Semi-Distributed Self-Healing Protocol for Online
Schedule Repair after Network Failures

Abstract—Adaptive requirements for networks with strict
timing restrictions do challenge the static nature of the time-
triggered communication paradigm. Continuous changes in the
network topology during operation require frequent reschedul-
ing, followed by schedule distribution, a process that is excessively
time-consuming as it was intended to be performed only during
the design phase. The fully-distributed Self-Healing Protocol
introduced a collaborative method to quickly modify the local
schedules of the nodes during runtime, after link failures.
This protocol gets the network back to correct operation in
milliseconds, but it assumes that only the nodes are able to modify
their local schedules, which limited the achieved improvement.
This paper proposes to shift to a semi-distributed strategy, where
high-performance nodes are responsible for the nodes and links
within a small network segment. These nodes rely on their
privileged view of the system in order to reduce the response
time, increase the healing success rate, and extend the fault model
to include switch failures.

Index Terms—Scheduling, Real-Time, Networking, Time-
Triggered, Fault-Tolerance

I. INTRODUCTION

Time-Triggered (TT) networks are implemented in systems
that require low latency, high determinism and high reliability.
These networks operate following a so-called TT schedule,
which is a static schedule specifying the transmission times
for all the synchronous traffic over the network, i.e. over each
link. This schedule is precomputed during the design phase
and, in principle, does not change during system operation,
which is a serious limitation, as it does not allow the system
to adapt to changes of the underlying topology nor to traffic
changes.

There is a growing interest in addressing the flexibility
limitations of TT, in order to extend this paradigm towards
larger time-critical applications, such as Real-Time Internet
of Things [1], e.g. a fleet of autonomous vehicles [2]. In
particular, the specific problem of achieving fault tolerance
upon network failures has received much attention. A tra-
ditional way to achieve fault tolerance is by adding static
redundancy into the TT schedule, for instance, by allocating
several transmission slots for the same frame (temporal redun-
dancy) or by scheduling one message stream over a number of
disjoint paths (spatial redundancy). However, these approaches
introduce extra complexity in the scheduling problem, which
is an NP complete problem per se, and lead to low utilization
of the network resources. As systems increase in size, and
resource utilization becomes paramount, alternative methods
based on dynamic rescheduling need to be developed.

All the methods for dynamic rescheduling follow the same
procedure: they (1) identify when a schedule is not valid

anymore, either because of a system failure or because of
a traffic change, (2) calculate a schedule that is valid for
the new situation and (3) distribute it among the nodes.
The existing solutions differ significantly in the way these
phases are implemented. A first division is between predictive
and reactive strategies. Predictive rescheduling means that the
system precomputes (in design time) a series of alternative,
quasistatic schedules for a specific set of potential network
failures [3]. Whenever one of the considered failures happens,
the network selects the appropriate schedule immediately. This
approach reduces the time needed for phases (2) and (3)
dramatically, since the alternative schedules are precomputed
and can already reside in the switches, but it is useful only for
the considered failures. In contrast, reactive strategies do not
assume anything about the potential failures, they calculate a
valid schedule at runtime based on the available information
and distribute it. Therefore, reactive strategies are more general
but also slower because of the high complexity (NP-Complete)
associated to obtaining such new schedules. Several techniques
have been proposed for accelerating reactive rescheduling.
For instance, applying a heuristic centralized algorithm that
schedules only the affected frames [4]. The evaluation of
this technique showed a very competitive response time upon
component failures, in the range of seconds, but presented
scalability issues when either the network size or the traffic
were increased.

An interesting reactive approach, which makes dynamic
rescheduling fast enough to be performed online, is the fully-
distributed Self-Healing Protocol (SHP-FD) presented in [5]
(cite TII2018). This approach modifies only a small section
of the schedule, the one affected by the failure, instead of re-
scheduling the whole network. Such a strategy allowed them
to repair schedules after a link failure within milliseconds’
range in almost every case, even after multiple consecutive link
failures. Most importantly, it did not suffer from scalability
problems when implemented in larger networks, thanks to
its localized nature. On the negative side, the SHP-FD is
implemented as a fully-distributed approach and presents some
serious limitations when collaboration among the nodes is
required in order to perform the rescheduling, making it
unsuitable for covering other important failures like switch
failure. These limitations are not present in the centralized
approaches for reactive rescheduling.

Therefore, there seems to be a conflict between performance
and rescheduling success. Centralized approaches are slower
and not scalable enough, but can find better solutions because
the central node has complete knowledge of the system. Fully



distributed approaches are faster and scalable, but the nodes
can only use very partial knowledge of the system, thus not
being able to find valid schedules in every occasion, even if
such schedule exists.

In this paper we intend to overcome this dichotomy. We
propose a Semi-Distributed Self-Healing Protocol (SHP-SD)
that achieves the benefits of centralized approaches as well
as the good performance and scalability of the SHP-FD. Our
approach exploits the capabilities of specific switches that
recollect information and have complete knowledge of their
surrounding nodes and links. These privileged switches can
thus compute and apply the required changes after a link
failure in an equivalent manner to the SHP-FD. Additionally,
thanks to having this complete knowledge of their surround-
ings, the switches in SHP-SD can implement three important
features that are not present in SHP-FD: (a) A preemptive
repair of potential failures in which a classification of the most
disruptive failures is precomputed when the protocol is idle.
(b) An advanced path selection mechanism that increases the
success rate by selecting the most suited alternative path for
every network segment affected by the failure. (c) A protocol
extension to support switch failures. Our evaluation of SHP-
SD shows a reduction of the repair time from hundreds of ms
to 2 ms, for link failures, with a maximum of 10ms for switch
failures. The success rate increased to values comparable to
full, centralized rescheduling.

II. PRELIMINARIES
A. Time-Triggered Networks

We define a multi-hop network as a directed graph
G = (V, L), where V includes Switches S and End Systems
E, and L represents links with capacity C; in Bytes per second.
A node v, can transmit information to another node v, only
if they are connected trough (v, v,) € L. Note that switched
networks do not support a direct connection between two end
systems. We also make the distinction between two switch
categories regarding their resources: Regular Switches (S))
and High-Performance Switches (.S;,), where the latter possess
more memory and computer capabilities. The purpose of S,
will be clarified in Section III.

A sender end system can transmit data to one or multiple
receivers end systems through a frame f € F where F
specifies the set of all network frames. A path p; is a
non-cyclic sequence of links [(vs,Vs41), .., (Up—1,0;)] that
connects the sender v, to the receiver v, for a frame f. Since
a frame can have multiple receivers, we define the tree path
of frame f, denoted TPy, as the union of all paths from the
sender to each individual receiver. Finally, we specify a frame
as a tuple f = (Tf,Dy,Zy, TPy); where Ty is the frame
period, D is the frame deadline, Z; is the frame size in
Bytes and T'Py is the previously defined tree path.

B. Scheduling Problem

The scheduling problem aims to assign a transmission
time (Offset ®) for all frames over each link of their tree
path such that all frames reach their destination within their

deadlines. Given that the frames are periodic, we only re-
quire to determine the offsets within the hyper-period Tr =
LCM(Ty),Vf € F, calculated as the least common mul-
tiple for all network frames. Note that each frame f may
be instantiated within the hyper-period more than once, the
number of frame instances is calculated as Ny = %
Formally, we define the solution to the scheduling problem
as @y : [1,Ny] x L = NT U {*} where ®i,l) =t states the
transmission time of the i-th frame instance over the link /. In
the case that [ ¢ TPy then ®(3,1) = =.

Network and frame specific constraints are established atop
the scheduling problem to model certain desired characteristics
such as the time for a switch to process a frame. Describing
said constraints is outside the scope of this article, but inter-
ested readers can find them in TT scheduling literature [6],
[7]. Moreover, it is possible to assign objective functions to
obtain schedules with particular attributes. For this work, we
want to obtain schedules with high reparability. This objective
function maximizes the distances between frame transmission
in order to allow modifications of particular frames while
maintaining the rest of the schedule unaltered. Schedules with
high reparability are shown to allow partial modifications of
schedules affected by a link failure [8].

C. Fault Model

We consider link and regular switch failures that might
cause a considerable loss of frames. Such failures can ap-
pear in the form of permanent failures, or transient failures
long or frequent enough to significantly affect the network
functionality. Failures can materialize at any point in time.
Therefore, the network can suffer from more than a failure,
as well as multiple failures occurring at the same time. Every
node can detect link failures at incoming links based on their
local schedule: if expected frames are omitted or consistently
unsynchronized, the node activates the protocol.

Regarding the nodes, we assume that high-performance
switches are fault free and that regular switches can exhibit
only benign failure, i.e. crash or stop failures. With these
assumptions, the high-performance switches can detect regular
switch failures by periodically pinging the status of all the
neighbouring switches.

D. Schedule repairs and self-healing

Using the terminology of [8], a repair of the network sched-
ule happens when a new schedule is obtained not by solving
the whole scheduling problem again, but by performing a
number of changes over an existing schedule. We say that
self-healing occurs if these adjustments are calculated by the
affected switches in some distributed manner, and are not
given by a centralized entity. The objective of the self-healing
approach is to reduce the total repair time and minimize
the number of frames that are lost while the repair is going
on. This is achieved by acting only on the vicinity of the
failure, which in most cases is enough for finding the required
adjustments.
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Fig. 1: Network Example

Our specific repair strategy is to reallocate the frames
transmitted over the affected link on an alternative path. For
example, if link 9 in Figure 1 has a failure, the protocol
redistributes all affected frames on the path formed by link
7 and 11. The procedure to implement this strategy consists
of five steps: notification, problem definition (or membership),
patching, update and optimization. In the next section we
will describe how they are implemented in a semi-distributed
protocol.

III. SEMI-DISTRIBUTED SELF-HEALING PROTOCOL

The most distinct characteristic of SHP-SDis that all S}, (and
only them) undertake the task of adjusting the nodes schedules.
As indicated, each S}, requests and stores information regard-
ing the local schedules and the link status of the nearby nodes.
It has been shown that such data can be collected in the tens of
milliseconds range [9]. Thanks to this privileged information,
whenever a .S), is notified of a failure, it already keeps all the
information required to start the healing process immediately,
without the need to organize a collaborative group of nodes,
like it happened in SHP-FD . Note that to ensure the exchange
of protocol frames among nodes, Bandwidth Reservation (BR)
slots are allocated in all network links, in which only protocol
frames can be transmitted. The steps of the protocol are as
follows.

1) Notification: A node that detects a link failure, due to
frame omissions in an incoming link, sends a Notification (NF)
frame to its corresponding S, . Recall that we we assume that
the node already knows to which S; to communicate and its
path. In the case where the node is a .S}, itself, the notification
step is not necessary.

2) Define Healing Problem: Once the S} receives the NF
frame, it can start defining the strategy to heal the sched-
ule. The protocol reroutes the affected frames of link Iy =
(vz,vy) through a new path py = [(Vz, Ugt1), ...y (Vy—1,0y)].
To achieve this, the switch allocates the offsets of the
new path links between the Available Transmission Ranges
ATRy(i,ps) = [tin,tout], Where ATR contains the intervals
of all possible offsets in which the instance ¢ of frame f
can be allocated without violating any schedule constraint.
As py might contain multiple links, the ATR is divided
equitably among the links in py, such that we obtain an
ATR(i,1),l € py for every link in the path. At the end of

the process, a repair problem has been defined for every link
in py, which will be solved in order to identify where each
affected frame shall be allocated.

3) Patching: The patching algorithm seeks to allocate all
the affected frames into new offsets as fast as possible to
reduce the number of frames lost during healing. A pseudo-
code can be seen in Listing 1. For every ATR, the patching
algorithm tries to allocate the frame at the start of t;,. If it
collides with an already allocated frame, the algorithm tries to
allocate it after the frame with which it collided. It repeats the
process until the frame is allocated. When the algorithm allo-
cates all the different frame ATRs, a repair adjustment has been
found, and the update and optimization step starts. However,
in the case that a frame cannot be allocated, the protocol skips
the update phase and only executes the optimization phase.

Listing 1: Patching Algorithm Pseudo-code

1 function Patch_Algorithm (ATRs)

2 for ATRf(i,1) = [tin,tout] in ATRs do

while collision(S , ®¢(i,1) =tin) or
tin +dyf(i,1) < tour do

w

4 fe = get_frame_collides(S , ®j(i,1) = tin)
5 tin = @5 (4,0) +dg. (5,1) +1

6 if tin +df(i,1) > tour then

7 return failure

8 else

9 allocateS, @y(i,l) =tin

10 return S

4) Update: Once the patching process obtains a new sched-
ule adjustment, the S}, distributes the solution by transmitting
Update (UF) frames to the nodes that will modify their
schedules. It means that a UF frame is sent to every node that
needs to change its local schedule, with the frame containing
the modifications to the schedule and the time when the node
shall swap to the given schedule. After this time, the network
can be considered healed, since the new schedule enables
transmission of all the frames again.

5) Optimization: Even though the patching algorithm heals
the network, it drastically reduces the overall schedule repara-
bility, which implies a reduction in the likelihood to repair
future failures. On the other hand, the optimization algorithm,
which maximizes the reparability, is computationally more
expensive, and hence, more time-consuming. Nevertheless,
once the network has been healed with a patch, the protocol
can invest additional time to obtain a higher reparable solution
as no frames are lost while optimizing. The pseudo-code of
the optimization algorithm can be seen in Listing 2. Applying
an Integer Linear Programming (ILP) Solver, the algorithm
adds the link schedule as fixed offsets. Subsequently, all ATRs
are also added to the ILP solver. Next, it also defines a cost
function that maximizes the distances between the ATRs and
the fixed frames allocated in the link schedule. Due to lack
of space, such formulation is not described, but we point
interested readers to the formulation of the cost function
[8]. Once the algorithm obtains the solution, the update step
starts. In the case no schedule could be found neither with
the patching or optimization, the protocol could not heal the
network.



Listing 2: Optimization Algorithm Pseudo-code

function Optimization_Algorithm (ATRs)

1

2 ILP <- add(S)

3 for ATR#(%,1) = [tin,tout] in ATRs do
4 ILP <- add(tin < Pf(i,1) > tout)

5 end for

6 S = Maximize_Reparability (ILP)

7 return S

IV. EXTENSIONS

This section introduces extensions to the SHP-SD to both
improve the performance in terms of response time and
success rate. Furthermore, the detailed knowledge kept by
the S} allows extending the fault model and tolerate switch
failures with minimal protocol modifications.

A. Preemptive Healing

The SHP-SD is a reactive protocol that waits for a failure to
be detected and activates the process of healing the schedule.
However, failures are rare occurrences; the protocol is idle
most of the time. This implies that all the .S}, and bandwidth
resources are underutilized. We present a Pre-emptive Healing
extension in which the unused resources can be utilized to
decrease the average healing response time further. Some of
the literature introduced the concept of back-up or quasi-static
schedules [3], where a set of alternative schedules to tolerate
potential failures were synthesized at design time. If the
failure was detected during runtime and an alternative schedule
existed, it would be swapped almost immediately. We want
to combine such approaches with the SHP-SD to precompute
healing modifications of the schedule against potential failures,
particularly the most disruptive ones.

In the SHP-SD implementing preemptive healing, all .Sp,
start to simulate a link failure to obtain an optimal adjustment
(which results from the optimization step of the SHP-SD )
and store it. This process is only allowed when no active
failure is detected and immediately terminates if a failure is
detected. However, even though failures are rare, the memory
used for storing the alternative schedules is limited . Moreover,
different failures have a considerable difference in healing
time, depending on factors such as traffic on the faulty link
[8]. Given the limit on resources, it is beneficial to precompute
only the failures whose healing would require more resources
and time; this would significantly reduce the number of lost
frames in such complicated cases.

Selecting the most time-consuming failures is not trivial.
In our experimentation, against common intuition, we found
out that the healing of links with higher utilization would
not always yield a higher response time. Other parameters,
such as the available slots to maximize the reparability, also
considerably affect the response time. E.g., when allocating
frames to an empty link, where more opportunities for opti-
mization of reparability are available, the time to obtain a solu-
tion increases. We implemented a Machine Learning solution
applying Support Vector Machines to predict the complexity
of healing a link failure or if it can fail to heal it. Every
Sy, contains an already trained model of previously simulated

failures from different network traffics and topologies. The S},
employs the model to predict the complexity of all potential
failures and to start simulating failures of the predicted more
time-consuming failures. We trained our prediction model
using the following information related to a link failure:

e Broken link utilization

e Broken link number of frame instances.

e New Path link utilization.

e New Path link number of frame instances.

Note that, as the new path contains multiple links, the
prediction of a link failure also contains multiple values, one
for each link of the new alternative path. We consider only
the maximum time-consuming prediction over all links. Other
selection strategies and their effectiveness are left for future
work.

Applying preemptive healing to the SHP-SD does not
require exhaustive changes to the protocol steps. After the
detection of a failure and its notification to the corresponding
SHP-SD , if that specific failure has been already predicted,
the patching and optimization steps are not necessary, and
the stored schedule modifications are distributed. In such a
case, the response time becomes almost instantaneous. If the
failure has not been predicted, the SHP-SD follows its original
procedure and no reduction of response time is achieved.

B. Path Selection

We note that in SHP-FD only the shortest path was con-
sidered for repairs, for simplicity. However, in the SHP-SD,
every .S;, knows multiple paths that connect the nodes. When a
failure is notified, the Path Selection extension introduces the
possibility to select alternative paths that might improve the
success rate or even reduce the healing time. The information
kept by each S}, is:

o Several alternative paths to connect both ends of the

faulty link (if they exist).

« Utilization and frame instances transmitted on such paths.

o A prediction of the possibility of unsucessfully healing

for every path.

We propose a path selection algorithm that ranks all the
alternative paths given their prediction of the complexity to
be solved. In the same manner as the pre-emptive healing,
we select the path that has a minimum complexity prediction
from all its links. If multiple paths have the same complexity
prediction, we choose the path with a minimum sum of link
utilization. Other selection strategies and their effectiveness,
such as average utilization, are left for future work.

1) Advance Path Selection: Even though the path selection
extension is an improvement compared to only considering the
shortest path, it does not appreciably increase the success rate.
There still exist several cases where full rescheduling can find
a valid schedule, but our protocol could not. This is because
the SHP-SD seeks to reconnect the nodes connected to the
affected link. However, alternative direct paths between two
nodes are scarce since it is usually not a common practice in
network topology design.



Typical network designs have alternative paths that are
usually disjoint on the majority of switches. E.g., if lg =
(vs, vs) breaks in Figure 1 an alternative path that connects
nodes vs and vy again is [l7,l11] = [(vs,v4), (v4,vs5)]. The
SHP-SD would then substitute in f; and fo the affected
link with the new path resulting in the path [I1,l7,111] =
[(v1,v3), (v3,v4), (vg,v5)]. However, with a more broad
knowledge of the surrounding nodes, we can consider that
both affected frames start at v;, and there exist a path
[I5,11] = [(v1,v4), (v4,v5)] that skips the need to transmit over
vs and obtains a path that is shorter and most likely easier to
heal. Moreover, f2 already has a transmission scheduled over
l5, which further simplifies the problem as there is no need of
a new reallocation on that link.

Note that implementing the advanced path selection exten-
sion requires some modifications when obtaining the affected
frames ATR . Previously, all affected frames would require
the same change in the paths after a failure, as a link
was exchanged with a new path. However, as the new path
selection allows to exchange sections or even entire paths,
it means that the SHP-SD needs to consider a new path for
every affected frame. E.g., if in the last example a new link
l, is introduced together with a new frame f,, with path
(I, lo] = [(v2,v3), (v3,v5)], the new path for the whole frame
would be [I3,111] = [(v2,v4), (v4,v5)] which is different than
the paths obtained for frames f; and fs.

The algorithm to obtain advanced paths can be seen in
Listings 3. The idea behind it is to check all possible paths
that connect the nodes of the affected frames of which the
Sp, has knowledge. First, the S} iterates over all paths of
the affected frames by the failure of [,, and proceed if that
specific path contains the link /,, (some paths of an affected
frame might not contain the affected link). The .S}, iterates
over all the nodes of the affected path p that are before [,
including vs € l,, = (vs, v,-). The next loop is on the opposite
direction of the path, over all the nodes after p that Sj, has
knowledge about, including v,.. Finally, the S} calculates all
simple paths that connect both nodes and store them. Once all
possible paths for every node combination is obtained, the best
past is selected using the previously introduced path selection
strategy.

Listing 3: Smart Paths Algorithm Pseudo-code

function Smart Paths (affected frames)
for f, p in affected frames
if I, in p
for node_b in p[0,l,]
for node_a in [l,, last]
all p <= all_simple_p (node_b,
new_p = best_p(all_p)

node_a)

~N N R WD -

C. Regular Switch Healing

In this subsection, we extend the fault model to allow
permanent or temporal S, failures that are long enough to
require healing the schedule. Such failures can be regarded
as multiple simultaneous failures of all links connected to the
switch. Multiple simultaneous link failures were shown to be
feasible to heal [8]. However, .S, failure healing demands two

O“’

Fig. 2: Small Network Topology

alterations on the protocol: the S, failure notification and the
selection of the paths for the affected frames.

1) Regular Switch Failure Notification: The same notifi-
cation procedure to detect link failures cannot be applied to
detect switch failures. If a switch fails, all the nodes connected
to it will detect a link failure. However, the SHP-SD cannot
distinguish between a switch failure and the unlikely case
when all its links had a failure. Moreover, all the links that
are sending frames to the affected switch will not be notified
of its failure, as the node that should notify it is the faulty
one. Nevertheless, as all S, have knowledge of the nodes
they are monitoring, we can implement a simple periodic ping
frame to check the status of all nodes. If failures of links start
to manifest together with a node that is not sending a ping
response back, the SHP-SD concludes that the node has a
failure and starts defining the healing problem.

2) Affected Frames Path Selection: The definition of the
healing problem requires to individually determine the healing
problem for all the links connected to the node, and then
group the problem. However, a major change is required when
selecting an alternative path. In the case of link failures, the
protocol needed to find an alternative path that connects both
ends of the faulty link. But this is not the case anymore,
as when a switch fails, the protocol has to find a path that
connects to nodes that come after (from the frame path
perspective). This can be solved by applying the advanced
path selection introduced in Section IV-B1. E.g., in Figure 1
if v, f1 and fo are affected when transmitting to vs. The
advanced path algorithm will search paths that connect v; to
vs instead, e.g., [l5,111] = [(1}1,’04), (1}4,1]5)].

V. EVALUATION

To evaluate the SHP-SD , we apply the protocol to the
same two synthetic networks where a global knowledge repair
algorithm was applied [8]. The first is a small network (Figure
2) consisting of 3 switches, 6 end systems, and 28 links.
The second is a larger network (Figure 3) with longer paths,
consisting of 8 switches, 8 end systems, and 54 links. A third
super large network is formed as three interconnected larger
networks, consisting of 24 switches, 24 end systems, and 166
links. The networks incorporate two link classes related to
capacity; 50 MB/s when the link connects a switch with an end
system, and 100 MB/s when the link connects two switches.

We are interested in evaluating the response time concerning
network size and amount of traffic. We have incremented the
number of frames considered in each network from 50 to up to
250. We designed the traffic to amount for a high distribution,
with a 10% of frames having one sender and only one receiver,
40% of frames having a random number of receivers, and



Fig. 3: Larger Network Topology

50% of frames being broadcasted to all the end systems. High
distributed networks present higher utilization where all links
have a similar utilization, which we consider to be the main
driver to increase response time for SHP.

Every frame size is set to 1500 byfes and the period is
chosen randomly from 10, 20 or 40 ms, which generates a
schedule of 40 ms hyper-period. The time slots in the schedule
are set to only one ns, which implies that every link will
contain 4 x 107 time slots. Finally, we set the deadline to
be equal to the period and use the optimization parameters
defined in [8] to compare the results.

We have implemented a scheduler prototype applying an
incremental approach [6] modified to obtains high reparable
schedules with C and the ILP Solver Gurobi v.8.1. We simu-
lated the states of the SHP using our simulator implemented
in Python. The patching algorithm is implemented in C, and
the optimization algorithm was implemented in C and ILP
Solver Gurobi v.8.1. The classification for the support vector
machines depending on the optimization time can be seen in
Table I. Class 0 means that a solution could not be found.
The training has been performed with different networks and
traffics, achieving an accuracy of 90% when assessing the
networks evaluated in this work. A support vector machine
was implemented in Python with the package sklearn. The
evaluations were performed on a MacBook Pro with 2.9 GHz
CPU Intel Core i7 and 16 GB of RAM.

TABLE I: Classification for the Support Vector Machine
depending of the optimization class in milliseconds

Class 0 1 2 3 4 5
Min (ms) - 0 100 1000 | 2500 | 5000
Max (ms) | - | 100 | 1000 | 2500 | 5000 -

A. Reparability Results

We evaluate the success rate of the SHP-SD , its extensions
with path selection and its extension with advanced paths
against a fully distributed approach (SHP-FD) (cite should
be the TII Journal), a global centralized approach [8] and
full network reschedule. We perform our evaluation with all
described networks considering traffic of 250 frames and up
to three link failures for the small and large network and 2
for the super large network. We only consider link failures
when no healing is active due to a previous link failure. We
perform the study for all possible link failure combinations for
the number of links and display the percentage of successful
healing cases. Due to timing restrictions, we do not consider

more than two link failures for the super large network as the
possible combinations of two link failures is already superior
to 10.000 cases.

We can observe in table II that full rescheduling has the
highest probability of success as it will always find a schedule
if it exists; this is taken as the the best possible success rate.
For a single link failure, all cases have a perfect success rate,
as there always exists an alternative path and the utilization
of all links is still low for the healing algorithm to be chal-
lenging. However, when the number of link failure increases,
healing approaches reduce their success rate compared to full
rescheduling depending on the path selected and the healing
algorithm applied. The success rate of SHP-FD and SHP-SD
are the same because both apply the same shortest path and
the same optimization algorithm. Moreover, their success rate
is the lowest among the studied cases due to only considering
the shortest path. The globalized approach has a negligible
better success rate due to a centralized optimization algorithm,
where the full new path (shortest path) is solved at the central
node instead of solved individually for each path link. Note
that in the SHP-SD , this centralized optimization algorithm
could have been implemented, but we considered that the small
success rate improvement did not pay off for the increase
in time for the algorithm to find a solution. The SHP-SD
with the Path Selection extension also minimally increases the
success rate. The number of alternative paths in the studied
networks is usually not large enough to produce a difference
compared to the shortest path. But in some cases, the algorithm
detected a better success rate alternative path, usually with
lower utilization. In the deepening of our evaluation, we
discovered that the healing presents difficulties to allocate
frames when the link utilization is above 60%. The more
substantial increase in success rate, closer to full rescheduling,
happens when applying the Advanced Paths extension. As the
number of alternative paths significantly increases, including
finding shortcuts”, there exist a larger number of options
where the optimization algorithm can be successful. Note that
for larger networks, the success rate is closer to full reschedule,
showing that larger networks are better suited for localized
repairs, since they provide many more alternative paths.

B. Performance Results

We assess the performance of the SHP-SD by measuring
the response time from the time the failure is detected to the
time when the repaired schedule is operative. We measure both
when the patch schedule is operative and when the optimize
schedule. For every network, we study up to 250 frames and
show the average repair time for all the possible combinations
for one and two link failures. In the case of two link failures,
we only consider the case that a second failure occurs after the
first has been repaired (simultaneous failures has been already
investigated in (cite TII 2018)). Moreover, we display the
summation of both failures response times. We evaluate three
different configurations: (1) the SHP-SD with no extensions,
(2) only applying preemptive scheduling always assuming
the chosen schedules have been already calculated, and (3)



TABLE 1II: Comparison of the success rate between SHP-SD and its extensions against centralized and fully distributed

approaches
Network | Failures | Rescheduling | Global SHP SSHP | SSHP Path Selection | SSHP Advanced Paths
1 1,0 1,0 1,0 1,0 1,0 1,0
Small 2 0,9682 0,9006 | 0.8915 | 0.8915 0,9032 0,9378
3 0,9047 0,7288 | 0,7206 | 0,7206 0,7338 0,8234
1 1,0 1,0 1,0 1,0 1,0 1,0
Large 2 0,9861 0,9809 | 0,9776 | 0,9776 0,9794 0,9839
3 0,9570 0,9330 | 0,9310 | 0,9310 0,9330 0,9489
S. L 1 1,0 1,0 1,0 1,0 1,0 1,0
Qe 2 09874 09218 | 09172 | 09172 09189 0,9509
applying preemptive and advanced path selection together.
Note that we limit the number of preempted schedules per 22+
Sh to only four. —¥—No Enhancements 1
. . . . . 2 F|l-8—No Enh ts 2
'We can observe in Figure 4 the he'ah'ng .tlmés for link #P?e_er:nzxsnfens
failures in the small network. The first distinction is the large 1811 4 pre-emptive 2
difference in response time between patching and optimizing £ 16l Advanced Path 1
. . . - —v—Advanced Path 2
the schedule, with an average patching time for all cases 2.,
inferior to 2 ms whereas the optimization can take up to a E
. . (o))
few seconds. These results accentuate the patching step impor- £12
tance, as after the patch schedule is operative, all the frames g 1
. . . . . o
are being transmitted again. We can also notice the reduction 064
on average time from seconds to hundreds of milliseconds ' )
when applying preemptive schedule, even though only four 0.6%
failures are preempted. This is because a small number of 0.4 : : ‘ ‘
. . . . L . 50 100 150 200 250
link failures are very time-consuming to optimize while the
.. . [ Number of Frames
majority do not require more than hundreds of milliseconds.
These failures are usually localized in the network backbone, (a) Patching Time
where the traffic is concentrated. The fact that the average
response time for two failures increases only around 20%, 10%¢
instead of becoming double, supports our assumption that the —%—No Enhancements 1
response time varies greatly depending of the faulty link. Note j’::’eiwzxsn;ems 2 /
that applying the advanced path enhancement increases the 103 H|—*—Pre-emptive 2
response time, as the number of links that need to be modified g —+—Advanced Path 1
. . . . d —/—Advanced Path 2
increases. However, the increase is not significant because o
the number of modifications at each link is reduced. We can [ 102[%
. . ] E
perceive the same response pattern in the large and super large 2
networks in Figure 5 and Figure 6, respectively. =
In Figure 7, we present the patching (continuous line) and © 10
optimization (dotted lines) time to repair a node failure for all 3
three networks. We consider the average time to repair all the
possible combinations of regular switches. As a switch failure 10°

can be seen as multiple link failures, the response times in-
crease, but still they do not exceed 10 ms for the patching step.
As for the optimization step, we studied it without preemption,
but for a real implementation, we would recommend to first
preempt node failures and then link failures, since healing the
former is more complex. In the experiments, we obtained a
maximum of 13 seconds response time, with similar response
times for the different networks.

VI. RELATED WORK

Extensive literature exists about developing an adaptive
time-triggered paradigm solely focused on increasing the
network fault-tolerance capabilities. These strategies apply
predictive replication, in which the frames or even the whole

50 100 150 200 250
Number of Frames

(b) Optimization Time

Fig. 4: Patching and Optimization time for different number
of frames for the small network in milliseconds

schedule are replicated in design time to cope with potential
failures. Pop et al. have proposed to replicate and re-execute
frames to deal with transient failures [10]. The frame re-
execution was later improved by Wisniewski et al. replicating
the frames in disjoints paths. This solution is more robust
and can also tolerate permanent failures [11] [12]. Including
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Fig. 5: Patching and Optimization time for different number
of frames for the large network in milliseconds

the topology design problem into the scheduling problem
allowed to extend the number of disjoints paths and increase
the number of tolerated failures [13]. Novak et al. reduced
the utilization required to apply frame replication with the
introduction of F-shaped frames, as replicated frames are only
transmitted if required [14]. In terms of schedule replication,
Izosimov et al. introduced the notion of dormant quasi-static
schedules, a set of schedules synthesized to be exchanged
if certain failures occurred during runtime [3]. These works
achieve an almost instantaneously response time after a failure.
However, they only cover cases that were taken into account
at design time, if a failure occurs outside of this set, the
network is not able to tolerate it. Moreover, as the network size
increases, the set of potential failures increases exponentially,
becoming harder to cover the majority of cases.

A strategy to address unpredicted failures or even new com-
ponents additions is to recalculate the schedule during runtime,
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Fig. 6: Patching and Optimization time for different number
of frames for the extra large network in milliseconds

a reactive strategy. Rescheduling will return a valid schedule if
a solution exists. Zhang et al. have proposed a central node in
the cloud that solves new schedules when a change occurs in
the network [15]. Moreover, it stores the schedule in case the
same configuration is needed again. However, obtaining a new
schedule may take several minutes, an unacceptable amount
of time in most safety-critical applications. To cope with the
complexity problem, researchers have explored two options:
reduce the complexity of the problem and partial rescheduling.
Nayak et al. proposed to simplify the problem to reduce
the synthesis time [16]. However, this approach still requires
seconds to obtain a schedule and cannot schedule networks of
more than 13% utilization. Raagaard et al. opted for partial
rescheduling, where only the affected frames after a failure
are modified applying a quick list scheduling heuristic [4].
Such heuristics struggle to obtain high utilization schedules.
Moreover, they present scalability issues when the traffic and
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network size is substantial. Wang et al. avoided a central
approach and proposed a more scalable solution encapsulating
the scheduling problem to the cluster level, where only a
segment of the schedule required to be changed after a network
modification [17]. But it was applied only to the specific case
of train time-triggered networks and its extensability is limited.
In our approach, we consider reducing the complexity by
implementing a generalized encapsulation after a link failure
and only reschedule the affected frames in such segment.
Moreover, we shift the scheduling and distribution closer to
the failure, further reducing the time to update the schedule
when a solution is found.

VII. CONCLUSION

The semi-distributed self-healing protocol is able to repair
time-triggered schedules at run-time after link failures in a few
milliseconds. Moreover, after only a few seconds, it optimizes
its reparability to increase the robustness for subsequent link
failures. The employment of high-performance switches that
posses information of their surroundings allows implementing
extensions to the protocol to improve response time, success
rate and extend the fault model. A Machine Learning algorithm
was implemented to select which failures are more time-
consuming to heal, which are precomputed when the protocol
is idle, reducing the healing time of the hardest cases consider-
ably. Moreover, an advanced path selection was proposed that
increased the protocol success rate close to full rescheduling.
Finally, the protocol was enhanced with minimal modifications
to heal the majority of switch failures in a few milliseconds.
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