
Classification of PROFINET I/O Configurations
utilizing Neural Networks

Bjarne Johansson1,2, Björn Leander1,2, Aida Čaušević2, Alessandro V. Papadopoulos2, Thomas Nolte2

1 ABB Industrial Automation, Process Control Platform, Västerås, Sweden
2 Mälardalen University, Västerås, Sweden

{bjarne.johansson, bjorn.leander}@se.abb.com,
{aida.causevic, alessandro.papadopoulos, thomas.nolte}@mdh.se

Abstract—In process automation installations, the I/O system
connect the field devices to the process controller over a fieldbus, a
reliable, real-time capable communication link with signal values
cyclical being exchanged with a 10-100 millisecond rate. If a de-
viation from intended behaviour occurs, analyzing the potentially
vast data recordings from the field can be a time consuming and
cumbersome task for an engineer. For the engineer to be able
to get a full understanding of the problem, knowledge of the
used I/O configuration is required. In the problem report, the
configuration description is sometimes missing. In such cases it
is difficult to use the recorded data for analysis of the problem.

In this paper we present our ongoing work towards using
neural network models as assistance in the interpretation of
an industrial fieldbus communication recording. To show the
potential of such an approach we present an example using an
industrial setup where fieldbus data is collected and classified. In
this context we present an evaluation of the suitability of different
neural net configurations and sizes for the problem at hand.

I. INTRODUCTION

The analysis of network data using Machine Learning (ML)
techniques for, e.g., anomaly detection [1], or application
classification [2], is an active research area [3]. However, in
the domain of Industrial Automated Control Systems (IACS),
especially within the Operation Technology (OT) network,
it has not been widely explored, except of a few recent
exceptions mostly found within the security domain, e.g., [4],
[5]. During testing as well as after system commissioning,
faults can occur in an I/O system. It is a common task for
a support engineer to analyze recorded fieldbus data when
troubleshooting such errors. When performing an analysis,
it is essential to know the signal map, i.e., the signal value
distribution in the recorded packets — needed for finding
deviating signals in the recording. The I/O configuration
provides this information. It is difficult to deduce information
about the I/O configuration manually, due to the amount of
recorded data needed to be recorded to understand the pattern.

In this work, we propose a solution that utilizes deep neural
networks as an aid for determining the I/O configuration from
a log containing recorded cyclic PROFINET I/O [6] data.
PROFINET I/O is an Ethernet-based fieldbus and one of the
most commonly used with a large installed base.

This work is funded by The Knowledge Foundation (KKS), project ARRAY,
and by The Swedish Foundation for Strategic Research (SSF).

The contribution of this paper is twofold. First, we show that
it is possible to use deep learning to recognize and classify
I/O configurations by analyzing recorded PROFINET data.
Second, to find a suitable model for our problem concerning
neural network size, we empirically assess appropriate config-
urations and sizes. Additionally, we provide future direction
for addressing analysis of communication recordings.

The paper is organized as follows. In Section II we describe
the background and the system used in our work. Section III
focuses on the test execution and presents the result, followed
by Section IV in which we look at earlier, related work, and
discuss our result. Finally, Section V, concludes the paper.

II. BACKGROUND

A. System description

Fig. 1 shows a schematic of the modular ABB Select
I/OTM [7] system. From a conceptual level, it is composed
of (from bottom to top):
• I/O Modules, that connects directly to the process input

and output signals. Currently 4 major types of I/O mod-
ules exist: Analog Input and Output modules (AI/AO)
and Digital Input and Output modules (DI/DO).

• Redundant GIS880 modules summarizing data from con-
nected I/O modules. Each redundant GIS880 module can
at most serve 16 I/O modules.

• Redundant CI845 modules forwarding data from the
GIS880 upward in the chain. Each CI845 can at most
serve 12 GIS880 per Modulebus. A CI845 can therefore
serve up to 3 · 12 · 16 = 576 I/O modules at most.

• CI871 modules forwards data from CI845 to the logi-
cal controller unit. Each CI871 can serve a number of
CI845s.

One can notice that the number of possible permutations of
I/O configurations per CI845 units is large (5764 > 1011).

The I/O-modules communicate with the CI845 using the
Modulebus communication bus. The CI845 transforms com-
munication to the PROFINET format and forwards data to the
CI871, which in turn is connected to the control system and
the high level Distributed Control System (DCS). Modulebus
is an ABB proprietary communication bus used to enable
communication between the fieldbus condensing unit, in this



CI871

Controller

CI845
CI845

I/O 1 I/O 2 I/O 3 I/O n

WiresharkSnooping data

GIS880

Physical process

Fig. 1. System setup of the ABB Select I/OTM.

case, the CI845, and the GIS880. PROFINET I/O is one of
the leading Ethernet based fieldbus communication standards.
PROFIsafe [8] is a standard related to PROFINET I/O tailored
for safety-critical communication.

In this paper we use Wireshark1 as a network protocol
analyzer, to collect and analyze the traces of the system.

B. ML implementation techniques

In order to analyze the traces collected with Wireshark, we
have implemented a neural network, implemented in Keras2,
a high-level neural network API that can be interfaced with
different ML platforms, e.g., Tensorflow3 [9].

Since the main objective of this work is to recognize and
classify I/O configurations from the PROFINET data, we
have designed a Multi-Layered Perceptron (MLP) [10] neural
network, and used it as a classifier.

In the MLP, each node is a Threshold Logic Unit (TLU),
and each node in layer ` is connected to all the nodes in the
next layer ` + 1, as shown in Fig. 2. Each node in the MLP
has a set of n inputs xi ∈ R, each one with a given weight
wi ∈ R. The output y of a node is computed based on the
weighted sum of the inputs:

a =

n∑
i=1

xiwi (1)

1https://www.wireshark.org/
2https://keras.io/
3https://www.tensorflow.org/

1

2

...

ni

1

2

3

...

nh 

1

...

no

 

Input
layer

Hidden
layer(s)

Output
layer

Fig. 2. An illustration of Multi-layered Perceptron.

and on an activation function so that:

y = fact(a) (2)

The vector of all the weights in the network w must be
assigned with a value that depends on the application at hand,
and this requires a training phase of the MLP, based on
some labeled data. The weights w are updated by presenting
learning data to the network, i.e., sets of input-values v
combined with well known target values t. The weights for the
vectors are updated by applying a backpropagation algorithm.
For one weight this is described as:

wk+1 = wk − α(t− y)v (3)

where k refers to the k-th iteration of the backpropagation
algorithm, t is the target output, y is the actual current output
based on input values in vector v. The constant α, is called
the learning rate, and indicates how big the changes of the
weights will be for each iteration.

In order to avoid the problem of overfitting, there is a
method named Dropout [11], that can be applied to an input
vector to a layer, during each pass of training:

v′ = Dropout(ρ,v) (4)

which will set a fraction ρ, (0 < ρ < 1) of the values in
v to zero. In this way an amount of noise is added to the
relationship between layers and the training-data, reducing the
risk of overfitting.

III. EXAMPLE/TEST SETUP

In this section, we describe the test environment along with
the configuration classes. We also explain the implementation
of the learning algorithms and we describe how we extract the
learning and verification data.

A. Experimental setup
The I/O system used for the experiment is the ABB Select

I/OTM described in Section II. Permutations of DO and AO
modules in three positions is used for generating data. The
high integrity version of the I/O is used since that utilizes
PROFIsafe to realize a highly reliable communication channel.
That also means that PROFIsafe containers are encapsulating
the process values. The PROFIsafe container data changes
cyclically even if the process values do not. The characteristics
of the changes are, to some extent, module type dependent.



B. Data extraction and partitioning

Data extraction is performed using the Wireshark tool,
configured to snoop traffic between the CI845 and CI871
devices (as shown in Fig. 1), using an industrial network
switch allowing port mirroring and directing Wireshark to read
data from the mirrored port. The data is then filtered such
that only the cyclical data frames remain. The resulting data
is saved in the K12 text-format. Classes with related dataset
characteristics are summarized in Table I. The data-frames are
normalized with respect to size such that each frame is zero-
padded to consist of 112 bytes of data.

The recorded data is divided into three categories: i) training
data (TrD), ii) test data (TeD) and iii) and prediction data,
which is collected at a later point and serves as an example
of real prediction data (RPD). At this later point, the process
values are changed to contain values that are not used when
training the model.

C. Model description and evaluation

Since the complexity of our data is relatively low, we choose
to use a MLP neuron network with a layout as described in
Table II. The Rectified Linear Unit (ReLU ) activation function
is used on the hidden layers. The ReLU method is used to
forward only values greater than 0 to the second layer, i.e.,

ReLU(a) = max(a, 0) (5)

As this is a classification problem, the normalized exponen-
tial function (soft-max) is used for activation on the output
layer [12].

S(xi) =
exi∑
j

exj

(6)

Between the two hidden layers, we add a dropout-method
that mitigates the risk of overfitting [11]. This introduces an
amount of uncertainty, and in the experiments performed it
could be seen that the accuracy of the model would vary quite
a lot between different executions.

The tuning of the model, e.g., the backpropagation and
update of vector weights, is implemented using the Adam
optimizer [13].

TABLE I
NUMBER OF SAMPLES PER DATASET AND CONFIGURATION

Class Configuration TrD TeD RPD
C1 DO 480 120 0
C2 AO 470 117 0
C3 AO DO 500 125 0
C4 DO AO 529 132 137
C5 AO AO 459 115 0
C6 DO DO 491 122 104
C7 AO AO AO 484 121 0
C8 AO AO DO 500 125 0
C9 AO DO AO 479 120 0
C10 DO AO AO 466 116 0

TABLE II
MODEL DESCRIPTION FOR LAYERS.

Layer # TLUs Activation
Input Layer 112 N/A

Hidden Layer 1 L1 ReLU
Drouput(0.5)

Hidden Layer 2 L2 ReLU
Output Layer 10 Softmax

The cross-entropy loss-function is used to assess the relative
accuracy of the results during the training phase, as is com-
monly used in classification problems [14]. The cross-entropy
is calculated, for each class c the loss `c, as:

`c = −
M∑
c=1

yo,c log (po,c) (7)

where M is the number of classes, yo,c is a binary indicator (0
or 1) if class label c is the correct classification for observation
o and po,c is the predicted probability that o is of class c.

In our experiments, we use ten epochs for the training phase.
We use Keras default settings for weight initialization and
learning rate, Glorot uniform initializer [15] as the weight
initialization and a 0.001 learning rate. Empirically, the model
converge within a few epochs, i.e., two to four, but in the
experiments performed we did allow for a higher number
of epochs to further refine the model, without significantly
impacting the training time.

As for the design of the network size, we consider different
sizes of the layers, (L1 and L2) using permutations of sizes in
2n, n ∈ {4, . . . , 12}, to find sizes that perform the best with
our data with respect to accuracy. In the experiment, the size
of the input layer is fixed at 112 neurons, as this is maximum
payload in bytes. A variant would have been to use one neuron
per bit. The output layer is also fixed at ten neurons since this
is the number of classes. The following steps are performed
for each iteration:

1) The model is trained with the training data (TrD).
2) The model is evaluated with the test data (TeD) and with

the prediction data of the second recording (RPD).

D. Results

(16,256) (32,256) (64,128) (128,128) (128,256)
0

0.5

1

(L1,L2)

A
cc

ur
ac

y

Fig. 3. Model accuracy variation distribution over 50 iterations on RPD data.



Fig. 3 shows the accuracy distribution for five different
configurations of the neural network, over 50 iterations on
the RPD data. The size of L1 and L2 are indicated as a tuple
on the x-axis. For our data, models with a L1 size within
the range 16 − 64 neurons and L2 sizes within 32 − 1024
can perform acceptable predictions. The accuracy for TeD for
these sizes are in the range 80%-95%, while RPD accuracy
are found between 60% and 80%. The model with the highest
accuracy of prediction data is the most proper one for use
in actual prediction scenarios. High accuracy is also reached
for the RPD data, this accuracy is expected to be even higher
if a broader range of signal values would be available in the
training data.

One of the better performing configurations is the configu-
ration where L1 consist of 64 and L2 consist of 128 neurons.
This configuration has an accuracy on the TeD data over 90%
and over 80% on the RPD data.

IV. DISCUSSION

We are not the first to use ML for log and/or network
communication recording analysis. Du et al. [16] developed
DeepLog, a tool for anomaly detection in collected log data.
DeepLog uses a Long Short Term Memory (LSTM), deep
neural network model, to learn from log patterns and recognize
system anomalies.

From our result, we can see that using ML for PROFINET
I/O configuration prediction is possible. The accuracy is highly
dependent on the amount and quality of the data used for
training. Fig. 3 shows that the best performing network config-
uration can still have some outliers for the accuracy as low as
30%. Also, the quality of a trained network with the suggested
model varies hugely. The reason for this nondeterministic
behavior remains to be investigated.

The number of classes that are used for classification is
the biggest weakness in this work. The goal of the work is
to be able to deduce the I/O configuration from a recorded
PROFINET I/O data log containing process data frames that
are cyclically exchanged. Using the suggested approach we
can reliably classify a tiny fraction of those configurations.
Expanding the neural network and training data to span all
possible arrangements are unfeasible given the vast amount of
permutations. Both the required network size and time to train
the network would be unreasonably big. An alternative solu-
tion could be to train the model to recognize the components
separately, i.e., the individual I/O modules. This knowledge
can then be used to classify I/O compositions.

Another approach is to use unsupervised or self-taught
learning as introduced by Raina et al. [17]. This would remove
the need for manual classification of most of the training data,
but would not stop the need for training on a large number of
permutations, leading back to that the most feasible approach
might be to make it able to detect and recognize the individual
IO modules. Lampert et al. [18] describe a method of detecting
unseen object classes by between-class attribute transfer. This
approach would be interesting to assess with regards to the
problem formulated in this paper. It would be quite easy to tag

each label in our example with distinct attributes, e.g., number
of configured modules, number of modules of a specific type.

A third approach is to not use ML at all but to use
case-based reasoning [19] where one would formalize the
description of an IO module and combinations of I/O modules.

V. CONCLUSIONS AND WORK-IN-PROGRESS

In this paper, we present our work in progress towards a
novel approach to classification of I/O configurations from
recorded PROFINET I/O communication data utilizing neural
networks. We show that the classification can be done with
high accuracy. The work in this paper has as its primary
purpose to demonstrate that it is possible to use ML techniques
for this kind of tasks. However, the suggested method must
be further developed towards being a method to reliably
classify any configuration given the formulated problem. In
our ongoing work we target analysis and assessment of the
methods highlighted in the discussion, with the goal of being
able to reliably perform classifications of data with a huge but
well-described label-space.

REFERENCES

[1] S. Zhao et al., “Real-time network anomaly detection system using
machine learning,” in DRCN, 2015, pp. 267–270.

[2] N. Williams et al., “A preliminary performance comparison of five
machine learning algorithms for practical IP traffic flow classification,”
SIGCOMM Comput. Commun. Rev., vol. 36, no. 5, pp. 5–16, 2006.

[3] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commu-
nications Surveys Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

[4] A. Kleinmann and A. Wool, “Automatic construction of statechart-based
anomaly detection models for multi-threaded industrial control systems,”
ACM Trans. Intell. Syst. Technol., vol. 8, no. 4, pp. 55:1–55:21, 2017.

[5] K. Demertzis et al., “A spiking one-class anomaly detection framework
for cyber-security on industrial control systems,” in Engineering Appli-
cations of Neural Networks, 2017, pp. 122–134.

[6] PI Organisation, “PROFINET,” https://www.profibus.com, online; Ac-
cessed: 2019-03-19.

[7] ABB AB, “SelectIO,” http://selectio.abb.com/, accessed: 2019-05-09.
[8] PI Organisation, “PROFIsafe,” https://www.profibus.com/technology/

profisafe/, online; Accessed: 2019-03-25.
[9] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-

ing,” in OSDI, 2016.
[10] K. Gurney, An Introduction to Neural Networks, 1997.
[11] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[12] J. S. Bridle, “Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition,” in
Neurocomputing, 1990, pp. 227–236.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2014.

[14] M. Jiang, Y. Liang, X. Feng, X. Fan, Z. Pei, Y. Xue, and R. Guan, “Text
classification based on deep belief network and softmax regression,”
Neural Computing and Applications, vol. 29, no. 1, pp. 61–70, Jan
2018. [Online]. Available: https://doi.org/10.1007/s00521-016-2401-x

[15] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS’10)., 2010.

[16] M. Du et al., “Deeplog: Anomaly detection and diagnosis from system
logs through deep learning,” in CCS, 2017, pp. 1285–1298.

[17] R. Raina et al., “Self-taught learning: Transfer learning from unlabeled
data,” in ICML, 2007, pp. 759–766.

[18] C. H. Lampert et al., “Learning to detect unseen object classes by
between-class attribute transfer,” in CVPR, 2009.

[19] J. Kolodner, “An introduction to case-based reasoning,” Artificial Intel-
ligence Review, vol. 6, pp. 3–34, 03 1992.


