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Abstract—Modern development of complex embedded systems
utilizes models to describe multiple different views on the
same system. Consistency between these models is essential to
successful development but ensuring it is in current practice often
a manual effort. In this research project, we aim to develop
a methodology that helps developers to maintain consistency
in industrial model-based development projects by identifying
inconsistencies throughout the development and maintenance
of the system. For such support to be applicable in industrial
practice, it should fit in with current development, i.e., should
be able to identify inconsistencies between models expressed in
different modeling languages and created in different modeling
tools. Furthermore, the required user interaction to defining
consistency checks should be minimal. This paper sketches an ap-
proach meeting these requirements, initial results towards it and
discusses future research plans towards a doctoral dissertation.

Index Terms—Model-based development, Consistency check-
Ing,

1. PROBLEM

Models are being used as core development artifacts in
the development of embedded systems [1], we consider this
practice model-based development (MBD) [2]. The use of
models promotes communication and re-use, and they are used
as a basis for the development of other artifacts (being other
models, code, or documents). In industrial practice, multiple
modelling languages and modelling tools are being used to
create these models [3]. We refer to them as being hetero-
geneous. Software systems are in practice modelled using
multi-view modelling, i.e., using multiple models, representing
multiple views of the same system [4]. The views are thus not
completely independent and relationships exist between them
and their elements [5]. Modelling systems through multiple
views and multiple heterogeneous models incurs a need to
ensure consistency across those views and models [6]. We
focus on the problem of bringing about consistency between
heterogeneous models in an industrial MBD context.

A. Consistency

We adopt the definition of consistency from the 24765
ISO/IEC/IEEE international standard as: “degree of unifor-
mity, standardization, and freedom from contradiction among
the documents or parts of a system or component” [T]. This is
closely related to the definition of traceability from the same
standard: “degree to which a relationship can be established
between two or more products of the development process,
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especially products having a predecessor-successor or master-
subordinate relationship to one another” [7]. In contrast, we
consider consistency between development artifacts regardless
of the existence of these predecessor-successor or master-
subordinate relationships. More specifically, following the
ISO/IEC/IEEE 42010 standard, relationships between devel-
opment artifacts are defined by correspondences, that are
themselves governed by correspondence rules [8].

Consistency between models is required to have confidence
in the created product and to prevent late changes or incorrect
development [8]. Nevertheless, complete consistency cannot
continuously exist, since inconsistency must be allowed at
some times during development to allow for asynchronous
changes to artifacts [9]. To prevent extra work on late changes
to development artifacts, or worse, incorrect development, it is
in the interest of developers to be timely aware of introduced
inconsistency between development artifacts. Waiting for man-
ual reviews is then not sufficient and automated support for
consistency checking is required and desired in industrial
practice.

B. Industrial context

A consistency checking approach aimed at detecting incon-
sistencies and maintaining consistency, is required throughout
the entire development cycle, since inconsistencies can be
introduced at any time during system specification, design,
implementation, and maintenance. For instance, when a de-
veloper adds functionality to the system design (in e.g. an
internal block diagram of a SysML model) that makes it
inconsistent with other existing artifacts (e.g. a Simulink
model), that latter model needs to be updated to reflect the
additional information now captured in the former. This can
be done at a later stage of development, and possibly by a
different developer, but the inconsistency should be resolved
before other artifacts start relying on the current (non-updated)
version of the Simulink model. Additionally, when models are
re-used in other development projects, it is important for de-
velopers to be aware of inconsistencies with existing artifacts.
Some approaches to consistency checking provide automatic
resolution of detected inconsistencies. This is not feasible in
these use-cases, firstly because added functionality cannot be
automatically implemented. Secondly, in cases where changes
are made to existing model elements, automatically propa-
gating those changes to related artifacts is possible, but not
always desirable, since this depends on the development phase



and the intentions of the particular changes. Therefore, we
argue that a consistency checking approach should focus on
identifying inconsistencies throughout all development phases,
but not automatically resolving them.

The considered industrial context of consistency checking
is in MBD development contexts, potentially involving many
different tools and developers. In our industrial partners,
development usually focuses around a system model as the
main, leading development artifact. Managing the consistency
between this and other artifacts is an ongoing challenge [10].
Regardless of the exact implementation of MBD, created
artifacts are commonly expressed in different formalisms (e.g.
modelling language or code) and likely created in different
tools. Those artifacts, particularly for example system models,
can grow to contain huge amounts of elements. Furthermore,
these models may be created in a collaborative setting, where
several developers are contributing to them and to other
development artifacts. These factors complicate consistency
checking and underscore the need for supporting it in industrial
contexts, which is currently lacking [11].

Indeed, interoperability between different modelling tools
and by extension consistency checking are shortcomings in
current industrial MBD [1], [12], [13]. Industrial adoption
of consistency checking is thus low, despite the potential
improvements in interoperability and synchronization between
heterogeneous models. We hypothesize that one of the main
reasons for this is the complexity of consistency checking
approaches for the targeted end-users.

C. Defining consistency checks

Checking for consistency between models requires corre-
spondence rules between them. These might be implicitly
derived, for example through name similarity, but are typically
explicitly defined by users [4]. A consistency check then
requires two pieces of information, 1) a correspondence rule
identifying which elements should be consistent, and 2) what
constitutes consistency between those elements. These two
may be combined in one formalism, expressing how to trans-
form a specific model element into another model element,
e.g. through model synchronization transformations [6]. Such
approaches are very expressive in the sense that they can
potentially detect and automatically resolve many different
types of inconsistencies. An example of an often-used for-
malism to express such correspondence rules is Triple Graph
Grammars [14]. Correspondence rules are then themselves
becoming complex expressions or models, thus requiring a
large time investment to set-up as well as requiring subsequent
time-intensive maintenance.

This level of expressiveness is not always required, par-
ticularly in our case, since we aim only to identify incon-
sistencies and notify developers of them. A trade-off can be
made between expressiveness and the level of automation
in identifying and correcting inconsistencies [15]. Indeed,
less expressive rules could be easier to define and therefore
more suitable for industrial adoption. In addition, lowering the
required complexity in user interactions with the consistency

checking methodology promotes the likeliness of industrial
adoption, especially when the approach also considers the
industrial development process and tooling context. Thus,
a consistency checking methodology applicable in industrial
practice requires a the amount of user interaction for defining
and maintaining correspondence rules to be minimal.

D. Summary

In summary: inconsistency between models should be iden-
tified early in the development process to prevent late changes
or possibly incorrect system implementation. Current adoption
is low due to the inherent complexity of industrial MBD and
the complexity in defining correspondence rules. The main
research question is thus: how can we create a consistency
checking mechanism suitable for industrial MBD practice? In
particular, we aim to research how to support:

1) industrially most relevant types of inconsistencies; i.e.,
what types of inconsistencies between what type of
models should developers be notified about?

2) heterogeneous models; i.e., how to check consistency
between models, and parts of models, created in different
tools and expressed in different formalisms (modelling
languages, code languages, etc.)?

3) lightweight correspondence rule definitions; i.e., how to
define and maintain consistency rules requiring minimal
user interaction?

4) industrial MBD contexts; i.e., how to integrate consis-
tency checking such that it complements existing devel-
opment processes and is able to handle the pluriformity
of industrial MBD tooling.

II. RELATED WORK

There is a large body of work describing approaches to
consistency checking [4]. Nevertheless, a recent review of the
literature finds that few modelling tools provide consistency
checking support between heterogeneous models, and that
available support does not suffice for industrial practice [12].
In this section, we discuss work most closely related to
our proposed approach, thereby excluding several approaches
aiming specifically at consistency checking between different
UML diagrams [16]. Papers on model evolution [17] are
also excluded since we do not consider the co-evolution of
metamodels and the models conforming to them. Indeed, in
our considered industrial cases, the metamodels (e.g. SysML)
typically rarely evolve.

A. Consistency checking approaches

Early approaches are based on the declaration of rules that
must hold over a set of models, for example expressed in
first-order logic [18]. Following these steps, the Epsilon Object
Language was proposed, which embodies the ideas of defining
rules over models [19]. In contrast, our approach requires
direct correspondence links to be defined between model
elements, which allows correspondence rules to address more
specific model elements. Further built on EOL, the Epsilon



Validation Language (EVL) can be used to express consistency
checks as well as ways to resolve them when detected [20].

An established approach in the literature is to express
correspondence rules using Triple Graph Grammars (TGGs),
which are bidirectional transformations allowing for automati-
cally updating related artifacts [14]. The correspondence rules
are defined as a transformation between source and target
meta-model elements. A similar amount of expressiveness is
provided by link models, which also captures the way of
translating model elements, but as models conforming to a
link language [21]. In our approach, we are not aiming at
automatically resolving inconsistency and argue that simpler
correspondence rule definitions can still sufficiently detect
relevant inconsistencies.

Specifically aimed at MBSE is an approach comparing
graph representations of models, where inconsistencies in
the graph are indicative of inconsistencies in the underly-
ing models [22]. This approach requires an automatic or
manual mapping of elements between different models to
appropriately compare them. Automatically matching elements
from different models is a difficult problem for which name
comparisons might be used as a simple but ineffective approx-
imation. In our approach, we require that this mapping is made
manually, through defining the correspondence rules.

Egyed has proposed an incremental consistency checking
approach agnostic of the language of expressing consistency
rules [23]. The approach furthermore runs consistency checks
only when needed, thus reducing total execution times com-
pared to batch-based approaches. Stevens has a similar goal
and proposes bidirectional transformations to repair inconsis-
tencies when they are introduced, or at least before code is
generated from models [24]. Here, the bidirectional transfor-
mations are executed only when models are changed in a
relevant way, improving over the conventional use of relying
on time stamps to detect changes between versions. Our
approach can benefit from these ideas to be made less batch
like and run only those consistency checks that are required
before a build.

Diskin et al. have proposed an approach for checking
global consistency of heterogeneous models [25]. Similar to
our approach, comparisons between heterogeneous models are
simplified to comparisons in homogeneous models. In their
approach, this is achieved through the merging of metamodels
and models, such that constraints can be checked globally, on
the set of models. In our approach, we propose not to merge
metamodels, but instead to lift relevant aspects of metamodels
into a common metamodel. Konig and Diskin have then
proposed further improvements to this idea of merging models
for consistency detection [26], [27].

A more comprehensive comparison of types of differ-
ent consistency checking approaches is provided by Feld-
mann et al. [28]. They divide approaches into categories
of theory-based, rule-based, or synchronization-based. Where
approaches in the latter category are aimed at automatically re-
solving inconsistencies. The first two categories are concerned
with checking provided rules.

B. Other related work

Tangentially related to our work is an approach that links
XML-based artifacts in a software ecosystem [29]. There are
similarities with our approach, since we also aim to link model
elements but in addition also maintain a definition of what
consistency means. Similarly, there is a clear relation between
our work and work on mega-modelling, which promotes
creating models to capture inter-model links [30]. This has
been also applied in the context of consistency checking. For
example, Megal./Forge allows users to describe relationships
between EMF based models in a project and describe tactics
to attempt automatic recovery of inconsistencies [31].

III. PROPOSED APPROACH
A. Overview

In this section, we sketch our proposed approach using a
running example. We consider a simple evolution scenario in
an MBD project consisting of one big SysML system model
and several Simulink models refining it by implementing
software functions. Specifically, let three SysML diagrams (an
internal block diagram, an activity diagram, and a parametric
diagram) describe the anti-lock braking system of a car, which
is further refined and described in a Simulink model. Note
that this is a simple example and potentially we could have
additional models involved in describing this part or related
parts of the software system, such as UML state machines or
sequence diagrams.

Our proposed consistency checking mechanism simplifies
the definition of correspondence rules through a separation
of concerns. The two concerns inherent to a consistency rule
are 1) to connect two elements, and 2) to declare those
elements consistent or not. In our approach, a global set of
rules dictates the meaning of consistency between metamodel
elements. We refer to this as a language consistency mapping.
In the example, this would constitute a set of rules dictating
how the SysML diagrams and the Simulink model should be
expressed in a model conforming to the common metamodel.
Then, the user-defined correspondence rules are simplified to
linking model elements between which consistency should be
checked. We call this a model consistency mapping.

Using these two rules, executable consistency checks can be
automatically generated. The passing or failing of these consis-
tency checks is determined by comparing the representations
of the models. This is possible since both representations are
conforming to the same common metamodel. The mappings
are discussed in more detail in the remainder of this section.
An abstract overview of the approach is shown in Figure 1,
where we show two models, M, and M, conforming to meta-
models MM, and M M, respectively. To check consistency,
My and Mp are transposed to representations C'M4 and
CMp respectively. In turn CM 4 and CMp conform to the
CM M metamodel.

B. Consistency mappings

The language consistency mappings allow for the compari-
son of heterogeneous models by expressing them in a common
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format. They are thus model transformations, transforming an
input model into an instance of the comparison metamodel.
In our running example, we would have two language con-
sistency mappings, one to transform the SysML diagrams
to a model in the common modeling language and one to
transform the Simulink model to a model in the common
modeling language. An implementation would rely on the file
representations of these models to serve as the input source of
these transformations. These mappings are global and reused
for any consistency check involving model elements of these
types. Note that these mappings are not one-to-one between
metamodel elements of e.g. SysML and Simulink but rather
describe how to express a model in the common format. This
potentially allows consistency checks between n model ele-
ments, depending on the comparison algorithm. Furthermore,
the complexity of the language consistency mappings can be
varied in case more or less expressiveness is desired. In the
simplest case, the language consistency mapping can be omit-
ted entirely, marking any consistency check a failure and thus
being useful only for a simple form of change impact analysis.
One of the aspects of this mapping in the running example
would be a mapping detailing which Simulink block types
to transpose into the common representation. For example,
the most detailed algorithmic blocks in a Simulink model are
probably not of interest in a comparison between SysML and
Simulink models. Rather, the mapping would detail that e.g.
subsystems and ports should be transposed to the comparison
model.

To generate consistency checks, a correspondence rule is
required to define which elements should be compared to each
other. Since this is the part of the consistency check definition
that the user interacts with directly, we aim to keep the required
input as minimal as possible. Our approach requires as input
for this model consistency mapping only pointers to two model
elements. In addition, the user will be allowed to configure
some parts of the consistency check, such as the strictness and
the type of comparison algorithm executed. In the example,
this could relate e.g. the parametric diagram “ABS” and the
Simulink model “Anti-lock braking.” At a more detailed level,
we can imagine a relation between a Simulink subsystem and
a block in the SysML internal block diagram. Note that this
mapping can be performed at other abstraction levels as well.

For instance, in a different case we might relate only a block
inside a diagram to an entire Simulink model. Furthermore, the
mapping is not necessarily constrained to one-to-one relations.

The final part of the approach is not a mapping, but a set
of comparison algorithms that are executed on the comparison
models. The algorithms are provided in the implementation,
but the definition of the consistency checks contains the choice
of the comparison algorithm. In this way, different types of
consistency can be checked between model elements. For
example, we can check for equivalence across model elements,
or just for some common values. In our example, we could for
example detect if the Simulink model is missing a subsystem
that was expected in the SysML block diagram, indicating a
probable inconsistency between the two models.

C. Process view

Besides the mechanism by which to define correspondence
rules, an industrially applicable consistency checking approach
should, from its inception, be designed to fit in with the
development process and environment in which it will be used.
Here we briefly discuss three aspects of this process view.

Egyed [23] proposes instantaneous checking of consistency,
a frequency similar to syntax highlighting in modern IDEs.
This frequency may get annoying in a normal development
scenario, since during the task of changing a model many
trivial inconsistencies will be marked. Therefore, we propose
to run the consistency checks at a lower frequency, at a time
when developers have completed their tasks and consistency
should hold. A good example of such a time is before
developers integrate their work into a shared repository.

Since we are considering multi-view modeling and incon-
sistencies between models in those views, it is relevant to
ask who in the development process defines and maintains
the consistency rules, as well as who should be involved
in resolving identified inconsistencies. Since the answers to
these questions depend are specific to a particular development
setup, on specific development scenarios, we assume that the
implementation should not be limiting to only a small set of
users. It is often argued that consistency checking and similar
types of supporting tools should be integrated in tools that are
already in use by developers. Although a new separate tool is
undesirable, since it would be easily overlooked if not already
in the development process, integration consistency checking
in one of the development tools is also undesirable, since, it
can then only be used by users of that tool.

For these reasons, we have, in our prototype implemen-
tation, integrated consistency checking in the continuous in-
tegration pipeline [32]. Of course, the assumption of the
presence of such a pipeline does not hold in all MBD projects.
Nevertheless, we do consider this a likely future direction for
industrial MBD and notably, one in which inter-model consis-
tency becomes more important due to its short development
cycles.

D. Summary and Limitations

In summary, our proposal is to transpose relevant parts of
models (i.e. relevant elements as specified in the metamodel
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Fig. 2. Timeline for planned activities in the next phase of the research,
roman numerals refer to planned items as detailed in Section IV.

level language consistency mappings) to a common format.
When the user then creates a specific mapping between model
elements, consistency checks can be generated. Then, compar-
ison rules are applied on the models in common formats to
detect inconsistencies according to the language consistency
mapping. The approach is thus lightweight in usage and can
check consistency between heterogeneous models.

The main trade-off of our approach is between expressive-
ness and ease of use. We argue that in different scenarios in
industrial practice, lower levels of expressiveness can suffice.
For example, only a mapping between model elements can
be enough for an indication of potential inconsistency. With
more complex language consistency mappings, the precision
of the checks can be increased. Our approach can be applied
along this spectrum, but is aimed specifically at providing a
lightweight way of defining consistency checks.

One of the other limitations is that we currently focus
on local consistency checking, disregarding for now global
consistency checking [25]. However, the current approach does
support more than one-to-one correspondence rules, depending
on the comparison algorithm and the common metamodel.
Global consistency rules can then be defined as a sequence
of these local consistency checks.

IV. CURRENT STATUS AND FUTURE WORK

This section describes the current status and future of
the work, as well as plans for its evaluation and validation.
Furthermore, a list of planned contributions and a timeline
for the next phase of the work is presented. Figure 2 shows
an overview of the other planned contributions as discussed
below and the planned timeline for them. In it, part I of
our research marks the initial problem definition and proof-
of-concept implementation of the approach, as described in
Section I and Section III respectively. The included plans
cover the next two years of the research towards a doctoral
dissertation. That timeline roughly corresponds to licentiate,
which is a common intermediate degree towards a doctoral
degree in Sweden.

The current status is that we have identified a need for a
lightweight inter-model consistency checking approach, which
is described in the problem description in this paper. Secondly,
we have created a proof-of-concept implementation for a nar-
row application of our approach, namely structural consistency
[32]. This is a first step towards a more general approach that
is applicable to the industrially most relevant cases.

The next step (II) in the research is to perform em-
pirical research in the target industrial context to uncover
the industrially most relevant consistency checking scenarios.
This includes the types of languages and diagrams used, the

types of inconsistencies that are introduced, and the types of
inconsistencies that are most valuable to be notified about
(for example because they go often unnoticed). We plan to
perform this research in two stages. In the first part, we aim
to identify the most relevant types of inconsistencies through
interviews with practitioners. The second part consists of a
user study in which we present the developers with some
emulated but realistic examples of inconsistency and several
alternative versions of consistency checks to uncover which of
them would be considered most helpful in practice.

When we have determined the exact scope of the con-
sistency checks the next step (III) is to simplify also the
definitions of the language consistency mappings and to define
an appropriate comparison metamodel to express model ele-
ments in. We plan to research ways to allow users to define
them as easily as is done for model consistency mappings,
for example by deriving language consistency mappings from
user-provided examples.

In parallel (IV), we aim to develop the existing proof-of-
concept implementation further. When matured, we plan an
initial evaluation by MBD practitioners in realistic scenarios
with respect to its ability to detect the required types of
inconsistencies and the ability of engineers to define the
required consistency checks (V).

These steps roughly correspond to one of the following
planned contributions:

1) A set of industrially most relevant consistency checking
scenarios and the expressiveness of correspondence rules
that is required to automatically identify inconsistencies
in those scenarios. (II)

2) An approach to defining correspondence rules using
minimal user input such that consistency checks can be
automatically generated from them. (III)

3) A consistency checking tool implementing this approach
such that it can be applied in industrial practice. (IV)

V. SUMMARY

Inter-model consistency is vital in model-based develop-
ment, but inconsistencies are inevitable in industrial multi-
view modeling scenarios. Therefore, we focus on supporting
developers by providing simple means of defining corre-
spondence rules that identify inconsistencies during model
evolution. We argue that simplifying the consistency check
definitions as made by the user is required to promote the us-
age of a consistency checking approach in industrial practice,
which also includes heterogeneous models and complex tool
environments.

Our proposed approach thus differs from existing ap-
proaches in that it trades expressiveness for required user
input, which is minimal. The research is in an early stage and
the plans for evaluation and validation are reflecting that, since
they include also plans for narrowing the scope of this work.
Currently, we have early result on a few of the contributions,
showing a proof of concept of a specific scenario within the
industrial context we address.
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