
Testing Performance-Isolation in Multi-Core
Systems

Jakob Danielsson1, Tiberiu Seceleanu1,3, Marcus Jägemar1,2, Moris Behnam1, Mikael Sjödin1
1 Mälardalen University, Västerås, Sweden, 2 Ericsson AB, Stockholm, Sweden, 3 ABB AB, Västerås, Sweden

{jakob.danielsson, moris.behnam, marcus.jagemar, mikael.sjodin}@mdh.se, tiberiu.seceleanu@se.abb.com

Abstract—In this paper we present a methodology to be used
for quantifying the level of performance isolation for a multi-core
system. We have devised a test that can be applied to breaches
of isolation in different computing resources that may be shared
between different cores. We use this test to determine the level
of isolation gained by using the Jailhouse hypervisor compared
to a regular Linux system in terms of CPU isolation, cache
isolation and memory bus isolation. Our measurements show
that the Jailhouse hypervisor provides performance isolation of
local computing resources such as CPU. We have also evaluated
if any isolation could be gained for shared computing resources
such as the system wide cache and the memory bus controller.
Our tests show no measurable difference in partitioning between
a regular Linux system and a Jailhouse partitioned system for
shared resources. Using the Jailhouse hypervisor provides only
a small noticeable overhead when executing multiple shared-
resource intensive tasks on multiple cores, which implies that
running Jailhouse in a memory saturated system will not be
harmful. However, contention still exist in the memory bus and
in the system-wide cache.

I. INTRODUCTION

While great advancements in virtualization and partitioning
techniques nowadays allow logical and functional partitioning
of a system into a set of independently executing subsystems
(referred to as partitions) [5], there exists no practical and
efficient methods to guarantee that different partitions have no
negative impact on each others performance. That is, contem-
porary techniques give logical isolation but not performance
isolation. In this paper we propose a method for testing the
performance isolation between different subsystems running
on different cores in a multi-core architecture. Furthermore, the
method tests isolation of different computing resources such as
CPUs, caches and memory-system. Thus, it allows to pinpoint
any sources of breached isolation and it enables mitigation
of such breaches by introduction of specific isolation tech-
niques for specific resources. With the introduction of multi-
core architectures as the standard platforms for performance-
critical application-domains like embedded systems and real-
time systems, the issues of performance guarantees on these
architectures becomes paramount. In multi-cores, isolation is
hampered since a wealth of computing resources are shared
between cores, such as caches, TLBs (Translation Lookaside
Buffers), memory controllers and memory banks.

Our work is a step towards allowing empirical evaluation
of performance isolation in complex multi-core architectures.
We demonstrate the use of our model by evaluating perfor-
mance isolation obtained by the Jailhouse hypervisor [1] and
comparing it with running a non-partitioned Linux system.

Isolation is a complex topic and a clear terminology needs
to be defined, for example: what is shared resource isolation?

The performance isolation is defined here by the slowdown
in execution of an application while running in a context
where access to resources is contended by other applications,
too. An application that runs with a specific performance
without any disturbing processes (in isolation) runs at a base-
line performance. An application running with deliberately
disturbing processes is running at a loaded performance. If the
loaded version runs with the same performance as the baseline
version, the application is performance isolated. Performance
isolation of applications targeting specific hardware can be
accomplished by using methods such as page coloring [11],
hypervisors [8], bus-scheduling [19]. Many different tech-
niques are available for isolating hardware from disturbances
generated by other processes, but most techniques cover only
one or two parts of the hardware resources. The resource
partitioning hypervisor Jailhouse developed by Siemens can
become one significant step towards achieving full isolation in
multi-core systems. Due to its small code size, it is now much
easier to understand the hypervisor and therefore implement
new partitioning strategies into it.

The main contributions of this paper are:

• We present a methodology for measuring performance
isolation of a system.

• A study on the performance isolation gained using the
Jailhouse hypervisor.

Related work. We here identify previous studies that analyze
shared resource contention caused by multiple cores, or ad-
dress performance measurements on the Jailhouse hypervisor
on ARM processors. Bansal et al. [4] investigated resource
contention of the memory subsystem of the Xilinx ZCU 102
and proposes a Jailhouse based architecture to solve the con-
tention. The authors effectively show a latency performance
degradation of their benchmark when using multiple cores
and propose mitigation techniques. In our work, we employ a
different methodology, using the performance counting unit
as a tool for identifying the sources of the performance
degradation. Toumassian et al. [16] investigate the overhead
of the Xen and Jailhouse hypervisors, where overhead is
defined as Hypervisor performance/Linux performance. We
complement this work, by deliberately adding the disturbing
loads for estimating resource contention effects, while looking
for application performance isolation. As listed by Deshane
et al. [6], there exist a large body of reporting the impact
of hypervisors on performance. However, since the Jailhouse

604

2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.00092



hypervisor is relatively new, there is not so much research
done on this subject. Up to our knowledge, there is no
reporting of work investigating cache contention and memory
bus contention in a Jailhouse environment, such effects being
described as ”yet to be measured” in a Linux Journal article
[1]. Furthermore, there is no reported work trying to verify
what Jailhouse can accomplish in the area of task isolation,
wherefore we research here the performance degradation on a
Linux system caused by CPU sharing.

II. BACKGROUND

Shared resource contention has become an increasingly
important topic due to the phasing out of single-core systems
and the adoption of multi-core systems. Important shared
resources can be divided into three categories: CPU, memory,
and I/O [17] which may all be subject to contention. The CPU
sharing takes place in the scheduling level, where two or more
processes share the execution capacity of the same CPU. If
one process executes and a higher priority task interrupts, the
swapped out process will not get to execute anymore, and may,
therefore, expose an increased latency. The second level of
resource contention occurs in the memory layer of a computer
and can come in the form of thrashing - a state where much of
the processing time is spent on handling cache misses or page
faults due to several processes/threads continuously replacing
each other. The third level of resource contention occurs in the
I/O layer and can be illustrated very well by the ARM v8 case
where a generic interrupt controller (GIC) handles all general
purpose interrupts (such as general purpose I/O interrupts).

Partition-based virtualization is one of the solutions that ad-
dresses the sharing of resources across multiple processes [17],
[7], [13]. Hypervisors such as Xen [5] and KVM [8] can effec-
tively partition the cores of a system such that the resource is
protected from usage of processes which do not belong to the
specific partition. These hypervisors come with an overhead
[9] and a significant code size. New virtualization techniques
such as the Jailhouse hypervisor give promise of better task
isolation through statically disallowing inter partition sharing
of resources and also come with a relatively small code size.

A. Jailhouse hypervisor

The Jailhouse hypervisor (version 0.1 released in august
2014) partitions hardware resources through virtualization,
and enables asymmetric multiprocessing on top of the Linux
system [15]. It also enables the insertion of cells through a
kernel module. A cell is a virtual machine that is created in
a partitioned environment. Once created, the host operating
system loses knowledge of the core where the cell is created.
In a similar fashion, programs running within the Jailhouse
cell do not know that they run within a virtual machine, nor
have they any knowledge of cores outside of the cell.

Fig. 1 shows a regular Linux system - a) and a Jailhouse
partitioned system which runs one Linux partition (core 0, 1,
2) and one real-time (RT) partition (core 3) - b).

Fig. 1. a) Usual Linux deployment. b) Linux with Jailhouse configuration [1]

III. SHARED RESOURCE CONTENTION

We describe the performance degradation of a process in
Equation 1, where performance is equal to the execution time
of an application.

I =
P

C
− 1 (1)

We denote I as the isolation coefficient, representing the
resulting slow-down of the execution of a task in the presence
of other tasks. P denotes the loaded performance of an
application, and C is the baseline performance. Both C and
P values are measured in time units; moreover, it is expected
that the P will always be higher than C, that is, the execution
time of an application will always be longer in the presence
of additional load as compared to the “ideal” case when
the application executes alone on the computing platform. It
is also important to note that the measured values of both
C and P are platform dependent. Measurements are relying
on processor specifics such as cache memory mechanisms,
clock frequency and bus bandwidth, but also on the operating
system. Therefore, C should not be seen as an absolute value
of the best achievable performance (that is, cross-platform),
but instead, the highest performance achievable using the
respective setup. We refer to C as baseline in subsequent
sections of the paper.

As an example, consider an application running on one
core of a multi-core processor, exposing a baseline of 100ms.
To perform tests on cache memory isolation, we apply a
heavy cache intensive load, which runs on a different core
than the application, and re-execute the application in these
conditions. Both cores have a shared LLC. In case the loaded
performance is observed to be 100ms, the isolation coefficient
I = 100ms/100ms − 1 = 0. Hence, and the application is
isolated from LLC disturbances. Alternatively, if the loaded
performance is 110ms (for exemplification purposes), the
isolation coefficient becomes I = 110ms/100ms− 1 = 0.1 =
10% which means that the application has suffered a 10ms
performance penalty due to cache contention.

In the following subsections, we will discuss resource con-
tention on shared resources, including CPU, cache, memory
bus. We will discuss each shared resource in the context of
a Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit
using 4 Cortex A-53 cores, specified in Table I.

605



TABLE I
HARDWARE SPECIFICATIONS XILINX ZYNQ ULTRASCALE+ MPSOC

Feature Hardware Component
Core 4xArm Cortex A-53 @ 1.5GHz

2xArm Cortex-R5 @ 1.4GHz
L1I-cache 32 KB 2-way set assoc cache/core
L1D-cache 32 KB 4-way set assoc cache/core
L2-cache 1 MB 16-way set assoc. shared platform cache
MMU L1ITLB: 10 entries

L1DTLB: 10 entries
L2TLB 512 entries, 4-way set assoc.

A. CPU utilization

Two applications sharing the same CPU can have dramatic
effects on either applications response time. When sharing the
CPU, one task may get to execute up to 50% of compared
to the non-shared situation. Thus, the response time of the
application could increase to at least the double of the baseline.
We can avoid the CPU sharing effect by not scheduling
other applications to the same core. However, if all cores
are currently loaded, it is not possible to enforce such a
policy, since the newly created application needs an execution
environment. Consider our ARM system with 4 cores, running
App1..App4 on core 0..3 respectively. In case a 5th application,
App5, enters the scheduling queue, there is no un-occupied
core, which means App5 has to share one of the cores with one
of the other applications. This will increase the response time
of both applications. This situation may not become a problem
in real-time systems since tasks with high importance often are
given a higher priority and will therefore not share execution
time with other tasks during their respective time quanta. Thus,
scheduling applications properly is usually a solution to this
problem. Another solution can be static partitioning of the
system, where the cores of one partitioned sub-system are
hidden from another partitioned sub-system [12], disallowing
partitions from using each other’s designated cores.

B. Internal Memory Contention

The internal memory is often a source of execution time
unpredictability - the so-called jitter - in multi-threaded sys-
tems [3]. Whenever the data requested by applications is not in
the L1D-cache or the L2-cache, we need to fetch the data from
the main memory. If the L2-cache is already full, a cache-line
is evicted from the cache to make space for the incoming data.
Since the L2-cache is shared between multiple cores, processes
scheduled on different cores can evict the cache-lines of each
other whenever the shared cache becomes full.

Within our ARM system, with a 1 MB L2-cache, cache
contention is exemplified as follows: App1 and App2 with a
memory footprint of 1 MB each are executing on core 0 and
1 respectively. The applications are each using 1 MB of data,
which, combined, is above the limit of L2-cache - 1 MB. If
the tasks are continuously running on different cores, App1
will continuously try to write 1 MB of data into the shared
cache. Since the cache is not large enough to contain the
total amount of 2 MB data requested by both tasks, 1 MB

of data will continuously have to be replaced according to the
cache replacement policy. Cache coloring can be applied here,
to restrict cache access of different applications to assigned
cache lines only. Thus, one may mitigate problems such as
performance losses [11], jitter [18], and even energy efficiency
[10]. In our example though, this limits the amount of
L2-cache available to either of the applications.

C. Memory bus contention
The memory bus that interconnects the cache memory with

the main memory is also a subject for contention. It is used
for serving read and write requests from each core, which can
become problematic when multiple memory intensive tasks are
running on several cores. The bus can become a significant
bottleneck concerning throughput, and a source of jitter.

Once again, consider the ARM system which has a mea-
sured bandwidth capacity of roughly 4.7 GB/s. The system
hosts four applications (App1, ..., App4 running on core
1..4 respectively) which executes write operations at 2 GB/s
individually. If the data is not present in the cache, it has to
be fetched from the main memory via the memory bus. The
bus, however, can only handle a certain amount of writes per
second, as specified. Since we use multiple cores executing
writes at 2GB/s, the bus bandwidth will be fully saturated. If
any of the applications were the only one executing memory
transactions, it could operate at the intended 2MB/s capacity.
However, since multiple applications are executing, the bus
has to distribute the capacity over the set of cores, which can
dramatically decrease the individual memory throughput and
increase the jitter of each application. It is possible to limit the
effects of bus contention by restricting processes to execute
under a certain memory bandwidth budget [19] [20] - with
potential important overhead for each budgeted application.

IV. PERFORMANCE ISOLATION

We have used a matrix multiplication of various sizes as the
application to benchmark the isolation that can be achieved
using the Jailhouse hypervisor. The execution time of the
application is measured by inserting wall-clock time-stamps
at the start and at the end of the multiplication. Further, the
matrix multiplication is co-executed with additional load pro-
grams denoted leeches to enforce shared resource contention.
We use the previously defined Xilinx Zynq ZCU 102 platform
(Table I) running a Petalinux 4.9 kernel and reserving 2 GB
of RAM for the Jailhouse hypervisor using the mem kernel
argument.

In the following subsections we show isolation measure-
ments for the CPU, L2-cache and memory bus resources
with the matrix multiplication running in unfavourable (leech-
disturbed) execution environments and compare them to the
baseline executions.

A. CPU isolation test
We devised a test including a kernel module to serve as a

CPU stealing leech and a matrix multiplication to show the
contention problems in a CPU. We exemplify the problems
using the following scenario, assuming equal application pri-
ority.

606



1) Applications P0, P1, P2 and P3 are ready to execute.
2) The applications are pinned as following P0 → C0,

P1 → C1, P2 → C2, P3 → C3.
3) Kernel application KP5 becomes ready to execute, all

cores are currently occupied.
4) The kernel has to chose one available core for KP5, in

this case, C3 is chosen.
5) P4 and P5 now share the same core and execute

To instantiate the above contention scenario, we co-run a
256x256 matrix multiplication as workload together, with a
calculation-heavy program called a CPU leech, implemented
as a kernel module. Kernel modules often are executed at
seemingly random times and also at a higher priority than
user-space modules. The CPU-stealing leech performs 100000
random number calculations, searches for the highest value
read and then goes to sleep for a specified amount of time. This
process takes between 79-80 milliseconds to execute. Since the
time measurement of the matrix multiplication is dependent on
context switches from another workload, we will call the time
measurement response time in this test case. We statically set
the core affinity of the matrix multiplication and the CPU leech
to the same core C3.

We also execute the same tests using the Jailhouse hypervi-
sor, where the matrix multiplication is run within a Jailhouse
Linux cell executing on C3. The results of the CPU isolation
tests are depicted in Fig. 2 where the y-axis shows the response
time of the matrix multiplication run under Linux (blue dash)
compared to a matrix multiplication run within a Jailhouse
Linux cell (orange dash). Each data point is the median
response time of 50 executions. The y-axis is a logarithmic
scale of the response time measured in milliseconds, and the
x-axis shows the sleep timer of the kernel module - the period
between executions. A low value on the Y-axis - meaning a
low response time - would be better than a high value. The
calculated isolation coefficient of the matrix multiplication is
listed in Table II.

Fig. 2. CPU isolation test

Fig. 2 shows a Linux matrix multiplication which suffers
heavily from the CPU stealing caused by the leech, even at the
relatively large sleep periods of 200 ms. In these conditions,
according to Table II and using Equation 1, Linux alone
offers an isolation coefficient of 0.40, which is an indicator
of significant resource contention. The CPU leech will always

TABLE II
I COEFFICIENT IN CPU CONTENTION TEST (PERCENTAGE)

Sleep ILinux IJhouse Sleep ILinux IJhouse

200 41,22% 0,62% 100 81,99% 0,79%
175 38,25% 0,15% 75 124,00% 0,50%
150 40,76% 0,57% 50 166,47% 0,86%
125 59,88% 0,57% 25 250,79% -0.15%

get a high priority when ready to execute, running with kernel
priority. Hence, when the associated sleep period goes under
a certain value, the isolation coefficient even surpasses 0.50.
When running the matrix multiplication within a jailhouse
partition, however, the response time is almost constant, with
an isolation coefficient of 0.0086, which is in the range of an
error margin.

Concluding, the Jailhouse hypervisor performs as promised
regarding the CPU isolation, while the Linux system shows
a significant downgrade in the performance of the matrix
multiplication, as expected, too.

B. L2-cache isolation test

Here, we intend to provide a measurement of the isolation
coefficient for the matrix multiplication, verifying to what
extent it suffers of L2-cache cache contention.

We use a 512x512 matrix multiplication for benchmarking
workload, and a tweaked version of a maximum bandwidth
benchmark called Tinymembench [14] as a leech, for loading
the L2-cache. The Tinymembench load continuously reads 32-
bit integers from a N-sized buffer and writes them into another
N-sized buffer. The isolation test was conducted as follows.

1) Run baseline execution of the matrix multiplication
2) Initialize cache load process with size N (initially

64 KB)
3) Assign cache load process to C0

4) Start matrix multiplication on C3

5) Re-iterate from step 1 and multiply size N by 2

The results of the matrix multiplication running within a
regular Linux environment are depicted in Fig. 3, and the
results of running it within a Jailhouse Linux cell are shown
in Fig. 4. The graphs point the execution time (blue dash)
on the left-hand side y-axis and the L2-cache misses (orange
dash) on the right-hand side y-axis. The x-axis marks the leech
buffer size. The graphs also include error bars where the upper
dash shows the maximum value, and the lower dash shows the
minimum value of 50 measurements. As previously, low values
are better than high values of the execution times. Also, a large
error bar is worse than a small one, since small variability in
both L2-cache misses and execution time is preferable. Table
III lists the calculated isolation for the matrix multiplication
when co-run with the Tinymembench load.

We observe a typical ”knee” effect, i.e., the performance
degradation of the matrix multiplication halts at a certain point.
This halt occurs when the matrix multiplication co-run with a
L2-cache leech cannot produce more cache misses, as every
cache line request will be a miss. This comes to a full effect
when N is 1 MB, which is aligned with the 1 MB-sized

607



Fig. 3. Linux L2-cache isolation test

Fig. 4. Jailhouse L2-cache isolation test

L2-cache. From the isolation coefficient values- Table III, we
see almost no difference between the Jailhouse measurement
and the Linux measurement. This is motivated by the fact
that the Jailhouse hypervisor (in the reported version) does
not mitigate this problem. Also, there is almost no difference
in execution time, nor cache misses. This suggests that it is
potentially is possible to migrate tasks from regular Linux
system to a Jailhouse partition without having to re-calculate
the execution characteristics of the algorithm.

C. Memory bus isolation test

In this section, we describe memory bus contention which
occurs due to multiple processes on different cores requesting
non-cached memory. In the previous test, we discovered the
knee effect occurring at a buffer size of 1 MB, which means all
data requested by a process will be a cache miss and it has to
be fetched from the main memory through the bus. If multiple
processes from different cores request data from the main
memory, the bus has to arbitrarily chose which process gets the
access. This may lead to further performance degradation. To
investigate memory bus contention, we run a test as follows,
where we employ the same kind of leech as previously, with
a buffer size of 8 MB (or any size larger than the 1 MB limit
described above).

1) Start a 512x512 matrix multiplication on C3

2) Insert one memory bus leech on a non-occupied core

TABLE III
I COEFFICIENT IN L2-CACHE CONTENTION TEST (PERCENTAGE)

Size ILinux IJhouse

128 KB 7,17% 7,74%
256 KB 15,27% 15,84%
512 KB 22,78% 22,33%
1 MB 26,62% 26,69%
2 MB 26,92% 26,87%
4 MB 25,14% 25,51%

3) Repeat step 3 until all cores are occupied

To ensure that full cache contention occurs during the entire
execution of the test, we measure the L2-cache misses of the
system. Their number should remain constant - any change
reflecting the fact that there were also some cache-hits, which
is to be avoided.

Fig. 5 depicts the results of the regular Linux matrix
multiplication execution, and Fig. 6 depicts the results of the
execution under Jailhouse protection. The left-hand side y-axis
plots the calculated median execution time of 50 measure-
ments, the x-axis shows the number of leeches inserted into
the system and the right-hand side y-axis shows the L2-cache
misses of the system. The graphs also include error bars where
the upper dash shows the maximum value and the lower dash
shows the minimum value of the 50 measurements. We list the
calculated isolation coefficient for the matrix multiplication
using regular Linux and Jailhouse in Table IV.

Fig. 5. Linux memory bus isolation test

Fig. 6. Jailhouse memory bus isolation test

608



The graphs above show a significant performance degrada-
tion of the matrix multiplication due to memory bus contention
running in Linux as well as in Jailhouse. The baseline execu-
tion time remains the same as in the matrix L2-cache isolation
case, since we used the same matrix size. Furthermore, the
observed effects when using one leech are also similar to
the L2-cache isolation test, as the cache is fully loaded.
However, the interesting effects on execution times occur
when inserting two or more leeches. Firstly, we can read an
isolation coefficient of 0,3168 and 0,326 for the Linux and
Jailhouse matrix multiplications, respectively. The values mean
that the Jailhouse hypervisor does not provide any sorts of bus
isolation, as expected. In addition, the execution time of the
matrix multiplication will be increased with any added leech.
Once again, the performance impact of using the Jailhouse
hypervisor is within a measurement error margin, suggesting
that using the Jailhouse hypervisor does not come with any
overhead penalties.

TABLE IV
I COEFFICIENT IN MEMORY BUS CONTENTION TEST, (PERCENTAGE)

Size ILinux IJhouse

1 Leech 28,91% 25,96%
2 Leeches 31,75% 34,12%
3 Leeches 41,30% 43,50%

V. CONCLUSION

We have measured the effects of contention on computing
resources such as CPUs, L2-cache and memory bus. As an
example of an application with high need for both CPU and
memory, we used a matrix multiplication. We executed the
application in a standard Linux context and compared it with
the execution in a Jailhouse hypervisor cell context. In order
to test the isolation, we disturbed the application by executing
leeches designed to consume particular computing resources.

Our measurements focusing on the CPU resource show that
the Jailhouse hypervisor provides isolation between different
partitions, enabling the application to exhibit a performance
very close to the baseline even in the presence of leeches.
Jailhouse does not, however, provide any memory bus or
L2-cache isolation. These said, there is a very small differ-
ence in performance degradation for the application execution
between the Jailhouse hypervisor and a standard Linux system
during heavy shared resource congestion. This further suggests
that using Jailhouse in a heavily loaded shared resource envi-
ronment provides an at least as performant execution context
as Linux.

We leave investigating TLB, DRAM bank and I/O con-
tentions for future work. There also exists a newly published
patch [2] for Jailhouse which provides a cache coloring con-
figuration for Jailhouse cells. Investigating the page coloring
mechanisms using our methodology is also relevant future
work in the Jailhouse case.

REFERENCES

[1] https://www.linuxjournal.com/content/jailhouse, 2015.

[2] https://groups.google.com/forum/#!topic/jailhouse-
dev/rSSE8Yyjmbo, accessed 2019-05-16.

[3] Federal Aviation Administration. Addressing cache in airborne
systems and equipment. 2003.

[4] A. Bansal, R. Tabish, G. Gracioli, R. Mancuso, R. Pellizzoni,
and M. Caccamo. Evaluating the memory subsystem of a
configurable heterogeneous mpsoc. OSPERT 2018, page 55.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art
of virtualization. In ACM SIGOPS operating systems review,
volume 37, pages 164–177. ACM, 2003.

[6] T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda,
A. Shah, and B. Rao. Xen Summit, Boston, MA, USA, pages
1–2, 2008.

[7] S Han and H Jin. Full virtualization based arinc 653 parti-
tioning. In Digital Avionics Systems Conference (DASC), 2011
IEEE/AIAA 30th, pages 7E1–1. IEEE, 2011.

[8] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm:
the linux virtual machine monitor. In Proceedings of the Linux
symposium, volume 1, pages 225–230. Ottawa, Ontario, Canada,
2007.

[9] J. Li, Q. Wang, D. Jayasinghe, J. Park, T. Zhu, and C. Pu.
Performance overhead among three hypervisors: An experimen-
tal study using hadoop benchmarks. In Big Data (BigData
Congress), 2013 IEEE International Congress on, pages 9–16.
IEEE, 2013.

[10] S. Mittal, Z. Zhang, and Y. Cao. Cashier: A cache energy saving
technique for qos systems. In 26th International Conference on
VLSI Design and 12th International Conference on Embedded
Systems, pages 43–48. IEEE, 2013.

[11] S. Perarnau, M. Tchiboukdjian, and G. Huard. Controlling
cache utilization of hpc applications. In Proceedings of the
international conference on Supercomputing, pages 295–304.
ACM, 2011.

[12] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer. Look
mum, no vm exits!(almost). arXiv:1705.06932, 2017.

[13] S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and J. Windsor. A
portable arinc 653 standard interface. In 27th Digital Avionics
Systems Conference., pages 1–E. IEEE/AIAA, 2008.

[14] S. Siamashka. https://github.com/ssvb/tinymembench. Retrieved
January, 2019.

[15] V. Sinitsyn. Understanding the jailhouse hypervisor, part 1.
https://lwn.net/Articles/578295/, 2014.

[16] S. Toumassian, R. Werner, and A. Sikora. Performance
measurements for hypervisors on embedded arm processors.
In Advances in Computing, Communications and Informatics
(ICACCI), International Conference on, pages 851–855. IEEE,
2016.

[17] S. H. VanderLeest. Arinc 653 hypervisor. In Digital Avionics
Systems Conference (DASC), 29th, pages 5–E. IEEE/AIAA,
2010.

[18] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache
partitioning system using page coloring. In Parallel Architec-
ture and Compilation Techniques (PACT), 23rd International
Conference on, pages 381–392. IEEE, 2014.

[19] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha.
Memguard: Memory bandwidth reservation system for efficient
performance isolation in multi-core platforms. In 19th Real-
Time and Embedded Technology and Applications Symposium
(RTAS), pages 55–64. IEEE, 2013.

[20] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Mem-
ory bandwidth management for efficient performance isolation
in multi-core platforms. IEEE Transactions on Computers, 65
(2):562–576, 2016.

609


