
Static Allocation of Parallel Tasks to Improve
Schedulability in CPU-GPU Heterogeneous

Real-Time Systems
Nandinbaatar Tsog1, Matthias Becker2, Fredrik Bruhn1,3, Moris Behnam1, Mikael Sjödin1

1Mälardalen University, Sweden, firstname.lastname@mdh.se
2KTH Royal Institute of Technology, Sweden, mabecker@kth.se

3Unibap AB (publ.), Sweden, f@unibap.com

Abstract—Autonomous driving is one of the main challenges
of modern cars. Computer visions and intelligent on-board
decision making are crucial in autonomous driving and require
heterogeneous processors with high computing capability under
low power consumption constraints. The progress of parallel com-
puting using heterogeneous processing units is further supported
by software frameworks like OpenCL, OpenMP, CUDA, and
C++AMP. These frameworks allow the allocation of parallel com-
putation on different compute resources. This, however, creates a
difficulty in allocating the right computation segments to the right
processing units in such a way that the complete system meets all
its timing requirements. In this paper, we consider pre-runtime
static allocations of parallel tasks to perform their execution
either sequentially on CPU or in parallel using a GPU. This
allows for improving any unbalanced use of GPU accelerators
in a heterogeneous environment. By performing several heuristic
algorithms, we show that the overuse of accelerators results in
a bottle-neck of the entire system execution. The experimental
results show that our allocation schemes that target a balanced
use of GPU improves the system schedulability up to 90%.

I. INTRODUCTION

Modern cars face several cases to be solved, such as en-
vironmentally friendly vehicles, connected vehicles, and self-
driving cars. For example, while identifying obstacles using
computer vision applications or making more smart decisions
by on-board AI (artificial intelligence) applications, modern
cars should be energy efficient. In order to cope with these
challenges, thus, efficient energy consumption and intelligent
on-board processing are crucial. With the increasing demand
on processing capability with low power-consumption, the
trend of processing units in real-time systems has started to
shift from single core to multi- and many-core CPUs as well
as heterogeneous processing units [1]. For example, a CPU is
preferred for sequential computation while a GPU shows its
advantages in parallel numerical computation.

Academic work on sequential and parallel computation is
broadly conducted in the real-time and high performance
computing communities. In heterogeneous computing [2], [3],
a task is often considered as a sequence of multiple segments.
A task segment can represent either sequential execution or
parallel execution, where the same function is applied on
different parts of the data as shown in Figure 1. A parallel

Swedish special characters (å, ä, ö) in the email addresses are replaced by
a and o.

segment can be executed by different processing units (not
only GPU), however, in this paper we only consider GPU
and CPU resources. Furthermore, the allocation of parallel
segments of the program to compute resources is typically
done at design time. However, allocating all parallel segments
to the same resource might over-restrict the systems. In
high performance computing and supercomputer community,
distributed computing is considered in order to decrease the
overuse of the same resource [3].

Fig. 1. The execution alternatives of a parallel segment of tasks

In this work, we consider an extension of the fork-join task
model [4], by adopting the alternative executions of parallel
segments since this extended model has been introduced in the
real-time community just recently [5]. A parallel segment can
either be mapped to a GPU for parallel execution (alternative
B) or to a CPU for sequential execution of the same code
segment (alternative A), see Figure 1. This then allows to take
the characteristics of the execution on the different processing
units into account during the system design phases where
mapping decisions are taken.

Traditionally, parallel computations are often allocated to
the GPU resources as it provides better performance compared
to sequential execution on the CPU. However, the overuse of
GPUs may end up in a bottle-neck situation [6]. Therefore, a
study of how we can balance the allocation of parallel tasks
to different processing units is warranted and important.

A. Contributions
In this work, we study how static allocation of parallel tasks

can improve schedulability of task sets in GPU accelerated



real-time systems. This allows to eliminate the bottle-neck
caused by overuse of GPUs. Our main contributions in this
paper are:
• We show that the overusing of GPU might bring a

negative impact to the schedulability of real-time systems.
• We tackle this problem by offloading GPU computation

to CPU. In other words, we conduct pre-runtime static
allocations of the parallel segments either on CPU or
GPU.

• We adapted the following heuristic approaches using
synthetic workloads: Non-Greedy Resource Allocation
Heuristic Approach (NHA), Speedup Classifier based
Heuristic Approach (SHA), and Min-Min Approach
(MMA). We show that the algorithms based on these ap-
proaches improve the schedulability of task sets compared
to their default task mapping on the GPUs using Baseline
Task Set (BTS) approach, see Section V-B).

• Our synthetic experiments show up to 90% of improve-
ment of the schedulability of task sets depending on the
platform size compared to the default task mapping on
the GPUs (BTS).

B. Organization

In the rest of this paper, we motivate this paper in Section
II. Section III presents a description of our system model,
followed by detailed explanation of the task model. Heuristic
task allocation approaches are introduced in Section IV. In
Section V, we describe experiments and their setups and report
our experimental evaluation. We discuss the related work in
Section VI and lastly, conclusions are presented in Section
VII.

II. MOTIVATION

Due to the following two reasons, we strongly consider
the importance of balanced use of CPU and GPU in real-
time systems with the partitioned fixed priority preemptive
scheduling for CPU and the fixed priority non-preemptive
scheduling for GPU.
• As the GPU is a single shared resource under the fixed

priority non-preemptive scheduler, a higher priority task
could be blocked by lower priority tasks. The blocking
is well known in real-time community and it appears in
many ways such as priority inversion problem.

• Interference from higher priority tasks extends the re-
sponse time of a lower priority task that may result in
the deadline miss.

As shown in Figure 2, assume a scenario for the first case
above by considering the scheduling of three tasks, τh, τm
and τl, with high, middle and low priorities, respectively. The
system has 2 CPU cores and a single GPU, and follows rate-
monotonic priority assignment on CPU and non-preemptive on
GPU. We assume that task τh has 3 segments with sequential,
parallel, sequential order. The worst case execution times
(WCETs) of each segment are 2, 1, and 3 time units. As we
focus on task τh, we do not consider all the segments of tasks
τm and τl. Only necessary segments of these tasks are given as

follows. The first segment of task τm is sequential with 3 time
units of WCET. The first two segments of τl are sequential
(WCET: 1 time unit) and parallel (WCET: 11 time units).

Then, task τl releases at 0 for 1 time unit on CPU core 2
and executes then with 11 time units on GPU. Task τm starts
at 1 for 3 time units on CPU core 1 and tries to run on GPU.
However, this execution will be blocked by task τl. Later, task
τh releases at 4 on CPU core 1 for 2 time units. At 6, task τh
tries to run on GPU, however, GPU is still occupied with task
τl. Task τh starts running on GPU at 12 for 1 time unit and
runs back on CPU core 1 from 13 for 3 time units. Therefore,
task τh completes at 16 and the response time is 12.

Fig. 2. The execution of parallel segment on GPU

Fig. 3. The execution of parallel segment either on GPU or CPU

Now we consider the alternative executions of parallel
segments shown in Figure 3. In addition to the previous case,
we assume that the WCET of the parallel segment of task
τh on CPU is 4 time units, which is 4 times longer than the
WCET on GPU. In order to identify both alternatives, we use
the notation of τCh and τGh , which are the executions of parallel
segment on CPU and GPU, respectively. In Figure 3, we can
see that the previous case is described as τGh . Then, let us
consider the case of τCh . Until 6, the executions of both τGh
and τCh are the same. As we know GPU is busy with τl at 6, τCh
can be executed on CPU. This execution finishes at 10, and the
third segment of task τh is executed on CPU continuously. In
this case, task τh finishes at 13 and its response time is 9. This
means that the execution on CPU (τCh ) has shorter response
time than the execution on GPU (τGh ).

III. SYSTEM AND TASK MODEL

A. System model

We consider a system S, that consists of a task set Γ with
n tasks. A hardware platform has m identical CPUs {PCPUm }



and a single GPU device PGPU .

S =< Γ, {PCPUm }, PGPU >

For CPU scheduler, the partitioned fixed priority preemptive
scheduling technique is assumed. GPU allows to execute tasks
with non-preemptive fixed priority scheduling.

B. Task Model

A task τi ε Γ is represented by the fork-join task model,
where parallel workload is modelled by fork/join segments.
τi can be characterized by the tuple {Si, Di, Ti}, where Di

is the relative deadline of the task and Ti is the period of
the task. Si is composed of a finite sequence of l different
execution segments {Si,1, Si,2, . . . , Si,l}, where l ∈ N (see
Figure 4). Each of the segments Si,j ∈ Si represents a
number of k sub-tasks τ1i,j , . . . , τ

k
i,j , where k ∈ N, and has

an assigned Worst-Case Execution Time (WCET) for each
segment, denoted by Ci,j . We define a sequential segment
for Si,j where k=1 (having a single sub-task), and a parallel
segment for Si,j where k >1 (having multiple sub-tasks). We
further require that the first and last segment of the task have
a segment with only one sub-task. During execution, the sub-
tasks of a segment Si,j can only be released once all sub-tasks
of prior segments Si,j−1, completed their execution. As this
model defines the application, at this stage, no allocation to
the different compute resources (CPU or GPU) is included and
the WCET estimates are generally not known. We assume the
allocation of the sequential segments on CPU is predefined.
We are aware that changing this allocation might have a
big impact on the performance and combining this with our
solutions might provide better result. However, we leave this
part as future work.

Fig. 4. Execution segments of task τi and their allocations on the different
resources

As the main focus of this work is the allocation of compu-
tation (parallel segments) to the different hardware types, the
model is further extended. A parameter hi,j is added for each
segment Si,j ∈ Si of a task τi. hi,j encodes the allocation
decision, i.e. hi,j = CPU or hi,j = GPU, where CPU and GPU
are different constants.

The execution time Ci,j is then dependent on the selected
compute resource, and is represented as:

Ci,j =

{
CCPU
i,j · k if hi,j = CPU

CGPU
i,j if hi,j = GPU

(1)

This represents the parallel execution of a segment, when
assigned to the GPU (denoted by CGPU

i,j ) and the sequential
execution of all k sub-tasks on the CPU(denoted by CCPU

i,j ). It
also needs to be noted that typically execution on the GPU
requires miscellaneous operations (such as copying of data).
To model this, the execution time on the GPU can further
be divided into CGPU

i,j = Gmi,j + GCi,j . Where Gmi,j represents
miscellaneous computation and GCi,j represents actual compu-
tation on the GPU.

To ease the later presentation of our approach we define
CCPU
i (or simply Ci) and CGPU

i (or simply Gi) as the total
execution time that the task τi requires from CPU and GPU
respectively:

CCPU
i =

∑
∀τi,j |hi,j=CPU

Ci,j (2)

CGPU
i =

∑
∀τi,j |hi,j=GPU

Ci,j (3)

To give a estimate if a task τi is CPU-heavy or GPU-heavy,
a metric is used as conversion ratio between the two options.
This conversion ratio is denoted by µi and gives the ratio of
required execution on CPU to GPU for all parallel segments
(i.e. segments that have more than 1 sub-task, k > 1):

µi =

∑
1≤j≤l, k>1, hi,j=CPU

Ci,j∑
1≤j≤l, k>1, hi,j=GPU

Ci,j
(4)

Smaller values of µi indicate that the benefit of execution on
the GPU is smaller compared to larger values of µi.

As all segments τi,j , where k = 1, represent purely
sequential segments of execution, they must be executed on
the CPU and hi,j = CPU. For all other segments hi,j depends
on the concrete allocation.

IV. HEURISTIC TASK ALLOCATION APPROACHES

The response time of a task can be improved by selectively
assigning parallel segments to CPU or GPU as highlighted in
Section II. The allocation of parallel segments is considered
as one dimensional bin packing problem since it is defined
as a problem of finding an optimal allocation of the paral-
lel segments to the suitable processing resources. However,
finding an optimal solution ends up with time complexity,
which may be described with a year-unit. Thus, improved
exhaustive algorithms and heuristic algorithms should be taken
into account in order to decrease the search space and to
find some reasonable results, respectively. Due to the limited
space, in this section, we only skim an overview of heuristic
approaches to allocate the tasks into their preferable processors
instead of concerning the optimal allocation. The aim of these
approaches is to improve the schedulability of a given task set.
These approaches take a task set as an input and returns the
schedulability of the task set. We assume that all the parallel
segments of tasks are allocated to GPU by default.



A. Non-Greedy Resource Allocation Heuristic Approach
(NHA)

NHA is a simple allocation approach, which is intended to
reveal the importance of the balanced use of CPU and GPU.
This approach performs the following steps.
• Step 1. Check the schedulability of the input task set by

using a schedulability analysis test. This approach returns
schedulable and stops if the task set is schedulable.

• Step 2. Identify a task that misses its deadline.
• Step 3. Return not schedulable if the task has been

allocated on CPU already. Otherwise, allocate the task
to CPU and goto Step 1 again.

B. Speedup Classifier based Heuristic Approach (SHA)

This approach is inspired by [3]. As illustrated in Figure
5, the idea of SHA is based on a queue of GPU-using tasks
which is sorted by a speedup classifier. SHA follows the steps
below.

Fig. 5. A sorted task queue based on speedup classifier

• Step 1. Add tasks to a queue.
• Step 2. Sort them in order of speedup classifier as the

task with the largest classifier is first and the task with
the smallest classifier is last.

• Step 3. Allocate the parallel segments of tasks on the left
side of limiter on GPU and the parallel segments of tasks
on the right side of limiter on CPU. In order to find the
suitable limiter, we perform the following different cases
that 0%, 20%, 40%, 60%, 80% and 100% of the tasks
are allocated on the left side of the limiter.

• Step 4. To check and returns the schedulability test of the
task set.

In [3], the speedup classifiers are calculated by using a support
vector machine (SVM). However, using machine learning
algorithms may require longer allocation time, which will be
a disadvantage in real-time systems. Therefore, instead of the
speedup classifiers based on SVM, we consider the conversion
ratio of parallel segment(µi), priority, and utilization of tasks.
We call the algorithms used these classifiers as SHA-µ, SHA-
prio, and SHA-util, respectively.

C. Min-Min Approach (MMA)

Braun et al. [7] report the Min-min approach shows the
second best results among eleven static heuristics for mapping
tasks onto heterogeneous distributed computing systems. The

best heuristic is GA (Genetic Algorithms). However, similar
to the SVM based speedup classifiers, we have adapted GA as
its allocation time can be longer. In this paper, we consider the
Min-min fashioned approach which is described in the steps
below.

• Step 1. Initially, there is no task allocated to any proces-
sors.

• Step 2. All the CPU-using tasks are allocated to each
processor which is allocated to when tasks are generated.
All the GPU-using tasks are placed in a queue in order
of priority.

• Step 3. Pick the highest priority task from the queue and
calculates the two response times of this task using CPU
or GPU for the parallel segment, respectively. If there
is no more task in the queue and all the response-times
are no greater than the deadlines, we say the task set is
schedulable and the solution is provided.

• Step 4. Allocate the parallel segments of the task either
on CPU or GPU according to the lowest response time
of these cases.

• Step 5. Stop the algorithm if the systems is not schedula-
ble when the task is allocated to the suitable processor(s)
in Step 4. Otherwise, remove the task from the queue and
go to Step 3.

V. SYNTHETIC EXPERIMENTS

In order to evaluate a wide range of application parame-
ters with our proposed approach, synthetic experiments are
performed.

TABLE I
INITIAL CONFIGURATION OF TASK SET GENERATION

Parameters Values
Number of CPU cores (Np) 4, 8
Number of tasks (n) [2Np, 6Np]
Task utilization (Ui) [0.1, 0.2]
Task period and deadline (Ti = Di) [30, 500]ms
Percentage of GPU-using tasks [10, 30]%
Ratio of GPU segment len. to normal WCET (Gi/Ci) [10, 30]%
Number of parallel segments per task (ηi) 0 or 1-3
Ratio of misc. operations in Gi,j (Gm

i,j/C
GPU
i,j ) [10, 20]%

GPU server overhead (ε) 50µs
Conversion ratio of parallel segments (µi) [3-10]

A. Task set generation

The mechanism of task generation is based on the UU-
niFast algorithm, which is proposed by Bini and Buttazzo
[8]. Necessary configuration values are described in Table
I. First, in order to generate both alternatives (the execution
either on CPU or GPU), we generate the WCET of parallel
segments, which is generated by using the ratio of GPU
segment length to sequential segment’s WCET. Then, we
create the WCET of the sequential execution of the parallel
segment by using a conversion ratio of parallel segments, µi,
which is in default a random number between 3 and 10 brought
from the experimental studies from [9], [10].



B. Comparative algorithms

In order to evaluate our idea of the removal of bottlenecks
of CPU-GPU, we consider 6 comparative algorithms (BTS
(Baseline Task Set), NHA, SHA-µ, SHA-prio, SHA-util, and
MMA) using the proposed heuristic approaches in Section IV.
Baseline Task Set (BTS) is a task set that all the parallel
segments of the tasks are allocated on GPU. We choose BTS as
a baseline for comparison investigation. The other algorithms
are based on the proposed approaches.

The input to the approaches is a set of tasks that must
fulfill the input requirements of the task model (Section III-B)
such as segments, deadlines and periods. As we defined in
III-B, the sequential segment of tasks is preemptible and self-
suspending [6], [11]. Further, a parallel segment of tasks is
stored in the priority-based GPU scheduler queue. The current
executing parallel segment on the GPU is non-preemptive.
In other words, a parallel segment can only be delayed by
the higher priority parallel segments when this segment is
on the GPU scheduler queue. Any schedulability analyzing
test [11] for the given execution model can be used together
with the proposed heuristic algorithms. We assume that the
schedulability analysis returns the highest priority task which
misses its deadline among tasks in the task set. Otherwise, the
algorithm finishes its schedulability analysis and classifies the
task set as schedulable.

C. Experiment setup

In the experiments, we used 10,000 randomly generated task
sets in general. The experiments are based on the parameters as
they shown in Table I except for the parameters that are varied
in the respective experiment. To decide upon the schedulability
of the task sets under the mapping that is created by our
proposed approaches, the schedulability analysis for server-
based approaches of [11], [12] are used.

D. Result

In this section, we describe the following 3 groups of
experiments. Experiment A focuses on the understanding of the
balanced use of CPU-GPU and Experiment B is a comparison
study between 5 comparative algorithms under different exper-
iment setups. Experiment C is focusing on the experiment time
for the heuristic algorithms. The experiments are targeting a
system that has either 4 or 8 CPU cores and 1 GPU. Due to
the limited space, we show only the results with 24 tasks on
4 CPU cores.

Experiment A In this experiment, we focus on the change
of schedulable task sets as the task set changes from 0% of
GPU-using tasks (i.e., 100% of CPU-using tasks) to 100%
of GPU-using tasks (i.e., 0% of CPU-using tasks). The peak
value of the change describes the balanced use of CPU-GPU.
For example, in Figure 6, the curve for µi = 5 gets the peak
value of around 70% of schedulable tasksets at 20% of GPU-
using tasks and 80% of CPU-using tasks. Furthermore, the
schedulability of task sets with the different µi = 5 and µi =
15 results in about 0% and 97%, respectively. In other words,
in case of µi = 5, the execution time on GPU is 3 times

Fig. 6. Schedulable task sets w.r.t. the fixed conversion ratio (4 CPU cores,
24 tasks)

smaller than the case of µi = 15 where the total execution
times are the same for both cases. Hence, this result could
be explained that the tasks with the shorter execution time on
GPU can block and interfere the other tasks less compared to
the tasks with the longer execution time on GPU. This shows
the importance of the balanced use of CPU-GPU. We note that
this experiment uses NHA algorithm in order to understand
and optimize task sets.

Experiment B Figure 7 illustrates the percentage of schedu-
lable task sets with respect to the percentage of GPU using
task with the default settings. We see that MMA is the best
performing heuristics, since the percentage of schedulable task
set is 100% in all the cases. NHA is the second best heuristics,
and SHA-prio and SHA-util follow. In this case, SHA-µ did
not perform well compared to the other heuristics. Here, in
100% of GPU using task, we confirm that NHA and MMA
perform about 70% and 90% better than BTS, respectively.

Figure 8 shows the results when the range of µi has been
extended from [3-10] to [3-100]. This change, obviously,
worsens the execution of parallel segment on the CPU as it
may take 100 times longer on CPU than GPU. In this case, we
see only NHA improves BTS. Further, the algorithms SHA-
prio, SHA-util and MMA could not succeed for the allocation.
Because, these algorithms allocate tasks with longer execution
times (about 100 times) on CPU compared to the tasks in
BTS. Moreover, all these algorithms would not consider the
results of BTS whether they are schedulable or not. Hence,
the results of these algorithms are lower than BTS (see Figure
8). The schedulability of task set could be improved when
these algorithms include the knowledge of whether BTS is
schedulable or not although the experiment time gets longer.
For example, the schedulability result of BTS is the same in
both Figures 7 and 8. However, these algorithms result worse
than BTS in Figure 8, and better in Figure 7 On the other hand,
NHA improves the results all the time compared to BTS as
NHA is based on the results of BTS.

Experiment C Table II shows the experiment time of the
heuristic algorithms for a task set measured 10,000 times. The



Fig. 7. Schedulable task sets w.r.t GPU using task with the default settings

Fig. 8. The extended range of µi (between 3-100)

experiment time consists of the times of the task generation,
task allocation and schedulability analysis for a task. Max,
median, mean and min values of 99.9th percentile of the
experiment time are shown in Table II.

We can see that the median value of NHA (40us) is the
best among all the heuristic algorithms. SHA-µ (55us), SHA-
prio (51us), and SHA-util (51us) are in the same level although
SHA-µ takes a bit longer time compared to other 2 algorithms.
MMA requires the longest experiment time among all the
algorithms while MMA gives the best schedulability results
in most of the scenarios. In conclusion of the experiment C,
we could say that NHA is the best choice from the time-wise.

VI. RELATED WORK

Heterogeneous computing is well studied in high perfor-
mance community, especially, in supercomputers as an ex-
tension of the distributed computing [3], [13]–[15]. However,
these techniques are not investigated targeting the real-time
embedded systems. Furthermore, the techniques are mostly
focused on the distributed heterogeneous systems, not on
the heterogeneous systems included in the system on chips
although their architecture may be similar to each other.

There exist several approaches considering the use of GPU
in real-time embedded systems. Kato et al. introduced Time-
Graph [16], RGEM [17] and Gdev [18] along with zero-
copy I/O processing for low-latency GPU computing [19].
In addition, self-suspending task techniques [6], [20] are
broadly studied in real-time systems, and they are applicable
to GPU accelerated real-time systems. Most of these works

TABLE II
THE EXPERIMENT TIME FOR HEURISTICS ALGORITHMS FOR A TASK SET

No. Heuristic Algorithm Experiment time [us]
max median mean min

1 BST 71.0 25.5 27.0 19.0
2 NHA 121.0 40.0 43.9 22.0
3 SHA-µ 134.0 55.0 58.2 34.0
4 SHA-prio 116.0 51.0 53.6 42.0
5 SHA-util 103.0 51.0 53.0 43.0
6 MMA 930.0 419.0 433.8 249.0

consider compensating the limitation of early existing GPU
hardware and device drivers such as a zero-copy technique for
accelerators’ memory and splitting tasks into smaller chunks
for allowing preemption. However, these limitations will be
solved by coming new technologies such as unified memory,
zero-copy and preemption technologies in CUDA [21] and
Heterogeneous System Architecture (HSA) [9], [10], [22].
Furthermore, the works of Elliott et al. [23], [24] and Kim
et al. [11], [12] consider worst-case timing behavior in GPU
accelerated real-time systems. These works could be used as
the timing analysis tool.

The bin-packing problem is one of the most important
optimization problems. In our work, the problem is to find
an optimal solution for the allocation of tasks to different
processing units. The study of the bin-packing problem has
been done widely in parallel processing [25]–[28] and real-
time systems [29]. However, due to its NP-hard nature, it is
common to introduce heuristic approaches to figure out the
system in an affordable time. Moreover, there are many works
regarding the resource mapping in heterogeneous platforms
such as [7], [13], [30], [31]. In this paper, we adopt the
heuristic approaches from [3], [7] in order to understand how
the behavior of the alternative execution (either on CPU or
GPU) of parallel segment affects the schedulability of task
sets.

VII. CONCLUSIONS

In this paper, we target the mapping of parallel segments
to either the GPU or CPU. While GPU resources can boost
the performance, heavy usage can result in a bottleneck for
the system. This affects on one hand tasks that want to access
the shared GPU resource, as they can be blocked by other
GPU segments, and on the other hand tasks that receive
additional interference due to blocking by the GPU-handler
task that is executed on the CPU. Thus, always executing
parallel code segments on the GPU potentially degrades the
system performance. We demonstrate that selective mapping
of parallel segments to either CPU or GPU can improve
the system performance. Heuristic algorithms are described
to select the respective compute resource for such tasks.
Synthetic evaluations reveal that our proposed heuristics are
able to improve the schedulability of task sets up to 90%
compared to task sets where no mapping decisions are taken.

Future work will focus on runtime assignment of parallel
segments to CPU or GPU. Furthermore, we hope to expand
our investigation to the use of multiple GPUs or any other
accelerators.



REFERENCES

[1] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances
and trends in on-board embedded and networked automotive systems,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1038–
1051, 2019.

[2] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 2009, pp. 44–54.

[3] Y. Wen, Z. Wang, and M. F. O’Boyle, “Smart multi-task scheduling
for opencl programs on cpu/gpu heterogeneous platforms,” in 2014
21st International Conference on High Performance Computing (HiPC).
IEEE, 2014, pp. 1–10.

[4] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time
analysis of synchronous parallel tasks in multiprocessor systems,” in
22nd International Conference on Real-Time Networks and Systems
(RTNS). ACM, 2014, pp. 3:3–3:12.

[5] S. Baruah, “Resource-efficient execution of conditional parallel real-
time tasks,” in Euro-Par 2018: Parallel Processing, M. Aldinucci,
L. Padovani, and M. Torquati, Eds. Springer International Publishing,
2018, pp. 218–231.

[6] K. Bletsas, N. Audsley, W.-H. Huang, J.-J. Chen, and G. Nelissen,
“Errata for three papers (2004-05) on fixed-priority scheduling with self-
suspensions,” Leibniz Transactions on Embedded Systems, vol. 5, no. 1,
pp. 02–1–02:20, 2018.

[7] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen et al., “A
comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems,” Journal of
Parallel and Distributed computing, vol. 61, no. 6, pp. 810–837, 2001.

[8] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Syst., vol. 30, no. 1-2, pp. 129–154, May 2005.

[9] N. Tsog, M. Behnam, M. Sjödin, and F. Bruhn, “Intelligent data
processing using in-orbit advanced algorithms on heterogeneous system
architecture,” in IEEE Aerospace Conference, March 2018, pp. 1–8.

[10] N. Tsog, M. Sjödin, and F. Bruhn, “Advancing on-board big data
processing using heterogeneous system architecture,” in ESA/CNES 4S
Symposium 4S, April 2018.

[11] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar, “A server-based
approach for predictable gpu access control,” in 23rd IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), Aug 2017, pp. 1–10.

[12] ——, “A server-based approach for predictable gpu access with im-
proved analysis,” Journal of Systems Architecture, vol. 88, pp. 97–109,
2018.

[13] D. Grewe and M. F. OBoyle, “A static task partitioning approach for
heterogeneous systems using opencl,” in International Conference on
Compiler Construction. Springer, 2011, pp. 286–305.

[14] P. Czarnul and P. Rościszewski, “Optimization of execution time under
power consumption constraints in a heterogeneous parallel system with
gpus and cpus,” in International Conference on Distributed Computing
and Networking. Springer, 2014, pp. 66–80.

[15] H. Zhou and C. Liu, “Task mapping in heterogeneous embedded
systems for fast completion time,” in 2014 International Conference
on Embedded Software (EMSOFT). IEEE, 2014, pp. 1–10.

[16] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
Gpu scheduling for real-time multi-tasking environments,” in USENIX
Conference on USENIX Annual Technical Conference (USENIXATC).
USENIX Association, 2011, pp. 2–2.

[17] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar, “Rgem: A responsive gpgpu execution model for runtime
engines,” in 32nd IEEE Real-Time Systems Symposium (RTSS), Nov
2011, pp. 57–66.

[18] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-
class gpu resource management in the operating system,” in USENIX
Conference on Annual Technical Conference (USENIXATC). USENIX
Association, 2012, pp. 37–37.

[19] S. Kato, J. Aumiller, and S. Brandt, “Zero-copy i/o processing for low-
latency gpu computing,” in ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS), April 2013, pp. 170–178.

[20] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. Audsley, R. Rajkumar,
D. de Niz, and G. von der Brüggen, “Many suspensions, many problems:

a review of self-suspending tasks in real-time systems,” Real-Time
Systems, Sep 2018.

[21] M. Harris, “”Unified Memory for CUDA Beginners.” June 19, 2017.”
available: https://devblogs.nvidia.com/unified-memory-cuda-beginners/
[Oct 16, 2018].

[22] HSA Foundation, “Heterogeneous system architecture,” available:
http://www.hsafoundation.com/ [Oct 16, 2018].

[23] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A frame-
work for real-time gpu management,” in 34th IEEE Real-Time Systems
Symposium (RTSS), Dec 2013, pp. 33–44.

[24] G. A. Elliott and J. H. Anderson, “Globally scheduled real-time mul-
tiprocessor systems with gpus,” Real-Time Systems, vol. 48, no. 1, pp.
34–74, Jan. 2012.

[25] J. O. Berkey, “Massively parallel computing applied to the one-
dimensional bin packing problem,” in Proceedings., 2nd Symposium on
the Frontiers of Massively Parallel Computation, Oct 1988, pp. 317–319.

[26] E. G. Coffman, M. R. Garey, and D. S. Johnson, Approximation
Algorithms for Bin-Packing — An Updated Survey. Springer Vienna,
1984, pp. 49–106.

[27] D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham, “Worst-
case performance bounds for simple one-dimensional packing algo-
rithms,” SIAM Journal on Computing, vol. 3, no. 4, pp. 299–325, 1974.

[28] J. D. Ullman, “Np-complete scheduling problems,” J. Comput. Syst. Sci.,
vol. 10, no. 3, pp. 384–393, Jun. 1975.

[29] D. De Niz and R. Rajkumar, “Partitioning bin-packing algorithms
for distributed real-time systems,” International Journal of Embedded
Systems, vol. 2, no. 3-4, pp. 196–208, 2006.

[30] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Dynamic power-aware
mapping of applications onto heterogeneous mpsoc platforms,” IEEE
Transactions on Industrial Informatics, vol. 6, no. 4, pp. 692–707, 2010.

[31] A. H. Alhusaini, V. K. Prasanna, and C. S. Raghavendra, “A framework
for mapping with resource co-allocation in heterogeneous computing
systems,” in Heterogeneous Computing Workshop, 2000.(HCW 2000)
Proceedings. 9th. IEEE, 2000, pp. 273–286.


