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Abstract

In this doctoral thesis, we study the problem of computing the ball of
smallest radius enclosing a given set of points in any number of dimen-
sions. Variations of this problem arise in several branches of computer
science, such as computer graphics, artificial intelligence, and opera-
tions research. Applications range from collision detection for three-
dimensional models in video games and computer-aided design, to high-
dimensional clustering and classification in machine learning and data
mining. We also consider the related and more challenging problem of
finding the enclosing ellipsoid of minimum volume. Such ellipsoids can
provide more descriptive data representations in the aforementioned ap-
plications, and they find further utility in, for example, optimal design
of experiments and trimming of outliers in statistics.

The contributions of this thesis consist of practical methods for the
efficient solution of these two problems, with a primary focus on prob-
lem instances involving a large number of points. We introduce new
algorithms to compute arbitrarily fine approximations of the minimum
enclosing ball or ellipsoid in general dimensions. In our experimen-
tal evaluations, these algorithms exhibit running times that are highly
competitive with, and often markedly superior to, those of earlier al-
gorithms from the literature. Moreover, we present a new out-of-core
algorithm to compute the exact minimum enclosing ball for massive,
low-dimensional point sets residing in secondary storage. In addition
to these solution methods, we develop acceleration techniques that can
further improve their performance, either by using pruning heuristics to
reduce the amount of work performed in each iteration, or by utilizing
parallel hardware features of modern processors and graphics processing
units. These techniques are also applicable to several existing algorithms.
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Preface

I am glad you have come across my Ph.D. thesis! This thesis follows
a “collection-of-papers” format, which means that it is a compilation
of already published academic papers, each reprinted as an individual
chapter. A list of the six publications included in this thesis is given on
page V of this front matter. These papers were written as stand-alone
texts and published over the course of several years. Thus, in order to
form a more cohesive whole, the thesis additionally contains an introduc-
tory part, consisting of five chapters. These chapters serve to provide
a comprehensive overview of the research topic and to summarize the
contributions of the papers and place them in the context of previous
work. Like the papers themselves, this portion of the thesis is for the
most part fairly technical. Nonetheless, I have tried my best to make
at least the first chapter, in which the motivation behind the research is
discussed, as well as the beginning of the second chapter, where an intro-
duction to the minimum enclosing ball problem is given, reasonably easy
to follow also for someone with only general knowledge of mathematics
and geometry.

The major part of the research presented here was conducted in col-
laboration with my supervisor Thomas Larsson, who sadly passed away
in 2017. Now at the completion of the work we started together, even
though I am unable to thank Thomas directly, I would like to express
the heartfelt gratitude I have for all the guidance and support he gave
me, for the active interest he always took in my doctoral studies, and
for the formative influence he has had on my approach to research and
academic writing. Furthermore, I want to thank Daniel Andrén for his
indispensable assistance during the writing of the final paper of the the-
sis. A special thank you goes to my supervisor Björn Lisper, not only for
his support in my doctoral studies, but also for showing confidence in my
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abilities throughout the multiple other research projects we have worked
on together. I would further like to thank Evan Shellshear at Fraunhofer–
Chalmers Centre for the enjoyable collaboration that resulted in Paper D
of the thesis. A thank you is also due to Jan Carlson for offering helpful
suggestions on an early draft of the first part of the thesis. Finally, I
want to thank all my other wonderful colleagues at Mälardalen Univer-
sity for contributing to the friendly and stimulating work environment
that I have enjoyed so much being a part of.

This research was funded mainly by the Swedish Foundation for
Strategic Research through grant IIS11-0060. Further acknowledgments
specific to each of the included papers are given in the respective papers.
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Chapter 1

Introduction

This thesis studies a class of mathematical problems in which the goal is
to fit a simple geometric shape to enclose a given collection of objects as
tightly as possible. Such problems arise in numerous applications within
computer science and related fields. Two types of enclosing shapes are
considered in this thesis, namely, balls and ellipsoids. The term ball
is used here as a generic term to denote a shape defined by a center
point and a radius in any number of dimensions. An ellipsoid, in turn,
generalizes the concept of an ellipse, which is a plane curve, to gen-
eral dimensions. Loosely speaking, an ellipsoid is a ball that has been
“squeezed” and/or “stretched out” along one or several directions. The
minimum enclosing ball (MEB) of one or more given objects is the ball
of smallest radius such that all the objects are fully contained in it. Sim-
ilarly, the minimum-volume enclosing ellipsoid (MVEE) is the ellipsoid
of smallest volume that fully contains the objects. Figure 1.1 shows an
example of a 3D model together with its MEB as well as its MVEE.

For the most part, the scope of the thesis is narrowed to the case
where the geometry to be enclosed is a finite set of points. Although
this assumption might be too restrictive in some situations, it does hold
in a wide range of important applications. Furthermore, more complex
objects can often be adequately approximated by a finite set of point
samples for the purpose of fitting the enclosing shape. In some cases,
using such a representation can even yield the correct solution also for
the original object. For example, the model in Figure 1.1 is made up of
a mesh of polygons. For such models, it suffices to compute the MEB or
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4 Chapter 1. Introduction

Figure 1.1. The “Stanford Bunny”, shown trapped in its MEB (left) and
MVEE (right). The model is provided by the Stanford University Com-
puter Graphics Laboratory: http://graphics.stanford.edu/data/

3Dscanrep/.

MVEE over only the vertices of the polygons, since this guarantees that
also the full polygons are enclosed.

The study of the MEB problem dates back at least as far as the mid-
19th century, when English mathematician James Joseph Sylvester posed
the two-dimensional instance of the problem [119]. Today, the general-
dimensional problem has a rich body of literature and is considered a
classical problem in computational geometry. The earliest published
results on the MVEE problem date back to the 1930s [13]. The MVEE
is also commonly known in the research literature as the Löwner or
Löwner–John ellipsoid, named so after the mathematicians Karel Löw-
ner and Fritz John, who both made seminal contributions to the study
of the problem [69, 63].

In the plane, there exist a number of applications for finding the
smallest circle enclosing a set of points, often revolving around spatial or
geographical information [82, 138]. For example, in the minimax facility
location problem, the goal is to find a location at which the distance to
the most remote neighbor from a list of given locations is as short as
possible [45, 140]. This problem arises, for example, when planning the
placement of an emergency service such as a fire department, where the
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Löwner–John ellipsoid, named so after the mathematicians Karel Löw-
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Figure 1.2. The solution to a minimax facility location problem. The
cross marks the spot at which the maximum distance to any of the
houses is minimized, which might make a suitable location to build an
emergency service. In other words, every other location must have a
larger distance to at least one of the houses. The location is at the same
time the center of the smallest circle enclosing the houses.

primary concern is minimizing the maximum distance to the sites to be
serviced by it. Figure 1.2 illustrates that the solution to this problem is
simply the center of the smallest circle enclosing the specified locations.

As has already been exemplified in Figure 1.1, enclosing balls and
ellipsoids can provide conservative approximations of more complex ge-
ometric information. Their simple description can be exploited to speed
up various tasks in a number of applications. For example, collision
(or interference) detection is the problem of determining whether two
or more given objects intersect or not, which is essential in, e.g., robot
path planning [99, 101, 107], virtual reality [104], computer-aided de-
sign [30, 92], video game engines [47], as well as any type of simulation
of the physical world in which moving objects are not supposed to pass
straight through each other. If each object in the simulation is enclosed
in a simple but tight-fitting shape, then cheap intersection tests between
these shapes can be performed before the more intricate geometries of
their enclosed objects are examined. If no intersection is found by such
a preliminary test, then no further computations are necessary since
there can be no collision between the objects. Compared to the MEB,
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the MVEE can provide more exact approximations of the underlying
geometry—the MVEE can be said to contain less “air” than the MEB
does. This can help to reduce the number of “false alarms” in these ap-
plications, that is, occurrences where the enclosing shapes intersect but
the objects do not. This advantage must, however, be weighed against
the drawback that the more complex description of an ellipsoid leads to
computationally more expensive intersection tests. Another type of in-
terference detection arises in the rendering of three-dimensional scenes,
where the visibility of objects in the scene from the current viewpoint
needs to be assessed [20, 8, 70]. If the enclosing shape of an object can
be determined to be invisible—that is, it does not “collide” with the
current field of view—then the whole object must also be invisible. It
then does not need to be considered further by the rendering algorithm.

An example of an application in which higher-dimensional MEBs
and MVEEs find applicability is an image database. A common type of
query in such a database is to find the image or images that most closely
resemble a given reference image, without the use of manually entered
search terms. One approach to measuring the similarity between differ-
ent images is to first encode each of them as a sequence of numerical
values based on their pixel data. This representation can be interpreted
as a point in a high-dimensional space, in which points that correspond
to similar images tend to end up close together [85]. Processing the
database query then amounts to searching this space for the points that
are closest to the point corresponding to the reference image. In large
databases, this search can be accelerated by letting clusters of nearby
points in the database be enclosed in, e.g., tight-fitting, high-dimensional
balls [79, 26]. During the search, entire such clusters of points can then
be dismissed if the distance to the surface of the ball enclosing a cluster is
greater than the distance to the nearest points found so far; in such cases,
no point inside of the ball can possibly make a candidate to be among the
nearest points. Other applications involving higher-dimensional problem
instances include classification [103, 22, 122, 132, 123] and cluster anal-
ysis [111], which are both important tasks in, e.g., machine learning
and data mining. Specific applications for the MVEE are also found in
statistics [48, 128, 5].

Although it might not appear, judging from Figures 1.1 and 1.2,
too challenging to determine a MEB or MVEE, it turns out to be far
from trivial when there are many dimensions or very complex geome-
tries involved. In fact, finding the exact solution is often not practically
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1.1 Outline of the Thesis 7

feasible, which means that approximation methods must be used. The
goal of this thesis is to present new and efficient methods to compute
the MEB and MVEE for large point sets in general dimensions. The
results include new exact and approximating solution methods, several
speed-up techniques that can be applied to these and existing methods,
as well as new theoretical results.

1.1 Outline of the Thesis

The thesis is organized into two parts. The main scientific contributions
are presented in the second part, in the form of six research papers
that are reprinted in their entirety as separate chapters. The first five of
these papers, labeled A–E, have already been published in peer-reviewed
venues. At the time of completion of this thesis, the sixth paper, Paper F,
is published in the form of a technical report.

In the remainder of this introductory part of the thesis, deeper back-
ground and motivation is first given for the problems tackled in these
publications. Chapter 2 is devoted to the MEB problem. Here, an intro-
duction to the problem as well as formal problem statements are given,
followed by a fairly exhaustive survey of relevant research literature.
Then follows a more detailed discussion of a few selected applications
for the MEB problem, as well as a discussion of related problems. Chap-
ter 3 discusses the MVEE problem following an analogous structure.
Chapter 4 summarizes the papers included in the thesis and highlights
how they are connected to each other. Finally, Chapter 5 concludes this
first part and suggests some directions for future studies.

1.1 Outline of the Thesis 7

feasible, which means that approximation methods must be used. The
goal of this thesis is to present new and efficient methods to compute
the MEB and MVEE for large point sets in general dimensions. The
results include new exact and approximating solution methods, several
speed-up techniques that can be applied to these and existing methods,
as well as new theoretical results.

1.1 Outline of the Thesis

The thesis is organized into two parts. The main scientific contributions
are presented in the second part, in the form of six research papers
that are reprinted in their entirety as separate chapters. The first five of
these papers, labeled A–E, have already been published in peer-reviewed
venues. At the time of completion of this thesis, the sixth paper, Paper F,
is published in the form of a technical report.

In the remainder of this introductory part of the thesis, deeper back-
ground and motivation is first given for the problems tackled in these
publications. Chapter 2 is devoted to the MEB problem. Here, an intro-
duction to the problem as well as formal problem statements are given,
followed by a fairly exhaustive survey of relevant research literature.
Then follows a more detailed discussion of a few selected applications
for the MEB problem, as well as a discussion of related problems. Chap-
ter 3 discusses the MVEE problem following an analogous structure.
Chapter 4 summarizes the papers included in the thesis and highlights
how they are connected to each other. Finally, Chapter 5 concludes this
first part and suggests some directions for future studies.





Chapter 2

Minimum Enclosing Balls

2.1 Introduction

As a gentle introduction, we begin by considering the problem of finding
the minimum enclosing circle (MEC) of a given set of points in the plane.
To derive some important properties of this problem in a fairly informal
way, we start from the most trivial problem instances and then build
toward more challenging cases. First we note that the MEC of a single
point is the somewhat degenerate circle having the point in question
as its center and a radius of zero. This special case is of no particular
interest, and it will be assumed henceforth that there are at least two
points involved.

When exactly two points are given, the smallest circle must have its
center at the midpoint of the line segment connecting them, with both
points touching its circumference, as in Figure 2.1a. Clearly, the radius
cannot be made any smaller in this position, and moving the center in
any direction must create a larger distance to at least one of the points,
thereby enforcing a larger radius.

When there are exactly three points, provided they are not located
along a straight line, a circle passing through all of them can be con-
structed using a method that goes back to Euclid1: Draw the perpendic-
ular bisectors of two sides of the triangle formed by the points; the point
of intersection of these bisectors then gives the center of the circle. (Any

1
Elements, Book IV, Proposition 5.
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two bisectors can be chosen, as all three of them intersect in the same
point.) It might seem apparent that this circle would be the smallest
possible circle enclosing the points. However, this is the case only under
specific circumstances, namely, when the points form an acute or right
triangle. As is exemplified in Figure 2.1b, if the triangle has only acute
angles, then the center defined in this way falls strictly on the inside
of the triangle. In analogy to the previous two-point case, moving the
center in any direction from this position will create a larger distance
to at least one of the points; the center must therefore be the sought
optimal center. If the triangle has a right angle, then the center ends
up at the midpoint of the edge opposite that angle. This situation is
essentially the same as if the endpoints of this edge were the only points
given. Again, this center must be optimal. If one angle is obtuse, on
the other hand, then the center ends up outside of the triangle, as in
Figure 2.1c. An even smaller enclosing circle can then be constructed
by disregarding the point at the obtuse corner, and simply use the circle
defined by the remaining two points, as before. The ignored point will
then appear in the interior of this circle; see Figure 2.1d. In the case
where all three angles are acute, it is not possible to obtain a smaller
enclosing circle in this way, since any circle defined by only two points
will not enclose the third point.

Due to the lack of flexibility in the curvature of a circle, it is in general
not possible to define a circle that passes through more than three points,
unless the points are configured in such a way that a circle drawn through
only three of them automatically passes through the remaining points.
Nevertheless, we have already seen that a circle defined by only two
points can be the MEC of more than two points. This property can be
generalized to say that a circle defined by a subset of either two or three
points using the rules above, can give the MEC of a set of four or more
points. As long as such a circle encloses also the remaining points, then
it must be the MEC of the full point set since, as was noted before, any
adjustment of the center would increase the distance to at least one of
the defining points on the circumference. Furthermore, even if some of
the remaining points happen to also end up on the circle circumference,
they are not necessary to define the circle. We call such a subset of
two or three points—whose MEC has all the points of the subset on its
perimeter and is at the same the MEC of the full point set—a support set,
and refer to the points themselves as support points. We further add the
requirement of the support set being inclusion-minimal, meaning that
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Figure 2.1. (a) The smallest enclosing circle of two points has its center
midway between the points. (b) & (c) The circle passing through three
points has its center at the intersection of the perpendicular bisectors of
the sides of the triangle spanned by the points. In (b), the triangle CDE
has only acute angles, which implies that the circle is optimal. In (c),
the triangle FGH has an obtuse angle at G, which causes the center to
end up outside of the triangle. A smaller enclosing circle is then given by
setting the center to the midway point between F and H, which leaves
G on the inside of the circle as is shown in (d).
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every point in it must be essential to define the MEC. Thus, for example,
if three points on the circumference form a right triangle, then the point
at the right-angled corner is non-essential and therefore not part of the
support set. A few example problem instances involving more than three
points are given in Figure 2.2.

A simple proof by contradiction shows that the MEC must be unique:
If there were two distinct MECs, then an even smaller circle could be
drawn around their intersection, and this circle would too enclose all
of the points. (The support set, however, is not necessarily unique, as
is exemplified in Figure 2.2c.) Although in this thesis we are mainly
concerned with finite point sets, it should also be remarked that any
bounded point set has a unique MEC [17]. It is straightforward to extend
the above discussion to infinite such point sets, to realize that the same
properties regarding the support points must hold.

A Simple Geometric Procedure

It is evident that the task of computing the MEC can be approached
as the combinatorial problem of determining which points should be
included in the support set. A straightforward method would be to
generate all circles passing through two or three points, filter out the
ones not enclosing all of the points, and keep the smallest circle of those
remaining. However, such an exhaustive enumeration would be practical
only for fairly small point sets: If there are n given points, then there
are (

n

2

)
+

(
n

3

)
=

n(n− 1)

2
+

n(n− 1)(n− 2)

6
(2.1)

subsets containing two or three points. If, for example, n = 100, then the
number of such subsets is 166,650. Bear in mind that for each generated
circle, the remaining n − 2 or n − 3 points in the set must be tested
for containment in the circle to determine if it is indeed an enclosing
circle. If n = 1000, then the number of possible support sets grows
to 166,666,500.

We now sketch a more efficient procedure, and apply it to an exam-
ple point set, shown in Figure 2.3a. First, an initial circle is created
by selecting an arbitrary center point—for example, one of the given in-
put points—and setting the radius to the distance to the farthest point.
As can be seen in Figure 2.3b, this clearly gives an enclosing circle.
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Figure 2.2. Example point sets and their smallest enclosing circles. All
points on the circle circumferences are labeled, and those that form sup-
port sets are highlighted with their connecting line segment or triangle.
In (a) and (b), the support sets contain two and three points, respec-
tively. In (c), there are two alternative support sets, namely, {N,O,Q}
and {N,P,Q}. No other combination of points on the circumference
span a diameter or a triangle containing the center. In (d), only S and
T form a support set: No other pair of points span a diameter; moreover,
in any set of three points containing both S and T , the third point is
clearly redundant, and the only other two possible sets of three points
form triangles not containing the center.

2.1 Introduction 13

I

J

(a)

K

L

M

(b)

N

O

P

Q

(c)

T

S

R

U

(d)

Figure 2.2. Example point sets and their smallest enclosing circles. All
points on the circle circumferences are labeled, and those that form sup-
port sets are highlighted with their connecting line segment or triangle.
In (a) and (b), the support sets contain two and three points, respec-
tively. In (c), there are two alternative support sets, namely, {N,O,Q}
and {N,P,Q}. No other combination of points on the circumference
span a diameter or a triangle containing the center. In (d), only S and
T form a support set: No other pair of points span a diameter; moreover,
in any set of three points containing both S and T , the third point is
clearly redundant, and the only other two possible sets of three points
form triangles not containing the center.



14 Chapter 2. Minimum Enclosing Balls

Furthermore, it is clear that a smaller circle can be obtained by shift-
ing the center in the direction of the point determining the current ra-
dius. In Figure 2.3c, the center has been shifted—and the radius shrunk
accordingly—by the largest permissible amount without any points pass-
ing outside of the circle. In this configuration, there are now two points
touching the perimeter.

The circle can now be further reduced by moving its center toward
the position midway between these two points. As this makes the center
travel along the perpendicular bisector of the line segment connecting
the points, it will remain equidistant to them, so that both points can
be kept fixed to the circle as it shrinks. Now, either it is possible to
move the center all the way to the midway point without any points
passing outside of the circle, or its movement is stopped by a third
point ending up on the circumference. In the first case, the solution
has been found along with a support set of two points, according to the
earlier arguments. In the second case, which is shown in Figure 2.3d,
there are now three points on the boundary, and the center cannot be
moved further without the third point ending up on the outside of the
circle. As discussed above, if these points form an acute or right triangle,
then the MEC has been found along with a support set of three points.
Otherwise, the circle can be further reduced by having it let go of the
point at the obtuse angle and then shifting its center toward the point
halfway between the two remaining points, that is, by continuing the
procedure from the previous step.

Notice that from step two onward, each step of this procedure
amounts to finding the smallest possible circle having two points fixed
on its perimeter while enclosing all of the remaining points. In each
step, if a third point interrupts the movement of the center, this third
point is uniquely determined by the two fixed points. Furthermore, since
the circle always shrinks with each step, the same pair of points can
never be repeated. Thus, we can conclude that it cannot take more than
n(n−1)/2 steps, which is same as the number of possible pairs of points,
until the MEC has been found with this procedure. Compared to the
brute-force approach, the number of possible support sets evaluated has
thus been reduced by at least n(n−1)(n−2)/6, the second term of (2.1).
While this is a major improvement, however, significantly more efficient
methods are known, as will be seen in Section 2.3.
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(a) (b)

(c) (d)

Figure 2.3. A simple geometric procedure to compute the smallest en-
closing circle, applied to an example point set. In (b) and (c), the dotted
arrow indicates the attempted movement of the center, and the solid ar-
row indicates the maximum permissible movement without letting any
points pass to the outside of the circle as it shrinks. The shaded cir-
cle shows the maximally shifted and shrunk circle, which becomes the
starting point of the next step.

2.1 Introduction 15

(a) (b)

(c) (d)

Figure 2.3. A simple geometric procedure to compute the smallest en-
closing circle, applied to an example point set. In (b) and (c), the dotted
arrow indicates the attempted movement of the center, and the solid ar-
row indicates the maximum permissible movement without letting any
points pass to the outside of the circle as it shrinks. The shaded cir-
cle shows the maximally shifted and shrunk circle, which becomes the
starting point of the next step.



16 Chapter 2. Minimum Enclosing Balls

Generalizing to d Dimensions

The problem can be generalized to any number of dimensions if the
given points as well as the center point are allowed to be defined in d
dimensions. In this thesis, we call the enclosing shape a ball whenever d
is not specified, and use the terms circle and sphere for the cases d = 2
and d = 3, respectively. In dimensions above three, the term hypersphere
is sometimes used in the literature. (Technically, the term ball generally
refers to the whole enclosed volume, whereas the term (hyper-)sphere
refers only to the surface of a ball. The term circle, on the other hand,
usually refers only to the circumference, whereas the term disc can be
used to refer to the area contained in the circle. However, these semantic
differences bear no relevance to the problems discussed in this thesis.)
As in the two-dimensional case, the d-dimensional MEB exists and is
unique, also for infinite, bounded point sets [17].

In what follows, we let a ball with center c ∈ R
d and radius r ∈ R be

denoted by Bc,r, i.e.,

Bc,r := {x ∈ R
d : ‖x− c‖ ≤ r}, (2.2)

where ‖ · ‖ is the Euclidean norm. Furthermore, we denote the set of
n given points by P := {p1, . . . , pn} ⊂ R

d, and say that P is enclosed
by Bc,r if Bc,r ⊃ P. Moreover, we let the MEB of P be denoted by
MEB(P) and define c∗ and r∗ to satisfy Bc∗,r∗ = MEB(P). We now
proceed to generalize the properties derived above for the support set to
the d-dimensional case.

Let S be a subset of m points of P, renamed as s1, . . . , sm. A ball
Bc,r having S on its boundary is given by a solution (c, r) to the system
of equations

(si − c)T(si − c) = r2, i = 1, . . . ,m. (2.3)

This system is in essence a linear system of only m − 1 equations in d
variables: If we subtract the m-th equation from the other equations,
they can be rewritten as

(si − sm)Tc = (sTi si − sTmsm)/2, i = 1, . . . ,m− 1.

A solution c to this system2 determines a unique nonnegative value of
r, which is given by substituting c into any of the original equations

2Notice that this system can alternatively be written as (c − sm)T(si − sm) =
(si − sm)T(si − sm)/2, i = 1, . . . ,m − 1, which expresses a generalization of the
Euclidean rule used earlier to d dimensions and m points.
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in (2.3) and taking a square root. From this formulation, it is clear
that if the points s1, . . . , sm are affinely independent, then (2.3) must
have solutions, because this is equivalent to the vectors si − sm, i =
1, . . . ,m − 1, being linearly independent. On the other hand, if the
points are affinely dependent, then either the system is inconsistent—
i.e., no ball exists that passes through all m points—or one or more
equations are superfluous—i.e., the corresponding points already lie on
any ball given by the other equations. Thus, the property from before
that a circle can be drawn through at most three points generalizes to
the property that a ball can be defined through at most d + 1 points.
For ease of discussion, we henceforth assume that the points of S are
affinely independent.

If m = d + 1, then (2.3) has a unique solution, and if m < d + 1,
there are infinitely many solutions. In the latter case we are interested
in the smallest ball passing through the points of S. The affine hull of
S is then a lower-dimensional hyperplane, and it can easily be shown
that the smallest ball having S on its boundary must have its center in
the same hyperplane: Otherwise, there would exist a parallel hyperplane
separating the center from the points; the center could then be translated
along the plane normal to be closer to all of the points, and this would
contradict that the current ball is the smallest. Notice that in this case,
the ball can be seen as an (m−1)-dimensional ball, defined by m < d+1
points on its surface, that simply extends into the additional d−m+ 1
empty dimensions. We have already seen that when d = m = 2, the
center of the smallest circle must lie on the line passing through the two
points—that is, their affine hull.

To ensure that c ends up in the affine hull of S, we augment the
system (2.3) with the d+ 1 equations

c =

m∑
i=1

visi, (2.4)

m∑
i=1

vi = 1 (2.5)

and the variables vi ∈ R, i = 1, . . . ,m. It is straightforward to rewrite
the system (2.3)–(2.5) as a linear system with m − 1 equations in only
the variables v1, . . . , vm−1 [56]. This system has a unique solution, with

the ball Bc,r given by c =
∑m−1

i=1 vipi and r = ‖s1 − c‖.
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(a) (b)

Figure 2.4. Two three-dimensional balls defined to pass through three
given points. The plane that is the affine hull of the points is indicated
with a dashed rectangle, and its normal vector is shown as an arrow.
Also shown is the triangle that is the convex hull of the points, as well
as the circle where both balls intersect the affine hull. In (a), there is
some distance between the ball center and the affine hull; thus, the ball
is not the smallest possible. Shifting the center toward the plane along
the plane normal allows smaller balls to be defined while maintaining all
three points on the boundary. The ball in (b) is the smallest possible
one, as its center coincides with the affine hull. It is also the MEB of
the points, as its center lies in their convex hull.

Just as the circle passing through three points is not necessarily their
MEC, however, the ball Bc,r given by (2.3)–(2.5) is not necessarily the
MEB of S. A similar argument as before shows that Bc,r = MEB(S) if
and only if c lies in the convex hull of S, i.e., if vi ≥ 0 for i = 1, . . . ,m:
Otherwise, there would exist a hyperplane separating c from S, which
means that c could be moved along the normal of this plane to be closer
to all the points of S—a contradiction. This generalizes the statement
from before that a circle passing through three points is their MEC only
if its center lies inside the triangle spanned by the points. As before, if
also MEB(S) ⊃ P holds, then MEB(S) = MEB(P), and S is a support
set also of MEB(P). On the other hand, if c does not lie within the
convex hull, then at least one of the points si is not a support point of
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(a) (b)

Figure 2.5. (a) The smallest three-dimensional ball passing through
three points configured similarly to those of Figures 2.1c and 2.1d. The
center lies in the affine hull of the points, but since it has some distance
to the convex hull, the ball cannot be the MEB of the points. As in
two dimensions, the MEB, shown in (b), has its center midway between
two of the points, and has the third point strictly inside of its boundary.
The affine hull of the two support points is indicated with a dashed line,
and their convex hull is indicated with a solid line. The circle where the
MEB intersects the plane of all three points is also highlighted.

MEB(S). (Depending on how S was selected, however, that point might
yet be a support point of MEB(P).) Two further examples illustrating
the considerations discussed in this section, this time with d = m = 3,
are given in Figures 2.4 and 2.5.

2.2 Problem Formulations

Since the smallest possible radius of an enclosing ball with a given center
c is determined by the largest distance from c to any point in P, the
optimal center c∗ is given by the solution to the optimization problem

(P′
B) minc maxni=1 ‖pi − c‖. (2.6)

The optimal radius r∗ is then given directly by maxni=1 ‖pi − c∗‖. The
objective function (2.6) is clearly convex, as it is the point-wise maxi-
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mum of the convex functions ‖pi − c‖, i = 1, . . . , n. However, it is not
differentiable. We can obtain an equivalent but more convenient problem
formulation by squaring all the distances and introducing the squared ra-
dius as an explicit variable s, constrained to satisfy s ≥ maxni=1 ‖pi−c‖2:

(PB) minc,s s (2.7)

s.t. ‖pi − c‖2 ≤ s, i = 1, . . . , n. (2.8)

In addition to being convex, this formulation has continuously differ-
entiable objective and constraint functions. It is a quadratically con-
strained linear program with the same quadratic term, cTc, in all of the
constraints. Thus, it could alternatively be formulated as a linear pro-
gram with a single additional, quadratic constraint [44], or as a convex
quadratic program with all constraints linear [61]. As will be seen in
Section 2.3, its resemblance to a linear problem makes the MEB prob-
lem amenable to solution methods analogous to some methods for linear
programming.

Introducing multipliers u := (u1, . . . , un)
T ∈ R

n, we define the La-
grangian of problem (PB) as

L(c, s, u) := s+

n∑
i=1

ui

(‖pi − c‖2 − s
)
. (2.9)

For ui ≥ 0, i = 1, . . . , n, it is immediate that L(c, s, u) ≤ s for any (c, s)
satisfying (2.8). A lower bound on the optimum s∗ of (PB) can thus be
obtained by minimizing L(c, s, u) over (c, s). It is evident that L(c, s, u)
is bounded below as a function of s only when

n∑
i=1

ui = 1, (2.10)

in which case s vanishes from (2.9). Then L(c, s, u) is minimized as a
function of c at a stationary point c̄, i.e.,

∇cL(c̄, s, u) =

n∑
i=1

2ui(pi − c̄) = 0,

which can be rewritten as

c̄ =

n∑
i=1

uipi. (2.11)
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In summary,

s∗ ≥ minc,s L(c, s, u) (2.12)

=
n∑

i=1

ui‖pi − c̄‖2 (2.13)

=

n∑
i=1

uip
T
i pi −

( n∑
i=1

uipi

)T( n∑
i=1

uipi

)
, (2.14)

where (2.10) and (2.11) are used in (2.13) and (2.14), respectively. The
tightest possible lower bound on s∗ is obtained by maximizing (2.14),
which is a concave function of u. This leads to the Lagrangian dual of
problem (PB):

(DB) maxu

n∑
i=1

uip
T
i pi −

( n∑
i=1

uipi

)T( n∑
i=1

uipi

)
, (2.15)

s.t.

n∑
i=1

ui = 1, (2.16)

ui ≥ 0, i = 1, . . . , n. (2.17)

Problem (PB) clearly satisfies Slater’s condition [21], which requires
that there exist strictly feasible solutions: Any enclosing ball Bc,r of
P with no points touching its boundary corresponds to such a solu-
tion. Slater’s condition implies that strong duality holds between (PB)
and (DB), i.e., that their optima coincide. This, together with convexity,
implies that the Karush–Kuhn–Tucker (KKT) optimality conditions are
both necessary and sufficient. Denoting by u∗ an optimal solution to
problem (DB), we can state the complete KKT conditions as

u∗
i ≥ 0, i = 1, . . . , n, (2.18)

‖pi − c∗‖2 − s∗ ≤ 0, i = 1, . . . , n, (2.19)
n∑

i=1

u∗
i = 1, (2.20)

c∗ =

n∑
i=1

u∗
i pi, (2.21)

u∗
i (‖pi − c∗‖2 − s∗) = 0, i = 1, . . . , n. (2.22)
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Note that strong duality implies that the inequality (2.12) becomes
equality for u = u∗. This, in turn, implies that (c, s) = (c∗, s∗) min-
imizes L(c, s, u∗), since

s∗ = minc,s L(c, s, u
∗)

≤ L(c∗, s∗, u∗)

≤ s∗,

where both inequalities must be equalities. From this, conditions (2.20)–
(2.22) follow.

Conditions (2.18), (2.20), and (2.21) together give that c∗ must be
a convex combination of the points of P. It further follows from (2.22)
that only points on the boundary of the MEB can have non-zero weights
in this convex combination. Carathéodory’s theorem [24], in turn, gives
that no more than d + 1 such points are necessary. Thus, we have
confirmed the statement of the previous section that the MEB must
have its center in the convex hull of up to d+ 1 points on its boundary.

Any feasible solution u to problem (DB) can be translated into a ball
Bc,r by

c =

n∑
i=1

uipi, (2.23)

r =

√√√√ n∑
i=1

ui‖pi − c‖2. (2.24)

Note that (2.24) simply expresses the square root of the dual objec-
tive (2.15). Thus, for u = u∗, c and r given by these equations coincide
with c∗ and r∗, respectively, and Bc,r = MEB(P). For any feasible but
suboptimal u, it follows from weak duality that r < r∗, which means
that Bc,r has points of P outside of it.

2.3 Methods of Solution

The earliest known algorithm for the MEB problem appears in a pub-
lication from 1860 by Sylvester [120], in which a procedure is outlined
for computing the minimum enclosing circle of points in the plane. The
procedure, which is attributed to Peirce, is in essence identical to the
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one sketched in Section 2.1 of this thesis. The same procedure was then
rediscovered 25 years later by Chrystal [32].

Since these early works, numerous methods have been proposed in the
literature. These can be categorized in a number of ways, for example,
as fixed- versus general-dimensional, exact versus approximate, or direct
versus iterative. Many algorithms can also be naturally characterized as
either primal or dual [62]. An algorithm is called primal if it arrives at
the optimum through a sequence of primal feasible candidate solutions
(c, r) = (ck, rk), k = 1, 2, . . . Geometrically, this means that it starts
out with a trial ball that fully encloses all of the given points, and then
works to “deflate” this ball—not necessarily in a monotonic fashion—
to the optimal fit without letting any points pass outside of it. The
Peirce–Chrystal algorithm above belongs to this category.

A dual algorithm, in contrast, generates a sequence of dual feasible
solutions u = uk, k = 1, 2, . . . , where the current iterate u is either
represented as an explicit variable or is implicit in the current values of c
and r through (2.23) and (2.24), respectively. Interpreted geometrically,
such an algorithm starts out with an undersized trial ball, which it then
proceeds to “inflate” (possibly non-monotonically) until all the points
are enclosed, which implies that the ball is optimal.

A simple procedure for the planar case by Elzinga and Hearn [45]
falls into the latter category. Similarly to the Peirce–Chrystal method,
it generates a sequence of candidate support sets, each containing two
or three points, along with the sequence of circles passing through all
the points in each set. Unlike in the Peirce–Chrystal method, however,
each support set is computed from the previous one in a manner that
ensures that its corresponding circle is also its smallest enclosing circle.
This means that every circle except the last one (which is the optimum)
is the smallest enclosing circle of a strict subset, and thus too small to
cover the whole point set. Each candidate support set is generated by
selecting a point outside of the current circle and then computing the
smallest circle enclosing the union of the current support set and the new
point. An example computation is given in Figure 2.6. The new circle
is necessarily larger than the previous one, and must have the new point
on its circumference. If any of the previous support points are now left
in the interior of the new circle, they are evicted from the set. Notice
that this occurs in the first and last updates shown in Figure 2.6.
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(a) (b)

(c) (d)

Figure 2.6. The last four iterates of the dual algorithm by Elzinga and
Hearn [45] invoked on an example point set. In each step, a dotted line
is drawn to the next point chosen to enter the candidate support set,
and the shaded circle gives the next circle, which is the smallest circle
enclosing the current support set and the new point.
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2.3.1 Exact Algorithms

It is clear that both the Peirce–Chrystal and Elzinga–Hearn algorithms
must terminate in a finite number of steps: The former generates mono-
tonically shrinking circles and the latter generates monotonically grow-
ing circles, which means that none of the candidate support sets defining
these circles can be repeated. As was noted in Section 2.1, the Peirce–
Chrystal method finishes in O(n2) steps. Since each step takes Θ(n)
time, the overall asymptotic time complexity is O(n3). It is fairly easy
to realize that any point ending up on the circumference of the current
trial circle sometime during this algorithm must be an extreme point of
the convex hull of the point set, since the circle is itself a convex shape
fully enclosing the convex hull. Taking this fact into account gives the
refined bound O(h2n), where h is the total number of extreme points.
Although h can be as large as n in the worst case, for many problem
instances it is much smaller [15].

To analyze the number of steps required by the Elzinga–Hearn
method, we first note that each new candidate circle encloses at least
one new point that was not enclosed by the previous circle. However,
this point might be evicted from the support set in a future iteration, and
might eventually end up outside of the candidate circle again. (Notice
in Figure 2.6 that one point that is a support point in (a) is left outside
of the circle in (c).) Thus, the same point can be selected more than
once. A coarse upper bound on the number of steps is given by (2.1),
the number of possible support sets, which is O(n3). Since selecting the
next point takes O(n) time, the total time complexity is O(n4). If the
farthest point from the current circle, as opposed to an arbitrary point
outside of it, is chosen in each iteration, all candidate support sets will
again be constructed only from extreme points of the convex hull of the
points. Then the time complexity can instead be expressed as O(h3n).

In [46], Elzinga and Hearn derive the primal and dual problem for-
mulations (PB) and (DB) and present an algorithm resembling a gener-
alization of their planar procedure to d dimensions. Each iterate consists
of a subset of d+ 2 points and their MEB. The subproblem of comput-
ing the MEB of each subset is solved by applying the simplex method of
quadratic programming to the corresponding dual formulation. Since at
most d+ 1 of the points can have a positive weight in the solution, one
point with zero weight can be replaced in each step by a point outside
of the current MEB. As in the planar procedure, the radii of the candi-
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date MEBs must be monotonically increasing, and because there are a
finite number of candidate support sets, the algorithm is guaranteed to
terminate.

Shamos and Hoey [109] noted that the optimal circle, if not defined
by two points, must have its center at a vertex of the farthest-point
Voronoi diagram. Using this data structure, which takes O(n log n) time
to construct, it only takes O(n) time to either locate the two points
determining the optimal circle or to find the vertex at which the optimal
center must be lie. The smallest enclosing circle is thus computed in
O(n log n) time, a clear improvement over the previous methods.

In 1983, the worst-case time complexity of the MEB problem in d di-
mensions was determined to be linear in n, when Megiddo [88, 89] and,
independently, Dyer [43, 44] presented a multidimensional prune-and-
search technique by which linear programming problems can be solved
in deterministic linear time (in the number of constraints). The same
method can be adapted to several other optimization problems, including
the MEB problem. Although this was a major theoretical breakthrough,
however, the method is practical only for a very small number of dimen-
sions: The hidden constant in the time complexity of the original method

is 2O(2d), which was later improved to 3d
2

by Dyer [44] and Clarkson [33].

It was later shown that more practical, randomized algorithms can
solve the problem in expected O(n) time in fixed dimension, where the
expectation is over the random choices made internally by the algorithm.
Such an algorithm by Welzl [139], which generalizes an earlier algorithm
for linear programming by Seidel [108], is easily described as a short re-
cursive procedure. However, its dependence on d is (d+1)(d+1)!, which
limits its applicability in practice to dimensions up to, say, d = 10. A
similar algorithm given by Sharir and Welzl [110], and later analyzed
more fully by Matoušek et al. [87], achieves a subexponential depen-
dence on d. The algorithm is presented in an abstract way that relies
less on the geometry of the problem, which enables it to be applied to
a broader class of optimization problems, provided that a few concrete
subroutines are available for the specific problem at hand. This class
of so called LP-type problems further includes linear programming (as
the name suggests), as well as the MVEE problem, among others. For
the MEB problem, an algorithm by Gärtner [55] is used as a concrete
subroutine to compute the MEB of subsets of at most d + 2 points. A
randomized algorithm for linear programming by Clarkson [34] can also
be modified to fit into the LP-type framework. Chazelle and Matou-
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šek [31] applied derandomization techniques to Clarkson’s algorithm to
achieve deterministic linear time complexity (but with a worse depen-
dence on d). A summary of subsequent work along this line of research,
as well as a recent result, are given by Chan [28].

Using Welzl’s algorithm as a subroutine, Gärtner [56] gives an algo-
rithm that can be viewed as a direct d-dimensional generalization of the
dual Elzinga–Hearn method. This means that it computes a sequence of
candidate support sets Sk ⊆ P and balls Bk := MEB(Sk), k = 1, 2, . . . ,
until the true support set of MEB(P) has been found. In iteration k,
the point in P that is farthest from the center of Bk is located. If this
farthest point, call it qk, is found on the inside of Bk, then Bk must be
the optimum (i.e., Bk = MEB(P)), and the procedure is terminated.
Otherwise, MEB(Sk ∪ {qk}) is computed using Welzl’s algorithm to be-
come the next ball Bk+1. The support set of Bk+1 becomes the next
candidate support set Sk+1, and satisfies qk ∈ Sk+1 and |Sk+1| ≤ d+1.
An algorithm by Dearing and Zeck [39] uses the same overall strategy
as the Elzinga–Hearn and Gärtner algorithms, but uses a novel direc-
tional search technique to update the support set and its MEB in each
iteration.

The algorithm by Fischer et al. [50], on the other hand, can be viewed
as a generalization of the primal Peirce–Chrystal algorithm to d dimen-
sions. In their algorithm, each trial ball Bk has the current candidate
support set Sk on its boundary while at the same time satisfying Bk ⊃ P.
The center ck and radius rk of each Bk therefore satisfy the earlier sys-
tem of equations (2.3)–(2.5) from Section 2.1, with s1, . . . , sm denoting
the points of Sk. The algorithm terminates when vki ≥ 0 holds for
i = 1, . . . ,m, i.e., when ck falls in the convex hull of Sk. In each iter-
ation until this is fulfilled, one point pi ∈ Sk with vi < 0 is dropped
from Sk, which allows the current ball to be moved and shrunk until
another point enters its boundary. Then this point is added to Sk to
generate Sk+1. While the dual algorithms above appear to be practi-
cally usable only in dimensions up to, say, d = 50, experimental results
provided by Fischer et al. indicate that this algorithm remains practical
for thousands of dimensions. Their algorithm builds on an earlier idea
by Hopp and Reeve [64]. A related algorithm is also given by Botkin
and Turova-Botkina [19].
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2.3.2 Approximation Algorithms

Although some of the exact methods above have proven to be efficient in
practice on fairly large problem instances, approximation methods still
provide an attractive alternative and have received much consideration
in the literature. Such algorithms can be considerably faster, and even
exhibit real-time performance. In addition, many algorithms offer the
possibility to trade approximation quality for speed across a continuous
spectrum. Another advantage of these methods is that they are often
fairly straightforward to adapt to other types of geometric primitives
given as input, such as balls or ellipsoids.

Coarse approximations can be computed inO(dn) time. For example,
a 3/2-approximation of the MEB—i.e., an enclosing ball with radius
r ≤ 3/2r∗—can be computed in the streaming model, where only a single
pass over the input is allowed [146, 29]. A simple two-pass algorithm is
given by Ritter [102]. Tian [125] gives a three-pass algorithm based on
a conservative ball enlargement operation.

Algorithms that compute (1+ ε)-approximations provide fine control
over the approximation quality through the parameter ε > 0. Most al-
gorithms in this category are iterative methods that compute (explicitly
or implicitly) a sequence of dual feasible solutions uk, k = 1, 2, . . . , con-
verging to u∗ in the limit. In each iteration, a center ck and radius rk

can be defined using (2.23) and (2.24) with u = uk, and a primal feasible
radius is given by Rk := maxni=1 ‖pi − ck‖. It follows from weak duality
that rk ≤ r∗ ≤ Rk; thus, if (Rk − rk)/rk ≤ ε, then the ball Bck,Rk ,
which must enclose all of P, has a relative error no larger than (1 + ε)
in the radius. An early such method given by Lawson [83] is based on
the simple recursion

uk+1
i =

( ‖pi − ck‖∑n
j=1 ‖pj − ck‖uk

j

)
uk
i , i = 1, . . . , n. (2.25)

As a byproduct, several of these algorithms also construct a subset
of P called a core-set [11]. Core-sets are a general tool of computational
geometry for efficiently approximating various extent measures of a point
set, such as its diameter, width, or the volume of its minimum enclosing
box [1]. The defining property of a core-set is that the extent measure in
question can be approximated to within a guaranteed precision by being
computed exactly only for the core-set, which is significantly faster than
computing the exact extent measure for the whole point set. In the
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context of the MEB problem, a subset K ⊆ P is called an ε-core-set
if MEB(K), when enlarged by a factor of at most (1 + ε), encloses P.
Clearly, the enlarged ball must be a (1 + ε)-approximation of MEB(P).
Surprisingly, it has been shown [10, 77] that there always exists an ε-
core-set of size O(1/ε), where the hidden constant is independent of both
n and d. In the dual algorithms, the returned core-set typically satisfies
K = {pi ∈ P : ũi > 0}, where ũ is the final iterate.

A common strategy used to build the core-set is to begin with an
empty set, and then add the farthest point from the current trial ball in
each iteration. After each such update, the candidate core-set is used in
turn to improve on the solution. A sketch of such a procedure is given
in Algorithm 2.1. The strategy of always adding the farthest point pj to
the core-set can be motivated in several ways. Going back to the primal
problem formulation (PB), the j-th constraint is the only constraint
limiting how small the radius can be made for a given c (unless, of
course, other points in P happen to be at the exact same distance from
c as pj , which is rare when c �= c∗). Thus, adding pj to the core-set and
adjusting the ball in the direction of pj is clearly beneficial.

Considering instead the dual problem (DB), the gradient of its ob-
jective function has n components, with each �-th component given by

∂

∂u�

( n∑
i=1

uip
T
i pi −

( n∑
i=1

uipi

)T( n∑
i=1

uipi

))
= pT� p� − 2

n∑
i=1

uip
T
i p�.

Using (2.23) to rewrite the right-hand side as ‖p� − c‖2 − cTc makes
it clear that the j-th component is the largest. This is significant for
algorithms that are based on solving linearizations of the dual problem.
For example, in the Frank–Wolfe algorithm [53], when applied to problem
(DB), a linearization of the problem is formed at the current solution
u in each iteration. The next solution is then computed by shifting
u in the direction of the maximum point of this subproblem using a
line search. Because the feasible region of the dual problem is the unit
(n − 1)-simplex, this maximum point is always a vertex of the simplex.
Specifically, it is the vertex given by ej , which we define as the vector
with its j-th component equal to 1 and all other components equal to 0.

The asymptotic time complexity of Algorithm 2.1 depends on how
the initial solution is computed on Line 1, and how it is updated in
each iteration on Line 9. For example, simply setting the initial solution
to c = q, r = 0, and K = {q}, where q is an arbitrary point in P,

2.3 Methods of Solution 29

context of the MEB problem, a subset K ⊆ P is called an ε-core-set
if MEB(K), when enlarged by a factor of at most (1 + ε), encloses P.
Clearly, the enlarged ball must be a (1 + ε)-approximation of MEB(P).
Surprisingly, it has been shown [10, 77] that there always exists an ε-
core-set of size O(1/ε), where the hidden constant is independent of both
n and d. In the dual algorithms, the returned core-set typically satisfies
K = {pi ∈ P : ũi > 0}, where ũ is the final iterate.

A common strategy used to build the core-set is to begin with an
empty set, and then add the farthest point from the current trial ball in
each iteration. After each such update, the candidate core-set is used in
turn to improve on the solution. A sketch of such a procedure is given
in Algorithm 2.1. The strategy of always adding the farthest point pj to
the core-set can be motivated in several ways. Going back to the primal
problem formulation (PB), the j-th constraint is the only constraint
limiting how small the radius can be made for a given c (unless, of
course, other points in P happen to be at the exact same distance from
c as pj , which is rare when c �= c∗). Thus, adding pj to the core-set and
adjusting the ball in the direction of pj is clearly beneficial.

Considering instead the dual problem (DB), the gradient of its ob-
jective function has n components, with each �-th component given by

∂

∂u�

( n∑
i=1

uip
T
i pi −

( n∑
i=1

uipi

)T( n∑
i=1

uipi

))
= pT� p� − 2

n∑
i=1

uip
T
i p�.

Using (2.23) to rewrite the right-hand side as ‖p� − c‖2 − cTc makes
it clear that the j-th component is the largest. This is significant for
algorithms that are based on solving linearizations of the dual problem.
For example, in the Frank–Wolfe algorithm [53], when applied to problem
(DB), a linearization of the problem is formed at the current solution
u in each iteration. The next solution is then computed by shifting
u in the direction of the maximum point of this subproblem using a
line search. Because the feasible region of the dual problem is the unit
(n − 1)-simplex, this maximum point is always a vertex of the simplex.
Specifically, it is the vertex given by ej , which we define as the vector
with its j-th component equal to 1 and all other components equal to 0.

The asymptotic time complexity of Algorithm 2.1 depends on how
the initial solution is computed on Line 1, and how it is updated in
each iteration on Line 9. For example, simply setting the initial solution
to c = q, r = 0, and K = {q}, where q is an arbitrary point in P,



30 Chapter 2. Minimum Enclosing Balls

Algorithm 2.1. Generic (1 + ε) MEB algorithm.

Input: P := {p1, . . . , pn} ⊂ R
d, ε > 0

Output: Bc,r such that Bc,r ⊃ P, r ≤ (1 + ε)r∗

1: Initialize c, r, and K
2: loop

3: j ← argmaxni=1 ‖pi − c‖
4: R ← ‖pj − c‖
5: if R ≤ (1 + ε)r then

6: return Bc,R

7: end if

8: K ← K ∪ {pj}
9: Update c, r using K

10: end loop

and then invoking an exact MEB algorithm on K in each step, yields a
(1 + ε)-approximation in O(1/ε) iterations [10]. Because each farthest-
point query on Line 3 takes Θ(dn) time, the total time complexity of
such an approach is O(dn/ε). (This strategy is similar to the exact dual
algorithms above, except that the core-set is not filtered to contain only
the support points).

Another very simple algorithm by Bădoiu and Clarkson [10] pro-
ceeds in a gradient descent-type manner, where the center is moved in a
straight line toward the farthest point in each iteration, by an amount
inversely proportional to the current iteration count. In their original
formulation, only a center point is maintained. Thus, a predetermined
number of iterations of 1/ε2 is used in place of the termination criterion
in Algorithm 2.1. The resulting time complexity of this algorithm is
Θ(dn/ε2). A variant of their algorithm is described by Clarkson [35].

Kumar et al. [77] formulate the MEB problem for the case where the
input is a set of balls as a second-order cone program (SOCP), and use
a SOCP solver to approximate MEB(K) in each iteration. The result is
a (1 + ε) algorithm with time complexity O(dn/ε+ 1/ε4.5 log(1/ε)).

The O(dn/ε) algorithm by Panigrahy [96] makes repeated invocations
of a procedure similar to Algorithm 2.1. In each invocation, the radius r
is kept constant throughout the iterations, and only the center c is moved
in each iteration so that the ball Bc,r touches the point pj . Successively
improved approximations of the optimal radius are used for the fixed
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radius from each invocation to the next.
Yıldırım [144] proposes two algorithms that also fit the outline given

in Algorithm 2.1. Both of them are adaptations of Frank and Wolfe’s
algorithm [53] to the dual problem (DB). In the first algorithm, the
solution u is always moved in the direction of the corner ej of the unit
simplex by an amount that maximizes the growth of the objective func-
tion. Such an update consists of first increasing uj and then rescaling
the remaining components of u to maintain primal feasibility. The sec-
ond algorithm also incorporates Wolfe’s away steps [141]. This means
that in each iteration, there is also the choice of moving u away from
the corner ej− , where i = j− minimizes ‖pi − c‖ subject to ui > 0. Such
an update consists instead of decreasing uj− , also by an optimal amount
but without letting it be reduced below zero, before rescaling the rest of
u. The choice between these two types of updates is made dynamically
based on which of them will improve the working solution the most.
Since away steps may sometimes reduce components of u to zero, the
second algorithm has the potential to return smaller core-sets. More-
over, although both algorithms have asymptotic running time O(dn/ε),
the second algorithm typically exhibits faster convergence in practice.

In Nielsen and Nock’s algorithm [94], the update step amounts to
approximating MEB(K) using Bădoiu and Clarkson’s simple Θ(dn/ε2)
algorithm as a subroutine. This gives a total time complexity ofO(dn/ε+
d/ε4).

2.3.3 Acceleration Techniques

When n is large, the most time-consuming part of the strategy outlined
in Algorithm 2.1 tends to be the repeated searches for the farthest point
on Line 3. When implemented as a sequential loop over all the points
in P, each search takes Θ(dn) time. For this reason, a number of accel-
eration techniques targeting this portion of the computations have been
proposed.

In a paper accompanying [144], Ahipaşaoğlu and Yıldırım [4] give
an acceleration heuristic that is based on eliminating any points from
P that cannot lie on the boundary of MEB(P). Since only points on
the boundary are needed to define the MEB, removing interior points
between iterations has no effect on the final result but can speed up
subsequent searches for the farthest point considerably. For a ball Bc,r

satisfying r ≤ r∗ and Bc,(1+ε)r ⊃ P, it is shown in [4] that if a point pi
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satisfies

‖pi − c‖ < (1−
√

2ε+ ε2)r, (2.26)

then it must be interior to MEB(P). Thus, in each iteration, any point
satisfying this condition with the current value of maxni=1 ‖pi − c‖/r− 1
substituted for ε can be removed, or “pruned”. Condition (2.26) is an
example of a screening rule, a concept which has also been applied for
several other optimization problems [100].

Pronzato [98] derives a bound that is tighter than the bound (2.26),
and proves that it cannot be improved further. His bound coincides with
an earlier bound given in Paper B of this thesis; see Section 4.

Nielsen and Nock [94] use a simple filtering heuristic to bypass many
of the point-point distance computations during each query, but without
removing any points from the input. Using the Cauchy–Schwarz inequal-
ity, they derive the following test to skip over points when searching for
the farthest point: √

‖pi‖2 + ‖c‖2 + 2‖pi‖‖c‖ < Ri, (2.27)

where Ri is the largest distance ‖p� − c‖ for � < i. Any point pi sat-
isfying (2.27) cannot be the farthest point in the current farthest-point
query, thus the exact distance ‖pi − c‖ does not need to be computed.
By precomputing ‖pi‖ for i = 1, . . . , n only once, and computing ‖c‖
before each query, this test can be performed in constant time per point,
in contrast to the Θ(d) cost of computing the exact distance.

It should be noted that the above techniques clearly are applicable to
any algorithm based on the overall strategy of Algorithm 2.1. We further
remark that while general acceleration techniques is a broad topic, the
term is restricted here to techniques that are “transparent”, meaning
that they bring performance improvements while at the same time having
no effect on the final result or the intermediate solutions generated by
the algorithm.

2.4 Applications

Since the computation of the MEB is such a fundamental optimization
problem, it is no surprise that it finds numerous applications across
multiple domains, as was alluded to in Chapter 1. In this section, we give
a slightly more detailed survey of a few interesting applications involving
both low-dimensional and high-dimensional data.
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2.4.1 Example: Collision Detection

As discussed briefly in Chapter 1, efficient collision detection is a critical
task in many applications involving simulation of the physical world.
For example, in a racing video game the vehicles should not be allowed
to pass straight through each other or drive off the track. Thus, their
intersection status with each other as well the environment must be
detected and handled in each frame of the game loop. This is a challenge
when the game objects are represented using complex geometry, such as
highly detailed triangle meshes or implicit surface descriptions, since it
becomes prohibitively expensive to compute and evaluate all possible
contact points.

In the context of these applications, the enclosing shapes are usually
called bounding volumes. Apart from bounding spheres [99, 65, 104, 67,
92] and ellipsoids [101, 84, 80, 25], other well-known choices of bounding
volume shapes include axis-aligned [107, 23] and oriented [58] bounding
boxes, and discrete oriented polytopes [74]. As mentioned before, by
having each model in the virtual world enclosed by a tight-fitting but
simple such bounding volume, quick intersection tests between them can
serve as initial rejection tests.

A refinement of this idea involves arranging the bounding volumes
in a tree structure called a bounding volume hierarchy [47]. The leaves
of this tree store the individual geometric primitives that make up the
model, and each internal node stores a bounding volume that encloses all
the primitives of its subtree. With this data structure, a collision query
between two objects can be performed at successively increasing levels
of detail. If the initial test between the two top-level bounding volumes
enclosing the entire models returns an intersection, then the next level
of the hierarchies, consisting of several smaller bounding volumes, are
examined, and so on. This way, a collision query between two objects is
realized as a parallel traversal of their respective trees, where any pair of
subtrees whose bounding volumes do not intersect can be excluded from
further processing.

Bounding volumes can also be used to accelerate various rendering
techniques used in computer-generated imagery. For example, in ray
tracing, where realistic images are produced by simulating rays of light
traveling through a virtual scene, bounding volume hierarchies can be
used to perform efficient intersection detection between the rays and the
objects in the scene [137].
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The minimum bounding sphere has a number of advantages over
other types of bounding volume shapes. Firstly, since the center point
and radius can be represented using only four floating-point values, it has
very low memory requirements, which is important in large simulations
involving many objects. Secondly, its simple shape enables very cheap
intersection tests. For example, testing whether two spheres Bc1,r1 and
Bc2,r2 intersect amounts to evaluating the condition

‖c1 − c2‖2 ≤ (r1 + r2)
2.

This test, where the squared distance is used to avoid taking a square
root, takes only 10 arithmetic operations and one comparison. Finally,
in animated environments where the models undergo rigid-body trans-
formations, i.e., translations and/or rotations, their bounding spheres
can be updated cheaply by simply applying the same transformations to
their center points. In particular, the sphere is invariant under rotation
about its center.

The effectiveness of a bounding volume, however, is also closely tied
to how accurately it approximates the underlying shape, since loosely
fitting bounding volumes can incur excessive false positives in the colli-
sion tests. Unfortunately, a spherical shape does not in general provide
a good approximation of geometric models encountered in practice. For
this reason, the minimum bounding sphere might not be an appropri-
ate choice in some applications. Some authors propose combining the
minimum bounding sphere with some other more tight-fitting bounding
volume [81, 30, 70].

2.4.2 Example: Machine Learning

Classification and anomaly detection are important problems in machine
learning, with numerous applications such as e-mail spam filtering [7],
medical image analysis [91], and condition monitoring of industrial ma-
chines [121]. The task of classification is to categorize previously unseen
observations (or “objects” or “examples”, e.g., an e-mail or an fMRI
image) as belonging to a set of possible classes (e.g., spam/not spam
or benign/malignant). Novelty detection, also called outlier detection,
is concerned with determining whether a new observation in some way
deviates from a known pattern of “normal” behavior. For example, if a
vibration sensor measures abnormal vibrations in a machine, this might
indicate a failing component.
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Support Vector Data Descriptions

The support vector data description (SVDD), introduced by Tax and
Duin [122], is an approach to anomaly detection based on comparing
incoming observations against a set of known observations representing
normal conditions. Initially, each observation in the “normal” set is en-
coded as a numerical vector called a feature vector. Then the SVDD
undergoes a “training” step, in which the MEB of these vectors is com-
puted. This ball is then used as a description of the training set, so that
any incoming observations whose feature vectors fall outside of it are
deemed to be anomalies.

A natural performance measure of the SVDD is the number of anoma-
lies it detects/fails to detect, as well as the amount of false alarms it
generates. These parameters are directly related to how well the SVDD
describes the training examples. Unfortunately, a spherical shape does
not in general provide an accurate representation of the training set, as it
tends to contain too much empty space. Thus, any anomalies that hap-
pen to fall in that empty space will go undetected. A standard method
used in several machine learning methods to improve their accuracy is
to let the feature vectors be transformed to a higher-dimensional space
using a nonlinear map φ. In the case of the SVDD, this allows the MEB
to be computed in a space in which it does provide a tight fit around
the training examples. Any new observations are also transformed and
tested against the MEB in the same space.

A technique known as the kernel trick makes it possible to transform
the vectors into infinite-dimensional feature spaces. The idea is to make
the transformations by the map φ implicit, by replacing all inner prod-
ucts involved in fitting the MEB and testing observations against it with
a kernel function k(x, y) := φ(x)Tφ(y). The dual objective (2.15), when
modified for the problem of computing the MEB of the transformed
points φ(p1), . . . , φ(pn), can then be written as

n∑
i=1

uiφ(pi)
Tφ(pi)−

n∑
i=1

n∑
j=1

uiujφ(pi)
Tφ(pj)

=

n∑
i=1

uik(pi, pi)−
n∑

i=1

n∑
j=1

uiujk(pi, pj).

With c∗ and r∗ defined from u∗ using (2.23) and (2.24), the test for
whether the image of an observation x under φ is contained in the MEB
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(a) (b)

Figure 2.7. Support vector data descriptions, rendered in the original
feature space. (a) The regular inner product kernel k(x, y) = xTy has
been used to fit the SVDD. (b) The Gaussian kernel k(x, y) = − exp(‖x−
y‖2/s2) has been used with s = 100.

can be written as

(r∗)2 ≥ ‖φ(x)− c∗‖2
= φ(x)Tφ(x)− 2φ(x)Tc∗ + (c∗)Tc∗

= φ(x)Tφ(x)− 2

n∑
i=1

u∗
iφ(x)

Tφ(pi) +

n∑
i=1

n∑
j=1

u∗
i u

∗
jφ(pi)

Tφ(pj)

= k(x, x)− 2

n∑
i=1

u∗
i k(x, pi) +

n∑
i=1

n∑
j=1

u∗
i u

∗
jk(pi, pj),

where (2.23) is used in the second equality.
Popular choices of kernel include the Gaussian (or radial basis func-

tion, RBF) kernel: k(x, y) = − exp(‖x − y‖2/s2), where s > 0 is a
tunable parameter, and the polynomial kernel: k(x, y) = (xTy)D, where
D determines the degree of the polynomial. Figure 2.7 shows an SVDD
trained in the original feature space, as well as one trained in the feature
space induced by a Gaussian kernel.

The above variant of the SVDD can be called the hard-margin SVDD
since it fully encloses all of the training examples. In contrast, a soft-
margin SVDD is trained with slack variables added to each constraint in
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the primal MEB formulation. This makes the method more robust when
new training examples are added or if the training set contains outliers,
as these can be left outside of the MEB. An additional penalty parameter
controls the trade-off between the volume of the data description and the
errors. Another variation supports negative examples in the training set,
which should be left out of the data description.

Support Vector Machines

The support vector machine (SVM) [37] is among the most widely used
methods for classification. In the case of the standard SVM, each train-
ing example is labeled as belonging to one of two classes, and the training
step amounts to finding a hyperplane that separates the feature vectors
of one class from those of the other class with maximum margin. Any
new observations are then assigned a class label based on which side of
this hyperplane they fall.

As with the SVDD, a soft-margin version of the SVM, which toler-
ates training vectors ending up on the wrong side of the hyperplane, can
be constructed by adding slack variables and a penalty parameter to the
hyperplane fitting problem. This makes the SVM more robust to the
training set being updated with new examples. It also enables training
the SVM on sets that are not linearly separable, i.e., for which no sep-
arating hyperplane exists. In applications where this is not sufficient,
the kernel trick can be employed to implicitly transform the training
examples to a higher-dimensional feature space in which a separating
hyperplane can be found.

It was shown by Tsang et al. [132] that for certain choices of ker-
nel, the optimization problem of finding the separating hyperplane is
equivalent to the MEB problem in the kernel-induced feature space.
Specifically, this holds for any kernel function with the property that
k(x, x) is a constant for all x. This includes, e.g., the Gaussian kernel
mentioned above. It had already been shown by Schölkopf et al. [106]
that with such kernels, the SVDD fitting problem above is equivalent to
that of finding a hyperplane that separates the training examples from
the origin with maximum margin. A model based on such a hyperplane
is commonly referred to as a one-class SVM. Tsang et al. exploit the
insight that also the two-class SVM training problem can be expressed
as a MEB problem, and obtain improved training times by using the
(1 + ε)-approximation MEB algorithm by Bădoiu and Clarkson [11] in

2.4 Applications 37

the primal MEB formulation. This makes the method more robust when
new training examples are added or if the training set contains outliers,
as these can be left outside of the MEB. An additional penalty parameter
controls the trade-off between the volume of the data description and the
errors. Another variation supports negative examples in the training set,
which should be left out of the data description.

Support Vector Machines

The support vector machine (SVM) [37] is among the most widely used
methods for classification. In the case of the standard SVM, each train-
ing example is labeled as belonging to one of two classes, and the training
step amounts to finding a hyperplane that separates the feature vectors
of one class from those of the other class with maximum margin. Any
new observations are then assigned a class label based on which side of
this hyperplane they fall.

As with the SVDD, a soft-margin version of the SVM, which toler-
ates training vectors ending up on the wrong side of the hyperplane, can
be constructed by adding slack variables and a penalty parameter to the
hyperplane fitting problem. This makes the SVM more robust to the
training set being updated with new examples. It also enables training
the SVM on sets that are not linearly separable, i.e., for which no sep-
arating hyperplane exists. In applications where this is not sufficient,
the kernel trick can be employed to implicitly transform the training
examples to a higher-dimensional feature space in which a separating
hyperplane can be found.

It was shown by Tsang et al. [132] that for certain choices of ker-
nel, the optimization problem of finding the separating hyperplane is
equivalent to the MEB problem in the kernel-induced feature space.
Specifically, this holds for any kernel function with the property that
k(x, x) is a constant for all x. This includes, e.g., the Gaussian kernel
mentioned above. It had already been shown by Schölkopf et al. [106]
that with such kernels, the SVDD fitting problem above is equivalent to
that of finding a hyperplane that separates the training examples from
the origin with maximum margin. A model based on such a hyperplane
is commonly referred to as a one-class SVM. Tsang et al. exploit the
insight that also the two-class SVM training problem can be expressed
as a MEB problem, and obtain improved training times by using the
(1 + ε)-approximation MEB algorithm by Bădoiu and Clarkson [11] in
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place of standard training methods. The approach has also been further
generalized to enable the use of other popular kernels that do not satisfy
the property above [133].

2.5 Related Problems

There are a number of ways in which generalized variants of the MEB
problem can be obtained. Although these problems are not addressed
directly in the papers in this thesis, we survey some of them here for
additional context.

In the weighted MEB problem, introduced by Francis [52], each of the
n points pi has a weight wi > 0 attached to it, and the center c is sought
that minimizes the maximum weighted distance wi‖pi− c‖, i = 1, . . . , n.
In facility location planning, such weights can be used to model that
certain sites are more important, or more difficult to reach, than oth-
ers. Hearn and Vijay [62] give several algorithms for the weighted prob-
lem in the plane, including generalizations of the Peirce–Chrystal and
Elzinga–Hearn procedures discussed in Section 2.3. Linear-time algo-
rithms (in fixed dimension) based on the multidimensional search tech-
nique by Megiddo are given by Dyer [44] and Megiddo [90]. Recent
approaches can be found in, e.g., [78, 41, 40].

Another generalization is to use other distance measures than the
Euclidean distance between the center and the points. For example, the
metric induced by the 1-norm ‖x‖1 :=

∑d
i=1 |xi|, called the rectilinear

or Manhattan distance, is more appropriate in facility location scenarios
where the sites can only be reached via roads arranged in a grid [45].
Intuitively, a circle defined using this metric has the shape of a “dia-
mond”, a square rotated by 45 degrees. Nielsen and Nock [95] discuss
a generalization of the MEB problem that uses a class of distance mea-
sures known as Bregman divergences, and adapt the simple algorithm
by Bădoiu and Clarkson [10] to find a (1 + ε)-approximation.

A fair amount of attention has also been devoted in the literature to
the problem of finding the MEB of a finite set of balls, as opposed to
points. Given a set of balls with centers ci and radii ri ≥ 0, i = 1, . . . , n,
the task is thus to minimize the maximum of ‖ci − c‖ + ri. When in-
terpreted as a facility location problem, each radius ri represents as an
additional, constant distance incurred at each site [45]. Another appli-
cation is the construction of sphere hierarchies, where the sphere stored
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in each internal node is to be fitted to the spheres of its descendant
nodes [99, 65, 104, 67, 47]. It was shown by Megiddo [90] that the O(n)
bound holds also for this variant of the problem. Analogously to the
point case, the MEB of a given set of balls is defined by at most d+1 of
the balls that are internally tangent to the boundary of the MEB. De-
spite this, however, the combinatorial methods discussed in Section 2.3.1,
which compute the exact MEB by finding the support points, cannot be
adapted in a trivial way to this problem [49]. The (1+ ε)-approximation
algorithms of Section 2.3.2 that are based on Algorithm 2.1, on the other
hand, are easily modified for the case of ball sets if each ball is inter-
preted as an infinite set of points: Simply altering Line 3 of Algorithm 2.1
to instead compute j ← argmaxni=1 ‖ci − c‖ + ri, and substituting the
point cj +

rj
‖cj−c‖ (cj − c) for pj , yields a (1+ ε)-approximation algorithm

with unchanged asymptotic time complexity. Note that the core-set con-
structed by such a modified algorithm will still contain only points, and
will have the same bound on its cardinality as before.

In another example of an effort toward computing the MEB for more
general input primitives, Muthuganapathy et al. [92] adapt the random-
ized algorithm by Welzl [139] to compute the MEB of a set of free-form
hypersurfaces in expected linear time.
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Chapter 3

Minimum-Volume

Enclosing Ellipsoids

3.1 Introduction

An ellipse can be specified in a number of ways. For example, when
defined using two focal points, it is the curve of points at which the sum
of the distances to the focal points equals a specified constant. This is
depicted in Figure 3.1a. The sum of the distances to the focal points is
then smaller for points strictly inside of the ellipse, and larger for points
outside of it. Another way of specifying an ellipse, which also generalizes
beyond the planar case in a straightforward manner, is as a circle that
has been stretched and/or squeezed along two mutually perpendicular
directions. This is illustrated in Figure 3.1b.

Analogously, an ellipsoid in d dimensions can be defined as a ball that
has been scaled along d mutually perpendicular directions. (In other
words, an ellipsoid is viewed in this thesis as being the whole subset
of Rd on and inside of its boundary; hence, the term ball is used here
instead of the term (hyper-)sphere. See remarks in Section 2.1.) If the
ball is also allowed to be moved, then the choice of ball can, without
loss of generality, be restricted to the unit ball centered at the origin.
More formally, an ellipsoid is then given by the affine transformation
Ax + c being applied to the points x ∈ R

d such that ‖x‖ ≤ 1, where
c ∈ R

d gives the center of the ellipsoid and the columns of A ∈ R
d×d
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F1

F2

(a) (b)

Figure 3.1. Two ways to specify an ellipse. (a) The ellipse is defined
using two focal points F1 and F2 as the curve where at each point, the
sum of the distances to F1 and F2 equals a constant. This property is
illustrated for three points on the ellipse. Also illustrated is that the
same constant gives the longest diameter of the ellipse, called the major
axis. (b) The ellipse is defined as a circle that has been scaled along two
perpendicular axes.

are orthogonal vectors determining its orientation and extents. This is
illustrated in Figure 3.2. Our focus in this thesis is on full-dimensional
ellipsoids, therefore it will be assumed henceforth that A has full rank,
i.e., that its columns form an orthogonal basis for Rd. The line segments
{(1 − t)c + taj : 0 ≤ t ≤ 1}, j = 1, . . . , d, where aj denotes the j-th
column vector of A, are called semi-axes of the ellipsoid.

The same ellipsoid can be described as

{x ∈ R
d : ‖A−1(x− c)‖ ≤ 1},

i.e., as the set of points that, subject to the inverse affine transformation
above, end up inside the unit ball centered at the origin. By squaring
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perpendicular axes.

are orthogonal vectors determining its orientation and extents. This is
illustrated in Figure 3.2. Our focus in this thesis is on full-dimensional
ellipsoids, therefore it will be assumed henceforth that A has full rank,
i.e., that its columns form an orthogonal basis for Rd. The line segments
{(1 − t)c + taj : 0 ≤ t ≤ 1}, j = 1, . . . , d, where aj denotes the j-th
column vector of A, are called semi-axes of the ellipsoid.

The same ellipsoid can be described as

{x ∈ R
d : ‖A−1(x− c)‖ ≤ 1},

i.e., as the set of points that, subject to the inverse affine transformation
above, end up inside the unit ball centered at the origin. By squaring
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Figure 3.2. Any ellipsoid can be described as the unit ball subject to an
affine transformation. The coordinate axes are labeled x1 through x3.
The vectors a1 through a3 are the columns of A.

both sides of the inequality, it can be written as

1 ≥ ‖A−1(x− c)‖2
= (A−1(x− c))T(A−1(x− c))

= (x− c)T(A−1)TA−1(x− c).

Thus, the shape of the ellipsoid can be equivalently specified using the
symmetric matrix Q := (A−1)TA−1, which must be positive-definite
since A has full rank. Conversely, any symmetric positive-definite ma-
trix Q′ permits an eigendecomposition Q′ = V DV T, where V is an
orthogonal matrix whose columns are eigenvectors of Q′, and D is a
diagonal matrix whose entries are the corresponding eigenvalues, which
must all be positive [134]. Thus, any such matrix describes the shape of
an ellipsoid with A = V D−1/2, where V gives the rotation of the ellipsoid
and the j-th diagonal element of D−1/2 gives the length of the j-th semi-
axis. Interestingly, this further implies that the earlier requirement that
A has orthogonal columns is not necessary in principle, since a matrix
satisfying this requirement can always be obtained via the corresponding
matrix Q. Moreover, applying any affine transformation to a full-dimen-
sional ellipsoid always gives another ellipsoid: Say that such an ellipsoid
is defined as A1x+ c1 for ‖x‖ ≤ 1; the transformation A2(A1x+ c1)+ c2
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then gives an ellipsoid with matrix A = A2A1 and center c = A2c1 + c2.

In what follows, we will denote an ellipsoid with center c ∈ R
d and

symmetric positive-definite shape matrix Q ∈ R
d×d by

EQ,c := {x ∈ R
d : (x− c)TQ(x− c) ≤ 1}. (3.1)

The matrix Q can be used to define the ellipsoidal norm

‖x‖Q :=
√

xTQx. (3.2)

Thus, the ellipsoid defined in (3.1) can be interpreted as the set of points
within distance 1, measured in the ellipsoidal norm, from its center,
with the points at distance exactly 1 defining its boundary. As before,
we denote the given points by P := {p1, . . . , pn} ⊂ R

d. The ellipsoid
EQ,c is an enclosing ellipsoid of P if EQ,c ⊃ P, which is equivalent to
(pi − c)TQ(pi − c) ≤ 1 being satisfied for i = 1, . . . , n.

The volume of EQ,c is given by

vol EQ,c = ζ detQ−1/2, (3.3)

where ζ is the volume of a d-dimensional unit ball1. The MVEE of P,
from now on denoted by MVEE(P), is thus the enclosing ellipsoid EQ,c of
P that minimizes (3.3). For the MVEE to be full-dimensional, the points
P must have affine hull Rd; otherwise, they inhabit a lower-dimensional
hyperplane, which means the MVEE can be made infinitely thin. As
is the case with the MEB, the MVEE is unique and determined by the
points that end up on its boundary [69]. Due to the additional degrees
of freedom in describing an ellipsoid, however, the support set contains
at least d+ 1 and at most d(d+ 3)/2 such points.

John [69] further showed that

d−1 MVEE(P) ⊂ conv(P) ⊂ MVEE(P), (3.4)

where conv(P) denotes the convex hull of P and d−1 MVEE(P) denotes
MVEE(P) scaled about its center by d−1. The MVEE is thus said to
provide a d-rounding of conv(P). If P is symmetric about the origin,
i.e., if P = −P, then the scaling factor can be improved to d−1/2.

1Note that det(Q−1/2) = (detQ)−1/2, where Q−1/2 denotes a matrix such that
Q−1/2Q−1/2 = Q−1. Thus, parentheses can be left out without ambiguity.
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3.2 Problem Formulations

Dividing out the constant factor ζ from the volume formula (3.3) and
squaring the result allows the problem of computing MVEE(P) to be
formulated as

(P′
E) minQ,c detQ−1 (3.5)

s.t. (pi − c)TQ(pi − c) ≤ 1, i = 1, . . . , n, (3.6)

Q is positive-definite. (3.7)

If P is symmetric about the origin, then MVEE(P) must have its center
at the origin. Substituting c = 0 in problem (P′

E) simplifies it to the
problem of computing the minimum-volume centered ellipsoid enclosing
P. Although the symmetry property does not hold for general P, it can
be made to hold by replacing P with the “lifted” point set

P̂ := {±p̂i : i = 1, . . . , n} ⊂ R
d+1, p̂i :=

[
pi
1

]
. (3.8)

Given the centered solution MVEE(P̂) in d + 1 dimensions, the non-
centered solution MVEE(P) in d dimensions is then given by the inter-

section of MVEE(P̂) and the hyperplane

H :=
{[

x
1

]
: x ∈ R

d
}

(3.9)

[126, 71]. The idea is shown in Figure 3.3. We will return shortly to the
details of computing this intersection, which can be done analytically.
Note that although this lifting comes with the cost of one added dimen-
sion, the mirror image −p̂i of each p̂i does not need to be represented
explicitly, as it will automatically be covered by any centered ellipsoid
covering p̂i. Thus, there are still n points to consider.

A further modification of problem (P′
E) is to apply the natural log-

arithm to the determinant, which gives a new objective function that
is strictly convex on the cone of positive-definite matrices. In fact, for
convenience we follow the example of Todd [129] and define the operator

logdetM :=

{
log detM if M is positive-definite,

−∞ otherwise.
(3.10)
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x2

x1

(a)

x3 = 1

x2

x1

x3

x3 = −1

(b)

Figure 3.3. (a) A point set in R
2 together with its minimum enclosing

ellipse. (b) The corresponding lifted point set in R
3 together with its

centered MVEE. The points shown in a lighter shade do not need to be
represented explicitly. The ellipse that is the intersection of the MVEE
with the plane x3 = 1 is a lifted version of that in (a).
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The resulting problem, over symmetric matrices M ∈ R
(d+1)×(d+1), be-

comes

(PE) minM − logdetM (3.11)

s.t. p̂Ti Mp̂i ≤ 1, i = 1, . . . , n. (3.12)

Using Lagrange multipliers u := (u1, . . . , un)
T, define

L(M,u) := − logdetM +

n∑
i=1

ui(p̂
T
i Mp̂i − 1). (3.13)

Clearly, L(M,u) ≤ − logdetM is satisfied for nonnegative u and any
feasible M . L(M,u) is strictly convex and differentiable everywhere it
is finite, and therefore minimized at a stationary point M = M , i.e.,

∇ML(M,u) = −M
−1

+

n∑
i=1

uip̂ip̂
T
i = 0,

where ∇ logdetM = (M
−1

)T was used. Hence, M = V (u)−1, where

V (u) :=

n∑
i=1

uip̂ip̂
T
i . (3.14)

In summary, for any nonnegative u such that V (u) is positive-definite,

− logdetM∗ ≥ minM L(M,u) (3.15)

= logdetV (u) +
n∑

i=1

uip̂
T
i V (u)−1p̂i −

n∑
i=1

ui (3.16)

= logdetV (u) + trace
(
V (u)−1V (u)

)− n∑
i=1

ui (3.17)

= logdetV (u) + d+ 1−
n∑

i=1

ui, (3.18)

where (3.17) uses (3.14) and basic properties of the trace operator.
Strong duality, which must hold since (PE) satisfies Slater’s constraint
qualification [21], states that the maximum of (3.18) over u coincides
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with the minimum of (PE). If we denote by u∗ the maximizer of (3.18),
the complete KKT conditions can thus be stated as

p̂Ti M
∗p̂i ≤ 1, i = 1, . . . , n, (3.19)

u∗
i ≥ 0, i = 1, . . . , n, (3.20)

M∗ = V (u∗)−1, (3.21)

u∗
i (p̂

T
i M

∗p̂i − 1) = 0, i = 1, . . . , n. (3.22)

Substituting (3.21) in (3.22) and summing up for i = 1, . . . , n gives

n∑
i=1

u∗
i =

n∑
i=1

u∗
i p̂

T
i V (u∗)−1p̂i

= trace
(
V (u∗)−1V (u∗)

)
= d+ 1.

Thus, when formulating the Lagrangian dual of (PE), we can further
constrain u to satisfy

∑n
i=1 ui = d + 1, which causes the last three

terms in (3.18) to cancel out. However, by instead constraining u to
sum to 1, we get an equivalent problem known as the D-optimal design
problem [126]:

(DE) maxu logdet
( n∑

i=1

uip̂ip̂
T
i

)
(3.23)

s.t.

n∑
i=1

ui = 1, (3.24)

ui ≥ 0, i = 1, . . . , n. (3.25)

(See Section 3.4.1.) It is clear that if u is a feasible solution of (DE), then
(d + 1)u is a feasible solution of the true dual of (PE), with the corre-
sponding objective function value given simply by adding (d+1) log(d+1)
to that of (DE).

Thus, a trial ellipsoid EM,0 defined from a feasible solution u of (DE)
as

M =
1

d+ 1
V (u)−1, (3.26)

coincides with MVEE(P̂) for u = u∗. (Note that the factor 1/(d + 1)
translates to the added term (d+ 1) log(d+ 1) when substituting (3.26)
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in (3.11).) For any other feasible u, weak duality gives that EM,0 is

undersized, i.e., that it has points of P̂ outside of it.

3.2.1 Recovering a Non-Centered Solution

We now address in more detail how a trial solution EM,0 defined via (3.26)

for P̂ corresponds to a trial solution EQ,c for P. Firstly, we note that if
c ∈ R

d and Q ∈ R
d×d satisfy

c =

n∑
i=1

uipi, Q =
1

d

( n∑
i=1

uipip
T
i − ccT

)−1

, (3.27)

then it can be shown using (3.8) and (3.14) that V (u) satisfies

V (u) =

[∑n
i=1 uipip

T
i c

cT 1

]
, V (u)−1 = d

[
Q −Qc

−(Qc)T cTQc+ d−1

]
.

(3.28)

To verify that c and Q then gives the intersection of EM,0 with the
hyperplane H in (3.9), first note that the intersection should be exactly
the points x ∈ R

d such that

x̂TMx̂ ≤ 1,

where x̂ := (xT, 1)T. Now, by (3.26) this is equivalent to

x̂TV (u)−1x̂ ≤ d+ 1,

which can be written using (3.28) as

(x− c)TQ(x− c) ≤ 1.

It is also clear that vol EQ,c can be expressed as a monotone function
of vol EM,0, since

detQ−1 = dd det
( n∑

i=1

uipip
T
i − ccT

)
= dd detV (u)

=
dd

(d+ 1)d+1
detM−1,
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where the first and last steps use (3.27) and (3.26), respectively, and
the second step applies Schur’s determinant identity to V (u) in (3.28).
This establishes that EQ∗,c∗ = MVEE(P), where c∗ and Q∗ are defined
using (3.27) with u = u∗: Otherwise, the matrix Q′ of MVEE(P) would

satisfy det(Q′)−1 < det(Q∗)−1, and an enclosing ellipsoid of P̂ with a

smaller volume than MVEE(P̂) could be defined by substituting Q′ and
the center c′ of MVEE(P) in (3.28) and applying (3.26)—a contradiction.

Finally, we point out the following correspondence between the ellip-
soidal distance of a point x from the center of EQ,c, and the distance of
the point x̂ from the center of EM,0:

(x− c)TQ(x− c) =
1

d

(
(d+ 1)x̂TMx̂− 1

)
, (3.29)

x̂TMx̂ =
1

d+ 1

(
d(x− c)TQ(x− c) + 1

)
. (3.30)

Notice from this relation, which can verified using (3.28), that (x −
c)TQ(x − c) can be viewed as a monotonic function of x̂TMx̂ and vice
versa. In other words, the sets {p1, . . . , pn} and {p̂1, . . . , p̂n} are order-
isomorphic w.r.t. the orders induced by the distances to the respective
ellipsoid centers.

3.3 Methods of Solution

Several of the earliest algorithms for the MVEE problem were developed
in the context of the D-optimal design problem. The equivalence with
the centered MVEE problem was shown by Silvey [114] and Sibson [112],
and the transformation of the non-centered problem to the centered one
using the aforementioned lifting trick is due to Titterington [126].

Like the algorithms for the MEB problem of Section 2.3, many of
the algorithms to be discussed here can be categorized as either primal
or dual, depending on whether they generate intermediate solutions to
problem (PE) or (DE), respectively. In fact, several of the methods can
be described, at least in broad strokes, as direct adaptations of those
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and Titterington sketch an algorithm that uses a similar strategy as the
dual algorithm for the MEB problem by Gärtner [56] discussed in Sec-

tion 2.3.1: Select an initial candidate support set S0 ⊆ P̂ containing at
least d+1 affinely independent points and compute its MVEE (D-optimal

design) E0. If E0 ⊃ P̂, then E0 = MVEE(P̂), so exit. Otherwise select
the point p̂i = p̂j with the largest ellipsoidal distance p̂Ti M

0p̂i, where M
0

is the shape matrix of E0. Then compute the MVEE E1 of S0 ∪ {p̂j},
and let S1 ⊆ S0 ∪ {p̂j} be the support points of this ellipsoid. Then
repeat. Analogously to the MEB algorithm, in each iteration k where
the optimum has not been attained, the farthest point p̂j must satisfy
p̂j �∈ Ek and therefore p̂j ∈ Sk+1. Furthermore, vol Ek+1 > vol Ek, which
implies that termination is guaranteed in a finite number of iterations.
The question of how to compute the MVEE of each candidate support
set is not addressed directly in [115]. Silverman and Titterington [113]
present a specialization of this algorithm for the planar case, and pro-
vide detailed procedures to find the minimum ellipse for each candidate
support set, which must contain either 3, 4, or 5 points.

On the other hand, Post [97] gives an algorithm that can be viewed
as an analogue of the primal MEB algorithm by Fischer et al. [50]. Each
iterate consists of a candidate support set Sk ⊆ P containing between
d+1 and d(d+3)/2 points, as well as the smallest ellipsoid Ek enclosing
all of P while having the points of Sk on its boundary. Unless Ek =
MVEE(P), one point in Sk that cannot be on the boundary of the
MVEE is eliminated from further consideration. Then the ellipsoid is
shrunk (and moved) while still enclosing all of P and maintaining the rest
of Sk on its boundary. Either this shrinking process ends by the ellipsoid
coinciding with MVEE(P), or it is interrupted by a new point entering
the shrinking boundary. In the latter case, the new point replaces the
eliminated point, which gives a new candidate support set Sk+1, and the
shrunk ellipsoid becomes the next candidate ellipsoid Ek+1. Since each
step of this procedure takes O(n) time (for fixed d), and one point is
eliminated from further consideration in each step, this algorithm has a
O(n2) time complexity. The dependence on the dimension, however, is
exponential.

Like the MEB problem, the MVEE problem belongs to the abstract
class of LP-type problems, and can thus be solved in expected linear time
(in n) using the same randomized algorithms [87, 34], or in deterministic
linear time using derandomizations thereof [31, 28].

Welzl’s adaptation to the MVEE problem [139] of the randomized LP
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algorithm by Seidel [108] computes the MVEE in expected O(δδ!n) time,
where δ := d(d + 3)/2. Formulae necessary for realizing this algorithm
in two dimensions are given by Gärtner and Schönherr [57]. Determin-
istic linear-time algorithms can also be designed in a different abstract
framework due to Dyer [42].

3.3.2 Approximation Algorithms

In applications dealing with higher dimensions, it is usually necessary to
settle for approximate solutions. Given a parameter ε > 0, an ellipsoid
E is called a (1+ ε)-approximation of MVEE(P) if it satisfies E ⊃ P and
vol E ≤ (1 + ε) volMVEE(P). Let u be a dual feasible solution and let
EM,0 be a corresponding ellipsoid defined via (3.26). Then the following
(1+ η)-approximate version of the KKT optimality condition (3.19) can
be defined:

p̂Ti Mp̂i ≤ 1 + η, i = 1, . . . , n. (3.31)

Clearly, if EM,0 satisfies this condition then
√
1 + ηEM,0 ⊃ P̂; that is

to say, EM,0 can then be scaled about its center by
√
1 + η to yield a

primal feasible ellipsoid. (The resulting ellipsoid is at the same time a√
(1 + η)(d+ 1)-rounding of conv(P̂) [71].) Since such a scaling corre-

sponds to a multiplication of M by (1 + η)−1, it can be seen from the
volume formula (3.3) that the scaled ellipsoid gets a volume (1+η)(d+1)/2

times that of EM,0. Thus, if η = η1 is used, where

η1 := (1 + ε)2/(d+1) − 1, (3.32)

then the enlarged ellipsoid is a (1 + ε)-approximation of MVEE(P̂).
Now let EQ,c be the intersection of EM,0 with the hyperplane H

of (3.9). It can be seen from (3.26), (3.28), and (3.27) that a scal-
ing of EM,0 by

√
1 + η corresponds to a scaling of EQ,c by the fac-

tor
√
((d+ 1)(1 + η)− 1)/d about c, which multiplies its volume by

(((d+ 1)(1 + η)− 1)/d)d/2. Thus, if instead η = η2 is used, where

η2 := (d(1 + ε)2/d + 1)/(d+ 1)− 1, (3.33)

then the intersection of
√
1 + ηEM,0 with H provides a (1+ε)-approxima-

tion of MVEE(P). However, since η1 < η2 for ε > 0 (which can be seen,
e.g., by considering that equality holds for ε = 0, and that ∂η1

∂ε < ∂η2

∂ε
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holds for ε ≥ 0), this is true also with η = η1. In other words, if a
candidate solution EM,0 satisfies (3.31) with η = η1, then this implies
that a (1 + ε)-approximation of MVEE(P) has been found.

Barnes [12] develops a coordinate ascent algorithm for the dual of
problem (P′

E) with the center fixed, and a gradient technique to find the
optimal center. Titterington [127] gives a simple numerical method for
the D-optimal design problem based on the recursion

uk+1
i = p̂Ti M

kp̂iu
k
i , i = 1, . . . , n, (3.34)

(cf. (2.25) on page 28 of this thesis) and proves monotonicity and con-
vergence. This type of algorithm is commonly called multiplicative, since
it scales all the weights ui in each iteration. Other multiplicative algo-
rithms are studied in, e.g., [127, 128, 116, 86, 60, 131].

In addition, a number of interior-point methods have been proposed.
The path-following Newton method of Nesterov and Nemirovskii [93],
when combined with a preprocessing step proposed by Khachiyan [71],
computes a (1+ ε)-approximation of the MVEE in O(n3.5 log(n/ log(1+
ε))) time. Another algorithm in this category is due to Sun and Fre-
und [118]. Vandenberghe et al. [135] give an interior-point algorithm for
the more general problem of maximizing the determinant of a matrix
subject to linear matrix inequalities. The MVEE problem can also be
transformed to the problem of finding the maximal ellipsoid inscribed
in a given d-dimensional polytope defined by n linear inequalities [72].
Interior-point methods for this problem are studied in, e.g., [72, 93, 147,
148].

Since the computational burden of these approaches is prohibitive for
large n, an active set strategy is developed as a complement in [118]. The
active set is a sample of n′ � n points from P that appear likely to be
support points, on which the original algorithm is invoked as a subroutine
to generate a trial MVEE. As long as the MVEE of the active set does
not enclose the whole point set P, the active set is repeatedly refined
by adding and/or removing points. For example, in the algorithm of
Sun and Freund, each Newton step requires forming and factorizing an
n × n matrix. The active set strategy reduces this to the forming and
factorizing of an n′×n′ matrix. This method can also be referred to as a
subspace ascent method [59], since the dual weights of the active points
define a subspace in which the solution is improved while the remaining
weights are kept fixed.
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Algorithm 3.1. Generic (1 + ε) MVEE algorithm.

Input: P := {p1, . . . , pn} ⊂ R
d s.t. P = −P and aff(P) = R

d, ε > 0
Output: EQ,c s.t. EQ,c ⊃ P and vol EQ,c ≤ (1 + ε) volMVEE(P)
1: η ← (d(1 + ε)2/d + 1)/(d+ 1)− 1
2: Initialize M and K
3: loop

4: j ← argmaxni=1 p̂
T
i Mp̂i

5: κ ← p̂Tj Mp̂j
6: if κ ≤ 1 + η then

7: return
√
κEM,0 ∩H

8: end if

9: K ← K ∪ {pj}
10: Update M using K
11: end loop

Like the dual MEB problem (DB), problem (DE) seeks to maximize
a concave and continuously differentiable function over the unit simplex.
Not surprisingly, therefore, a series of algorithms based on the Frank–
Wolfe method [53], closely resembling those discussed in Section 2.3.2,
have been developed, initially for the D-optimal design problem, and
later studied in the context of the MVEE problem. In Algorithm 3.1, a
strategy analogous to that of Algorithm 2.1 is outlined for computing a
(1+ε)-approximation of the MVEE as well as an ε-core-setK. In this con-
text, a subsetK ⊆ P is called an ε-core-set if there exists a scaling factor s
such that sMVEE(K) ⊃ P and vol sMVEE(K) ≤ (1+ε)MVEE(P). Al-
though it is not visible in the pseudocode, the algorithms in this category
generally maintain a dual feasible solution u, which defines the current
ellipsoid EM,0 via (3.26) and the core-set as K = {pi ∈ P : ui > 0}.

The partial derivative of the objective function (3.23) with respect
to u�, � = 1, . . . , n, is

∂

∂u�
logdetV (u) = trace

(
V (u)−1p̂�p̂

T
�

)
= p̂T� V (u)−1p̂�,

which is proportional to p̂T� Mp̂�. Thus, similarly to before, the index j
computed on Line 4 names the largest component of the gradient of the
objective function. Furthermore, ej is the corner of the unit simplex that
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maximizes a linearization of problem (DE) at u, where ej ∈ R
n has a 1

in the j-th position and 0 everywhere else. The point p̂j is the currently
farthest point from the origin, measured in the ellipsoidal norm ‖ · ‖M ,
and pj is the farthest point from c in the norm ‖ · ‖Q (see Section 3.2.1).
If Line 4 is implemented in a näıve way, where the full quadratic form is
evaluated for i = 1, . . . , n, computing j takes Θ(d2n) time per iteration.
However, in several of the algorithms considered here, the update to u
in each iteration translates to a rank-1 or rank-2 update of M . Taking
this into account allows each distance to be computed incrementally in
Θ(d) time from the distance of the previous iteration, for a total cost of
Θ(dn) time per iteration [130, 36].

The termination test on Line 6 makes sure that the (1 + η)-approx-
imate optimality condition (3.31) is satisfied. Since Algorithm 3.1 uses
the value η = η2 of (3.33), the ellipsoid returned on Line 7 is a (1 + ε)-
approximation of MVEE(P). (As mentioned, η = η1 also gives a correct
result; however, using η = η2 might be preferable, as it gives a slightly
less conservative termination criterion.) The number of iterations re-
quired to fulfill this depends on how the initial solution is computed on
Line 2, as well as how it is updated in each iteration on Line 10.

Wynn [142] gives an algorithm for the D-optimal design problem that
shifts the current iterate u toward the vertex ej of the unit simplex by
a distance determined by the current iteration number. For the initial
solution u0, � weights are selected and set to the value 1/�. Then the
solution is shifted by 1/(�+k), where k is the current iteration count. A
similar algorithm independently developed by Fedorov [48] uses a step
length that maximizes the growth of the objective function. This opti-
mal step length is shown to be given by a closed formula. Atwood [9]
presents a modified version of the algorithm by Fedorov that uses Wolfe’s
away steps [141]. In an analogous fashion as in Yıldırım’s second MEB
algorithm [144] discussed in Section 2.3.2, a choice is made in each it-
eration between adjusting u toward ej or away from ej− , where i = j−
minimizes p̂Ti Mp̂i subject to ui > 0.

Khachiyan’s algorithm [71] for the MVEE problem is, apart from the
initialization and termination criterion, equivalent to the algorithm of
Fedorov [48]. Khachiyan’s analysis shows that if an initial solution u0

is used where u0
i = 1/n, i = 1, . . . , n, then the algorithm finishes in

O(d(η−1 + log d + log log n)) iterations. Todd’s analysis [129] improves
this bound to O(d(η−1 + log log n)).

Kumar and Yıldırım [75] employ a volume approximation algorithm
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by Betke and Henk [16] to initially select max(2d, n) weights that are
all set to 1/max(2d, n) in the starting solution u0. Selecting the weights
in this way guarantees a certain initial duality gap, and this reduces
the number of iterations to O(d(η−1 + log log d)) (using Todd’s analy-
sis [129]). The algorithm also computes a core-set K = {pi ∈ P : ui > 0},
whose cardinality has the same bound as the number of iterations.

Todd and Yıldırım [130] further augment the algorithm with At-
wood’s away steps [9]. Since away steps reduce weights in the solution
u, sometimes to zero, this has the potential to reduce the size of the
core-set. Away steps also enable the algorithm to employ, in addition
to the (1 + η)-approximate optimality condition (3.31), the following
(1− η)-approximation of the complementary slackness condition (3.22):

ui > 0 ⇒ p̂Ti Mp̂i ≥ 1− η, i = 1, . . . , n. (3.35)

The number of iterations as well as the size of the core-set remains
bounded by O(d(η−1 + log log d)). Ahipaşaoğlu et al. [2] prove local
linear convergence when incorporating away steps.

Whereas all the methods above generate the next iterate by increas-
ing one weight (either uj or uj−) and then scaling the remaining weights
to maintain dual feasibility, the vertex exchange method by Böhning [18]
increases uj and decreases uj− simultaneously by equal amounts, which
makes any rescaling unnecessary. Such an update moves u in parallel
with the edge connecting the corners ej and ej− of the unit simplex, and
gives rise to a rank-2 modification of the matrix M . Cong et al. [36]
combine the Kumar–Yıldırım initialization scheme with Böhning’s up-
dates, and prove the same asymptotic time complexity and size of the
core-set.

The cocktail algorithm by Yu [145] computes each iterate through
a combination of the update schemes of Fedorov and Böhning with the
multiplicative algorithms. The recent randomized exchange algorithm
by Harman et al. [59] combines Böhning’s vertex exchange updates with
a subspace ascent step.

3.3.3 Acceleration Techniques

As mentioned previously, the search for the farthest point on Line 4 of
Algorithm 3.1 takes Θ(d2n) time per iteration, or Θ(dn) time if incre-
mental updates of the distances are possible. Even in the latter case, this
search tends to dominate the execution time of the algorithms discussed
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here. Therefore, methods to lower the cost of the searches are of much
benefit.

Harman and Pronzato [60] derive an inequality that must be satisfied
by the support points of a D-optimal design or MVEE. According to the
same principle as that used by Ahipaşaoğlu and Yıldırım in the context
of the MEB problem [4] (see Section 2.3.3), this enables the elimination
of inessential points from the input to speed up subsequent searches
for the farthest point. In the notation of Algorithm 3.1, any point pi
satisfying

p̂Ti Mp̂i < 1 +
δ

2
−

√
δ
(
4 + δ − 4/(d+ 1)

)
2

, (3.36)

where δ := (d+ 1)(κ− 1), cannot be a support point of MVEE(P) and
can thus be removed from P.

Galkovskyi et al. [54] introduce an elimination heuristic applicable to
certain algorithms for the MVEE problem. The key idea is to compute
the convex hull of each candidate support set, and eliminate any input
points that fall in its interior, as these points clearly cannot be on the
boundary of the MVEE. Large performance gains are reported for two-
dimensional problem examples. However, the approach is unlikely to be
practical for more than three dimensions, due to the prohibitive cost of
computing the convex hull.

3.4 Applications

As mentioned in Chapter 1, enclosing ellipsoids find use in many of the
same practical applications as do enclosing balls. Due to their more
flexible description, ellipsoids can provide tighter approximations of the
underlying data, albeit at increased computational costs. This is ex-
pressed in a formal way by the property (3.4), which states that the
MVEE of any polytope approximates it to within a guaranteed accu-
racy. Another useful property of the MVEE in these applications is its
affine invariance, which states that MVEE(T (X )) = T (MVEE(X )) for
any set X and affine map T [21].

Using ellipsoids as bounding volumes in collision detection [101, 84,
80, 25] and ray tracing [20] can reduce the number of false positives
compared to using other geometric shapes, such as balls or axis-aligned
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boxes. Furthermore, approaches for classification and novelty detec-
tion, similar to those discussed in Section 2.4.2, have been devised that
use ellipsoids as less conservative boundary descriptions in the feature
space [103, 123, 124]. In clustering, the volume of the MVEE has proven
to be an effective criterion to rate the quality of candidate cluster allo-
cations [111]. In robust statistics, the MVEE of a sample can be used
to trim off outliers, as the outliers will end up as support points of the
MVEE [128]. The MVEE can also provide a direct tool for parameter
estimation in statistics [5].

The next subsection gives a brief overview of the relation between the
MVEE problem and the subject of optimal experimental design. We re-
mark that the exposition follows closely Section 1.3 of Todd’s monograph
on the MVEE problem [129].

3.4.1 Example: Optimal Design of Experiments

A linear regression model assumes that the response variable y depends
on the predictor variable x according to the linear relationship

y = θ1f1(x) + · · ·+ θkfk(x) + ε, (3.37)

where the θj are k unknown parameters, the fj are k known functions,
and ε is a random variable following a normal distribution with zero mean
and standard deviation σ. In an experiment aimed at estimating the pa-
rameters θj , a series of measurements are carried out with different values
of x, and then a regression estimator is applied to these measurements
to yield an estimate. The term ε in the model represents measurement
error. The design of an experiment determines which values of x, called
design points, should be used, as well as how many observations to take
at each such point. A design is called optimal if the design points are
selected in an optimal way w.r.t. some statistical criterion. The benefit
of such a design over a suboptimal one is that it achieves higher-precision
estimates with a given number of measurements.

For simplicity, we assume that the design space X from which x
is drawn is discretized as n distinct points x1, . . . , xn. Then a design
can be specified as w := (m1/M, . . . ,mn/M)T, where each mi ≥ 0 is
an integer giving the number of measurements to take at point xi, and
M :=

∑n
i=1 mi. Let ȳ := (ȳ1, . . . , ȳn)

T be a given a set of observations,
where ȳi is the mean outcome of the mi measurements taken at point
xi. Denote by X the n-by-k matrix with the ij-th element equal to
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fj(xi), and let W be the diagonal matrix having w as its diagonal. The

weighted least-squares estimate θ̂ := (θ̂1, . . . , θ̂k)
T of the vector θ :=

(θ1, . . . , θk)
T, using the values mi/M as weights, is then the minimizer

of ‖W 1/2(ȳ −Xθ)‖2, and is given by

θ̂ = (XTWX)−1XTWȳ. (3.38)

What is the quality of this estimate, and how is the quality affected
by the choice of w? Firstly, it can be seen from (3.37) that ȳ is a sample
of the random variable Xθ + (MW )−1/2�ε, where �ε is an n-dimensional
random variable with each element normally distributed with zero mean
and variance σ2 (note that the i-th element of (MW )−1/2�ε follows the
distribution of sample means when taking samples of size mi of the last
term in (3.37)). This, in turn, implies that θ̂ is a sample of the random

variable Θ̂ := θ + M−1/2(XTWX)−1XTW 1/2�ε, which has mean θ and
variance

E[(Θ̂− θ)(Θ̂− θ)T] = σ2M−1(XTWX)−1. (3.39)

Different choices of w give rise to different values of this variance,
and the goal is to achieve an optimal variance according to some cri-
terion. One such criterion is D-optimality, which seeks to minimize the
determinant of (3.39) or, equivalently, maximize logdet(XTWX). Other
choices are A-optimality, which minimizes the trace of (3.39), or E-op-
timality, which maximizes the smallest eigenvalue of XTWX. Another
criterion known as G-optimality, which minimizes the maximum value
of xT

i (X
TWX)−1xi over i = 1, . . . , n, was shown by Kiefer and Wol-

fowitz [73] to be equivalent to D-optimality.
Finding an exact design w such that each component can be written

asmi/M , wheremi is an integer, is a hard integer programming problem.
It is therefore more practical to compute an approximate design u :=
(u1, . . . , un)

T that is only required to satisfy ui ≥ 0 for i = 1, . . . , n and∑n
i=1 ui = 1. Then each ui gives roughly the optimal proportion of the

measurements to take at xi. The D-optimal design problem can then be
stated as

maxu logdet(XTUX) (3.40)

s.t.
n∑

i=1

ui = 1, (3.41)

ui ≥ 0, i = 1, . . . , n, (3.42)
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where U is a diagonal matrix with its entries given by u. Clearly, this
problem is the same as problem (DE) with each p̂i replaced by the i-th
column of XT. In other words, computing the D-optimal design for a
discrete design space {x1, . . . , xn} is equivalent to finding the centered
MVEE of the set {(f1(xi), . . . , fk(xi))

T : i = 1, . . . , n}.

3.5 Related Problems

We conclude this chapter with brief discussions of some relevant prob-
lems related to the basic variant of the MVEE problem treated so far.

Firstly, as with the MEB, it can be of interest to compute the MVEE
of collections of other types of geometric objects than points. One exam-
ple is finite sets of ellipsoids, to which the first-order algorithms discussed
in Section 3.3.2 can be adapted if the search for the farthest point in each
iteration is modified to search for the farthest point inside each of the
given ellipsoids [143, 66]. Such a modification does not change the bound
on the number of iterations, and the time complexity remains linear in
n (now denoting the number of ellipsoids). However, it does increase
the dependence on d due to the higher cost of the farthest-point search.
For another example of more general input primitives, see [6], where ef-
forts are presented toward finding the smallest enclosing ellipse of sets
of freeform planar curves using Welzl’s algorithm [139].

Another variation of the problem is that of finding the MVEE whose
axes are constrained to be aligned with the coordinate axes of the space.
Although such an axis-aligned MVEE generally provides a looser fit than
the freely oriented one, its simpler description enables cheaper opera-
tions, such as intersection tests. At the same time, it does provide a
tighter fit than, e.g., the MEB. This problem is amenable to first-order
approximation strategies similar to those discussed in Section 3.3.2, but
with the added complication that the line search in each iteration does
not have a closed-form solution [76, 68].

A problem related to the centered MVEE problem, and whose dual
is equivalent to a generalization of the D-optimal design problem, is that
of computing an ellipsoidal cylinder passing through the origin while en-
closing a given point set, with the objective of minimizing the area (or
volume) of its intersection with a fixed s-dimensional subspace [115, 126].
The problem of computing a not necessarily centered such cylinder,
which can be reduced to the centered problem using the lifting trick
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discussed earlier, finds utility in, e.g., collision detection of moving ob-
jects [3]. The corresponding problem in optimal experimental design
is called the Ds-optimal design problem, and arises in contexts where
s ≤ k of the parameters θ1, . . . , θk are of interest. Frank–Wolfe-type
algorithms are given by Ahipaşaoğlu and Todd [3, 129].
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Chapter 4

Contributions

The overarching goal of this research has been to develop efficient solu-
tion methods for the MEB and MVEE problems, as well as to generate
theoretical insights that can aid in the design of such methods. The
primary focus has been on large-scale instances of the problems, involv-
ing data sets that contain large numbers of points while the number of
dimensions is relatively low. For this reason, the research efforts have
mainly centered around first-order methods adhering to the strategies
sketched in Algorithms 2.1 and 3.1 of Sections 2.3.2 and 3.3.2, respec-
tively, since such methods generally allow for running times linear in
the number of points. Although the research has not been motivated
by a specific application, due to the ever-increasing amounts of data
used today in applications such as computer graphics, data mining, and
machine learning, contributions in this area should be of much benefit.

While the developed methods rest on rigorous theoretical analysis
of the problems, a stronger emphasis has in general been put on their
practical efficiency than on their theoretical worst-case behavior. This
means that the various techniques presented in the thesis are mostly
of a heuristic nature, in the sense that they produce palpable effects
on performance by exploiting characteristics common to many problem
instances, while lacking guarantees to do so in the absence of these char-
acteristics. In difficult cases in which they fail to be effective, such
techniques inevitably incur certain degrees of performance degradation
compared to either not using them or to using other known techniques.
For the most part, however, the heuristics developed in this thesis have
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shown to incur relatively small such performance hits. In the cases where
the asymptotic time or memory complexities are affected by the use of
a certain technique, this is clearly stated and discussed in the context of
alternative approaches.

The results of this research are presented in six academic papers
that are included in Part II of this thesis, labeled as A–F according
to the chronological order in which they were written and published.
Before each of the papers are discussed in more detail, the highlights
of the contributions are listed below, categorized as either theoretical
results, new algorithms, or acceleration techniques. Under the category
of theoretical results, the main highlight is:

• In Paper B, lower bounds on the distance from the center of a sub-
optimal trial MEB to the boundary of the true MEB are derived.
We prove that if the ball in question corresponds to a dual feasible
solution, then a less conservative bound than that by Ahipaşaoğlu
and Yıldırım [4], discussed in Section 2.3.3 of this thesis, can be
derived.

The category of new algorithms includes:

• In Paper A, an algorithm for computing a (1+ε)-approximation of
the MEB in any number of dimensions is proposed. The algorithm
is shown to be highly competitive to state-of-the-art algorithms,
both in terms of its asymptotic time complexity and its efficiency
in practice.

• In Paper D, an algorithm is developed for computing the exact
MEB of a three-dimensional point set under an external memory
model of computation. Under this model, it is assumed that the
input data set is too large to fit in main memory in its entirety and
therefore has to be fetched in parts from much slower secondary
storage during the computations.

• In Paper F, an efficient (1 + ε)-approximation algorithm for the
MVEE problem in general dimensions is proposed. The algorithm
derives its efficiency from an active set strategy, which is shown
empirically to be superior to previous such strategies found in the
literature.

Finally, under the category of acceleration techniques, the main high-
lights are:
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of theoretical results, the main highlight is:

• In Paper B, lower bounds on the distance from the center of a sub-
optimal trial MEB to the boundary of the true MEB are derived.
We prove that if the ball in question corresponds to a dual feasible
solution, then a less conservative bound than that by Ahipaşaoğlu
and Yıldırım [4], discussed in Section 2.3.3 of this thesis, can be
derived.

The category of new algorithms includes:

• In Paper A, an algorithm for computing a (1+ε)-approximation of
the MEB in any number of dimensions is proposed. The algorithm
is shown to be highly competitive to state-of-the-art algorithms,
both in terms of its asymptotic time complexity and its efficiency
in practice.

• In Paper D, an algorithm is developed for computing the exact
MEB of a three-dimensional point set under an external memory
model of computation. Under this model, it is assumed that the
input data set is too large to fit in main memory in its entirety and
therefore has to be fetched in parts from much slower secondary
storage during the computations.

• In Paper F, an efficient (1 + ε)-approximation algorithm for the
MVEE problem in general dimensions is proposed. The algorithm
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literature.

Finally, under the category of acceleration techniques, the main high-
lights are:
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• In Paper B, the elimination heuristic by Ahipaşaoğlu and Yıldı-
rım [4] (see Section 2.3.3) for the computation of MEBs is extended
to use the less conservative bounds derived in the paper. Our ex-
perimental evaluation finds that when incorporating the heuristic
into the algorithm of Paper A as well as the two algorithms by
Yıldırım [144] (see Section 2.3.2), the tighter bounds give up to 2×
speedups over the previous bounds.

• In Paper C, the distance filtering idea of Nielsen and Nock [94] to
accelerate the farthest-point queries (see Section 2.3.3) is developed
further. A modified heuristic based on the triangle inequality is
shown empirically to improve efficiency over the heuristic based on
the Cauchy–Schwarz inequality.

• In addition to the filtering heuristic, Paper C proposes a parallel
implementation of the farthest-point queries on a graphics process-
ing unit (GPU). The implementation is amenable to auto-tuning,
which is a technique to dynamically adjust the implementation
parameters for maximum performance across different GPU archi-
tectures.

• In Paper D, a filtering heuristic is developed that applies the tri-
angle inequality to blocks of data in secondary storage in order
avoid unnecessary fetches of these blocks. The heuristic is shown
to be able to reduce the number of I/O transactions close to the
optimum of only one transaction per block.

• In Paper E, the distance filtering idea is carried over to the compu-
tation of MVEEs, to improve the performance of algorithms based
on the strategy outlined in Algorithm 3.1.

4.1 Research Process

The above contributions have been developed through a process based
on literature studies as well as practical experiments. Literature studies
were initially conducted to gain broad knowledge of the research area
and to identify open questions, but have also remained a constant com-
ponent as the scope of the research has broadened and the focus has
shifted throughout the process. Implementing known methods from the

4.1 Research Process 65

• In Paper B, the elimination heuristic by Ahipaşaoğlu and Yıldı-
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literature as well as examining the source code of existing implementa-
tions have also been valuable means to facilitate deeper understanding
of the studied topics. Ideas for specific research question and hypotheses
to pursue have developed either from these activities or, frequently, as
byproducts of ongoing studies. Experiments, in turn, have been used
not only to demonstrate the strengths and weaknesses of the proposed
methods in the final published works, but throughout all stages of each
project to quickly gauge whether a particular idea or hypothesis has
merit or not. Indeed, hypotheses have frequently undergone multiple
revisions based on the outcomes of these experiments.

As the main focus has generally been on the practical efficiency of
the studied methods, a prominent part of this work has been to perform
timing measurements, using both commercial profiling tools and spe-
cially designed benchmarking programs. In general, it is a challenge to
obtain reliable measurements of execution time. This is particularly the
case for very short-running computations, since their execution times are
more sensitive to interference from other processes running concurrently
on the same system. Another potential source of problems when dealing
with such computations is low resolution of the system clock used to take
the measurements. The primary technique used throughout this work to
address these issues has been to take the mean execution time of many
identical repetitions of each run, by taking a single measurement where
the same algorithm is invoked repeatedly on the same input in a loop,
and then dividing the total execution time by the number of repetitions.
This way, the running time is scaled up from, say, milliseconds to the
order of seconds, so that the available clock resolution can be utilized
more fully. Another important aspect to consider is that execution times
are strongly affected by details of the implementation. To avoid bias,
it is therefore important to ensure that equal efforts have been spent
optimizing the code of all methods included in a trial. It is, for the same
reason, also important to include implementation-independent measures
of performance, e.g., iteration counts, in a comparison between different
methods.

For an empirical evaluation to be relevant, test data must be selected
that faithfully represent “typical” real-world scenarios. Furthermore, to
ensure that the results of a study are reproducible, the test data should
be made available to the research community and the details of the
experimental setup should be clearly described. The test cases used
throughout this work include 3D models, some of which are well-known
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and are publicly available online, as well as randomly generated data
sets. In order for the benchmarks to paint a fairly complete picture,
several different statistical distributions have been employed when gen-
erating the data sets, and the measurements have been repeated multiple
times with different data sets. In Paper F, the data sets are generated in
an identical manner as in prior literature [2, 118]. Yet another concern
is how to report the results of a study in a clear way that answers the
questions posed and does not introduce bias [51, 117]. Given the sig-
nificant effects on performance generally seen in the included empirical
evaluations, we believe that the risk that any crucial errors have been
made in this regard is minimal.

4.2 Summary of Papers

Paper A

Thomas Larsson and Linus Källberg. Fast and Robust Approximation of
Smallest Enclosing Balls in Arbitrary Dimensions. Computer Graphics
Forum, 32(5) – Symposium on Geometry Processing 2013.

In this paper, a new algorithm is proposed for computing a (1 +
ε)-approximation of the MEB in O(dn/ε + d/ε3) time. The algorithm
uses the general strategy outlined in Algorithm 2.1, and computes an
ε-core-set of size O(1/ε). The candidate ball is initialized from a coarse
approximation of the diameter of the point set. Then, after a new point
has been inserted into the core-set in each iteration, the ball is updated
by invoking a subroutine that computes a (1+ε/2)-approximation of the
MEB of the updated core-set. This subroutine also follows the strategy
of Algorithm 2.1, except that it does not build its own core-set. Here the
solution is updated in each iteration using the cheap geometric operation
by Tian [125]. Interestingly, as is later shown in the appendix of Paper B,
this update operation is simply the geometric consequence of the update
used in Yıldırım’s dual algorithms [144], which moves the current iterate
toward the corner of the unit simplex corresponding to the farthest point
(see Section 2.3.2). This means that although the algorithm in Paper A
is described in an entirely geometrical way, it can be interpreted as a
dual algorithm.

The above strategy of repeatedly solving the problem for only the
points currently in the core-set can be called an active set strategy, and
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is also used, in a more elaborate form, in the MVEE algorithm proposed
in Paper F. If the algorithm is interpreted as a dual algorithm, the
approach can also be called a subspace ascent method [59], since the
weights of the points not in the core-set are kept fixed (at zero) while
the solution is improved in the subroutine over the subspace defined
by the remaining weights. A simplified version of the algorithm is also
described, where the subroutine is replaced by a single application of the
Tian update operation. This modification reduces the time complexity
to O(dn/ε), but appears to negatively affect performance in practice
in most cases. An additional consequence of the result given in the
appendix of Paper B is that this simplified algorithm is equivalent to
Yıldırım’s first algorithm, which does not use away steps.

The paper also introduces the concept of a “viable” ball, which is
an approximation Bc,r of the MEB having at least a hemisphere fully

enclosed in the MEB, i.e.,
√
‖c− c∗‖2 + r2 ≤ r∗. Intuitively, viability

is a certificate that a candidate ball is not too far off from the sought
solution, and the analysis of the algorithm is based on showing that all
the intermediate solutions satisfy the viability property. The concept is
adopted from Tian [125], who uses the term “bubble” to the describe
this type of ball.

A clarification of my contributions to this paper, as I am not its
main author: I developed Lemmas 1–3 and their proofs, which estab-
lish the correctness, convergence, as well as the time complexities of the
algorithms proposed in the paper.

Paper B

Linus Källberg and Thomas Larsson. Improved Pruning of Large Data
Sets for the Minimum Enclosing Ball Problem. Graphical Models, 76(6),
2014.

In this paper, we show that if a ball Bc,r is related to a dual feasible
solution u through (2.23) and (2.24) (page 22), then the lower bound
derived by Ahipaşaoğlu and Yıldırım [4] on the distance from c to the
boundary of MEB(P) can be tightened. The improved bound gives the
following condition for when a point pi lies in the interior of MEB(P):

‖pi − c‖ <
(√

1 + ε+ ε2/2−
√

ε+ ε2/2
)
r, (4.1)

where, as before, ε is such that Bc,(1+ε)r ⊃ P. Condition (4.1) is a
slight paraphrase of the condition that results by combining Theorems 2
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and 4 in Paper B. A comparison of the terms inside the parenthesis to
the corresponding terms in (2.26) on page 32 immediately gives that
the right-hand side of (4.1) is larger and thus gives a less conservative
condition.

In addition, the paper includes a computational study in which the
effects of using the improved bounds in the pruning heuristic by Ahi-
paşaoğlu and Yıldırım are assessed. When incorporating the heuristic
into Yıldırım’s two algorithms [144] as well as the main algorithm from
Paper A, performance improvements of up to 2× are seen when using
the new bounds. Compared to not using the heuristic, speedups of up to
two orders of magnitude are seen. However, the effects vary depending
on the number of iterations performed and the statistical distribution of
the test data sets.

Since the publication of Paper B, Pronzato [98] has independently
derived a bound that can be shown, by a short calculation, to coincide
with the bound in the right-hand side of (4.1). Pronzato additionally
proves that the bound cannot be improved further.

Paper C

Linus Källberg and Thomas Larsson. Faster Approximation of Minimum
Enclosing Balls by Distance Filtering and GPU Parallelization. Journal
of Graphics Tools, 17(3), 2015.

The contribution of this paper is twofold. Firstly, we give alternatives
to the distance filtering technique proposed by Nielsen and Nock [94] (see
Section 2.3.3). We argue that the effectiveness of our techniques, which
are based on the triangle inequality as opposed to the Cauchy–Schwarz
inequality, is less sensitive to how the points are configured in space,
especially in higher dimensions. Our experiments seem to confirm this:
While Nielsen and Nock’s filtering method outperforms our methods in
low dimensions (on test cases selected to be reasonably favorable for
their method), its effectiveness diminishes drastically as the dimension
increases. Our filtering approach, on the other hand, remains effective
in dimensions at least as high as 10,000.

These filtering heuristics address certain drawbacks of pruning heuris-
tics such as those studied in Paper B. Firstly, since the condition for
eliminating a point depends on the approximation quality of the cur-
rent solution, the pruning is usually fairly ineffective during the initial
iterations of the algorithm. This can lead to meager positive effects on
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performance in cases where the algorithm does not require many itera-
tions. Secondly, pruning can be expected to be less effective for high-
dimensional problems. Note that the pruning conditions (2.26) and (4.1)
can be interpreted geometrically as testing whether a point falls inside
a shrunken copy of the current candidate ball. As the number of dimen-
sions increases, the ratio of the volume of this ball to the volume of the
MEB decreases toward zero, an example of a phenomenon commonly
referred to as the “curse of dimensionality”. This means that it becomes
increasingly unlikely for any points in the input to satisfy the pruning
condition. On the other hand, while the filtering condition too can be
interpreted as testing a point for containment in a ball, the ball in this
case has a much less conservative radius, which gives a larger volume
ratio.

In the second part of Paper C, we study how GPUs can be utilized
to accelerate the farthest-point queries. Computing the farthest point in
parallel is, in principle, not a challenging problem (it could suitably be
categorized as an “embarrassingly parallel” problem). However, the effi-
cient utilization of various parallel hardware features and architectures is
far from trivial. Efficient parallel implementations of the farthest-point
routine were investigated already in Paper A, where multithreading and
SIMD instructions on the CPU were used. In Paper C this investiga-
tion is continued by considering solutions based on the general-purpose
GPU platform CUDA [105]. Using off-the-shelf routines from the Thrust
library for CUDA [14], as well as handwritten code amenable to auto-
tuning [38], we demonstrate speedups of up to 25×. An implementation
of distance filtering on the GPU is also considered, but is not entirely
successful.

Paper D

Linus Källberg, Evan Shellshear, and Thomas Larsson. An External
Memory Algorithm for the Minimum Enclosing Ball Problem. The 11th
International Conference on Computer Graphics Theory and Applica-
tions (GRAPP), 2016.

This paper studies the exact MEB problem in an external memory
setting, where the input data resides in secondary storage, and only
parts of it can fit in main memory at any given time. Such situations
might arise under memory-constrained conditions, e.g., in mobile appli-
cations, or when very large data sets are involved, such as 3D-scanned
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point clouds. External memory, or out-of-core, algorithms are designed
with the objective to both reduce the number of expensive transactions
of data from secondary storage, and to improve the efficiency of these
transactions by increasing the locality of the data accesses [136].

While crude approximations of the MEB can be computed under
the streaming model, where each data element is allowed to be read
only once, currently no exact algorithms tailored for external memory
conditions seem to exist. We present a new algorithm primarily designed
for low-dimensional problems, and compare it empirically to a näıve
adaptation of Gärtner’s algorithm [56] for external memory. By use of
a variant of the distance filtering heuristic of Paper C, we achieve close
to the optimal I/O of only one access per data element on large scanned
point clouds.

Paper E

Linus Källberg and Thomas Larsson. A Filtering Heuristic for the Com-
putation of Minimum-Volume Enclosing Ellipsoids. The 10th Interna-
tional Conference on Combinatorial Optimization and Applications (CO-
COA), 2016.

In this paper, a distance filtering heuristic for the MVEE problem
is developed. Similar in concept to the techniques developed for the
MEB problem in Paper C, the heuristic uses safe bounds to filter out
unnecessary distance computations during the search for the farthest
point in algorithms adhering to the strategy outlined in Algorithm 3.1.
Whereas the computation on Line 3 of Algorithm 2.1 uses the Euclidean
norm, however, the computation on Line 4 of Algorithm 3.1 uses the
ellipsoidal norm induced by the current candidate ellipsoid. Thus, the
triangle inequality cannot be used. Instead, specialized bounds based
on the eigenvalues of the shape matrix of the current ellipsoid are used
to formulate the filtering condition. Our computational results indicate
that when implemented in the Todd–Yıldırım MVEE algorithm [130],
the new filtering heuristic outperforms the elimination heuristic by Har-
man and Pronzato [60] for input data in 25 dimensions or more.
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Paper F

Linus Källberg and Daniel Andrén. Active Set Strategies for the Com-
putation of Minimum-Volume Enclosing Ellipsoids. Technical report,
Mälardalen University (submitted), 2019.

In this work, we propose a new (1 + ε)-approximation algorithm for
the MVEE problem. The algorithm follows the general strategy of Algo-
rithm 3.1, and can be viewed as an adaptation of the active set algorithm
in Paper A to the MVEE problem. Here, the algorithm by Todd and Yıl-
dırım [130] is invoked as a subroutine to compute a (1+ε)-approximation
of the MVEE of the current core-set in each iteration. However, in ad-
dition to the apporach of always adding only the farthest point to the
core-set, as is done in the algorithm of Paper A and the pseudocode in Al-
gorithm 3.1, alternative approaches are investigated in which more than
one point outside of the current ellipsoid are selected. Several schemes
for selecting these points are developed and compared, including an im-
proved (according to our evaluation) variant of the scheme used in the
active set strategy by Sun and Freund [118].

In addition, a new pruning heuristic is developed, which can be di-
rectly incorporated into any algorithm based on Algorithm 3.1. The
heuristic is aggressive, in the sense that it is not based on a conservative
condition that ensures that no support points of the MVEE are elimi-
nated. Instead, all points outside of the current ellipsoid that are not
part of the core-set are eliminated in each iteration. To ensure correct-
ness, once (1 + ε)-optimality has been reached for the set of remaining
points, the original point set is restored and the optimality condition
is evaluated again. If (1 + ε)-optimality also holds over the full point
set, then the solution is returned. If not, then this reveals that support
points were indeed eliminated. In this case, the process is repeated with
the restored point set and the current solution as the starting point.

Our computational evaluation on problems with 106 points in up
to 25 dimensions indicates that performance can be improved by up
to 70× using the developed techniques.
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Chapter 5

Conclusion

In this dissertation, new algorithms for large-scale instances of the MEB
and MVEE problems are proposed. In addition, several speed-up tech-
niques that address the main bottlenecks of these and existing algorithms
are presented.

There is an abundance of applications in which the fast processing of
large multidimensional data sets is essential. For example, in interactive
computer graphics and simulation applications, such as virtual reality
and video games, there is an ever-increasing demand for heightened re-
alism through refined geometric detail and higher frame rates. Also in
non-interactive applications, such as computer-generated imagery using
advanced rendering techniques, efficient processing of the involved geom-
etry is important. As was discussed in Sections 2.4 and 3.4, bounding
spheres and ellipsoids can be used to accelerate various geometric oper-
ations in these applications, such as collision and visibility queries. As
the geometric complexity increases, faster algorithms to compute the
bounding shapes are necessary, whether the acceleration data structures
are constructed as a preprocessing step, or they need to be recomputed
dynamically in each time step of an interactive simulation.

More generally, massive amounts of data are generated each day by,
e.g., mobile and sensing devices, and vast quantities of multimedia con-
tent is uploaded daily to the web. This unprecedented availability of
data brings new opportunities to extract knowledge and to build highly
accurate models for, e.g., novelty detection and pattern recognition. As
discussed in Sections 2.4 and 3.4, MEBs and MVEEs provide powerful
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tools for such tasks, and the techniques proposed herein should be valu-
able additions in the effort toward meeting the demands imposed by the
ever-growing data sets.

Although these techniques have mainly been presented and evaluated
in the context of large data sets, they are likely beneficial also in contexts
involving smaller data sets but more expensive operations on the input
elements. For example, in the kernel methods discussed in Section 2.4.2,
computing the distance between two points in the kernel-induced feature
space is much more costly than computing their Euclidean distance as in
the basic formulation of the MEB problem. Thus, skipping unnecessary
such distance computations, by pruning or other means, should provide
significant performance improvements also for less numerous data sets.
Similar conditions hold for computing the MEB or MVEE under any
expensive distance measure, or if the input contains other geometric
primitives than points, as discussed in Sections 2.5 and 3.5, which require
costly procedures to calculate the distances. Yet another example is
when the numerical calculations need to be carried out using multiple-
precision software libraries in order to ensure certain levels of numerical
precision [57, 27].

5.1 Further Studies

To conclude this part of the thesis, we outline a few possible directions
for further studies:

• In Paper B, the new bounds are used exclusively to accelerate the
individual iterations, but they could likely also be used to improve
the convergence rate of certain algorithms. For example, in the
multiplicative algorithm by Lawson [83] (see (2.25) on page 28 of
this thesis), pruning could be used to more quickly redistribute
weight from irrelevant (pruned) points. Harman and Pronzato [60]
demonstrate a similar use of their bound to speed up an algorithm
for the D-optimal design problem by Titterington [127] (see (3.34)
on page 53).

• Although the generic strategies of Algorithm 2.1 and 3.1, for which
the techniques proposed in this thesis were designed, fits many ef-
ficient algorithms for the MEB and MVEE problems, it would be
worthwhile to study pruning and/or filtering techniques also for
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algorithms based on different approaches. For example, in the pri-
mal algorithm by Fischer et al. [50], discussed in Section 2.3.1, the
main computational hot spot consists of repeatedly scanning the
whole point set to find the next point to enter the boundary of the
shrinking candidate MEB. Specially designed speed up heuristics
would likely be effective in reducing the number of points consid-
ered in each such scan.

• More generally, it would be relevant to study acceleration methods
for the related problems discussed in Sections 2.5 and 3.5. Since
several of these problems are amenable to first-order algorithms
similar to those considered here, they could likely benefit from fur-
ther developments and generalizations of the proposed heuristics.

• In the construction of MEB and MVEE hierarchies for various
tasks such as collision detection and similarity searching, there
appear to be opportunities to design speed up techniques that reuse
information across different levels of the hierarchy when computing
the enclosing shapes. For example, when computing the MEB or
MVEE for a node, the union of the core-sets computed for the
node’s children should—even though it may not necessarily satisfy
the core-set property—provide a good starting point for an active
set strategy.

• Although promising results are reported from the empirical trials
of the included papers, case studies applying the proposed methods
in real-world computational tasks would be worthwhile, to assess
their suitability in various applications. Such studies may identify
certain characteristics of typical data sets and scenarios encoun-
tered in practice, which could guide the further refinement of our
techniques.
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[13] Felix Behrend. Über einige Affininvarianten konvexer Bereiche.
Mathematische Annalen, 113(1):713–747, December 1937.

[14] Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented
library for CUDA. In GPU Computing Gems Jade Edition, pages
359–371. Elsevier, 2012.

[15] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On
the average number of maxima in a set of vectors and applications.
Journal of the ACM, 25(4):536–543, October 1978.

[16] U. Betke and M. Henk. Approximating the volume of convex bod-
ies. Discrete & Computational Geometry, 10(1):15–21, 1993.

[17] L. M. Blumenthal and G. E. Wahlin. On the spherical surface
of smallest radius enclosing a bounded subset of n-dimensional
Euclidean space. Bulletin of the American Mathematical Society,
47(10):771–777, 1941.

[18] D. Böhning. A vertex-exchange-method in D-optimal design the-
ory. Metrika, 33(1):337–347, 1986.

78 Bibliography
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[59] Radoslav Harman, Lenka Filová, and Peter Richtárik. A random-
ized exchange algorithm for computing optimal approximate de-
signs of experiments. Journal of the American Statistical Associa-
tion, pages 1–30, December 2019.

[60] Radoslav Harman and Luc Pronzato. Improvements on remov-
ing nonoptimal support points in D-optimum design algorithms.
Statistics & Probability Letters, 77(1):90–94, 2007.

[61] Donald Hearn. Observations on the minimum sphere problem.
Technical Report RR-77-5, Florida University Gainesville Depart-
ment of Industrial And Systems Engineering, 1977.

82 Bibliography

[52] Richard L. Francis. Letter to the editor—Some aspects of a mini-
max location problem. Operations Research, 15(6):1163–1169, De-
cember 1967.

[53] Marguerite Frank and Philip Wolfe. An algorithm for quadratic
programming. Naval Research Logistics Quarterly, 3(1-2):95–110,
1956.
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