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On-board data processing is one of the prior on-orbit activities that it improves the performance capability of in-orbit space
systems such as deep-space exploration, earth and atmospheric observation satellites, and CubeSat constellations. However, on-board
data processing encounters with higher energy consumption compared to traditional space systems. Because traditional space systems
employ simple processing units such as micro-controllers or a single-core processor as the systems require no heavy data processing
on orbit. Moreover, solving the radiation hardness problem is crucial in space and adopting a new processing unit is challenging.

In this paper, we consider a GPU accelerated real-time system for on-board data processing. According to prior works, there
exist radiation-tolerant GPU, and the computing capability of systems is improved by using heterogeneous computing method. We
conduct experimental observations of power consumption and computing potential using this heterogeneous computing method in our
GPU accelerated real-time system. The results show that the proper use of GPU increases computing potential with 10-140 times and
consumes between 8-130 times less energy. Furthermore, the entire task system consumes 10-65% of less energy compared to the
traditional use of processing units.

Key Words: On-board data processing, Heterogeneous computing, Energy efficiency, GPU accelerated on-board computer

Nomenclature

C : worst case execution time of task, sec
T : period of task, sec
D : deadline of task, sec
R : worst case response time of task, sec
t : time instance, sec
E : consumed energy, Joule
P : consumed power, Watt

1. Introduction

In the space community, technological advances make it pos-
sible to work on a new challenge for on-orbit activities1) in-
cluding in-orbit servicing and in-situ experiments. On-board
data processing is one of the prior on-orbit activities that it
improves the performance capability of in-orbit space systems
such as deep-space exploration, earth and atmospheric obser-
vation satellites, and CubeSat constellations. We consider that
the advanced on-board data processing solves the current exist-
ing communication limitation which is low-speed connections
between satellites and ground stations with limited access time
intervals. Furthermore, there exist the SWaP (Size, Weight, and
Power) and radiation limitations for space systems as well as
on-board data processing. Due to these limitations, the tradi-
tional and small scale space systems employ simple process-
ing units such as micro-controllers or a single-core processor
even though the systems end up with limited on-board process-
ing capabilities in orbit. The rapid development of technology
makes advanced on-board data processing possible for small
scale space systems using heterogeneous processing units that
meet the requirements of size and weight limitations. More-
over, there exist many radiation hardened and/or tolerant pro-

cessing units including FPGA, DSP and GPU.2) However, pro-
cessing units consume more energy compared to their stand-by
mode when the systems require more computing potential us-
ing them.3) In addition, the use of GPUs in the context of space
is not well studied yet, due to the prior concern that GPUs are
not suitable for the radiation-hardened environments. There-
fore, in this paper, we consider a trade-off between computing
power and energy consumption focusing on the entire task set
with different use scenarios in GPU accelerated systems.

The interest of using heterogeneous computing in real-time
and low-end embedded systems is increasing along with ad-
vanced on-board processing such as machine learning and
computer vision algorithms. However, in real-time and low-
end embedded systems, heterogeneous processing units are
less-studied compared to a single- and multi-core processing
units, although, heterogeneous computing is well-known in
high-performance computing (HPC), especially in supercom-
puters.4, 5) The significant reasons to hinder bringing hetero-
geneous processing units in embedded systems are difficulties
of parallel programming and complexity of heterogeneous sys-
tems. In order to address these problems, some industry vendors
(AMD, ARM, Imagination, MediaTek, Qualcomm, and Sam-
sung) established HSAFoundation6) which is proposed a new
standard, Heterogeneous System Architecture (HSA), for the
advancement of heterogeneous computing. In this paper, we
conduct experimental observations of HSA compliant GPU ac-
celerated on-board processing platforms using heterogeneous
computing methods introduced in prior works.5, 7) These plat-
forms are commercialized by Unibap AB with flight heritage
and selected by NASA for high-performance on-board data pro-
cessing for the HyTI thermal hyperspectral mission.8)



1.1. Contributions
The overall goal of our research is to develop a real-time

system which could provide more computing potential to its
tasks under energy limited conditions. This work is part of un-
derstanding suitable mapping from heterogeneous processors
to tasks under limited energy budget. Prior works5, 7) report
that the balanced use of heterogeneous processors improves the
schedulability of the task sets in real-time systems when tasks
are allowed to choose to run on different processors in different
instances. Hence, our contribution in this paper is to conduct
observations of energy consumption in GPU accelerated real-
time systems while using the mapping method for the balanced
use of heterogeneous processors. These observations provide
us the fundamental understanding to perform the dynamic al-
location of tasks to the heterogeneous processors under limited
energy budget.
1.2. Organization

In the rest of this paper, we provide needed related work in
Section 2.. Section 3. presents detailed explanations about real-
time systems, heterogeneous computing as well as power con-
sumption. A description of our system model is discussed in
Section 4.. Section 5. reports experimental evaluation. Lastly,
we conclude in Section 6..

2. Related work

In high performance computing, the research of heteroge-
neous processors and heterogeneous computing is very active.4)

Especially, in supercomputers, the impact of GPU is indispens-
able. However, the balanced use of GPU and CPU is significant,
since not all the applications are suitable for parallelism.5) The
nature of OpenCL5, 9) makes heterogeneous computing easier
as it is possible to prepare the different kernels on the differ-
ent devices. Furthermore, heterogeneous computing is consid-
ered as part of distributed computing in sense of distributing the
data/kernels to the distributed computing resources when appli-
cations are data-parallelism. However, satellites as being low-
end embedded systems need to perform under limited budgets
of the different resources (location, SWaP); therefore, consid-
ering the distributed computing resources is challenging in the
satellite. Moreover, the research of heterogeneous computing
in real-time embedded systems is less studied compared to high
performance computing.

There exist several approaches considered to use GPU in
real-time systems. Shinpei et al. introduced TimeGraph,10)

RGEM11) and Gdev12) along with zero-copy I/O processing for
low-latency GPU computing.13) Furthermore, the works of El-
liott et al.14, 15) and Kim et al.16, 17) consider worst-case timing
behavior in GPU accelerated real-time systems. Most of these
works consider compensating the limitation of early existing
GPU hardware and device drivers such as a zero-copy technique
for accelerators’ memory and splitting tasks into smaller chunks
for allowing preemption. However, these limitations are consid-
ered to be solved by coming new technologies such as unified
memory, zero-copy and preemption technologies in CUDA18)

and Heterogeneous System Architecture (HSA).3, 19, 20)

The research of modeling focusing on sequential and paral-
lel tasks such as fork-join21, 22) and DAG23, 24) is active. Re-

cently, Baruah25) introduced i f -then-else concept using condi-
tional DAG task modeling, which is useful for the heteroge-
neous computing. The topology of this model is considered in
this study.

In order to maintain a sustainable system in space, energy ef-
ficiency is the crucial factor that should be considered. There
are many techniques used to save energy, and the following
techniques are the basis of energy efficiency:4) workload par-
titioning based techniques,26) DVFS (Dynamic Voltage and
Frequency Scaling) based techniques,27) and resource scaling
based techniques. The combination of these techniques has also
considered to save energy efficiency.28) Our experiments in this
paper put more focus on the power consumption of the entire
system compared to specific tasks, since the power budget for
the entire system is most important in the low-end embedded
systems.

Employing heterogeneous processors in on-board computer
(OBC) of a satellite is common when the scale of the satel-
lite size is larger. For example, FPGA accelerated on-board
computers are well known in satellites, as FPGAs are strong
against in the radiation-hardened environments. Since FPGAs
are good for image and video processing, FPGAs are consid-
ered for on-board processing in an advanced imaging system,31)

DVB-S2 transport stream29) and real-time cloud detection,30)

etc. On the other hand, the use of GPUs in the context of space
was not appreciated, due to the prior concern of GPUs for the
radiation-hardened environments. However, recently, the con-
sidering GPU onto the on-board computer is increasing.2, 32) In
this paper, we conduct experimental observations of the use of
GPU in the context of space.

3. Background

The advanced on-board data processing should be predictable
in order to make a decision in orbit, while it is considered as a
way to solve the limitation of communication between the satel-
lite and the ground station. To consider a predictable system,
we introduce the background knowledge of real-time system in
this section. Then, we present how the heterogeneous comput-
ing techniques are implemented in the current state of the art
environments. Furthermore, we discuss the use of advanced ap-
plications in satellite in this section.

3.1. Real-time system
A real-time system is a system that reacts to external events.

The system executes a function based on the external events and
returns a response within a finite and required time. Therefore,
not only the accuracy of the result, but also the timeliness is a
crucial factor for the accuracy of the system.

The real-time system can be divided into a hard, firm and
soft33) real-time system from perspective of the timing con-
straints (see Figure 1). The hard real-time system must pass
entire constraints. If the system misses a deadline once, it re-
sults in failure leading to a fatality and/or big cost damage.
Therefore, the hard real-time systems are often considered to
be safety critical. In the soft real-time system, one or more
deadline misses may occur, but it affects the quality of the ser-
vice. A firm real-time system is between hard and soft real-time
systems.



Fig. 1. A real-time system requirements.∗

3.2. Heterogeneous computing
In regards to parallel computation, technology developments

that have been pursued actively cover many environments such
as operating systems, programming languages/libraries, hetero-
geneous processing units and so on. Here we look through four
programming languages which are pushing the heterogeneous
computation a lot.

OpenMP,34) a specification implementing API, is a well-
known candidate when it comes to parallel computation and
consists of compilers directives, runtime library routines, tool
supports and environment variables used in Fortran and C/C++

programs. OpenMP grants programs to run its parallel part re-
gardless of whether it is on a host device or target devices. Re-
gardless of how an executable assigned to the processors, the
host device is set as a default/spare processor and is possible to
run the executable implicitly when the assigned target device is
not able to run it. In other words, a parallel part of programs has
a heterogeneous variety of the execution contexts of processors.

OpenCL is an open and royalty-free standard for paral-
lel programming in heterogeneous systems including smart-
phones, personal computers, servers and embedded systems. In
OpenCL,35) computing systems are considered as a collection
of a number of computing devices which consist of a host pro-
cessor (host device in OpenMP) and accelerators (target devices
in OpenMP). By simply using clCreateContextFromType func-
tion together with conditional statements like if, programmers
can develop a heterogeneous nature of executions explicitly.

CUDA is a (Nvidias GPU centered) parallel computing plat-
form and a heterogeneous programming model. CUDA consists
of a host and devices which stand for CPU and Nvidia’s GPUs,
respectively. In CUDA,36, 37) three qualifiers/space-specifiers
( global , device , and host ) are prepared to run code
regardless of it is on host or devices. The space-specifiers al-
low programmers to write executions explicitly with a hetero-
geneous nature.

In order to gain computational performance using GPU in
systems, Microsoft implemented a native programming model
and open specification called ”C++ Accelerated Massive Paral-
lelism” (C++ AMP) which extends to programming language
C++ and its runtime library.38) Moreover, C++ AMP is sup-
ported by HSA using its intermediate language HSAIL that
HSA brings virtual shared memory between different devices

∗ http://www.artist-embedded.org/docs/Events/2008
/RT-Kernels/SLIDES/s1-Intro.pdf

such as host (CPU) and target (e.g. GPU, DSP). Similar to
OpenMP, C++ AMP runs an executable implicitly on a host
device when it is assigned to target device which is not able to
run the executable at the same time.
3.3. Advanced applications in satellite

Satellite image analysis presents a fertile ground for applying
cutting edge computer vision algorithms. In contrast to other
fields of application of computer vision, such as ADAS (ad-
vanced driver assistance systems), satellite images are quasi-
static, in the time-scale defined by the image acquisition fre-
quency: the satellite does not move very fast (if at all) in rela-
tion to the imaged landscape, weather conditions such as cloud
formations do not change rapidly, and neither do the lighting
conditions. Nonetheless, for a variety of applications, we still
need to be able to compensate for all those factors, and deduce
a normalized image where further inference can be performed.
As it is common in the computer vision/machine learning space,
it is beneficial to know in advance what questions one wishes
to answer. Possible interesting questions include: is a forest
on fire, and if yes, how is it evolving over time? Or, is there
a hurricane system developing? Or, how fast is ice melting in
Antarctica? Or, how fast is traffic flowing in highway I-90?

Cloud identification is best viewed as deducing a cloud den-
sity distribution over the image, to accommodate for the varying
degree of apparent cloud thickness. In this scheme, a cloudness
value of 1 would be interpreted as perfect confidence of com-
plete obstruction of the ground by clouds (per pixel). Similarly,
a cloudness value of 0 would be interpreted as perfect confi-
dence of no obstruction. There are multiple ways to define such
a model, while the problem is of some complexity, in the fol-
lowing sense: clouds over snow appear significantly different
compared to clouds over an ocean, or over a city during the
day, or during the night. One can condition a cloudness model
over the various relevant backgrounds, and train either a gener-
ative model that will generate clouds and apply them on various
backgrounds, or directly train a discriminative model that will
deduce the cloudness distribution. There is merit in both ap-
proaches, however, in keeping with the current state of the art,
it is beneficial to train a deep network, to automatically discover
the salient feature maps. There are two approaches in training
such a network: one approach would stream the data to a ground
data-center, which would combine imagery from multiple satel-
lites. Such an approach would be the most fruitful, as it could
be enhanced by user-assisted classification. There are multiple
machine learning frameworks that can accomplish this, such as
Tensorflow†, Torch‡, Caffe§, and CNTK¶. Of course, one could
also employ unsupervised learning approaches, such as a (deep)
auto-encoder scheme. Having a trained model, one can execute
it on the satellites GPU, and produce a scene classification. The
forward problem consists of a cascade of convolution filters, ac-
tivation functions, subsampling, and normalization. One would
execute a forward pass on multiple and possibly overlapping re-
gions of interest, for local scene classification. Such a problem
is well suited for GPU acceleration. If the training took into ac-
count the various variability factors (terrain kinds, atmospheric
† https://www.tensorflow.org/
‡ http://torch.ch/
§ https://caffe.berkeleyvision.org/
¶ https://github.com/Microsoft/CNTK



conditions, light conditions), the classification will also succeed
in classifying the scene according to those factors, for example
deducing that the scene represents a city at night with clouds.

Having performed a classification on the scene, one can then
have a solid ground in performing further analysis: for exam-
ple, by knowing what features in the scene are persistent, as
opposed to transient noise (such as a cloud), one can select ro-
bust keypoints (or robust regions of interest), for image regis-
tration (either based on keypoints, or based on functional mini-
mization). Such robust registration would be beneficial for cre-
ation of panoramas, or for enhancing image quality by com-
bining multiple images of the same scene (super-resolution).
Conversely, one can apply tracking algorithms to the transient
features, for example following a cloud or a car, or set of cars,
using correlation tracking. Depending on image resolution, it
may be beneficial to apply pre-processing algorithms on the im-
age, such as image sharpening (e.g. via unsharp mask with local
contrast enhancement, or anisotropic heat diffusion).

4. System Model

We consider a task model which is described by Fork-Join
task model. As shown in Fig. 2, the parallel segment (starts
with Fork and ends with Join) of tasks could be executed in two
manners, parallel and sequentially. Parallel execution could be
performed on GPU, multi-core CPUs, or single CPU using par-
allelization techniques such as SIMD (single instruction, multi-
ple data), multithreading, etc. Sequential execution is executed
on CPU sequentially.

Fig. 2. Execution manner of parallel segment of Fork-Join task model

In order to study a trade-off between computing power and
energy consumption, we consider a task set Γ, which consists
of n independent periodic tasks {τ1, .., τn} expressed with the
introduced task model. Each task τi has a period Ti, deadline
Di, and worst case execution time Ci. The worst case response
time Ri of task τi is measured by experimental observations in
this paper.

We consider that the system consists of two different process-
ing units such as CPU and GPU. The system energy consump-
tion could calculated with either Esystem = ECPU + EGPU + Eother

or

Esystem =
∑

1≤t≤max(Ri),1≤i≤n

Psystem(t) ∗ ∆t

. Here, Esystem is the system energy consumption. ECPU , EGPU ,
and Eother are the energy consumptions of CPU, GPU, and other
peripherals, respectively. Psystem(t) is power consumption of the
system at timing instance of t. ∆t is unit value of time sample.

Algorithm 1 Algorithm of the 2D Anisotropic Diffusion.
* Initialise the variables; num iter, option, kappa and
lambda.
* Set an initial condition of Partial Differential Equation
(PDE); di f f im.
* Set step for all directions. 1 pixel for horizontal: d[x] and
vertical: d[y], sqrt(2) pixels for diagonal: d[d].
* Define 2D convolution masks - finite differences.
* Main calculation of Anisotropic diffusion.Looping given
number of iterations
for num iter do

* Calculate finite differences nabla[] for all directions N,
S, W, E, NE, SE, SW and NW
* Calculate coefficients for all directions:
– Choose a diffusion function from 2 original functions.
– if option == 1
Calculate c[] = exp(−(nabla[]/kappa)2) for all 8 direc-
tions
– if option == 2
Calculate c[] = 1/(1 + (nabla[]/kappa)2) for all 8 direc-
tions
* A solution for Discrete PDE
– di f f im = di f f im + lambda ∗ sum{c[] ∗ nabla[]/(d[]2)}

end for

5. Experimental design

In this section, we introduce algorithms and discuss the eval-
uation of the power consumption and computing potential of
the task set which consists of these algorithms.

5.1. Algorithms
In this paper, we consider two on-board algorithms (Ani-

sotropic Diffusion, LULESH) as commercial-, scientific- appli-
cations, respectively. The different combinations of the algo-
rithms are used in the different purposes of the experiments.
5.1.1. Anisotropic Diffusion

We perform Anisotropic Diffusion39) algorithm to evaluate
the onboard computer processing since this algorithm is used to
sharpen images. As we mentioned in Section 3.3., sharpening
the satellite images and detecting objects such as clouds and for-
est fires from the satellite images are significantly useful. The
pseudo code of the Anisotropic Diffusion algorithm is shown in
Alg. 1. We have ported the 2D Anisotropic Diffusion code from
MATLAB to C++ AMP, OpenCL and OpenMP in order to ex-
ecute the application on HSA compliant platform. In this study,
we only deal with the code, since the quality of Anisotropic
Diffusion is well-known from the previous studies.39–41)

5.1.2. LULESH
LULESH42) stands for Livermore Unstructured Lagrangian

Explicit Shock Hydrodynamics and it is created as result of the
project, The Shock Hydrodynamics Challenge Problem, which
is originally defined and implemented by Lawrence Livermore



Table 1. Detailed information about the test machines.

Test Machine Type Product Specification Clock
Cores /

compute units
Energy consumption

(Watt)

A10
CPU A10-8700P APU, Excavator 1800MHz 4

12-35
iGPU Radeon

TM
R6, GCN Gen3 800MHz 6

R&R
CPU Ryzen

TM
7 1800x, Zen 4GHz 8 95

dGPU Radeon
TM

R9 nano, GCN Gen3 1GHz 64 175

National Laboratory as one of five challenge problems in the
DARPA UHPC program. LULESH is a highly simplified shock
hydro application in order to solve only a simple Sedov blast
problems.43) Modeling hydrodynamics is significant in com-
puter simulations as it is used to understand the motion of ma-
terials relative with each other under the force. Furthermore,
this kind of simulations are preferable to use the parallel com-
puting. In order to achieve parallelism, LULESH‖∗∗ is ported to
the different environments such as MPI, OpenMP, OpenCL and
C++AMP.
5.2. Testbeds

Test platforms Two test machines, A10 and R&R, are used
for this experiment. A10 is Acer’s laptop that maintained with
AMD A10-8700P APU, which consists of 4 core CPUs and 6
compute unit GPUs in a chip. R&R is a custom made desktop
computer and consists of AMD Ryzen

TM
7 1800x8 core CPUs

and AMD Radeon
TM

R9 nano GPU. More details are shown in
Table 1. As the test machines are general-purpose computers,
the range of the energy consumption differs from the embedded
systems, especially R&R.

Test application 1 This application performs Anisotropic
Diffusion algorithm in order to measure a computation time on
the following three combination of the accelerators; HSACalc,
CPUCalc and OMPCalc. The aim of this test application is to
confirm the computation time improvements of GPU/HSA in-
stead of a single core CPU.

Test application 2 Three applications which run Anisotropic
Diffusion algorithm in three different programming manners in-
dependently. The intention of this experiment is to monitor the
energy consumptions of the different compute units in the dif-
ferent programming manners.

Test application 3 This application performs two algorithms
(Anisotropic Diffusion and LULESH) concurrently with differ-
ent sets. The intention of this experiment is to monitor how the
energy consumption of the system changes with respect to the
different settings of tasks.
5.3. Experimental observations

Observation 1. Compiler vs Computing potential First,
we consider the relation between computing potential with re-
spect to the different compiler versions. Test application 1 is
compiled by three different versions (GCC5.4.0, GCC6.2.1††

and GCC 7.1.0‡‡) of GCC compiler toegther with 2 different
options, ”non-optimised” and ”optimised”. ”Non-optimised” is
compiled with ”-O0” flag, and ”optimised” is compiled with
”-O3”§§ flag. Each measurement performed 100 times continu-

‖ https://github.com/LLNL/LULESH
∗∗ https://github.com/AMDComputeLibraries/ComputeApps
†† Untrusted PPA:ppa:jonathonf/gcc-6.2
‡‡ Untrusted PPA: ppa:jonathonf/gcc-7.1
§§ Combining the ”-O3” flag with the following machine architecture

specific flags is possible; ”-march=bdver4” and ”-march=znver1”.

ously.
Observation 2. Power consumption vs Programming

manner Then, we conduct an experiment about power con-
sumption of test application 2 implemented in different pro-
gramming manners (using HSA for GPU, normal sequential ex-
ecution on CPU, using OpenMP for parallelization on CPU).

Fig. 3. Comparison of power consumption between different program-
ming manners with optimised and non optimised codes.

Fig. 4. Comparison of power consumption between different program-
ming manners with optimised and non optimised codes.

Observation 3. Power consumption vs Execution manner
Finally, we consider experiments that the tasks in the task set are
allocated to the different processing units. By conducting these
experiments, we can monitor how the balanced use of the pro-
cessing units affects to power consumption. The allocations of
the tasks are illustrated in Figs 3 and 4. We express sequential
and parallel segments with blue and red squares, respectively.
Text inside the squares describe where this segment should be
allocated. For example, in Fig 3-(A), the parallel segment of
task τ1 is allocated to CPU1. On the other hand, in Fig3-(B),
we can see that this parallel segment is allocated to GPU. Stand

However, we consider only ”-O3” flag in this paper.



alone executions of the tasks are illustrated in Fig. 3. Allo-
cations of concurrent executions of tasks τ1 and τ2 are shown
in Fig. 4. Here, we consider that τ1 and τ2 are LULESH and
Anisotropic Diffusion algorithms, respectively.
5.4. Evaluation and Results

Observation 1 The results of running the test application 1
are shown in Tables 2, 3, 4, 5, 6 and 7. In non-optimised ex-
periments, we can see that the computation times are in the fol-
lowing order: R&R OMPCalc, A10 OMPCalc, R&R CPUCalc
and A10 CPUCalc, from the smallest to the largest respectively.
This result is obvious since we have used Ryzen

TM
7 1800x CPU

which is one of the best CPU in the market now. However, when
we turn a spotlight to both A10 and R&R HSACalc, HSACalc
shows between 122 to 152 times faster than the calculation
which uses 1 core CPU with non-optimised version. This ration
improves in case of 1 core CPU with optimised version, how-
ever, HSACalc shows still between 11 to 22 times faster than 1
core CPU. Moreover, A10 HSACalc shows the best computa-
tion time among others, even better or similar R&R HSACalc.
As we explained in Table 1, Ryzen

TM
CPU and discrete R9 nano

GPU are connected through PCIe 3.0 in R&R machine. In
A10-8700P APU, CPU and GPU are located in the same sili-
con with coherent fabric connection. Hence, A10-8700P APU
is gaining benefits of HSA a more than R&R for this particular
workload. In general, a high end discrete GPU has significantly
more compute cores than an integrated GPU. While data needs
to be physically transferred to the discrete GPU over a typically
slower bus, once the transfer is performed (optimally employing
the multiple concurrent asynchronous DMA engines typically
available), the data is available on the discrete GPU over a very
fast memory (e.g. DDR5). Therefore the relative performance
of a discrete GPU over an integrated GPU is workload depen-
dent. The more the data that need to be densely processed, the
higher the desired frame-rate, and the more processing steps
they will undergo though, the more likely it is that a discrete
GPU will outperform an integrated GPU. However, as argued
in this paper, they will both typically significantly outperform
even a very powerful CPU.

As we mentioned in the previous section, we have used
”-O3” flag for the compiler level optimisations. Moreover,
there is a machine architecture specific optimisation flag ”-
march=znver1” for Ryzen

TM
. However, this flag is not available

to optimise with GCC 5.4 compiler. Therefore, we have focused
only ”-O3” flag in this paper. We confirm that 6.5-12.7 times
faster improvements for the optimised versions of both A10 and
R&R CPUCalc compare to the non-optimised versions. More-
over, about similar times faster improvements have confirmed
for the optimised versions of both A10 and R&R OMPCalcs
compare to the non-optimised versions. In addition, the opti-
mised R&R CPUCalc calculates the similar computation time
as A10 OMPCalc.

Observation 2 The energy consumption results of the test ap-
plication 2 for the different environments, HSACalc, CPUCalc
and OMPCalc, with optimised and non-optimised are shown in
Figure 5.The preparation, initializing variables and loading im-
ages, part of the entire calculation is marked with orange colour,

¶¶ The ratio of the average values to the average value of CPUCalc. For
example, avg(CarrizoCPUCalc)

avg(CarrizoHS ACalc) or avg(R&RCPUCalc)
avg(R&ROMPCalc) .

Fig. 5. Comparison of power consumption between different program-
ming manners with optimised and non optimised codes.

and the execution which is the essential calculation of the algo-
rithm is marked with blue colour. In case of HSACalc, the total
energy consumptions of the system are 24.08 Joules and 17.46
Joules for non-optimised and optimised versions, respectively.
In other words, the energy consumptions of the execution for
HSACalc are 2.24 and 3 Joules, and the energy consumptions
of the preparation for HSACalc are 21.84 and 14.46 Joules. The
energy consumptions of the preparation part of CPUCalc and
OMPCalc decrease by half of HSACalc to approximately 13
and 7.5 Joules for non-optimised and optimised versions, re-
spectively. From Figure 5, we can see that the energy consump-
tions of the experiment part in OMPCalc (123.38 Joules for
non-optimised and 25.08 Joules for optimised) is around half of
CPUCalc (296.79 Joules for non-optimised and 45.85 Joules for
optimised). Hence, we can say that the execution of HSACalc
uses between 15 to 132 times less energy consumptions com-
pare to CPUCalc and between 8 to 55 times less energy con-
sumptions compare to OMPCalc. In other words, adapting an
HSA complaint GPU uses between 8 to 132 times less energy
consumption compare to the CPU cores.

Observation 3 The results of different allocations of tasks τ1

and τ2 are illustrated in Tables 8 and 9. In case of (F), we can
see the system consumes less energy (at least 10% and up to
65%) compared to other allocations, although the WCRT of τ2

gets almost two times longer (11.62 sec) than the stand alone
version (6.11 sec). The WCRT of τ2 in (F) is shorter than the
stand alone version (11.94 sec) of τ2 when the parallel segment
is allocated to CPU sequentially. This means that the proper
use of GPU shows better result of both computing potential and
energy efficiency.

The energy consumption of the systems in cases of
(E)(150.32 Joules) and (G)(152.47Joules) is close with each
other. The parallel segment of task τ1 is allocated to CPU in
both cases. The difference here is that the parallel segment of
task τ2 is allocated on GPU parallel and CPU sequentially. This
means that we can choose the allocation of (E) in case GPU is
idle. Otherwise, it is good to choose the allocation of (G) when
GPU is busy with other tasks.

The allocation (H) shows longest WCRTs (15.78s for τ1 and
32.1s for τ2) and consumes most energy (382.41Joules). How-
ever, we have to note that the system did not use the GPU in this



Table 2. Anisotropic Diffusion, gcc version 5.4.0 20160609, non optimised

Computation time of Anisotropic Diffusion
A10 HSACalc A10 CPUCalc A10 OMPCalc R&R HSACalc R&R CPUCalc R&R OMPCalc

max (msec) 2.692 128.843 50.631 0.913 94.292 36.225
min (msec) 0.487 112.960 43.897 0.556 89.341 27.726
avg (msec) 0.889 116.663 47.223 0.679 91.978 30.372

ratio¶¶ 131.265 1 2.470 135.468 1 3.028

Table 3. Anisotropic Diffusion, gcc version 5.4.0 20160609, optimised

Computation time of Anisotropic Diffusion
A10 HSACalc A10 CPUCalc A10 OMPCalc R&R HSACalc R&R CPUCalc R&R OMPCalc

max (msec) 2.580 22.579 14.874 0.914 11.983 4.869
min (msec) 0.516 16.206 6.674 0.567 7.764 2.085
avg (msec) 0.923 17.819 8.752 0.658 8.247 2.933

ratio 19.307 1 2.036 12.532 1 2.812

Table 4. Anisotropic Diffusion, gcc version 6.2.1 20161215, non optimised

Computation time of Anisotropic Diffusion
A10 HSACalc A10 CPUCalc A10 OMPCalc R&R HSACalc R&R CPUCalc R&R OMPCalc

max (msec) 2.796 123.160 48.415 0.903 94.328 35.914
min (msec) 0.485 112.515 42.630 0.545 88.889 24.633
avg (msec) 0.963 117.759 45.092 0.608 91.380 26.593

ratio 122.302 1 2.612 150.408 1 3.436

Table 5. Anisotropic Diffusion, gcc version 6.2.1 20161215, optimised

Computation time of Anisotropic Diffusion
A10 HSACalc A10 CPUCalc A10 OMPCalc R&R HSACalc R&R CPUCalc R&R OMPCalc

max (msec) 2.703 22.354 13.924 0.837 11.694 5.696
min (msec) 0.485 15.885 6.572 0.552 7.963 2.199
avg (msec) 0.770 17.524 8.233 0.640 8.318 2.560

ratio 22.762 1 2.129 12.993 1 3.249

Table 6. Anisotropic Diffusion, gcc version 7.1.0, non optimised

Computation time of Anisotropic Diffusion
A10 HSACalc A10 CPUCalc A10 OMPCalc R&R HSACalc R&R CPUCalc R&R OMPCalc

max (msec) 2.504 124.866 48.461 1.135 90.652 37.356
min (msec) 0.508 113.488 41.570 0.535 85.848 24.244
avg (msec) 0.782 119.108 45.348 0.684 88.440 26.210

ratio 152.290 1 2.627 129.330 1 3.374

Table 7. Anisotropic Diffusion, gcc version 7.1.0, optimised

Computation time of Anisotropic Diffusion
A10 HSACalc A10 CPUCalc A10 OMPCalc R&R HSACalc R&R CPUCalc R&R OMPCalc

max (msec) 2.673 18.415 12.675 0.899 10.425 4.189
min (msec) 0.489 14.304 5.597 0.538 6.459 1.873
avg (msec) 0.753 15.668 7.158 0.620 6.923 2.265

ratio 20.800 1 2.189 11.158 1 3.056

Table 8. System’s energy consumption (stand alone execution)

(A) (B) (C) (D)
Measured WCRT of

τ1 (s)
15.21 9.1

Measured WCRT of
τ2 (s)

11.94 6.11

Energy consumption
of the system (Joules) 136.81

88.82
107.14

60.81

case at all. Hence, we could say that the system has more space
for GPU computing.

Table 9. System’s energy consumption (concurrent executions)

(E) (F) (G) (H)
Measured WCRT of

τ1 (s)
15.63 9.41 15.93 15.78

Measured WCRT of
τ2 (s)

6.36 11.62 12.64 32.1

Energy consumption
of the system (Joules) 150.32 136.29 152.47 382.41

6. Conclusion

In this paper, we have focused on the power consumption and
computing potential of GPU accelerated real-time system. Fur-



ther, both programming manner (how to compile a task) and
executing manner (how to allocate a task) are considered in the
experiments. From the experimental study, we have confirmed
that the HSA compliant GPU computes the calculation between
10 to 140 times faster and consumes between 8 to 130 times less
energy, compared to the CPU-based (including single and multi
cores) calculations. The use of GPU is supported even when
we consider the entire system. Because, the GPU using alloca-
tion is most energy efficient compared to the other allocations.
Therefore, we conclude that GPU can be a highly potential can-
didate in the on-board data processing of the small satellites.

For future work, we would like to continue developing a sys-
tem with real-time GPU scheduler, which can dynamically al-
locate the tasks under limited power budget.
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