
A Cloud Based Super-Optimization Method to

Parallelize the Sequential Code’s Nested Loops
Amin Majd

Department of Information Technology
Åbo Akademi University

Turku, Finland

amin.majd@abo.fi

Mohammad Loni
School of Innovation, Design and

Engineering

Mälardalen University, Sweden

mohammad.loni@mdh.se

Golnaz Sahebi
Department of Information Technology

University of Turku

Turku, Finland

Golnaz.Sahebi@utu.fi

Masoud Daneshtalab
School of Innovation, Design and Engineering

Mälardalen University, Sweden
masoud.daneshtalab@mdh.se

Elena Troubitsyna

Theoretical Computer Science Department

KTH Royal Institute of Technology, Stockholm, Sweden
Elena.troubitsyna@abo.fi

Abstract— Advances in hardware architecture regarding

multi-core processors make parallel computing ubiquitous. To

achieve the maximum utilization of multi-core processors, parallel

programming techniques are required. However, there are several

challenges standing in front of parallel programming. These

problems are mainly divided into three major groups. First,

although recent advancements in parallel programming languages

(e.g. MPI, OpenCL, etc.) assist developers, still parallel

programming is not desirable for most programmers. The second

one belongs to the massive volume of old software and

applications, which have been written in serial mode. However,

converting millions of line of serial codes to parallel codes is highly

time-consuming and requiring huge verification effort. Third, the

production of software and applications in parallel mode is very

expensive since it needs knowledge and expertise.

Super-optimization provided by super compilers is the process

of automatically determine the dependent and independent

instructions to find any data dependency and loop-free sequence

of instructions. Super compiler then runs these instructions on

different processors in the parallel mode, if it is possible. Super-

optimization is a feasible solution for helping the programmer to

get relaxed from parallel programming workload. Since the most

complexity of the sequential codes is in the nested loops, we try to

parallelize the nested loops by using the idea of super-

optimization. One of the underlying stages in the super-

optimization is scheduling tiled space for iterating nested loops.

Since the problem is NP-Hard, using the traditional optimization

methods are not feasible.

In this paper, we propose a cloud-based super-optimization

method as Software-as-a-Service (SaaS) to reduce the cost of

parallel programming. In addition, it increases the utilization of

the processing capacity of the multi-core processor. As the result,

an intermediate programmer can use the whole processing

capacity of his/her system without knowing anything about

writing parallel codes or super compiler functions by sending the

serial code to a cloud server and receiving the parallel version of

the code from the cloud server. In this paper, an evolutionary

algorithm is leveraged to solve the scheduling problem of tiles. Our

proposed super-optimization method will serve as software and

provided as a hybrid (public and private) deployment model.

Keywords— Parallel Programming; Cloud Computing; Super

Compiler; Speedup; Diophantine Algorithm

I. INTRODUCTION

Multi-core processors provide a rich computing capacity
and from which a wide range of application domains can
benefit. For maximizing the utilization of multi-core
environments, parallel programming is required since the serial
codes only take one core for the processing, while the other
cores are idle. On the other hand,
parallel programming is time consuming and requires deep
knowledge of hardware, compiler, performance profilers and
code parallel patterns. Many high-level parallel programming
libraries have been proposed to overcome the parallel
programming challenges, however, they are expressive and
inefficient [15] [1].

Leveraging super-optimization technique provided by super
compilers is an alternative solution. Super compilers are
dynamic code optimizers that run the independent parts of the
code on available cores in parallel. However, using super-
compiler has programming overhead since it needs expertise to
work with super-compiler functions. The problem will be more
highlighted when different programming languages have
different super compilers.

Cloud computing provide new processing and delivery
model for IT service. Cloud-based services are device-
independent, on-demand, and cost-efficient. Plus, Cloud
improves the performance of the QoS parameters such as
reliability, scalability, resource utilization, system throughput,
response time, system stability and power
consumption. Software-as-a-Service (SaaS) is a software
delivery scheme in which the software is delivered via web.
SaaS helps organizations avoid capital expenditure and let them
focus on their core business instead of support services such as
IT infrastructure management, software maintenance, etc.

Nested loops are more complex than the other normal
instructions which they are highly prevalent in the most
application programs. Therefore, they can be parallelized to
reduce execution times. We will parallelize them as a SIMD
method [4] and [5]. Some prior works [2] [17] [20] tried to
provide compiler services on the cloud. Although cloud-based
compilers are effective, they just help users by reducing the

http://wiki.c2.com/?SuperCompiler

price of service and/or faster compilation for huge codes size
and cannot help users to run applications in parallel mode.

Converting nested loops into parallel mode is done via the
following steps: (1) Creating a timetable to save loop data
dependencies [13]. (2) Tiling the iteration space for achieving
better parallelization performance. A tile is a set of loop
iterations running on the same processor. (3) Generating
parallel code corresponding to the shape and size of produced
tiles automatically for the iteration space of step 2. (4) In the
last step, we need to schedule the tiling space of the former step.

In this paper, we propose a super-optimization technique
provided as SaaS to tackle the challenge of super compilers and
benefit from cost-efficient SaaS solutions. In the proposed code
optimization paradigm, the programmer sends the sequential
codes to the cloud, then receive the parallel version of the code.
This paradigm avoids programmers from deep understanding of
code parallelization leading to decrease development time and
increase the utilization of the processing capacity of the system.
The users who can benefit from the proposed SaaS super-
optimization are divided into four categories including: (1)
programmer who can write program only by serial approaches.
(2) Owner or programmer of any program or software who
cannot rewrite them by parallel techniques. (3) Users or
programmers who cannot work with super compilers. (4) Users
or programmers who cannot buy super compilers. Since the
scheduling of tiling space is an NP-Hard problem, we leveraged
a customized multi-population genetic algorithm (MPGA)
approach to efficiently explore the design space in a reasonable
time.

Contribution. In this paper we propose a super-
optimization method provided as SaaS that parallelize the
nested loops of the program to diminish the complexity of
writing parallel code for programmers. This code compilation
paradigm simultaneously provides improved compile time, run
time, space storage, and the price. In addition, we used MPGA
to provide a fast and near-optimal scheduling.

Paper Organization. The paper is organized as following:
Section II represents the background needed for our work.
Section III reviews the related research work. Details of the
proposed method are presented in Section IV. Section V
presents the experimental results. Conclusions are presented in
Section VI.

II. BACKGOUNDS

A. Cloud Computing

Cloud computing is a model for enabling omnipresent
network access to a shared pool of unlimited computing
resources. This enable the end users to access the cloud
computing resource anytime from any platform, such as mobile
cellphone to high-performance the desktop computers [2].
Cloud advantages are including reducing setup costs of
applications, easy recovery, and scalable environment [3].

The systems architecture of the cloud computing includes
multiple components communicating with each other over the
application programming interfaces. Such as the philosophy of
UNIX, it has multiple programs that each does one thing well
and work together over general interfaces. Cloud platforms

mainly provide three services categorizing as: 1) SaaS
(Software-as-a-Service), 2) PaaS (Platform-as-a-Service), and
3) IaaS (Infrastructure-as-a-Service) [2]. SaaS provides a
software for users that is installed on the cloud servers and users
utilize it over the internet. Software can be accessed via the
network for different clients. In this processing paradigm,
clients usually do not require to software installation, instead it
is enough to have a browser or other client device and network
connectivity. Due to the benefits of SaaS, we provide the super
compiler application as a SaaS, uploaded in a local server.

Four available deployment models of cloud are listed as
follows: private cloud, public cloud, community cloud and
hybrid cloud. Any subscriber can access to the public cloud
with an internet connection. A specific group or organization
can access to the private cloud, and a permission is issued to
access for resource of the cloud. Community cloud is
collaborative cloud infrastructure that is shared between several

organizations with common profits. A hybrid cloud is
fundamentally a combination of at least two clouds. In this
paper, we utilize the hybrid cloud to enable everyone to access
to the cloud.

B. Super-optimization

A super compiler is a program optimizer that transforms the
code of a program with the objective of reduction the running
time. Automated parallel, which is a kind of super compilers, is
an application that gets serial code, and converts it to parallel
code in order to run on several processors in the shared memory
multi-processor machines. The goal of automatic parallelization
is to release the programmers from writing parallel code that
cause to waste a lot of time and energy. The main attention of
the programmers is to focus on the nested loops in the programs,
because the loops get the most section of a program’s runtime.
In the engineering applications, the loop parallelism is the most
important task toward code parallelization.

1. for (p = 6; p < q; p++)

2. y[p] = y[p-1] + I ;

p=6 p=7 p=8

y[6] = x[5] + I y[7] = y[6] + I y[8] = y[7] + I

Fig. 1. Dependent loope

1. for (p= 1; p < q; p++)

2. y[p] = y[p] + I;

p=6 p=7 p=8

y[6] = y[6] + I y[7] = y[7] + I y[8] = y[8] + I

Fig. 2. Independent loop

In numerical programs, the first step in detecting loop level
parallelism is testing data dependency which is needed to detect
parallelism in programs. The data dependency exists between
two adjacent data references if both references access the same
memory location, and at least one of them is a write access (Fig.
2). Diophantine equation is a polynomial equation usually with
two or more unknown variables, such that only
the integer values are considered as the acceptable
solutions. Diophantine equations are utilized to checks if there
is any data dependence in the codes or not. If there is any

https://en.wikipedia.org/wiki/Polynomial_equation
https://en.wikipedia.org/wiki/Equation
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Zero_of_a_function#Polynomial_roots

dependency, the next phases will not run. If it does not have the
data dependency, the next phases will run. If a loop does not
have any data dependence between any iterations (Fig. 1), it can
be safely executed in the parallel mode. We can fragment the
parts of the serial code and give them to the different processors
to compile faster. In the non-numerical programs, the other
control structures are also important. Here are some examples
to realize it better:

1. For (i=1; i< 1000; i++)

2. For (j=1; j< I ; j++)

3. {

4. For (k=j ; k< I ; k++)

5. d=X[i+2k+5, 4k-j]

6. X [i-j,i+j]=…

7. }

Fig. 3. Complex nested loop

In this example, there is a probable data dependence
between S1(𝑖1, 𝑗1, 𝑘1) and 𝑆2(𝑖2, 𝑗2). The equations that must
be solved are:

𝑖1 + 2𝑘1 + 5 = 𝑖2 − 𝑗2

4𝑘1 − 𝑗1 = 𝑖2 + 𝑗2

(1)

The values of (𝑖2 , 𝑗2, 𝑘2) rise from the solution of the above
equations on the basis of the different values of (𝑖1 , 𝑗1 , 𝑘1). It
is obvious that only the values between loop bounds are
acceptable. The admissible values are illustrated in Table I.
How to compute iterations that are data depended is a major
problem here. Equations resulting from subscripts equality can
be solved to resolve this problem, such that the values for
computed indices to sink and source dependence are identical.
It is essential that the resultant indices be within the
corresponding loop bounds. Fig. 3 illustrates the nested loop
problem [6], [7], [8], [9], [10], [11], [12], [13].

TABLE I. DEPENDENCY SOURCE AND VECTOR AND SINK

Dependence source

(𝒊𝟏 , 𝒋𝟏 , 𝒌𝟏)

Dependence sink (𝒊𝟐, 𝒋𝟐) Distance vector

(16, 1, 12) (46, 1) (30, 0)

(16, 1, 13) (49, 2) (33, 1)

(16, 1, 14) (52, 3) (36, 2)

(16, 1, 15) (54, 4) (39, 3)

(16, 1, 16) (58, 5) (42, 4)

(16, 3, 16) (48, 1) (32, −2)

… … …

C. Multi-Population Evolutionary Optimization

Evolutionary Computing is a set of methods proposed to
solve the allocation and scheduling problem. Genetic
Algorithm (GA) is a popular EC method which can better locate
a near-optimal solution than other similar approaches in most
cases [22]-[25]. In the procedure of GA, individuals with better
solutions have higher possibilities to appear in next generations.
The GA-based algorithms generally consist of the following

components: Chromosome, genetic population, fitness
function, genetic operators including mutation and cross-over.
Although GA is a powerful solution, defining a proper fitness
function is always challenging and requiring expertise
especially when the size of design space is huge. Plus, GA is
relatively slow and maybe trapped in local optima [26].

MPGA is a static scheduling strategy, where the execution
times of tasks and the data transfer times between tasks are
known. MPGA is the parallel version of GA that provides better
convergence rate and more speedup compared to single
population GA [26]. In addition, MPGA highly reduces the
probability of falling into local optima trap.

III. RELATED WORK

Abdulla S. et al. proposed cloud-based compiler [2] with the
private cloud implementation. The software compiles the
program and returns the output to the user. The software has
been provided for the end users by using a SaaS cloud. Their
software contains a text editor and a terminal with an option to
the users to select the compiled program language. Compared
to [2], we proposed a cloud-based super compiler providing
more functionality and flexibility.

Ansari [17] proposed an online compiler trying to decrease
the portability problems and storage space by using cloud
computing. The programmers benefit different cloud-based
compilers in order to picking up the fastest and/or the most
convenient compiler. Also, the overhead of installing the
compiler on each computer is avoided. Although these
advantages make application ideal for online conducting
compilation/examinations, they do not offer super compilation
service.

Patel [20] proposed an online Java compiler. The main goal
of this compiler is to provide Java developers with online
compiler that write a java program and compile/debug it.
Therefore, the client machine doesn’t need java development
kit (JDK). The aim of this work is to help programmers to
reduce the problems of code portability. Like similar previous
works, this tool does not support super compilation.

Zefreh et al. [18] proposed a tiling and scheduling nested
loops techniques with dependencies by awareness of
computational capacity of the processing nodes. In addition,
they developed a theoretical model to estimate the parallel
execution time of tilled nested loops. Since the tile sizes play a
key role to improve the performance of nested loops, they
proposed a tiling genetic algorithm using the proposed model
to find the near-optimal tile size.

Zefreh et al. [19] addressed the nested loops parallelization
on partially connected heterogeneous distributed systems. In
addition, they proposed a topology and power-aware tile
mapping approach to parallelize nested loops. Besides
considering the node’s computational power, the exploitation
of the network topology has been considered during assigning
tiles to processing nodes. Their proposed approach minimizes
the execution time by better the load balancing and minimizing
the data transferring cost.

Inter-nest data locality is the data locality between a pair of
loop nest. Stencil processing pattern is a class of loop nests with

a considerable inter-nest data locality. Seyfari et al. [21]
proposed EALB, an automatic approach to optimize inter-nest
data locality for the stencils. EALB partitions two “compute”
and “copy” loop nests within the time loop nest of the stencils
into blocks to be executed interleaved. They used an
evolutionary method to determine the optimum block size by
using the cache miss rate and the cache eviction rate.

The main step of loop parallelization is finding iterations of
the loop that do not exist any data dependence between them
[6], [7], [8], [9], [10], [11], [12] and [13].

IV. PROPOSED WORK

The main goal of this work is to present a cloud base super
compiler as SaaS to solve the following problems: 1) create an
easier and more popular method to generate parallel codes from
serial codes by an automatic converting method. 2) Prevent to
rewrite a serial code to a parallel code. 3) Helping programmers
who cannot work with super compilers to create their parallel
codes. 4) Providing a super-optimization method as a cloud-
based SaaS to offer an inexpensive solution for the
programmers who cannot buy super compilers.

A. System Architecture

In this paper, a cloud service has been simulated by
connecting eight PCs together with a switch. A virtual machine
(VMWare) has been utilized to connect them such as a cloud
center. Thus, the client PC sends its serial code, which contains
the nested loop, to the cloud center, next cloud center receives
it, and analyzes it to find any data dependency. The Cloud
center utilizes the Diophantine equations to find dependent and
independent data, and afterward selects independent data to
create a parallel code to run them. Fig. 4 illustrates the proposed
system architecture.

Cloud based Supercompiler

User Interface

Log IO

SAAS Cloud API

Services

SAAS Cloud Architecture

Data Center

Host
Portal

Tenant
Portal

User Account

Paid System

Compiling File Management

Dependency Checking

User Management Loging Data Model

Role Management Event Notification Exception Handeling

E
x
te

rn
a

l /
 In

te
rn

a
l T

ra
ffic a

n
d

 P
o

licy
 E

n
fo

rc
e

m
e

n
t

Fig. 4. System architecture

B. General Overview of the Proposed Strategy

The proposed processing paradigm of the cloud-based super
compiler is illustrated in Fig. 5. In the first phase, the cloud
center receives a serial code from clients (users) that obtains
some tasks. In this figure, the tasks with the same colors have
data dependency. There is not any data dependency between
two tasks with different colors. In the second phase, the cloud
base super-optimization finds any data dependency and divides
the tasks into the sub groups that they do not have any data
dependency. We used Diophantine equations to do this task.
Next, we schedule the independent task to the available cores
by using MPGA (see Section IV.C). In the final phase, our
application generates a parallel code and returns the parallel
code to the users. In this phase, we can create a parallel code
only with having index of each sets. For example, if we have a
set of tasks such as A={𝑇17 ,𝑇18 ,𝑇19 ,𝑇20}, then we will have an
index set of members of set A, named B= {17, 18, 19, 20}. We
can define a certain processor to run this task one by one. Fig.
6 shows this compilation procedure, where core #1 has been
selected to run all the tasks in set A.

Server

Server Server Server Server

Serial code

The cloud based super compiler

Parallel code for independent data

Serial code Serial codeSerial code

Fig. 5. The cloud-based supercompiler

1. int size;

2. MPI_Comm_size (MPI_COMM_WORLD, & size);

3. int rank ;

4. MPI_Comm_rank (MPI_COMM_WORLD, & rank);

5. If (rank==1)

6. For (i=all numbers in B)

7. RUN (𝑇𝑖);

Fig. 6. A sample code for parallelizing all tasks in set A.

C. Task Scheduling by Using MPGA

GA is an iterative population-based exploration solution
mimicking the process of natural selection and evolution where
the characteristics of the process can be utilized in solving
optimization problems. All GA-based methods have an initial
population where selection, crossover, mutation operators are
applied to initial population for producing improved
population. The operations will be repeated until satisfying user
criteria (reaching suitable results) or stopping after a predefined
number of iterations.

Although GA methods can improve the quality of results,
using it have some difficulties. First, GA may not converge
towards the optimal solutions or even to near-optimal solutions
in the case of very huge exploration space. One possible
solution is to increase the initial population size but leading to
increase the execution time of evolutionary algorithms.
Parallelizing these algorithms can remarkably diminish their
execution time and improve the quality of results. In the
parallelized GA, multiple processors work together where each
one runs a simple GA and has an independent population. Fig.
7 represents the flowchart of MPGA. Moreover, the following
subsections explain the basic components of MPGA.

1) Encoding
The Tile-to-processor assignment matrix is used for

encoding the chromosomes, as proposed by [27]. This matrix
shows the processor assignment to the available tiles for the
nested loops.

2) Generating Initial Population
 The initial population includes random solutions in the

design space, where each solution represented by chromosome
is a scheduling for all the jobs. The size of initial population
depends on the size of design space (see Table II).

3) Fitness Evaluation
Objective function (fitness function) is a metric for

comparing different scheduling that satisfy problem
constraints. Inspired by [27], Equation (1) represents the fitness
functions for evaluating the individual for task scheduling. The
goal of Fitness (s) is to reduce the execution time of all tiles.
Therefore, makespan (s) represents the total time duration for
executing all current scheduled tiles which is described in
Equation (2).

Fitness (s) =
1

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝑠)
 (1)

makespan (s)= max (CompilationTime (J)),

 J∈ Tiled IterationSpace

(2)

4) Selection Operator
In this paper, we used the Roulette wheel selection and the

Tournament selection methods for selecting parent
chromosome.

5) Crossover Operator
Inspired by [27], the K-point crossover method or the

uniform crossover method is leveraged for crossing the selected
pairs with each other.

6) Mutation Operator
The mutation operator is applied through using either the

bit-flipping or gene-swap method, inspired by [27].

7) Migration Operator
After a predefined number of iterations, all the populations

share their best chromosomes among each other. Step 7 above
is specific to the parallel procedure. Sharing the best individuals
aids the MPGA to get avoid of local optima.

Fig. 7. The flowchart of MPGA

The proposed super-optimization method receives serial
code that is written with C++ and transforms this code to
parallel code, which is written with C++, and some parallel
instruction of MPI library. Fig. 8 illustrates a simple example
from a simple loop that has written by Borland C. Fig. 9
illustrates the parallel code of it, with MPI that generates from
our proposed method. Fig. 10 illustrates the more complex
nested loops in C that we want to parallelize it, and Fig. 11
indicates its parallel code that generate from our cloud-based
super compiler.

V. EXPERIMENTAL RESULTS

 In this section, we evaluate the quality, the efficiency,
and the accuracy of the proposed work. The evaluations are
based on the serial of two synthetic benchmarks described in
Fig. 8 and Fig. 10. The parallel code is generated by the super-
optimization method from the serial code. We achieved the
results based on the cluster network with four multi-core
processors. The specification of each processor is Intel Core i7
Processor 2.7 GHz, Windows 7 Home Premium (64-bit), and 16
GB Memory. The specification of MPGA parameters is shown
in Table II.

To run parallel codes, we use the MPICH2, the MPI codes
for the implementation. In the first benchmark, the number of
elements in the array is equal to 1000, and in the second
benchmark is equal to 10000. The results of the speedup and the
efficiency have been presented in Table III. Table III also
compares the results of the initial code (serial code) with the
final code (parallel code). Also, compare results of the initial
code (serial code) with the final code (parallel code). Fig. 12,
and Fig. 13 illustrate the achieved the speedup and the
efficiency of the proposed SaaS-based super compiler. This
indicates that our parallel code has an impressive efficiency,
and the suggested method is outstanding. We can claim that our
proposed method obtains considerable performance hat is a
very suitable choice for users to utilize it on the cloud. Fig. 13
indicates that our method’s efficiency will be better by growing
up the size of problem (by increasing the loop iterations).

TABLE II. MPGA PARAMETERS

Parameter Value

Migration Rate 10

Crossover 0.8

Mutation Rate 0.2

Population 250

Maximum

Iterations
10000

1. for (i = 0; i < n; i++)

2. A[i] = 2 * A[i];

Fig. 8. A serial code of an independent loope

1. MPI_Init (NULL , NULL) ;

2. int size ;

3. MPI_Comm_size (MPI_COMM_WORLD , &size) ;

4. int rank ;

5. MPI_Comm_rank (MPI_COMM_WORLD , & rank)

;

6. int p;

7. p = n / size;

8. if (rank != (size - 1))

9. for (i = rank * p ; i < (rank * p) + p ; i++)

10. A[i] = 2 * A[i];

11. else

12. for (i = rank * p ; i < n ; i++)

13. A[i] = 2 * A[i];

14. MPI_Finalize ();

Fig. 9. The derived parallel code from the serial code on Fig. 8

1. for (i = 0; i < n; i++)

2. for (j = 0; j < m; j++)

3. A[i][j] = A[i][j] + 1;

Fig. 10. The serial code of the indepence nested loop

1. MPI_Init (NULL, NULL);

2. int size;

3. MPI_Comm_size (MPI_COMM_WORLD, & size);

4. int rank;

5. MPI_Comm_rank (MPI_COMM_WORLD, & rank);

6. int p;

7. p = n / size;

8. if (rank != (size -1))

9. for (i = rank * p; i< (rank * p) + p; i++)

10. for (j = 0; j < m; j++)

11. A[i][j] = A[i] + 1;

12. else

13. for (i = rank * p; i< n; i++)

14. for (j = 0; j <m; j++)

15. A[i][j] = A[i] + 1;

16. MPI_Finalize ();

Fig. 11. Parallel code derived from serial code on Fig. 10.

Fig. 12. Speedup Diagram.

TABLE III. SPEEDUP AND EFFICENCY VALUES

Number

of

elements

Number of

processors

Serial

time

Parallel

Time

Speed

up

Efficiency

10000 2 1.26 0.82 1.52 0.76

100000 2 8.45 5.21 1.62 0.81

Fig. 13. Efficiency Diagram.

VI. CONCLUSION

Multi-core platforms have been developed, however, we
cannot utilize the whole provided processing capacity since
implementing and verification of common sequential codes are
highly time consuming and expensive. There have existed
several reasons that cause to produce this problem, like
difficulty of writing parallel programs, the inability of beginner
programmers, the high cost of rewriting the serial programs to
the parallel mode, the complexity of using the super compilers,
and the high price of the super compilers. To tackle these
challenges, we present an economical service provided as a
cloud-base SaaS. The proposed service is a customized super
compiler that automatically detect the independent parts of the
code and schedule/run them on different processing cores.
Since the most complexity of the programs is in their nested
loops, if we parallelize nested loops, we can achieve
considerable performance. The output is a generated parallel
code by MPI commands. The evaluating results shows the
effectiveness of the solution of the speedup and code efficiency.

REFERENCES

[1] T. Rauber and G. Riinger, “Parallel Programming for Multicore and

Cluster Systems, ” Springer- Verlag Berlin Heidelberg , 2013.

[2] S. Abdulla , S. Iyer and S. kutty “Cloud Based Compiler” International

Journal of Students Research in Technology & Management. Vol. 1, No.

3, pp. 308-322, 2013.

[3] K. K. Lavania, Y. Sharma, C. Bakliwal, “A Review on Cloud Computing

Model” International Journal on Recent and Innovation Trends in

Computing and Communication. Vol.1, pp. 161-163, 2013.

[4] B. Parhami, “Introduction to Parallel Processing Algorithms and

Architectures” Kluwer Academic Publishers , 2002.

[5] S. G. Akl, “The Design and Analysis of Parallel Algorithms” A Division

of Simon & Schuster, Englewood Cliffs. New Jersey , 1989.

[6] F. Baiard, D. Guerri, P. Mori, and L. Ricci, “Evaluation of a Virtual

Sshared Memory Machine by the Compilation of Data Parallel Loops”

8th Euromicro Workshop on Parallel and Distributed Processing, pp. 309-

316, IEEE, 2000.

[7] D.K. Chen and P.Ch. Yew. “On Eeffective Execution of Non-Uniform

Doacross Loops” IEEE Transaction on Parallel and Distributed System,

Vol. 7, pp. 463-476, IEEE, 1996.

[8] C. Eisenbeis and J.C. Sogno, “A General Algorithm for Data Dependence

Analysis” In International Conference on Supercomputing—Washington,

pp. 1–28, July 19–23, 1992.

[9] D.E. Maydan, J.L. Hennessy, and M.S. Lam, “Efficient and Exact Data

Dependence Analysis” Conference on Programming Language Design

and Implementation, Toronto, Ontario, Canada, pp. 1–10, June 26–28,

1991

[10] Ch.T. Wu, Ch.T. Yang, and Sh.Sh. Tseng, “PPD: A Practical Parallel

Loop Detector for Parallelizing Compilers” International Conference on

Parallel and Distributed System, pp. 280–281, Tokyo, 1996.

[11] Ch.T. Yang, Sh.Sh. Tseng, M.H. Hsieh, Sh.H. Kao, and M.F. Jiang. “Run-

Time Parallelization for Partially Parallel Loops” International

Conference on Parallel and Distributed Systems, pp. 308–309, Seoul,

1997.

[12] H. Zima and B. Chapman, “Super Compilers for Parallel and Vector

Computers” Addison-Wesley, 1991.

[13] S.Parsa and Sh. Lotfi, “A New Approach to Parallelization of Serial

Nested Loops Using Genetic Algorithms,” The Journal of

Supercomputing, Springer,36, 83–94, 2006.

[14] R. V. Ahmadabadi and A. Majd, “Cloud Based Super Compiler, ”

4𝑡ℎ International conference on information technology management,

comunication and computer, 233-239, Tehran, Iran, 2014.

[15] Robison, Arch, Michael Voss, and Alexey Kukanov. "Optimization via

reflection on work stealing in TBB." In 2008 IEEE International

Symposium on Parallel and Distributed Processing, pp. 1-8. IEEE, 2008.

[16] Mitchell, Neil. "Rethinking supercompilation." In ICFP, vol. 10, pp. 309-

320. 2010.

[17] Ansari, Aamir Nizam, Siddharth Patil, Arundhati Navada, Aditya

Peshave, and Venkatesh Borole. "Online C/C++ compiler using cloud

computing." In 2011 International Conference on Multimedia

Technology, pp. 3591-3594. IEEE, 2011.

[18] Zefreh, Ebrahim Zarei, Shahriar Lotfi, Leyli Mohammad Khanli, and

Jaber Karimpour. "Tiling and Scheduling of Three-level Perfectly Nested

Loops with Dependencies on Heterogeneous Systems." Scalable

Computing: Practice and Experience 17, no. 4 (2016): 331-350.

[19] Zefreh, Ebrahim Zarei, Shahriar Lotfi, Leyli Mohammad Khanli, and

Jaber Karimpour. "Topology and computational-power aware tile

mapping of perfectly nested loops with dependencies on distributed

systems." Journal of Parallel and Distributed Computing (2019).

[20] Patel, Mayank. "Online java compiler using cloud

computing." International Journal of Innovative Technology and

Exploring Engineering (IJITEE), ISSN (2013): 2278-3075.

[21] Seyfari, Yousef, Shahriar Lotfi, and Jaber Karimpour. "Optimizing inter-

nest data locality in imperfect stencils based on loop blocking." The

Journal of Supercomputing 74, no. 10 (2018): 5432-5460.

[22] Hou ESH, Ansari N, Hong R. A genetic algorithm for multiprocessor

scheduling. IEEE Transactions on Parallel and Distributed Systems

1994;5(2):11320.

[23] Hwang RK, Gen M. Multiprocessor scheduling using genetic algorithm

with priority-based coding. Proceedings of IEEE conference on elec-

tronics, information and systems; 2004.

[24] Wu AS, Yu H, Jin S, Lin K-C, Schiavone G. An incremental genetic

algorithm approach to multiprocessor scheduling. IEEE Transactions on

Parallel and Distributed Systems 2004;15(9):82434.

[25] Majd, Amin, et al. ”NOMeS: Near-optimal meta-heuristic scheduling for

MPSoCs.” Computer Architecture and Digital Systems (CADS), 2017

19th International Symposium on. IEEE, 2017.

[26] Majd, Amin, Golnaz Sahebi, Masoud Daneshtalab, Juha Plosila, Shahriar

Lotfi, and Hannu Tenhunen. ”Parallel imperialist competitive

algorithms.” Concurrency and Computation: Practice and Experience 30,

no. 7 (2018): e4393.

[27] Hajieskandar, A., Shahriar Lotfi, and Simin Ghahramanian. "Two Level

Nested Loops Tiled Iteration Space Scheduling By Changing Wave-Front

Angles Approach." International Journal of Advanced Research in

Computer and Communication Engineering 1, no. 3 (2012): 126-133.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6662
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6662

