
Concurrency defect localization in embedded
systems using static code analysis: an evaluation

Bjarne Johansson1,2, Alessandro V. Papadopoulos2, Thomas Nolte2

1 ABB Industrial Automation, Process Control Platform, Västerås, Sweden
2 Mälardalen University, Västerås, Sweden

{bjarne.johansson}@se.abb.com,{alessandro.papadopoulos, thomas.nolte}@mdh.se

Abstract—Defects with low manifestation probability, such as
concurrency defects, are difficult to find during testing. When
such a defect manifests into an error, the low likelihood can make
it time-consuming to reproduce the error and find the root cause.
Static Code Analysis (SCA) tools have been used in the industry
for decades, mostly for compliance checking towards guidelines
such as MISRA. Today, these tools are capable of sophisticated
data and execution flow analysis. Our work, presented in this
paper, evaluates the feasibility of using SCA tools for concurrency
defect detection and localization. Earlier research has categorized
concurrency defects. We use this categorization and develop an
object-oriented C++ based test suite containing defects from each
category. Secondly, we use known and real defects in existing
products’ source code. With these two approaches, we perform
the evaluation, using tools from some of the largest commercial
actors in the field. Based on our results, we provide a discussion
about how to use static code analysis tools for concurrency defect
detection in complex embedded real-time systems.

I. INTRODUCTION

Distributed Control Systems (DCSs) and the field device
connectivity are the foundation in large scale automation ap-
plications, from automated harbor cranes and oil fields to paper
mills and power plants. Unplanned stops in these domains can
be costly, making the price tag for a defect causing downtime
high. The DCS and fieldbus interfaces are typical hard real-
time systems realized with embedded software running on
automation industry suited hardware. The software sizes range
from hundred thousands of Lines Of Code (LOC) to millions
of LOC, often implemented as a multi-threaded application
running on top of a preemptive Real-Time Operating System
(RTOS), executed by a multi-core CPU.

Software defects are mistakes made in the software imple-
mentation that could manifest into an error, depending on if
the execution and data flow expose the weakness. Concurrency
defects are defects that manifest into an error due to an
unintended interleaving pattern occurring in-between resources
shared between two or more executing entities, such as threads
or interrupts. Depending on the interleaving pattern required
for the defect to manifest into an error, the manifestation
probability can be low. Low probability defects can be hard to
find in testing; they might never manifest into an error during
the testing period. Once observed, a low reproducal rate can
make it very time consuming to find the root cause, it can even

This work is funded by The Knowledge Foundation (KKS), project ARRAY,
and by The Swedish Foundation for Strategic Research (SSF).

take months [1]. The debugging constraint, implied by a real-
time embedded system, compared to a Windows application,
is likely to make it an even more time-consuming task.

Static Code Analysis (SCA) is the process for checking that
source code adhere to industry standards and guidelines, such
as MISRA1. SCA can be a manual code review, but more
common is automated/tool-assisted SCA. When we refer to
SCA, we refer to it as automated and tool-performed analysis.
SCA tools of today are capable of execution and data flow
analysis, together with the possibility of detecting potential
concurrency defects. A weakness of SCA tools is that they do
not have domain knowledge, implying that they need to act
on general patterns, which increases the likelihood of false
positives. A false positive is a defect indication where there
is no real defect, and a false negative is a missing indication
of a real defect. A low rate of false negatives means a high
detection rate.
Contribution. First, this work provides, to the best of our
knowledge, the first evaluation of the usefulness of SCA tools
as a concurrency defect mitigation and localization approach
in C++ implemented embedded real-time systems for the
automation industry. Second, we provide a C++ based test
suite that allows us to evaluate the SCA usability for different
kinds of concurrency defects with various complexities. This
test suite will enable us to analyze and present the usability
per defect type and complexity level. The test suite is publicly
available for download [2]. Finally, we present the evaluation
result of the test on real, known, concurrency defects.
Outline. Section II presents an overview of related work. The
tool selection and selection criteria are given in Section III and
a concurrency bug categorization is presented in Section IV.
Section V describes the test suites. The execution and result
of the test are presented in Section VI where we also discuss
about the result, and Section VII concludes the paper.

II. RELATED WORK

A significant amount of concurrency defect related research
already exists. Even though the focus of this work is con-
currency defects detection in the development phase by using
SCA on the source code, it is important to emphasize that
concurrency defects can be found and avoided in all stages
of the development cycle: Design, implementation, and test
execution. Model-based analysis can be used to detect design

1https://www.misra.org.uk



related concurrency defects [3], an overview is provided by Fu
et al. [4]. There are many approaches to execution/dynamic
concurrency bug detection, few examples being [5], [6], [7].

Earlier SCA research [8], [9] shows the value of SCA in
general, but emphasizes that it is not the whole solution.
Testing is still more efficient at finding defects. SCA tools need
to act on general patterns since they do not have the domain
knowledge, and therefore fail to detect domain-specific logic
defects. Cost efficiency is another aspect. A tool must be able
to find defects to earn its value. Wagner et al. [9] conclude
that detection of three to four defects is what is needed for
the evaluated tools to be cost-efficient.

Much SCA tool related research is performed using open
source code with open source SCA tools. Arusoaie et al. [10]
evaluate different open source SCA tools on a C/C++ test
suite and find that Clang has the highest detection rate of
concurrency bugs. The open source community [11] also uses
SCA tools and for popular and advanced projects, SCA tool
usage is already quite common.

Concurrency defect detection is an area that has received
much research attention, especially on Java-based applications.
Manzoor et al. [12] and Mamun et al. [13] evaluate how
useful SCA tools are when it comes to finding concurrency
defects in Java code. However, they come to very different
conclusions; Manzoor et al. [12] conclude that none of the
compared tools is better than the others, but Mamun et al. [13]
conclude that the best tool has a detection rate of 48% and
that the average detection rate of the compared tools is 25%.
To reduce the number of false positives [14] propose using
tools with different underlying techniques to maximize the
detection rate. Voung et al. [15] uses RELAY on the Linux
kernel. RELAY focuses on race conditions and produces a lot
of false positives, that in turn are filtered through an unsound
filter to reduce the amount. In the end, 53 race conditions
where found. D’Silva et al. [16] conclude that concurrency
defects is a problem for SCA tools.

Emanuelsson et al. [17] present a comparative study involv-
ing industrial tools and applications, including evaluations of
the SCA tools performance and perception by the different
teams. They compare Klocwork, Coverity, and PolySpace
and categorize SCA in three categories, string and pattern
matching, sound and unsound dataflow analyses. The only
sound tool of the three tools is PolySpace, but the industrial
users did not evaluate it. Another sound SCA tool is Astrée
which uses abstract semantic on C code [18] to prove that a
program is free from a defined set of security and run-time
errors. It also includes a set of concurrency defects and it
has been used in the industry [19], [20]. A strategy to handle
a large amount of SCA tools gathered data from many teams
with different needs in a large corporation is presented in [21].

Test suites are needed when evaluating SCA tools. Shiraishi
et al. [22] provide a C, with a small fraction C++, test suite
with test functions where specific defects are explicitly and
intentionally created, together with a corresponding function
that is OK and for which there shall be no violation report.
The test suite is used for evaluation of a selection of SCA

tools, where CodeSonar is found to be the best on detecting
concurrency bugs. Arusoaie et al. [10] make some minor
improvements of the same test suite and use it for evaluating
SCA tools capabilities to detect vulnerability in C/C++.

To provide more realistic test suites, in terms of real, not
injected defects, Lu et al. [23] use open source software
with actual, known defects. They use it to evaluate dynamic
bug finders (run-time detection), not SCA tools. Cifuentes et
al. [24] present a test suite for C code bug detection with
different evaluation aspects, such as scalability and accuracy.
An extensive test suite is the Juliet test suite developed by the
National Security Agency (NSA) Center for Assured Software
(CAS) [25]. Juliet is made available through the National
Institute for Standards and Technology (NIST) [26]. Juliet
contains concurrency defects, such as data race. The data race
defects in Juliet are implemented in C and do not expand over
more than one file/compilation unit.

Earlier work presented in this section is about SCA in
general or concurrency defect localization with SCA or other
means, which is relevant for our work. However, no work
targets concurrency defect mitigation using SCA tools in
embedded C/C++ software with different degree of object-
orientation. To the best of our knowledge, no such works exist.

III. TOOL SELECTION

Our tool selection methodology is fourfold. First, we inter-
viewed senior professionals at ABB about which static code
analysis tools they know and which they have been using. Then
we turned to the internet; we used www.google.com with the
search phrase “static code analysis c++”. We analyzed the top
results of that query and together with the output from the first
step put together a list of 33 tools. As the third step, to reduce
the number, we checked the product description for each of
these tools to see if they fulfilled our selection criteria:
• C/C++ support.
• Windows support.
• Explicitly stated that the tool supports discovery of

concurrency-related defects.
Astrée and seven other tools were ruled out for not having
C++ support. Clang, which is the best open source tool for
detecting concurrency defects [10], is not included since its
concurrency detection is only available as an alpha, experimen-
tal, checker, for Unix/POSIX compatible target OS. Our RTOS
is not POSIX compatible. PVS-Studio2 and Eclair3 had to be
removed from the selection for not providing the possibility to
adapt the analysis to the OS used. Coverity4 had to be left out
since the vendor did not wish to partake. Other tools, like PC-
lint5, were not considered in this study because of not having
a product description claiming concurrency defect detection
support.

The related work, see Section II, served as a fourth, sanity
check, step of the selection, no additional tool were found.

2https://www.viva64.com/en/pvs-studio/
3https://www.bugseng.com/eclair
4https://www.synopsys.com/software-integrity/security-testing/

static-analysis-sast.html
5https://gimpel.com/



Table I lists the resulting selection of tools. The list contains
tools from GrammaTech, Parasoft and RougeWave, which are
some of the largest SCA tool developers.

IV. CONCURRENCY DEFECT CATEGORIZATION

On a high level, concurrency defects are very similar,
an accesses to a shared resource, or a lock, occur in an
unintended way. On a more detailed level, the characteristics
vary, which allows a break down into different defect cate-
gories [4], [31], [22] and [32].

We use the same categories as presented by Asadollah et al.
in [32], which is also similar to what Shiraishi et al. present
in [22] — summarized below. We use the term actor to denote
an executing entity, such as a thread or an interrupt.
• Data race - unsynchronized simultaneous memory access

from at least two actors, where at least one of them
modifies the shared memory.

• Deadlock - a circular wait between at least two actors.
• Livelock - a circular wait, as the deadlock, with the

differences that the actors are active during the wait, a.k.a.
circular busy wait.

• Starvation - an actor does not get to execute since other
actors consume all available CPU execution time.

• Blocking suspension - an actor waits for an unacceptably
long time for a resource.

• Atomicity violation - overlapping execution of instructions
modifying data result in different and possibly incorrect
data value compared to if the data changing instruction
execution would not overlap.

• Order violation - the intended order of data access is
broken.

V. TEST SUITE

We developed a test suite for concurrency bug detection. It
allowed us to test all different categories of concurrency bugs
from Section IV, enabling us to evaluate the detection rate
per category. In addition, we gathered ABB proprietary code
bases with known concurrency defects from different products
and versions, this allowed us to examine the usability against
a real code base on actual, not injected, defects.

1) Concurrency defect test suite: Concerning concurrency
defects, our test suite has a resemblance with the Juliet test
suite [25]; both suites implement concurrency defects from
the Common Weakness Enumeration (CWE)6. The difference
is that our test suite is C++ based with an object-oriented
design aimed specifically towards concurrency defects while
Juliet covers a broad range of defects. Our test suite has higher

6https://cwe.mitre.org/

TABLE I
THE SELECTED TOOLS

Product Version Vendor Denoted Ref.
CodeSonar 5.0.0 GrammaTech T1 [27]
Klocwork 19.0.0.1278 RougeWave T2 [28]
Parasoft
C/C++ test 10.4.1 Parasoft T3 [29]

Polyspace
BugFinder 3.0 MathWorks T4 [30]

complexity concerning function depth and class composition
to increase the resemblance towards a complex embedded real-
time application.

The test suite contains an OS abstraction that allows us
to evaluate if the tools can be used to detect concurrency
defects on different RTOS. Our RTOS abstraction includes
the most fundamental OS functions, such as necessary thread
and semaphore handling. The test suite contains defects from
each defect category in Section IV, except starvation. All tests
have three basic actor combinations.
• Thread - thread Att

• Thread - interrupt Ati

• Interrupt - interrupt Aii

In addition to the actor combinations, the test suite has
different complexity and visibility levels. Example of vary-
ing complexity levels is the call depth from the actor,
thread/interrupt entry function, to the defect and number of
object instances passed on the way. Different visibility level
examples are variation in the object instances invocation,
achieved by using interfaces and polymorphism or concrete
object instances. The combinations used are listed below.
• Method depth - three levels of method call depth until the

error. One, three and seven levels deep. Denoted MD1,
MD3 and MD7.

• Access visibility - three alternatives, the variables exposed
to the concurrency defect can be a global variable directly
accessed by the modifying method, a member variable
directly accessed or a member reference to the shared
variable. We denote the global variable access as ACg,
the direct member variable access as ACd, and the access
through a member reference as ACr. We use this complex-
ity only for data race defects.

• Class composition depth - similar to the method depth,
with the addition that the method calls are distributed over
several classes. Denoted CCD0, CCD1, CCD3 and CCD7.
CCD0 denote zero instance complexity, the defect is in the
actor entry function. CCD0s denote two actors that share
the same entry function and CCD0d denote that the two
actors have two different entry functions. For both cases,
the defect is in the entry function(s).

• Concrete class visibility - a complement to the CCDx

complexity with the addition that composition is either
formed by the concrete classes, denoted CCVc or with
interfaces, implemented by the concrete class, denoted
CCVi.

All defects have a correct counterpart, for false positive
evaluation, except the data race with complexity CCD0d and
CCD0s that only exist to check the detection of the simplest
form of data race, similar to what is provided by Juliet [25].

Depending on the application, design and the implemen-
tors preference, mutual exclusion handling may have varying
complexity and visibility degree. Our test suite contains two
variants, from our experience, two commonly used practices.
In our test suite, this serves the purpose of testing the ca-
pability to avoid false positives when the shared resource is
accessed accurately with proper lock usage and also to test



the detection of improper lock use, when using different lock
acquisition patterns.
• Direct call, the protection is acquired directly with a lock

acquisition call. Denoted Ldr.
• Indirect call, using a resource acquisition is initialization

(RAII) pattern. Denoted Lin.
The number of defects in each category is listed in Table II.

2) ABB proprietary test suite: The ABB proprietary test
suite consists of real-defects, not intentionally injected. Below
we denote and describe each defect.
• AD1 is a deadlock defect involving two threads and two

locks located in a C/C++ code base with a size in the range
of millions of lines of code (LOC). Locks are retrieved
through an OS abstraction where one of the involved locks
are taken from an external component using a callback.
Hence, the tool cannot pinpoint the exact location, but
indicating that an external component is called from a
critical section is desirable here. AttCCD7CCVi is a
close approximation of the defect complexity using our
taxonomy.

• AD2 is a data race, a read-modify-write, involving two
threads. The defect location is a C/C++ code base in
the range of millions LOC with a method depth of four
from one thread and three from another and the execution
path to the defect include function pointers and interfaces.
AttCCD3ACDCCVi is a close approximation of the de-
fect complexity.

• AD3 is a data race, a read-modify-write of a hardware
register, involving two threads. Located in a C code base
in the range of a few hundred thousand LOC with a method
depth of three, yielding a complexity and visibility close
to AttMD3ACG. The access is done using macros. To test
if the detection depends on the access method, we created
an alternative, where the hardware is accessed through a
pointer directly, instead of using the access macros. We
denote the macro version AD3m and the pointer version
AD3p.

The complexity of these defects, especially AD1 and AD2

is high. Making them a suitable counterpart to the concurrency
defect test suite, that has different complexity levels.

VI. EXECUTION AND RESULT
A. Execution

We installed the tools on a virtual machine running Win-
dows 10, and each tool was configured and adapted for the
toolchains used and also for the task at hand; concurrency
defect detection in our concurrency test suite and of the known
defects in the ABB proprietary code. The configuration and
rules are available for download at [2]. Typically the rules for
concurrency defect rules had to be enabled and the rules not
related to concurrency defects were disabled. Configurations
were needed to make the tool understand the OS abstraction
used. We did not utilize the option to make customized rules
that some tools provide.

Besides from rule enabling/disabling and OS adaptations,
T1 provide possibilities to adapt the analysis depth with the
help of, for example, time limits for different analysis phases.

Increasing the limits increase the time for the analysis. The
individual execution time for the test suite analysis is below
one hour for each test suite for all tools, including T1 with
default depth. However, with the increased depth, that time
went up to 33 days for the concurrency test suite.

To present the result from the execution we use the statistics
proposed by Shiraishi et al. in [22], summarized below.

DR =
DV

AV
× 100

DR is the detection rate, DV is the number of detected
violations and AV is the actual number of violations in the
test suite.

FPR =
RFP

NV
× 100

FPR is the false positive rate and RFP is the number
of reported false positives and NV is the number of non-
violations, ”violation provocations”.

B. Result

In the two subsections below we present the result from
the evaluation using the concurrency defect test suite and the
ABB proprietary code based test suite.

1) Concurrency defect test suite: Table II show DR and
Table III show the FPR per defect category. True and false
positives that are reported on lines that are not in the test scope
are not considered.

In addition to presenting the result of the different defect
categories, we summarize the result for the various com-
plexities. The statements below are valid for all tested tools
unless stated otherwise. When we say that the result is the
same, we mean the different complexity levels of the specified
complexity, not that the result is the same between various
tools.
• Actor combination - T2, T3 and T4 showed no differences

in reported violations between different actor combina-
tions. The same violation were detected for Att, Ati

and Aii. T1 found no data races from actor Aii. We
modeled interrupts as signals in tool T1, if we would model
interrupts as threads instead of signals, we expect the same
result for actor Aii as for actor Att.

• Method depth - no difference in the result between differ-
ent method depths. The same violations were detected for
MD1, MD3 and MD7.

TABLE II
DETECTION RATE ON THE CONCURRENCY TEST SUITE. PER DEFECT

CATEGORY.

Defect
category

Total
AV

Tools
T1 T2 T3 T4

Data race 89 6% 0% 0% 24%
Deadlock 108 19% 50% 0% 0%
Livelock 54 100% 100% 0% 0%
Blocking
suspension 27 0% 0% 0% 0%

Atomicity
violation 108 0% 0% 50% 0%

Order
Violation 27 0% 0% 0% 0%



• Access visibility - the result differed between AC com-
plexities, defect and tools. T2 and T3 did not detect any
data race violation. T4 detected data race with complexity
ACg, but no violation with complexity ACd or ACr. T1
detected data race with complexity ACg and gave false
positives violation for ACd and ACr member variables
protected with Lin, the RAII guards, but raised no violation
for the unprotected ACd and ACr member variables.

• Class composition depth - T2, T3 and T4 detected vio-
lations and were unaffected of the depth CCD0, CCD0s,
CCD1, CCD3 and CCD7. T1 found data race violation
for depth CCD0 and CCD0s but not for deeper depths.

• Concrete class visibility - none of the tools detected true
positive data race violations with a CCVi complexity.
Only data race defects created by CCVc composition were
detected. T1 and T2 found potential deadlocks regardless
if the composition was made by interface or concrete
classes. T1 gave a false positive data race violation for
CCD1CCVi, hence, it was able to trace over one interface
but misunderstood the RAII pattern that protected the
member variable, hence the false positive.

• Direct/indirect call for lock acquisition - none of the tools
handled the Lin complexity. For T1 and T4, 100% of the
false positives are due to RAII guard recognition failure.

2) ABB proprietary test suite: Table IV shows the detection
per defect and tool. After evaluating the tools on the concur-
rency test suite, we learned that the complexity of the ABB
defects is higher than handled by the tools. We denote this as
too high complexity (THC) in Table IV.

C. Discussion

The result shows that the detection of concurrency related
defects is possible but is very much tool and complexity
dependent. Data race defects are only detected by T1 and T4

TABLE III
FALSE POSITIVE RATE ON THE CONCURRENCY TEST SUITE. PER DEFECT

CATEGORY.

Defect
category

Total
non-defects

Tools
T1 T2 T3 T4

Data race 162 9% 0% 0% 15%
Deadlock 108 0% 0% 0% 0%
Livelock 54 0% 0% 0% 0%
Blocking
suspension 27 0% 0% 0% 0%

Atomicity
violation 108 0% 0% 0% 0%

Order
Violation 27 0% 0% 0% 0%

TABLE IV
DEFECT DETECTION IN ABB PROPRIETARY TEST SUITE. YES, DEFECT
DETECTED. NO, DEFECT NOT DETECTED. THC, DEFECT COMPLEXITY

TOO HIGH FOR THE TOOL.

Defect Tool
T1 T2 T3 T4

AD1 THC THC THC THC
AD2 THC THC THC THC
AD3m No THC THC No
AD3p Yes THC THC No

and are very complexity dependent. T4 was only able to detect
data race in ACg, global variables, not member variables.
Neither T1 nor T4 were able to understand CCVi and thereby
not able to trace execution flow from the function entry to the
data race defect over interface use. The feasibility of using
SCA tools for data race detection depends on the code base,
lesser use of interfaces, the more analysis coverage, and a
higher likelihood of finding potential data races.

T1 and T2 found potential deadlock situations and they
did so regardless of CCV complexity. However, they failed
to recognize Lin and therefore failed to recognize deadlocks
created using RAII guards. All the false positive data races
reported by T1 is a consequence of not interpreting the RAII
guards correctly.

From the result of the ABB test suite, we see that the
tools did not support the complexity in AD1 and AD2.
For AD1, there was no default rule to check if an external
component, with unknown implementation, is called from
within a critical section. For AD2 the problem is the CCVi

complexity, the execution from the thread entry to the defect
includes interfaces, with deeper depth than any tool managed
in the concurrency test suite. Only T1 managed to detect a
AD3 defect, the AD3p. No tool found the AD3m defect.

Another aspect to consider is the analysis time. T1 required
close to a month of execution time when using long timeouts
and extensive depth setting, to avoid false negatives due to
shallow analysis. That long execution time is not feasible
if used as a traditional SCA tool when the analysis must
be executed before each source code change commit. We
propose concurrency related SCA to be incorporated as a step
in a products’ development cycle, executed with appropriate
intervals, similar to time-consuming function and product tests.
T1 analysis time can be significantly decreased, compared to
our times, by using more computational power.

Analysis of false positives require man hours and therefore
should be kept to a minimum. We believe that the steps below
can be a practical way to handle the concurrency SCA. We
assume that traditional, compliance checking, SCA is already
a part of the process.
• The concurrency analysis should only have the relevant

rules enabled, the rules that require long analysis time
analysis such as data race. The other rules, that are not
analysis-time consuming, should be checked before every
check-in, as part of the regular SCA use.

• Establish a baseline after the first run in which all the
violations are handled and the false positives suppressed.

• Run as frequently as possible. Frequent runs keep the
number of new false positives low, and the real defects
short lived.

D. Threats to validity

An obvious threat is the selection of tools, not in-
cluded/found tools may be significant diverse at concurrency
defect detection. Another threat to validity is the test suite.
C++ allows a programmer to construct source code in various
forms, and a test suite can not cover all of them. To reduce



this threat, we used well-known and general C++ patterns
with different levels of complexity, to implement concurrency
defects from each of category presented by Asadollah et. al
in [32], except starvation. However, the constructs in the test
suite are likely simpler than in real-software and do not cover
all construction possible. Hence, the detection rates we got are
likely higher than for real software.

VII. CONCLUSION

By developing a C/C++ based test suite, we have been able
to evaluate the feasibility of SCA tool usage for concurrency
defect detection in object-oriented code bases for embedded
real-time products. We have shown that the usefulness of
SCA for concurrency defect detection depends on the code
base and defect category. Data races are more likely to be
found in a code base where object composition consists of
concrete classes instead of interfaces. Data race in global
variables is also more likely to be found compared to data
race in member variables. In other words, data races are
more likely to be found in a more procedural code base
than in an object-oriented code base. The success rate of
lock related defect detection, such as deadlock and livelock
detection, is depending on how the locks are acquired, rather
than the execution path to the critical region. No tool was
able to recognize the RAII pattern. None of the tools detected
order violation nor blocking suspension defects. The analysis
time for some tools is long. We envision that using SCA for
concurrency defect detection is not something that is executed
for every commit/push, but instead with intervals that are
suitable for the product development and release cycle and
the execution time of the SCA for the particular product.

VIII. FUTURE WORK

Potential candidates, such as Axivion Bauhaus Suite 7 and
LDRA tool suite 8, not included in this work, could be part
of a more extensive future study.

A test suite for SCA testing can always be improved
and extended with more complexity and different patterns.
Some of the more immediate improvements include using
different semaphores in the different dead and live lock tests
for the RAII guards and the native OS call and by adding
support for and use of C++11 and C++17 threads and lock
mechanism. Due to the complexity and variety of configuration
settings provided by the tools, it is hard to know if the used
parameter settings are optimal for the purpose. Future work
could look deeper into configuration and the possibility to
create own, purpose-fit rules, that most of the tools provide. In
Section VI-C we introduce one way to incorporate concurrency
defect mitigation with SCA in the development process. An
evaluation of this process step included in the development
cycle for a real product is a natural continuation together with
a cost evaluation. We looked on three real defects from large
code bases of complex products. Future work could assess
SCA for concurrency defects on resource-constrained devices
since the structure of such products’ source code might be

7https://www.axivion.com
8https://ldra.com/

different and to some extent simpler and more procedural
oriented.

REFERENCES

[1] P. Godefroid and N. Nagappan, “Concurrency at Microsoft: An ex-
ploratory survey,” in CAV ws Expl. Conc. Efficiently and Correctly, 2008.

[2] “Concurrency test suite and tool configuration.” https://github.com/
Burne77a/ConcurrencySCATestSuite. Accessed: 2019-06-26.

[3] M. Shousha, Y. Labiche, and L. C. Briand, “A UML/MARTE model
analysis method for uncovering scenarios leading to starvation and
deadlocks in concurrent systems,” IEEE Tr.Soft.Eng., vol. 38, 2010.

[4] H. Fu, Z. Wang, X. Chen, and X. Fan, “A systematic survey on
automated concurrency bug detection, exposing, avoidance, and fixing
techniques,” Software Quality Journal, vol. 26, no. 3, pp. 855–889, 2018.

[5] W. Wang, Z. Wang, C. Wu, P.-C. Yew, X. Shen, X. Yuan, J. Li, X. Feng,
and Y. Guan, “Localization of concurrency bugs using shared memory
access pairs,” in 29th ACM/IEEE ASE, pp. 611–622, 2014.

[6] P. Joshi, C.-S. Park, K. Sen, and M. Naik, “A randomized dynamic
program analysis technique for detecting real deadlocks,” SIGPLAN
Not., vol. 44, no. 6, pp. 110–120, 2009.

[7] S. A. Asadollah, D. Sundmark, S. Eldh, and H. Hansson, “A runtime
verification tool for detecting concurrency bugs in freertos embedded
software,” in 17th ISPDC, pp. 172–179, 2018.

[8] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, “On the value of static analysis for fault detection in
software,” IEEE Trans. Soft. Eng., vol. 32, no. 4, pp. 240–253, 2006.

[9] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and M. Schwalb,
“An evaluation of two bug pattern tools for Java,” in 1st Int. Conf. on
Software Testing, Verification, and Validation, pp. 248–257, 2008.

[10] A. Arusoaie, S. Ciobâca, V. Craciun, D. Gavrilut, and D. Lucanu,
“A comparison of open-source static analysis tools for vulnerability
detection in C/C++ code,” in 19th SYNASC, pp. 161–168, 2017.

[11] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source software,”
in IEEE 23rd SANER, vol. 1, pp. 470–481, 2016.

[12] N. Manzoor, H. Munir, and M. Moayyed, “Comparison of static analysis
tools for finding concurrency bugs,” in IEEE 23rd ISSRE Wksp, 2012.

[13] M. A. Al Mamun, A. Khanam, H. Grahn, and R. Feldt, “Comparing
four static analysis tools for Java concurrency bugs,” in Third Swedish
W. on Multi-Core Computing (MCC-10), 2010.

[14] D. Kester, M. Mwebesa, and J. S. Bradbury, “How good is static analysis
at finding concurrency bugs?,” in 10th IEEE SCAM, pp. 115–124, 2010.

[15] J. W. Voung, R. Jhala, and S. Lerner, “Relay: Static race detection on
millions of lines of code,” in ESEC-FSE ’07, pp. 205–214, 2007.

[16] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated
techniques for formal software verification,” IEEE Tr.Comp.-Aided De-
sign of Integrated Circuits and Sys., vol. 27, no. 7, 2008.

[17] P. Emanuelsson and U. Nilsson, “A comparative study of industrial static
analysis tools,” E.Notes Theor. Comput. Sci., vol. 217, pp. 5–21, 2008.

[18] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in 4th ACM SIGPLAN-SIGACT POPL, pp. 238–252, 1977.

[19] D. Kästner, L. Mauborgne, and C. Ferdinand, “Detecting safety-and
security-relevant programming defects by sound static analysis,” in 2nd
Int. Conf. on Cyber-Technologies and Cyber-Systems, vol. 2, 2017.

[20] A. Miné and D. Delmas, “Towards an industrial use of sound static
analysis for the verification of concurrent embedded avionics software,”
in 12th Int. Conf. on Emb. Soft., EMSOFT ’15, pp. 65–74, 2015.

[21] A. Dubey, K. Saha, and J. Hudepohl, “Reporting and assessment of
static analysis policies in a globally distributed organization,” in IEEE
9th Int. Conf. on Global Software Engineering, pp. 84–89, 2014.

[22] S. Shiraishi, V. Mohan, and H. Marimuthu, “Test suites for benchmarks
of static analysis tools,” in IEEE ISSREW, pp. 12–15, 2015.

[23] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “Bugbench: Bench-
marks for evaluating bug detection tools,” in In W. on the Evaluation of
Software Defect Detection Tools, 2005.

[24] C. Cifuentes, C. Hoermann, N. Keynes, L. Li, S. Long, E. Mealy,
M. Mounteney, and B. Scholz, “BegBunch: Benchmarking for C bug
detection tools,” in 2nd DEFECTS ’09, pp. 16–20, 2009.

[25] “Static analysis tool study methodology,” Center for Assured Software
(CSA), NSA, 2011.

[26] “NIST. national institute of standards and technology samate reference
dataset (srd) project.” https://samate.nist.gov/SRD. Access: 2019-03-06.

[27] “Codesonar.” https://www.grammatech.com/products/codesonar. Ac-
cessed: 2019-04-12.

[28] “Klocwork.” https://www.roguewave.com/products-services/klocwork.
Accessed: 2019-04-12.

[29] “Parasoft C/C++ test.” https://www.parasoft.com/ctest/static-analysis.
Accessed: 2019-04-12.

[30] “PolySpace bug finder.” https://se.mathworks.com/products/polyspace.
html. Accessed: 2019-03-06.

[31] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug character-
istics in open source software,” Emp.Sw.Eng., vol. 19, no. 6, 2014.

[32] S. A. Asadollah, H. Hansson, D. Sundmark, and S. Eldh, “Towards
classification of concurrency bugs based on observable properties,” in
COUFLESS ’15, pp. 41–47, 2015.


