 51% savings in energy consumption.
Murali et al. explored mappings for more than one application
in NoC design, using the tabu search (TS) algorithm [16].
Manolache, et al. investigated task mapping in NoCs, trying
to guarantee packet latency [17]. For this purpose, both the
task-mapping algorithm (TS) and the routing algorithm are
defined at design time. Hu et al. presented a branch-and-bound
algorithm to map a set of IP cores (IPs) onto a NoC with
bandwidth reservation [18]. Their results show energy savings
of 51.7% in the communication architecture. Marcon et al.
investigated how to map modules into a NoC, targeting low
energy consumption [19]. They compared several algorithms,
using a model that characterizes applications by their inter-
task communication volume. Xu et al. In [20] presented a
task scheduling scheme on heterogeneous computing systems

using a multiple priority queues genetic algorithm (MPQGA).
Their experimental results for large-sized problems for a
large set of randomly generated graphs as well as graphs
of real-world problems with various characteristics showed
that the proposed MPQGA algorithm outperformed two non-
evolutionary heuristics and a random search method in terms
of schedule quality.

VI. CONCLUSION AND FUTURE WORK

Leveraging a distributed environment for task scheduling
can enhance reliably and provide a fault tolerant processing
scheme. However, there are some difficulties in distribut-
ing application jobs and scheduling them among processing
platforms and usually leads this applications to suffer from
inefficient performance. The problem will be more highlighted
when we need to deal with subtask dependencies, nonuniform
processing environment and requiring to guarantee real-time
execution. In this paper, a parallel Multi-Population Genetic
Algorithm (MPGA) is leveraged to overcome aforementioned
barriers. For the evaluations, an industrial use case has been
studied. The final results offer a better resource efficiency
while guaranteeing real-time execution. In addition, MPGA
provides better efficiency compared to other cutting-edge
evolutionary approaches.
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