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Václav Struhár1, Mohammad Ashjaei1, Moris Behnam1, Silviu S. Craciunas2, and Alessandro V. Papadopoulos1

1Mälardalen University, Västerås, Sweden
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Abstract—In this paper we address a network architecture
that uses a combination of network virtualization and software
defined networking in order to reduce complexity of network
management and at the same time support high quality of service.
Within this network architecture, we propose a framework to
be able to dynamically distribute the network bandwidth to
various services such that the network resources are utilized
efficiently. In many industrial domains, multiple services may
use the same hardware platform for the sake of a better
resource utilization. Therefore, bandwidth distribution among
the services should be done in an efficient way during run-
time. We also develop an admission control in this framework
which dynamically coordinates the bandwidth distributions based
on requested quality of services. We show the applicability of
the proposed framework by implementing it on a common SDN
controller. Moreover, we conduct a set of experiments to show
the performance of the proposed framework.

I. INTRODUCTION

With the advent of Industrial Internet of Things (IIoT),
where manufacturing processes are monitored and supported
by a tremendous number of devices, the need for flexible
and efficient resource management in industrial networks is
gaining its importance [1]. The emergence of IIoT brings
intensification of resource sharing in physical networks, in-
troduce new challenges in flexible network reconfiguration
and challenges in providing various Quality of Service (QoS)
levels in a physical network. To address these issues, both
industry and research community are considering a combi-
nation of two emerging technologies, which are Network
Virtualization (NV) [2] and Software Defined Networking
(SDN) [3]. NV finds its roots in computing virtualization
mechanisms where multiple virtual machines are running on
a same hardware platform. Through NV a physical network
is partitioned into several logical networks, known as slices,
which are isolated and managed separately. Moreover, SDN
on top of the NV provides an architecture in which the
slices are managed via a centralized point without knowing
the underlying physical network details. We use the term
virtualized SDN for the described architecture throughout this
paper. In this architecture, each network slice is managed
by an SDN controller, and commonly the SDN controllers
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have different requirements when coordinating their associated
slices.

Motivation. Commonly, in IIoT applications resources are
limited, both in computation and in communication resources.
Therefore, in the context of communication resources, sev-
eral IIoT devices share a physical network to communicate.
Although, the virtualized SDN architecture provides means
in managing network resources, not much attention has been
paid in supporting dynamicity of resource utilization which is a
prominent factor in IIoT applications. Several works have pro-
posed similar architectures focusing on QoS provisioning [4],
network timing properties in real-time communication [5] and
creating network slices according to application requests [6].
On the other hand, there are very few works addressing a fully
dynamic network resource allocation in industrial systems. In
this paper, we only focus on the network bandwidth as the
resources could be energy or other constraints. For instance,
the proposal in [7] attempts to develop an admission control
in an SDN controller in order to bound the network bandwidth
utilization for multiple network services. Nevertheless, the
proposal is limited to a small network architecture without any
”smart” decision making algorithms for efficient bandwidth
allocation.

Contributions. In this paper, we propose a framework,
which we name it dynamic bandwidth distribution (DART),
based on a virtualized SDN architecture which makes the fully
dynamic bandwidth allocation on a physical network feasible.
Moreover, we propose an admission control mechanism to
distribute the network bandwidth during run-time based on
the QoS level requested by the IIoT devices. The admission
control mechanism resides within the proposed framework. We
also show the applicability of the proposed framework on a use
case study where the proposed admission control mechanism
is implemented within a well-known SDN controller. Finally,
we conduct a set of experiments to present the performance
of the implemented framework and mechanism.

Organization. The rest of the paper is organized as follows.
Section II briefly describes the background and related work.
Section III presents DART framework and the bandwidth dis-
tribution mechanism. Section IV presents the use case, while
Section V shows a set of experiments. Finally, Section VI
concludes the paper with future directions.



II. BACKGROUND AND RELATED WORK

In this section we introduce the basic concepts of SDN
and network virtualization as well as a survey in the area of
dynamic bandwidth management.

A. Software Defined Network

SDN helps to decrease the complexity of network man-
agement by decoupling network control and forwarding func-
tions [8]. Network control is handled in a centralized manner
by an SDN controller that has a complete knowledge of
the network. SDN is comprised of three layers (Fig. 1): a)
The Application layer consists of SDN business applications
written in common languages controlling the underlying SDN
enabled devices via the SDN controller, b) The Control layer
fetches various statistics from the physical devices (usage
statistic, topology details, state details) and enables commu-
nication between SDN applications and SDN devices, and
c) The Infrastructure layer is composed of physical SDN
switches. The OpenFlow [9], [10] protocol enables commu-
nication between SDN controllers and network devices. The
aim of the OpenFlow protocol is to overcome the proprietary
systems of network hardware vendors and create a set of
communication instructions for the interconnection of multiple
vendors devices.

SDN switches contain hierarchically-chained flow tables
defining rules and actions for handling incoming network
traffic by SDN controllers. Flow tables are comprised of the
following fields [10]:

• Match fields: The match fields consist of ingress ports,
packet header fields, VLAN, priority and metadata.

• Actions: Actions to be performed for the matched data
frame (e.g., forward data frame to a predefined port, drop
the frame, send the frame to the controller). The actions
can be chained in more complex actions.

• Counter: Statistic for matching data frames including
count of data frames and their total sizes.

• Priority: Used if the incoming frame satisfies multiple
match fields.

Every time a frame is received by an SDN enabled switch,
the frame header is extracted and matched with records in local
flow tables. If the match is found, the corresponding action is
triggered. Otherwise, a copy of the frame is forwarded to the
SDN controller that decides an action for the incoming frame.
The action together with the matching rule is returned to the
switch that stores in the flow table.

B. Network Virtualization

The need for service isolation and diverse resource re-
quirements within one physical network brings the topic
of network virtualization into the focus of the researcher
community [11], [12]. Network virtualization enables the
coexistence of multiple logical networks sharing the same
underlying physical network [2]. One technique in this context
is network slicing [13] where there is a division of the shared
physical network into multiple logical isolated sub-networks
(slices). Besides being isolated from each other, slices may
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Fig. 1: SDN Architecture separates a network into tree layers:
Application, Control and Infrastructure layer.

be optimized for different purposes (e.g., high bandwidth
HD video streaming, low latency video gaming) [13]. Slicing
allows infrastructure providers to adapt the sharing of the
underlying physical network to customer requirements while
at the same time providing isolation of the network resources.
Network virtualization requires a Network Hypervisor which
creates an abstraction layer on the top of physical hardware
and allows the creation of virtual networks.

C. Bandwidth management

There are several resource reservation techniques in proces-
sor and communication domains which most of them focus on
static reservation of bandwidth. For instance, in the processor
domain, supporting multimedia applications [14] and hierar-
chical reservation techniques [15] are presented, whereas in
the distributed level communication bandwidth reservation for
multimedia systems [16], adaptive QoS control [17] and D-
RES platform to support end-to-end timing [18] are presented.

In the context of using SDN architectures, Seokhong et
al. [6] extended FlowVisor, as the network hypervisor, to guar-
antee the bandwidth requirements with an admission control
and traffic scheduling. Moreover, Tomovic et al. [19] present a
new SDN/OpenFlow control environment for dynamic adjust-
ment based on Quality of Service (QoS) provisioning. In this
solution, a centralized QoS SDN control system monitors the
state of the network and automatically manages and configures
network devices to provide the required QoS level for multime-
dia applications. There are several works, like HyperFlow [20],
Onix [21], Kandoo [22], and devolved controllers [23], that
use multiple SDN controllers on a single physical network (or
a slice), either in a distributed or layered approach, where
the orchestration goal between controllers is on controller
redundancy and load balancing. The main focus is therefore
to address the challenges that centralized SDN architectures
introduce (c.f. [24]) rather than address network management.
The closest work to this paper is a resource management
solution for virtualized SDN networks in which each slice
is governed by an SDN controller in terms of admission
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Fig. 2: An architecture of a system using DART framework.

control for incoming traffic [7]. However, the dynamicity was
limited to static parameters and the SDN controllers are not
communicating for a better decision on bandwidth allocation.
Nevertheless, the mentioned works either focused on static
bandwidth reservation or they proposed a level of dynamicity
in bandwidth management with different goal than reducing
resource utilization, which is the primary objective of DART.

III. DART: DYNAMIC BANDWIDTH DISTRIBUTION
FRAMEWORK

This section presents the concept of DART framework
as well as the proposed admission control mechanism. The
framework defines an overall concept to enable dynamic
bandwidth management of networks, while the admission
control mechanism, as part of the framework, facilitates the
functionality of dynamic bandwidth redistribution.

A. The DART Framework

The DART framework is a generic concept that can be
applied on any virtualized SDN architecture. Fig. 2 depicts
the DART framework on a virtualized SDN architecture. On
the left side of the figure, an architecture with several slices in
a physical network is shown. Note that in this architecture we
assume that the slices can share a part of the pysichal network
to increase the efficiency of utilizing the resources, however
the framework covers the cases with fully isolated slices as
well. The proposed framework is depicted on the right side
of the architecture, which consists of two main components: a
distributed component and a centralized component. Following
we describe the components in details.

The distributed component deals with synchronizing the
bandwidth management among the network slices. As each
SDN controller can only coordinate its own slice, it is essential
to have a general view of the network status when allocat-
ing the bandwidth. The distributed component ensures that
the SDN controllers collaborate on bandwidth management,
leading to a coherent bandwidth utilization. This component
contains two main modules, which are communication and
publishing modules. The communication module is responsi-
ble to send and receive information from and to the centralized
component. The publishing module is the counterpart of the

subscription module resided in the centralized component.
Moreover, the coordination between SDN controllers are done
using this component.

Another component in the framework is the centralized
component which is responsible to coordinate the decision
making for bandwidth allocation over the entire network. In
case the changes in the bandwidth is requesting locally in one
slice, the centralized component will decide on the allocation.
However, if there is a shared part of the network that requires
a change, SDN controllers need to negotiate on the bandwidth
allocation from their slices. The centralized component is then
responsible to advice the best possible bandwidth.

The admission control mechanism in this framework can
be activated by any signal from various sources, including
the load, priority and packet loss ratio, to start redistributing
the network bandwidth. In this paper, as an initial phase, we
specify priorities for the traffic to be sources of initiating
the redistribution. Each IIoT device can transmit traffic with
various priority levels depending on the QoS level it requires.
Based on the traffic priority, the device can request for higher
bandwidth during run-time. The details of this mechanism is
presented in the following section.

B. Admission Control Mechanism

Following the DART framework, the admission control
mechanism is divided into the centralized and distributed
components. The centralized component contains the logic
of the bandwidth management. The distributed component,
however, resides on top of the SDN controller to provide
information about the corresponding slices to the centralized
component.

The sending nodes decompose the data into multiple data
streams (see Fig. 3). The data streams can have different
priorities which are set by the sender nodes depending on
the importance of the data. Note that we consider only eight
priority levels accepted by Ethernet frame. The primary goal
of the admission control is to check the priority of the data
streams and allocate bandwidth for the links that the data
stream is transmitting. In order to do that the admission
control defines a priority limit. Any received data stream with
priority higher than the priority limit will be forwarded to its
destination, whereas the data streams with priority less than the
priority limit will be prevented for transmission. The priority
limit is defined in the centralized component of the admission
control for all slices. In a normal case, priority limits are equal
and thus the bandwidth is uniformly distributed among the
slices. If there is a request for priority limit change (detected
by a distributed component), the centralized component adjusts
the limits accordingly in order to a) increase bandwidth in the
requesting slice, b) keep the total bandwidth used by all slices
constant.

IV. USE CASE: SURVEILLANCE SYSTEM

To analyse the feasibility of the cooperation between the
SDN controllers and to show the application of the DART
framework, we present a use case of surveillance system in
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which the bandwidth is cooperatively adjusted based on traffic
priorities. We present a factory-wide surveillance system (see
Fig. 4), where the network is partitioned into several slices in
order to keep virtual network domains separated (e.g., shop
floor, administrative offices) and to allow to differentiate QoS
levels across the slices. However, some of the services needed
in both slices overlaps and must be available for both slices
simultaneously. In the surveillance system, devices (senders)
with attached cameras are transmitting video streams to a
centralized location (receiver) where the video streams are pro-
cessed and monitored by security guards in real-time. Senders
have limited processing capacity that allows to perform simple
motion detection algorithms. Based on the result they are able
to ask for higher bandwidth by increasing priority of the traffic.
SDN controllers monitor the corresponding virtual network
slices and allow only traffic of certain priority levels to pass.

We have simplified the use case and implemented it as
shown in Fig. 5. We consider three nodes. Two of them are
sending nodes that are transmitting a video stream to the
receiving node. The sending nodes are separated into two
virtual network slices, these devices have cameras connected
and periodically send sequences of images to the receiving
node that stores and analyses the images. The receiving node
resides in shared network slice and thus provides services for
both of the slices.

The bandwidth in the shared slices is limited. Thus, there
must be a traffic control in order to prevent network congestion
in the shared slice.

A. System Setup

For the implementation, the following hardware and soft-
ware components are used (see Fig. 5):

FlowVisor

SDN 1 SDN 2

FloodLight Controllers

S1 S2 Slice 2Slice 1

SDN Switch

R

Fig. 5: The experimental setup.

• Raspberry Pi (RPi) devices: One RPi located on shared
network slice acts as a data receiver, the rest of the RPi
devices are separated on different network slices used
as data senders. The data senders are connected to RPi
cameras.

• Aruba SDN enabled switch: Three ports are used
for connecting RPi devices, the fourth port is used for
connection to the laptop that provides network hypervisor
(FlowVisor) and SDN controllers (FloodLight).

• FlowVisor: FlowVisor is an OpenFlow controller serving
as a transparent proxy between OpenFlow switches and
SDN Controllers. It creates rich network slices defined by
any combination of switch ports, src/dst ethernet address
or type, src/dst IP address or type, and src/dst TCP/UDP
port or ICMP code/type [25].

• FloodLight: FloodLight is an Java based open-source
SDN controller offering a modular architecture that al-
lows to extend its functionality with custom tailored
applications.

B. System Implementation

The system requires implementation of four components:
sending node, centralized bandwidth controller, SDN con-
troller module and receiving node. With respect to DART,
the bandwidth controller acts as a centralized component
used for sharing states between the SDN controllers, and the
SDN controller module represents the distributed part of the
framework. The scheme of the implementation of the SDN
controller module and the bandwidth controller is depicted in
Figure 6.

The sending nodes are detecting motion in the video stream
and transmitting video frames with corresponding priorities.
The SDN controller modules are detecting priority changes in
received data, reporting it to the centralized bandwidth con-
troller, that decides the priority thresholds for corresponding
SDN controllers in order to deliver higher importance video
frames (with detected motion) with higher data rate to the
receiving node.

a) Sending nodes: The sending nodes are continuously
obtaining video frames, detecting movement, fragmenting the
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video frames into smaller segments and sending the segments
to the receiving node at a constant rate. Based on the detected
movement, the sender changes priorities of sent frames. The
following steps are taken:

• Motion detection: The implemented motion detection
algorithm compares a current video frame with the pre-
vious one, measures the amount of changed pixels and
compares it with a pre-set threshold. If a motion is
detected, the priorities in the sent data are increased.

• Video frame fragmentation: Due to payload limitation of
IEEE 802.1Q Ethernet Frames (1500 Bytes), the video
frame has to be fragmented into several frames. Payload
of each frame contains a header (id of video frame,
sequence of the the fragment, total) and video frame
fragment data.

• Traffic differentiation: To differentiate the traffic to help
SDN controllers to filter the data, the frames are uni-
formly distributed into data streams having priorities (0-
5). If a video frame is detected, the sender increases the
priority level of the traffic to (1-6).
b) SDN control: The FloodLight SDN controller is ex-

tended by a Java module that is governing incoming video
frame streams. Based on priorities of the incoming data and
limits imposed by the shared bandwidth controller, the data
is either accepted and a forwarding rule to the shared slice is
created, or the data transmission for particular priority level is
blocked. The module performs the following:

• Receiving frames and creating rules: The module is re-
ceiving Ethernet frames from the SDN switch that needs
actions to be resolved. Based on frame fields and custom
data header, the the action the frame (MAC address of
the sender, MAC address of the receiver, VLAN, priority)
is established. There are two actions that the module
can take: a) Create forwarding rule: Forward matching
packets to receiving node, b) Create dropping rule: Drop
matching packets.

• Collaborative admission control: The controller filters
data frames by creating flow rules based with cooperation
with the bandwidth controller.

c) Bandwidth controller: The bandwidth controller is im-
plemented as a Java based application that provides functional-
ity for a centralized bandwidth control, it provides REST API
to enable communication between the bandwidth controller
and the components distributed among SDN controllers. The
application keeps track of the traffic in virtual networks and
assigns priorities limits to distributed components residing
on the top of the SDN controllers. The priority limits are
assigned according to the Table I. The priority limits (S1 and
S2 priority) are changed based on detected movement (S1 and
S2 state).

d) Receiving node: The receiving node, located on the
shared network slices, is collecting video frame fragments
from the multiple slices, verifying data consistency and merg-
ing video frame parts in order to reconstruct the original
images.

V. EXPERIMENTAL RESULTS

The purpose of the experiment is to show the behavior of
the dynamic bandwidth allocation in sliced networks by a set
of SDN controllers that are communicating through shared
entity (the bandwidth controller). We consider transmissions
from each slice with different importance that is changing
dynamically during the experiment, in an event-based fashion.
We assume that the traffic triggered by specific events, e.g.,
motion detection or alerts, are high priority traffic.

The sending nodes are transmitting sequence of video
frames at a constant rate to the receiving node. The video
frames have been prerecorded. The network hypervisor and
two FloodLight controllers together with the shared band-
width controller application run in a single computer, thus
the network communication overhead between these entities
is negligible. The node on a shared slice is receiving and
reconstructing data. Also, the receiving node is recording all
the arriving frames. The size and the sender of the frame is
known, thus the network utilization can be reconstructed. The
parameters of the system are the following: Image size ∼ 40kB
(depends on the scene, the image sizes may differ slightly).

Fig. 7 shows the average network utilization over 20 runs of
the same experiment, in the case of no bandwidth adaptation
(Fig. 7a), and with bandwidth adaptation (Fig. 7b). In both
cases, between time 60 and time 120, a motion is detected,
and additional traffic is generated from the sending node 1.
In Fig. 7a, the bandwidth limit is exceeded for all the period
when the motion is present, while Fig. 7b shows that the SDN
controller 1 detects high importance traffic, and the system
increases the priorities for slice 1 and decreases the priorities
allowed for slice 2, resulting in a better allocation of the band-
width over the high-priority traffic. The reaction time from the

TABLE I: Priority limits.

S1 state S2 state S1 priority S2 priority
no movement no movement 4 4
movement no movement 6 2
no movement movement 2 6
movement movement 4 4
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Fig. 7: Average bandwidth utilization over 20 runs.

frame reception by the SDN controller, decision making by
the bandwidth controller to the alteration of the rules in SDN
switch is 60ms. The communication time between the SDN
controller and bandwidth controller is 3ms.

VI. CONCLUSION AND FUTURE WORK

Connection between network virtualization and Software
Defined Networking plays an important role in Industrial
Internet of Things due to the need for domain separation,
provision of various levels of QoS in a single physical net-
work and ability of dynamic network reconfiguration. Shared
segments of virtualized networks can be used for sharing
services and resources among separated segments. However,
in order for efficient usage and utilization of shared resources,
a collaborative approach must be set.

In this work, we introduced the DART Framework that
enables collaboration multiple SDN controllers among virtual-
ized networks. Subsequently, we implemented an use case of
a surveillance system that utilizes the Framework. he results
shows that SDN controllers can cooperatively take decisions
and prioritize and distribute the bandwidth between slices to
mitigate a congestion of shared resources. The Framework
introduced here does not have to be restricted to bandwidth
distribution only but it can be extended to support numerous
application that will benefit from the inter-slice collabora-
tion, e.g.: distributed access control lists, firewall and traffic
scheduling.

The DART Framework opens the door for a design of smart
algorithms for dynamic reconfiguration of the network that
can utilize proactive monitoring of the flow/port usages in the
separated virtual network.

REFERENCES

[1] E. Sisinni et al., “Industrial internet of things: Challenges, opportunities,
and directions,” IEEE Trans. Ind. Inf., vol. 14, no. 11, 2018.

[2] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[3] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Comm. Mag., vol. 51, no. 2, 2013.

[4] M. Karakus and A. Durresi, “Quality of service (QoS) in software
defined networking (SDN),” Journal of Net. and Comp. Appl., vol. 80,
no. C, 2017.

[5] K. Ahmed, J. O. Blech, M. A. Gregory, and H. Schmidt, “Software
defined networking for communication and control of cyber-physical
systems,” in ICPADS, 2015.

[6] S. Min et al., “Implementation of an OpenFlow network virtualization
for multi-controller environment,” in ICACT, 2012.
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